JP4776443B2 - Photocatalyst member - Google Patents

Photocatalyst member Download PDF

Info

Publication number
JP4776443B2
JP4776443B2 JP2006151083A JP2006151083A JP4776443B2 JP 4776443 B2 JP4776443 B2 JP 4776443B2 JP 2006151083 A JP2006151083 A JP 2006151083A JP 2006151083 A JP2006151083 A JP 2006151083A JP 4776443 B2 JP4776443 B2 JP 4776443B2
Authority
JP
Japan
Prior art keywords
photocatalyst
layer
curable resin
resin
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006151083A
Other languages
Japanese (ja)
Other versions
JP2007319745A (en
Inventor
松川聖子
鈴木孝樹
坂内厚一
半澤勝
井平誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2006151083A priority Critical patent/JP4776443B2/en
Publication of JP2007319745A publication Critical patent/JP2007319745A/en
Application granted granted Critical
Publication of JP4776443B2 publication Critical patent/JP4776443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Laminated Bodies (AREA)
  • Catalysts (AREA)

Description

本発明は光触媒機能を有する光触媒部材に関し、更に詳しくは、摩擦堅牢性、特に、耐払拭性に優れた光触媒部材に関する。   The present invention relates to a photocatalyst member having a photocatalyst function, and more particularly to a photocatalyst member having excellent friction fastness, particularly wiping resistance.

近年、セラミックス、金属、合成樹脂などからなる基材の表面に光触媒層を形成し、光触媒機能を付与した種々の光触媒部材が開発されている。かかる光触媒部材は、表面に露出する光触媒粒子によって、悪臭を分解したり、抗菌・防黴作用を発揮したり、親水性を発現したりするため、クーラーや掃除機の内部に使用されたり、カーポートの屋根材や高速道路の防音板等の用途に使用されている。   In recent years, various photocatalytic members having a photocatalytic function formed by forming a photocatalytic layer on the surface of a base material made of ceramics, metal, synthetic resin or the like have been developed. Such photocatalyst members are used in coolers and vacuum cleaners to decompose bad odors, exhibit antibacterial / antifungal effects, and develop hydrophilicity by photocatalyst particles exposed on the surface. It is used for roofing materials for ports and soundproof boards for highways.

また、基材の表面に光触媒粒子を含んだ層を形成し、この層の表面に10〜100nm程度の親水部と親油部をモザイク状に分散形成した親水親油性部材も提案されている(特許文献1)。
特開平10−166495号公報
Further, a hydrophilic / lipophilic member is also proposed in which a layer containing photocatalyst particles is formed on the surface of the base material, and a hydrophilic portion and a lipophilic portion of about 10 to 100 nm are dispersed and formed in a mosaic pattern on the surface of this layer ( Patent Document 1).
Japanese Patent Laid-Open No. 10-166495

しかしながら、従来の光触媒部材のように薄くて脆弱な光触媒層が表面に露出しているものは、物が当ったり擦ったりすると、その衝撃力や摩擦力で光触媒層が損傷したり剥脱したりして、光触媒機能が低下するという問題があった。   However, when a thin and fragile photocatalyst layer is exposed on the surface like a conventional photocatalyst member, if the object hits or rubs, the photocatalyst layer may be damaged or peeled off by the impact force or frictional force. Thus, there is a problem that the photocatalytic function is lowered.

また、特許文献1の親水親油性部材は、光触媒粒子を含んだ光触媒層の表面に酸素を配位させて親油性表面を形成し、水分子の存在下で光触媒粒子が励起する波長の光を照射して、配位した酸素の開裂反応を局所的に生じさせ、この開裂反応によりチタン原子に水酸基を結合させて、10〜100nm程度の親水部と親油部をモザイク状に分散形成したものであるから、光触媒層それ自体は従来の光触媒部材と同様に脆弱で表面に露出しており、従って、この特許文献1の親水親油性部材も、外部からの衝撃力や摩擦力で光触媒層が損傷したり脱落したりして光触媒機能の低下を招くという問題があった。   Further, the hydrophilic / lipophilic member of Patent Document 1 forms a lipophilic surface by coordinating oxygen to the surface of the photocatalyst layer containing the photocatalyst particles, and emits light having a wavelength that excites the photocatalyst particles in the presence of water molecules. Irradiated to cause a coordinated oxygen cleavage reaction locally, and by this cleavage reaction, a hydroxyl group is bonded to a titanium atom, and a hydrophilic portion and a lipophilic portion of about 10 to 100 nm are dispersed and formed in a mosaic shape. Therefore, the photocatalyst layer itself is fragile and exposed on the surface in the same manner as the conventional photocatalyst member. Therefore, the hydrophilic / lipophilic member of Patent Document 1 also has a photocatalyst layer formed by external impact force or friction force. There has been a problem that the photocatalytic function is lowered due to damage or dropping off.

本発明は上記の事情の下になされたもので、摩擦堅牢性、特に、耐払拭性に優れた傷付きにくい光触媒部材を提供することを解決課題としている。   The present invention has been made under the above circumstances, and an object of the present invention is to provide a photocatalyst member which is excellent in friction fastness, in particular, wiping resistance and hardly scratched.

上記課題を解決するため、本発明に係る光触媒部材は、基材の上に光触媒粒子を含む光触媒層が積層された光触媒部材であって、この光触媒層に、硬化性樹脂領域が光触媒層の表面と面一になるように埋入された状態で分散して形成されていることを特徴とするものである。
そして、この硬化性樹脂領域の厚みは10〜500nmであることが好ましい。
To solve the above problems, engaging Ru photocatalytic member to the present invention is a photocatalyst member photocatalyst layer is laminated comprising photocatalyst particles on the substrate, the photocatalyst layer, the curable resin region photocatalytic layer is characterized in that the formed dispersed in implanted state such that the front surface flush.
And it is preferable that the thickness of this curable resin area | region is 10-500 nm.

本発明の光触媒部材においては、ブラックライトブルーランプを用いて1mW/cm2の強度の光を168時間照射したのち、硬化性樹脂領域が形成された光触媒部材の表面の水との接触角が30〜90°であることが好適であり、光触媒層の表面の面積に占める全ての硬化性樹脂領域の合計面積の割合が20〜99%であることが好ましい。また、硬化性樹脂領域が熱硬化性樹脂からなる領域であることが好ましく、特にメラミン樹脂からなる領域であることが好ましい。そして、基材としては、例えば、繊維と熱硬化性樹脂と無機材とよりなる芯材層と、その上に積層一体化された樹脂含浸化粧層とからなる化粧板などが好ましく使用される。また、本発明の光触媒部材においては、基材と光触媒層との間に保護層を形成してもよく、更に、基材と保護層との間に接着剤層を形成してもよい。 In the photocatalyst member of the present invention, after irradiating light of 1 mW / cm 2 with a black light blue lamp for 168 hours, the contact angle with water on the surface of the photocatalyst member on which the curable resin region is formed is 30. It is suitable that it is -90 degrees, and it is preferable that the ratio of the total area of all the curable resin area | regions which occupies for the area of the surface of a photocatalyst layer is 20-99%. Further, the curable resin region is preferably a region made of a thermosetting resin, and particularly preferably a region made of a melamine resin. And as a base material, the decorative board etc. which consist of the core material layer which consists of a fiber, a thermosetting resin, and an inorganic material, and the resin impregnated decorative layer laminated | stacked and integrated on it, etc. are used preferably, for example. In the photocatalyst member of the present invention, a protective layer may be formed between the base material and the photocatalyst layer, and an adhesive layer may be further formed between the base material and the protective layer.

本発明に係る光触媒部材は、光触媒層の表面と面一になるように埋入された状態で分散して形成された硬化性樹脂領域によって、光触媒層が保護されているため、光触媒部材の摩擦堅牢性、特に、耐払拭性が向上し、防傷性も向上する。従って、繰り返し擦られても光触媒粒子が基材から剥脱し難く、また、物が当っても光触媒層が損傷し難いので、長期に亘って安定した光触媒機能を発揮することが可能となる。もっとも、厳密に言えば、光触媒層の硬化性樹脂領域相互間の表面は保護されていないが、この硬化性樹脂領域相互の間隔は狭いため、この領域相互の表面のみに物が当って損傷したり、領域相互の表面のみが払拭されて剥脱するようなことは現実には皆無に等しく、従って、光触媒層の表面全体に亘って摩擦堅牢性、特に耐払拭性や、防傷性が向上することになる。 Engaging Ru photocatalytic member in the present invention, the curable resin region formed by dispersing in embedded state to be flush with the surface of the photocatalyst layer, since the photocatalyst layer is protected, photocatalyst The friction fastness of the member, in particular, the wiping resistance is improved, and the scratch resistance is also improved. Accordingly, the photocatalyst particles are not easily peeled off from the substrate even when repeatedly rubbed, and the photocatalyst layer is hardly damaged even when hit by an object, so that a stable photocatalytic function can be exhibited over a long period of time. Strictly speaking, the surface between the curable resin regions of the photocatalyst layer is not protected, but since the distance between the curable resin regions is narrow, objects hit only the surfaces of the regions and damage each other. In other words, it is practically impossible that only the surfaces of the regions are wiped off and exfoliated, and therefore the friction fastness, particularly the wiping resistance and the scratch resistance are improved over the entire surface of the photocatalyst layer. It will be.

そして、光触媒層の表面の面積に占める全ての硬化性樹脂領域の合計面積の割合が20〜99%であると、硬化性樹脂領域相互間の面積が小さく間隔も狭くなるので、光触媒層の表面全体の摩擦堅牢性、特に耐払拭性や、防傷性が向上する。硬化性樹脂領域の合計面積の割合が20%より少なくなると、硬化性樹脂領域によって保護される面積が少なくなり過ぎるので、摩擦堅牢性、特に耐払拭性や、防傷性が不充分になり、その割合が99%を超えると、光触媒層のほぼ全面が硬化性樹脂領域で被覆されるため、悪臭成分や低分子量有機物の分解作用、抗菌・防黴作用などが低下する。   And when the ratio of the total area of all the curable resin area | regions which occupies for the area of the surface of a photocatalyst layer is 20 to 99%, since the area between curable resin area | regions becomes small and a space | interval becomes narrow, the surface of a photocatalyst layer Overall friction fastness, especially wiping resistance and scratch resistance are improved. When the ratio of the total area of the curable resin region is less than 20%, the area protected by the curable resin region becomes too small, so that the friction fastness, particularly wiping resistance and scratch resistance are insufficient. If the ratio exceeds 99%, almost the entire surface of the photocatalyst layer is covered with the curable resin region, so that the malodorous and low molecular weight organic substance decomposition action, antibacterial / antifungal action, and the like are reduced.

また、硬化性樹脂領域が熱硬化性樹脂、更に好ましくはメラミン樹脂で形成された領域であると、このメラミン樹脂などの硬化性樹脂が三次元に架橋、硬化して高い表面硬度と強度を有し、しかも、表面の摩擦抵抗が小さいので、摩擦堅牢性、特に耐払拭性の向上や、防傷性の向上が一層顕著になる。そして、硬化性樹脂領域の光線透過率が高いため、可視光や紫外線を光触媒層まで良く透過させて光触媒機能を充分に発揮させることができる。   If the curable resin region is a region formed of a thermosetting resin, more preferably a melamine resin, the curable resin such as melamine resin is three-dimensionally cross-linked and cured to have high surface hardness and strength. In addition, since the frictional resistance of the surface is small, the improvement of the fastness to friction, particularly the wiping resistance and the improvement of the scratch resistance become more remarkable. And since the light transmittance of a curable resin area | region is high, visible light and an ultraviolet-ray can be permeate | transmitted well to a photocatalyst layer, and a photocatalyst function can fully be exhibited.

本発明の光触媒部材のように、分散して形成された硬化性樹脂領域によって光触媒層の表面の一部ないし大半が覆われていても光触媒機能が発揮される理由については明らかではないが、硬化性樹脂領域相互間で露出する光触媒層で光触媒機能が発揮されることは当然ながら、硬化性樹脂領域の厚さが10〜500nmと薄いため、硬化性樹脂領域を透過した光により光触媒層の光触媒粒子が活性化されて発生するラジカル種や活性酸素種などが、薄い硬化性樹脂領域を越えて該領域の表面側へ飛散し、悪臭成分や低分子量有機物の分解作用、抗菌・防黴作用などを行うからであると推測される。また、表面の悪臭成分や低分子量有機物が薄い硬化性樹脂領域を通過し、光触媒層と接触して分解されることも、理由の一つと考えられる。   It is not clear why the photocatalytic function is exerted even if a part or most of the surface of the photocatalyst layer is covered with the curable resin region formed by dispersion like the photocatalyst member of the present invention. Of course, the photocatalytic function is exhibited by the photocatalyst layer exposed between the curable resin regions, and since the thickness of the curable resin region is as thin as 10 to 500 nm, the photocatalyst of the photocatalyst layer is transmitted by the light transmitted through the curable resin region. Radical species and active oxygen species generated when the particles are activated scatter over the thin curable resin region to the surface side, decompose malodorous components and low molecular weight organic substances, antibacterial / antifungal properties, etc. It is presumed that this is done. It is also considered that one of the reasons is that malodorous components and low molecular weight organic substances on the surface pass through the thin curable resin region and are decomposed in contact with the photocatalyst layer.

硬化性樹脂領域の厚みが10nmよりも薄くなると、硬化性樹脂領域が磨滅、破損しやすくなるので、摩擦堅牢性、特に耐払拭性を充分向上させることが難しくなり、傷も付き易くなる。逆に、500nmよりも厚くなると、ラジカル種などの光触媒作用に関与する物質が硬化性樹脂領域を越えて表面側へ飛散し難くなり、また、低分子量の有機物などが硬化性樹脂領域を通過して光触媒層に接触することも困難となるので、光触媒機能が低下して悪臭成分や低分子量有機物の分解作用、抗菌・防黴作用等が不充分になる。   If the thickness of the curable resin region is thinner than 10 nm, the curable resin region is likely to be worn out and damaged, so that it is difficult to sufficiently improve the friction fastness, particularly the wiping resistance, and it is easy to be damaged. On the other hand, when it is thicker than 500 nm, it becomes difficult for substances involved in photocatalytic action such as radical species to diffuse to the surface side beyond the curable resin region, and low molecular weight organic substances pass through the curable resin region. Therefore, it is difficult to come into contact with the photocatalyst layer, so that the photocatalytic function is lowered, and the decomposition action of the malodorous component and the low molecular weight organic substance, the antibacterial / antifungal action and the like become insufficient.

上記の硬化性樹脂領域は、硬化性樹脂が三次元網目状に架橋、硬化しているので分解されにくいため、光触媒層による有機物分解などの光触媒作用が硬化性樹脂領域に及んでいても、硬化性樹脂領域は劣化し難く、長期に亘って優れた摩擦堅牢性、特に耐払拭性と、防傷性を維持することができる。   The above curable resin region is hard to be decomposed because the curable resin is cross-linked and cured in a three-dimensional network, so even if the photocatalytic action such as organic matter decomposition by the photocatalyst layer reaches the curable resin region The resistant resin region hardly deteriorates and can maintain excellent friction fastness, particularly wiping resistance and scratch resistance, over a long period of time.

また、光触媒部材の表面の水との接触角が上記のように30〜90°であると、親水性に劣り水の濡れ性が悪いため、光触媒作用の一つである親水性化による自己浄化の作用は実質的に発揮されないが、悪臭成分、低分子量有機物等の分解作用や抗菌・防黴作用などの光触媒作用は充分発揮することができ、タバコのヤニを分解したり、シックハウス症候群の原因となる揮発性有機化合物(VOC)ガスの分解等の効果も得ることができる。さらに、メラミン樹脂のような撥油性の硬化性樹脂を用いて硬化性樹脂領域を形成した場合は、台所などの油を使用する環境で使用しても油汚れを拭き取りやすくなるため、光触媒による有機物分解作用と相乗して油汚れ防止効果を発揮できる。   In addition, when the contact angle of the surface of the photocatalyst member with water is 30 to 90 ° as described above, the hydrophilicity is poor and the wettability of water is poor. Although it does not substantially exert its action, it can sufficiently exhibit the decomposition effects of malodorous components, low molecular weight organic substances, etc., and anti-bacterial and antifungal effects, and can cause decomposition of tobacco dust and cause sick house syndrome An effect such as decomposition of volatile organic compound (VOC) gas can be obtained. Furthermore, when the curable resin region is formed using an oil-repellent curable resin such as melamine resin, it is easy to wipe off oil stains even when used in an environment where oil is used, such as kitchens. Synergistically with the decomposition action, oil stain prevention effect can be exhibited.

また、基材として、ガラス繊維やカーボン繊維、紙などの繊維と熱硬化性樹脂と無機材とよりなる芯材層と、その上に積層一体化された樹脂含浸化粧層とからなる化粧板を用いると、該化粧板は芯材層の繊維により熱伸縮が小さくすることができるため、光触媒層にも硬化性樹脂領域にもクラックが発生しない光触媒部材を得ることができる。そして、樹脂含浸化粧層の模様や図柄を硬化性樹脂領域と光触媒層を通して目視できる化粧光触媒部材とすることができる。また、化粧板は難燃性ないし不燃性とすることが容易であるので、そのような化粧板を使用すれば、難燃性ないし不燃性の光触媒部材を得ることができる。   Further, as a base material, a decorative plate comprising a core layer made of glass fiber, carbon fiber, paper or the like, a thermosetting resin, and an inorganic material, and a resin-impregnated decorative layer laminated and integrated thereon. When used, the decorative board can be reduced in thermal expansion and contraction by the fibers of the core layer, so that a photocatalyst member that does not generate cracks in the photocatalyst layer and the curable resin region can be obtained. And it can be set as the makeup | decoration photocatalyst member which can visually observe the pattern and design of a resin impregnation decorative layer through a curable resin area | region and a photocatalyst layer. Further, since the decorative board can be easily made flame retardant or non-flammable, a flame retardant or non-flammable photocatalytic member can be obtained by using such a decorative board.

さらに、基材と光触媒層との間に保護層を形成すると、光触媒作用で劣化し易い樹脂からなる基材を使用した場合でも、保護層によって光触媒層の光触媒作用が基材に及ばないように保護されるため、光触媒作用による基材の劣化を防止することができる。そして、この保護層と基材との間に接着剤層を形成したものは、保護層と直接接着できない基材を用いた場合でも、ラミネートや転写などの手段により、保護層と光触媒層と硬化性樹脂層を同時に基材に積層して保護層と基材を接着剤層で接着することができ、しかも、接着剤層が保護層で保護されるため、光触媒作用によって接着剤層が劣化することもない。   Furthermore, when a protective layer is formed between the base material and the photocatalyst layer, the photocatalytic action of the photocatalyst layer is not exerted on the base material by the protective layer even when a base material made of a resin that is easily deteriorated by photocatalytic action is used. Since it is protected, deterioration of the substrate due to photocatalysis can be prevented. And what formed the adhesive layer between this protective layer and the base material, even when using a base material that cannot be directly bonded to the protective layer, the protective layer and the photocatalyst layer are cured by means such as lamination or transfer. The protective resin layer can be laminated on the base material at the same time, and the protective layer and the base material can be adhered to each other with the adhesive layer. Moreover, since the adhesive layer is protected by the protective layer, the adhesive layer is deteriorated by the photocatalytic action. There is nothing.

以下、図面に基づいて、本発明の具体的な実施形態と参考形態を説明する。 Hereinafter, specific embodiments and reference embodiments of the present invention will be described with reference to the drawings.

図1は、硬化性樹脂領域4が光触媒層3の表面から突出している点のみで、本発明に係る光触媒部材とは構成が異なる参考形態の光触媒部材Aを示す断面図である。 FIG. 1 is a cross-sectional view showing a photocatalyst member A of a reference form having a configuration different from that of the photocatalyst member according to the present invention only in that the curable resin region 4 protrudes from the surface of the photocatalyst layer 3 .

この光触媒部材Aは、基材1の片側の表面に保護層2と光触媒層3をこの順で積層すると共に、この光触媒層3の表面に定形又は不定形の小さな硬化性樹脂領域4を光触媒層3の表面から突出した状態で分散させて形成した板状の部材である。この参考形態の光触媒部材Aでは保護層2、光触媒層3、硬化性樹脂領域4を基材1の片面に形成しているが、基材1の両面に形成しても勿論よく、また、基材1が光触媒作用によって変質、劣化し難いものである場合は保護層2を省略してもよい。 The photocatalyst member A is formed by laminating a protective layer 2 and a photocatalyst layer 3 in this order on the surface of one side of the base material 1, and forming a small curable resin region 4 having a regular or irregular shape on the surface of the photocatalyst layer 3. 3 is a plate-like member formed by being dispersed in a state protruding from the surface of 3. In the photocatalyst member A of this reference form , the protective layer 2, the photocatalyst layer 3, and the curable resin region 4 are formed on one side of the base material 1. The protective layer 2 may be omitted when the material 1 is hardly altered or deteriorated by the photocatalytic action.

基材1は、合成樹脂(熱可塑性樹脂や硬化性樹脂など)、ガラス、セメント、無機材、石、セラミック、金属など如何なる素材で形成されていてもよい。熱可塑性樹脂としてはポリカーボネートやポリエチレンテレフタレートなどのポリエステル系樹脂、アクリル系樹脂、塩化ビニル系樹脂、ポリオレフィン系樹脂、スチレン系樹脂などの単独又は混合若しくは共重合樹脂が用いられる。また、硬化性樹脂としては、熱や紫外線や電子線などの照射、重合開始剤や触媒などの添加で硬化するアクリル系樹脂、メラミン系樹脂、フェノール系樹脂、ジアリルフタレート系樹脂、不飽和ポリエステル系樹脂、ウレタン系樹脂、エポキシ系樹脂、シリコーン系樹脂などが用いられる。または、これらの樹脂を組み合わせて用いることもできる。さらに、基材1としては、これらの樹脂にガラス繊維などの無機繊維、カーボン繊維や紙などの有機繊維、無機フィラーを配合した複合素材、或は、上記繊維にこれらの樹脂を含芯させた複合素材、更には、繊維補強化粧材なども用いられる。   The substrate 1 may be formed of any material such as a synthetic resin (such as a thermoplastic resin or a curable resin), glass, cement, an inorganic material, stone, ceramic, or metal. As the thermoplastic resin, a polyester resin such as polycarbonate or polyethylene terephthalate, an acrylic resin, a vinyl chloride resin, a polyolefin resin, a styrene resin, or a single or mixed or copolymer resin is used. Curing resins include acrylic resins, melamine resins, phenolic resins, diallyl phthalate resins, and unsaturated polyester resins that are cured by irradiation with heat, ultraviolet rays, electron beams, and the like, and addition of polymerization initiators and catalysts. Resins, urethane resins, epoxy resins, silicone resins and the like are used. Alternatively, these resins can be used in combination. Furthermore, as the base material 1, these resins are combined with inorganic fibers such as glass fibers, organic fibers such as carbon fibers and paper, and inorganic fillers, or the above fibers are cored with these resins. Composite materials, and fiber reinforced cosmetics are also used.

上記の各種素材からなる基材1の中でも、透光性を有する樹脂、例えばポリカーボネート樹脂からなる基材1は、透明性に優れるうえに耐衝撃性にも優れているので、光触媒機能を有する屋根材、カーポート、道路防音板、腰板などの建築資材用又は道路資材用の光触媒部材Aの基材1として好ましく使用される。このようなポリカーボネート樹脂からなる基材1の厚さや形状については特に限定されないが、上記の屋根材、カーポート、腰板などに使用する光触媒部材Aの場合は、厚さが0.5〜4mmで平板状または波板状または折半状の基材1が好適に用いられ、また、道路防音板に使用する光触媒部材Aの場合は、厚さが4〜10mmの平板状の基材1が好適に用いられる。そして、熱線吸収機能、熱線反射機能、耐候性機能、電磁波吸収機能、電磁波反射機能、制電機能、ハードコート機能などを更に付与した基材1も好適に用いられる。   Among the base materials 1 made of the above-mentioned various materials, the light-transmitting resin, for example, the base material 1 made of polycarbonate resin has excellent transparency and impact resistance, so that it has a photocatalytic function. It is preferably used as the base material 1 of a photocatalyst member A for building materials such as materials, carports, road soundproofing plates, and waistboards or road materials. The thickness and shape of the base material 1 made of such a polycarbonate resin are not particularly limited. However, in the case of the photocatalytic member A used for the above roofing material, carport, waist plate, etc., the thickness is 0.5 to 4 mm. A flat plate-like, corrugated plate-like, or folded half-shaped substrate 1 is preferably used. In the case of the photocatalytic member A used for a road soundproof plate, a flat plate-like substrate 1 having a thickness of 4 to 10 mm is suitably used. Used. And the base material 1 which further provided the heat ray absorbing function, the heat ray reflecting function, the weather resistance function, the electromagnetic wave absorbing function, the electromagnetic wave reflecting function, the antistatic function, the hard coat function and the like is also preferably used.

また、上記のガラス繊維や無機フィラーなどを配合した複合素材からなる基材1や、繊維補強化粧材からなる基材1は、繊維や無機フィラーなどが含有されているため熱伸縮が小さく、それ故、光触媒層2を大きく熱伸縮させてクラックを発生させることがないので、好ましく使用される。これらの基材1は、その厚さが1〜10mm程度であると、十分な強度を有する。   In addition, the base material 1 made of a composite material blended with the above glass fiber or inorganic filler, or the base material 1 made of a fiber-reinforced decorative material has a small thermal expansion and contraction because it contains fibers and inorganic fillers. Therefore, the photocatalyst layer 2 is preferably used because it does not thermally expand and contract to generate cracks. These base materials 1 have sufficient intensity | strength that the thickness is about 1-10 mm.

保護層2は、光触媒層3の光触媒作用が基材1に及ぶのを阻止して基材1を保護する役目を果たすものである。かかる保護層2の好ましい例としては、シリカなどの無機物と、ポリジメチルシロキサン等のシリコーン樹脂、アクリル樹脂、フッ素樹脂などのバインダー樹脂とを均一に混合した組成物や、シリコーン樹脂とアクリル樹脂との混合物や共重合樹脂のように無機物と有機物とからなる組成物で形成した無機−有機物の層、或は、シリコーン樹脂で形成した層、或は、アモルファスの酸化チタン等の金属酸化物で形成した層などを挙げることができる。   The protective layer 2 serves to protect the substrate 1 by preventing the photocatalytic action of the photocatalyst layer 3 from reaching the substrate 1. Preferred examples of the protective layer 2 include a composition obtained by uniformly mixing an inorganic substance such as silica and a binder resin such as a silicone resin such as polydimethylsiloxane, an acrylic resin, or a fluororesin, or a silicone resin and an acrylic resin. An inorganic-organic layer formed of a composition comprising an inorganic substance and an organic substance such as a mixture or a copolymer resin, a layer formed of a silicone resin, or a metal oxide such as amorphous titanium oxide A layer etc. can be mentioned.

この保護層2の厚みは0.1〜10μmに形成することが好ましく、0.1μmより薄くなると、光触媒作用の効果的な遮断が困難になり、光触媒作用が基材1に及んで基材1を劣化させるという不都合が生じる。一方、10μmより厚くしても、光触媒作用遮断効果の更なる向上がみられないので、材料の無駄使いとなる。保護層2のより好ましい厚みは、0.5〜5μmである。     The protective layer 2 is preferably formed to have a thickness of 0.1 to 10 μm. When the thickness is less than 0.1 μm, it is difficult to effectively block the photocatalytic action, and the photocatalytic action reaches the base material 1 and the base material 1. Inconvenience that deteriorates. On the other hand, even if it is thicker than 10 μm, no further improvement in the photocatalytic action-blocking effect is observed, resulting in wasted material. A more preferable thickness of the protective layer 2 is 0.5 to 5 μm.

なお、この保護層2は、基材1が光触媒作用によって劣化を生じないガラス、セメント、無機材、石、セラミックス、金属などからなる場合には、必ずしも形成する必要がない。   The protective layer 2 is not necessarily formed when the substrate 1 is made of glass, cement, inorganic material, stone, ceramics, metal, or the like that does not deteriorate due to photocatalytic action.

光触媒層3は、光触媒粒子と、シリカもしくはシリコーン樹脂と、必要に応じて1質量%以下の分散剤やバインダーとを、均一に分散させて形成した層であって、これに含有されている光触媒粒子により、悪臭成分や低分子量有機物を分解したり、抗菌・防黴作用を発揮したり、親水性を発現させるなどの光触媒作用を行うものである。但し、この光触媒部材Aは、光触媒層3の表面に親水性に劣る硬化性樹脂領域を分散して形成している関係上、親水性化され難いので、親水性化による自己浄化作用は奏しない。   The photocatalyst layer 3 is a layer formed by uniformly dispersing photocatalyst particles, silica or silicone resin, and, if necessary, 1% by mass or less of a dispersant or binder, and the photocatalyst contained therein The particles perform photocatalytic actions such as decomposing malodorous components and low molecular weight organic substances, exhibiting antibacterial and antifungal effects, and developing hydrophilicity. However, since this photocatalyst member A is difficult to be made hydrophilic due to the dispersion of the curable resin region having poor hydrophilicity on the surface of the photocatalyst layer 3, it does not exhibit a self-purifying effect due to the hydrophilicity. .

光触媒層3に分散させる光触媒粒子としては、紫外線で活性化する粒子、可視光で活性化する粒子のいずれもが使用可能である。前者の紫外線活性化粒子としては、例えば、酸化チタン、酸化亜鉛、酸化錫、SrTiO、WOなどの金属酸化物が用いられる。その中でも、酸化チタン、特にアナターゼ型酸化チタンは、光触媒機能が高く、入手もし易いので、最も好ましく用いられる。 As the photocatalyst particles dispersed in the photocatalyst layer 3, any of particles activated by ultraviolet rays and particles activated by visible light can be used. As the former ultraviolet-activated particles, for example, metal oxides such as titanium oxide, zinc oxide, tin oxide, SrTiO 3 and WO 3 are used. Among them, titanium oxide, particularly anatase titanium oxide, is most preferably used because it has a high photocatalytic function and is easily available.

後者の可視光活性化粒子としては、例えば、上記の金属酸化物の粒子に、窒素、フッ素、硫黄、炭素などをドーピングした光触媒粒子、或は、白金担持、酸素欠陥、ブルッカイト型などの光触媒粒子が使用される。これらの光触媒粒子が可視光により光触媒機能を発揮する機構は明らかではないが、例えば、酸化チタンに窒素をドーピングした光触媒粒子の場合は、Ti―N、或はTi―O―Nの化学結合が生じ、可視光を吸収して光触媒機能を発揮すると考えられる。これらの可視光活性化粒子の中でも、酸化チタン、特にアナターゼ型酸化チタンに窒素をドーピングした光触媒粒子は、アナターゼ型酸化チタン自体が他の粒子より活性が高く入手が容易であり、しかも、可視光を吸収して高い光触媒機能を発揮するので、極めて好ましく使用される。   Examples of the latter visible light activated particles include photocatalyst particles obtained by doping the above metal oxide particles with nitrogen, fluorine, sulfur, carbon, or the like, or platinum-supported, oxygen-deficient, brookite-type photocatalyst particles. Is used. Although the mechanism by which these photocatalyst particles exhibit the photocatalytic function by visible light is not clear, for example, in the case of photocatalyst particles in which titanium oxide is doped with nitrogen, Ti—N or Ti—O—N chemical bonds are not present. It is considered that the photocatalytic function is exhibited by absorbing visible light. Among these visible light activated particles, photocatalyst particles in which titanium oxide, particularly anatase-type titanium oxide is doped with nitrogen, have higher activity than other particles and are easily available. Is used preferably because it exhibits a high photocatalytic function.

さらに、上記の紫外線活性化粒子又は可視光活性化粒子に、アパタイト、ゼオライト、シリカ(二酸化ケイ素)、アルミナ、酸化亜鉛、酸化マグネシウム、酸化チタン、リン酸ジルコニウム、ジルコニア、マグネシア、カルシアなどの無機材を網状もしくは多孔質状に被覆してなる網状被覆型光触媒粒子なども好ましく使用される。上記の無機材は、数オングストローム〜数μmの厚さで、0.1〜5.0質量%となるように光触媒粒子に被覆され、網状被覆型光触媒粒子の直径が500μm以下、好ましくは50μm以下、更に好ましくは0.001〜20μmとされている。このような網状被覆型光触媒粒子は、被覆網目を通じて紫外線又は/及び可視光が光触媒粒子に到達して光触媒機能を発揮する。上記の網状被覆型光触媒粒子の中でも、ゼオライト又はシリカの多孔質材で酸化チタンを被覆した光触媒粒子は、ゼオライトやシリカが悪臭成分を捕獲し、酸化チタンの光触媒作用で悪臭成分を分解するので、悪臭成分の分解効果が顕著であり、極めて好ましい。   Further, inorganic materials such as apatite, zeolite, silica (silicon dioxide), alumina, zinc oxide, magnesium oxide, titanium oxide, zirconium phosphate, zirconia, magnesia, and calcia are added to the above-mentioned ultraviolet ray activated particles or visible light activated particles. Reticulated coated photocatalyst particles obtained by coating a mesh with a mesh or porous structure are also preferably used. The inorganic material has a thickness of several angstroms to several μm and is coated on the photocatalyst particles so as to be 0.1 to 5.0% by mass, and the diameter of the reticulated coated photocatalyst particles is 500 μm or less, preferably 50 μm or less. More preferably, the thickness is 0.001 to 20 μm. Such a net-coated photocatalyst particle exhibits a photocatalytic function when ultraviolet rays and / or visible light reach the photocatalyst particle through the coating network. Among the above-mentioned network-coated photocatalyst particles, the photocatalyst particles coated with titanium oxide with a porous material of zeolite or silica capture the malodorous component by zeolite or silica, and decompose the malodorous component by the photocatalytic action of titanium oxide. The decomposition effect of malodorous components is remarkable and is extremely preferable.

上述した光触媒粒子は、光触媒層3の中に均一に分散させて5〜99質量%含有させることが好ましい。5質量%未満では、光触媒機能を発揮させることが困難になり、99質量%以上より多く含有させると光触媒層が脆くなって層の形成が困難になる。光触媒粒子の更に好ましい含有率は、紫外線活性化光触媒粒子を含有させる場合には5〜50質量%、可視光活性化光触媒粒子を含有させる場合には5〜99質量%、網状被覆型光触媒粒子を含有させる場合には5〜80質量%である。   The photocatalyst particles described above are preferably dispersed uniformly in the photocatalyst layer 3 and contained in an amount of 5 to 99% by mass. If it is less than 5% by mass, it becomes difficult to exert the photocatalytic function, and if it is contained in an amount of more than 99% by mass, the photocatalyst layer becomes brittle and it becomes difficult to form the layer. The more preferable content of the photocatalyst particles is 5 to 50% by mass when the ultraviolet-activated photocatalyst particles are contained, 5 to 99% by mass when the visible-light activated photocatalyst particles are contained, When it is contained, it is 5 to 80% by mass.

光触媒層3中に光触媒粒子と共に含有させる前記シリカとしては、シリカ前駆体、水ガラスなどのシリカを主体とした無機材料が用いられる。また、このシリカに代えてシリコーン樹脂を光触媒粒子と共に含有させて光触媒層3を形成してもよいし、シリカとシリコーン樹脂との混合物を光触媒粒子と共に含有させて光触媒層3を形成してもよい。これらのシリカ、シリコーン樹脂、両者の混合物は光触媒層3に95〜1質量%含有される。   As the silica to be contained in the photocatalyst layer 3 together with the photocatalyst particles, an inorganic material mainly composed of silica such as a silica precursor or water glass is used. Further, the photocatalyst layer 3 may be formed by containing a silicone resin together with the photocatalyst particles instead of the silica, or the photocatalyst layer 3 may be formed by containing a mixture of silica and silicone resin together with the photocatalyst particles. . These silica, silicone resin, and a mixture of both are contained in the photocatalyst layer 3 in an amount of 95 to 1% by mass.

硬化性樹脂領域4を透過して光触媒層3に到達する光はエネルギー量が小さいので、光触媒層3にはその小さなエネルギー量で光触媒機能を発揮できる量の光触媒粒子を含有させる必要があり、そのためには光触媒層3の厚みを5〜300nmの厚さにすることが好ましい。5nmより薄くなると、光触媒粒子量が不足して光触媒機能を発揮することが困難になり、また、300nmより厚くしても、光触媒機能の更なる向上が見られず、むしろ長期間使用するうちに光触媒層3にクラックが発生するという不都合が生じる。紫外線等の光触媒を活性化させる光が十分得られる環境で使用する材料ならば光触媒層3の厚さを5〜35nmと薄く設定できるが、十分な光が期待できない使用環境の場合には光触媒層3の厚さを35〜300nm、好ましくは50〜200nmに設定して光触媒粒子の含有量を多くしないと光触媒機能を発揮させることが難しい。   Since the light passing through the curable resin region 4 and reaching the photocatalyst layer 3 has a small amount of energy, the photocatalyst layer 3 must contain an amount of photocatalyst particles that can exhibit the photocatalytic function with the small amount of energy. For this, the thickness of the photocatalyst layer 3 is preferably 5 to 300 nm. If the thickness is less than 5 nm, the amount of the photocatalyst particles becomes insufficient and it becomes difficult to exert the photocatalytic function. Further, even if the thickness is greater than 300 nm, no further improvement in the photocatalytic function is observed, and rather, while using for a long period of time. There is a disadvantage that cracks occur in the photocatalyst layer 3. If the material is used in an environment where sufficient light for activating the photocatalyst such as ultraviolet rays can be obtained, the thickness of the photocatalyst layer 3 can be set as thin as 5 to 35 nm. However, in a use environment where sufficient light cannot be expected, the photocatalyst layer If the thickness of 3 is set to 35 to 300 nm, preferably 50 to 200 nm, and the content of the photocatalyst particles is not increased, it is difficult to exert the photocatalytic function.

この光触媒層3は、基材1が熱伸縮の大きい合成樹脂、特に熱可塑性合成樹脂からなるものであると、基材1の熱伸縮に伴って伸縮しようとし、一定以上の応力が光触媒層3に生じるとクラックを発生することになるが、光触媒層3の厚さが上記のように5〜35nmであると、伸縮に伴う内部応力が小さくなるので、クラックの発生を防止することができる。光触媒部材Aが透明であるか又は着色したものである場合にクラックが発生すると、光散乱により白濁して透明性や色相などの初期外観を保つことができなくなるが、光触媒層3を上記の厚さにしてクラックの発生を防止すると、初期の透明性や色相などを保つことができるようになる。   When the base material 1 is made of a synthetic resin having a large thermal expansion and contraction, particularly a thermoplastic synthetic resin, the photocatalytic layer 3 tends to expand and contract with the thermal expansion and contraction of the base material 1, and a certain level of stress is applied to the photocatalytic layer 3. However, when the thickness of the photocatalyst layer 3 is 5 to 35 nm as described above, the internal stress associated with expansion and contraction is reduced, so that the generation of cracks can be prevented. If cracks occur when the photocatalyst member A is transparent or colored, the initial appearance such as transparency and hue cannot be maintained due to light scattering, but the photocatalyst layer 3 has the above thickness. If cracks are prevented from occurring, the initial transparency and hue can be maintained.

これに対し、基材1が、無機繊維や有機繊維と熱硬化性樹脂と無機材とよりなる芯材層と樹脂含浸化粧層とからなる後述の化粧板や、合成樹脂にガラス繊維などを混合した繊維強化複合材や、繊維に合成樹脂を含浸させた樹脂含浸繊維複合材などのように熱伸縮の小さい基材である場合には、光触媒層3の伸縮が小さいので、光触媒層3を300nmの厚さにしてもクラックが発生することはない。   On the other hand, the base material 1 is a decorative plate described later composed of a core layer made of inorganic fiber, organic fiber, thermosetting resin, and inorganic material and a resin-impregnated decorative layer, or glass fiber mixed with synthetic resin. In the case of a base material having a small thermal expansion and contraction such as a fiber reinforced composite material or a resin-impregnated fiber composite material in which a fiber is impregnated with a synthetic resin, the photocatalyst layer 3 has a thickness of 300 nm. Cracks do not occur even if the thickness is too large.

以上のことから、光触媒粒子に豊富に紫外線等の光触媒を活性化させる光が得られる環境で、基材1が熱可塑性樹脂などの熱伸縮の大きい基材である場合には、光触媒層3の厚さを5〜35nmに設定するのが好ましく、一方、光触媒を活性化させる紫外線等の光を十分に得られない環境下で、基材1が上記の化粧板や繊維強化複合材や樹脂含浸繊維複合材などの熱伸縮の小さい基材である場合には、光触媒層3の厚さを35〜300nmに設定するのが好ましいことが分かる。   From the above, in an environment where light that activates a photocatalyst such as ultraviolet rays can be obtained abundantly in the photocatalyst particles, when the base material 1 is a base material having a large thermal expansion and contraction such as a thermoplastic resin, It is preferable to set the thickness to 5 to 35 nm. On the other hand, in an environment in which light such as ultraviolet rays for activating the photocatalyst cannot be sufficiently obtained, the base material 1 is impregnated with the above decorative board, fiber reinforced composite material, or resin impregnation. In the case of a base material having a small thermal expansion and contraction such as a fiber composite material, it is understood that the thickness of the photocatalyst layer 3 is preferably set to 35 to 300 nm.

硬化性樹脂領域4は、熱、光、電子線、水分、触媒、重合開始剤などによって硬化する合成樹脂からなる領域であって、樹脂が三次元網目状に架橋、硬化した表面硬度の高い摩擦堅牢性を有するものである。この硬化性樹脂領域4は、光を透過させて光触媒層3まで到達させる必要があるので、透明ないし透光性を有する必要があり、特に透明であることが好ましい。具体的な硬化性樹脂としては、メラミン系樹脂、フェノール系樹脂、ジアリルフタレート系樹脂、アクリル系樹脂、エポキシ系樹脂、ポリイミド系樹脂、不飽和ポリエステル系樹脂、ウレタン系樹脂、シリコーン系樹脂などの単独又は混合若しくは共重合樹脂が用いられ、これらの中でも、透明性が良好で表面硬度の高い熱硬化性アクリル系樹脂、熱硬化性メラミン系樹脂、熱硬化性フェノール系樹脂などの熱硬化性樹脂が好ましく用いられる。また、熱硬化性メラミン系樹脂や熱硬化性フェノール系樹脂が用いられ、特に、結合エネルギーが高く光触媒に分解されにくく、また表面硬度が高く透明性に優れた熱硬化性メラミン樹脂は極めて好ましく使用される。また、対傷自己治癒性のあるウレタンアクリレート系樹脂も好適に用いられる。   The curable resin region 4 is a region made of a synthetic resin that is cured by heat, light, electron beam, moisture, catalyst, polymerization initiator, etc., and has a high surface hardness friction obtained by crosslinking and curing the resin in a three-dimensional network. It has robustness. Since the curable resin region 4 needs to transmit light and reach the photocatalyst layer 3, it needs to have transparency or translucency, and is particularly preferably transparent. Specific curable resins include melamine resins, phenol resins, diallyl phthalate resins, acrylic resins, epoxy resins, polyimide resins, unsaturated polyester resins, urethane resins, silicone resins, and the like. Alternatively, a mixed or copolymer resin is used, and among these, thermosetting resins such as thermosetting acrylic resins, thermosetting melamine resins, thermosetting phenol resins having good transparency and high surface hardness are used. Preferably used. In addition, thermosetting melamine resins and thermosetting phenolic resins are used. Especially, thermosetting melamine resins that have high binding energy and are not easily decomposed into photocatalysts and that have high surface hardness and excellent transparency are very preferably used. Is done. A urethane acrylate resin having a self-healing property against scratches is also preferably used.

この硬化性樹脂領域は、該領域を越えて、光触媒層3の光触媒機能を表面側で発揮できるようにする必要があるので、厚さを500nm以下にすることが好ましい。500nmより厚くなると、光触媒層3の光触媒作用が強くても、硬化性樹脂領域の表面側で光触媒作用が充分に発揮されなくなる。一方、硬化性樹脂領域が薄くなりすぎると、摩擦堅牢性、特に、耐払拭性が低下し、硬化性樹脂領域の強度や防傷性も低下するので、少なくとも10nmの厚さを確保することが好ましい。従って、硬化性樹脂領域の厚さは10〜500nmに設定することが好ましく、光触媒作用の低下を極力抑えるためには、20〜200nmの厚さに設定することがより好ましい。さらに、35〜200nmの厚さにすることがより好ましい。なお、この硬化性樹脂領域には光触媒層3の光触媒作用が常に及んでいるが、この硬化性樹脂領域は前記のように樹脂が三次元網目状に架橋、硬化して分解されにくいため、光触媒作用を受けて短期間のうちに変質、劣化するようなことはない。   This curable resin region needs to be able to exhibit the photocatalytic function of the photocatalyst layer 3 on the surface side beyond the region, so that the thickness is preferably 500 nm or less. When it is thicker than 500 nm, even if the photocatalytic action of the photocatalytic layer 3 is strong, the photocatalytic action is not sufficiently exhibited on the surface side of the curable resin region. On the other hand, if the curable resin region becomes too thin, the friction fastness, in particular, the wiping resistance decreases, and the strength and scratch resistance of the curable resin region also decrease, so it is possible to ensure a thickness of at least 10 nm. preferable. Therefore, the thickness of the curable resin region is preferably set to 10 to 500 nm, and more preferably set to a thickness of 20 to 200 nm in order to suppress the decrease in photocatalytic action as much as possible. Further, it is more preferable that the thickness is 35 to 200 nm. The photocatalytic action of the photocatalyst layer 3 is always exerted on the curable resin region. However, since the curable resin region is difficult to be decomposed by crosslinking and curing the resin in a three-dimensional network as described above, There will be no deterioration or deterioration within a short period of time.

この光触媒部材の表面の水との接触角は、ミクロな視点でみると、厳密には硬化性樹脂領域4と、領域相互間の光触媒層3の露出部分とで異なっていると思われるが、光触媒部材表面のどの部分の水との接触角を測定しても略同じであり、ブラックライトブルーランプを用いて1mW/cm2の強度の光を168時間照射し、その直後に、光触媒部材の表面の水との接触角を測定した場合に、表面の接触角が30〜90°であることが好ましい。この程度の接触角であると、光触媒作用の一つである親水性化による自己浄化作用は発揮されないが、悪臭成分、低分子量有機物などの分解作用や抗菌・防黴作用は充分に発揮することができる。また、この程度の接触角であると、光触媒作用がそれほど強くないので、上記のように硬化性樹脂領域が分解しにくいことと相俟って、長期間経過しても硬化性樹脂層4が変質、劣化する恐れは殆どない。 From the microscopic viewpoint, the contact angle between the surface of the photocatalyst member and water seems to be strictly different between the curable resin region 4 and the exposed portion of the photocatalyst layer 3 between the regions. The contact angle with water on any part of the surface of the photocatalyst member is substantially the same, and the light of 1 mW / cm 2 is irradiated for 168 hours using a black light blue lamp. When the surface contact angle with water is measured, the surface contact angle is preferably 30 to 90 °. If the contact angle is at this level, the self-purifying effect due to hydrophilicity, which is one of the photocatalytic actions, will not be exhibited, but the decomposition action, antibacterial and antifungal action of malodorous components and low molecular weight organic substances, etc. should be sufficiently exerted. Can do. In addition, since the photocatalytic action is not so strong when the contact angle is at this level, the curable resin layer 4 can be formed even after a long period of time, coupled with the fact that the curable resin region is not easily decomposed as described above. There is almost no risk of deterioration or deterioration.

この硬化性樹脂領域の形状は不定形でも定形でもよく、また、個々の領域の面積は小さくても大きくてもよいが、光触媒層3の表面の面積に占める全ての硬化性樹脂領域の合計面積の割合は20〜99%の範囲内であることが好ましい。硬化性樹脂領域の合計面積の割合が20%より少なくなると、硬化性樹脂領域によって保護される面積が少なくなり過ぎるので、摩擦堅牢性、特に耐払拭性や、防傷性が不充分になる。硬化性樹脂領域の割合が75%より大きくなると、外観を損なう場合があるので、好ましい硬化性樹脂領域の合計面積の割合は25〜75%である。   The shape of the curable resin region may be indefinite or fixed, and the area of each region may be small or large, but the total area of all the curable resin regions in the surface area of the photocatalyst layer 3 Is preferably in the range of 20 to 99%. If the ratio of the total area of the curable resin region is less than 20%, the area protected by the curable resin region becomes too small, so that the friction fastness, particularly the wiping resistance and the scratch resistance become insufficient. When the ratio of the curable resin region is larger than 75%, the appearance may be impaired, and therefore the preferable ratio of the total area of the curable resin region is 25 to 75%.

硬化性樹脂領域4の分散形態は特に限定されるものではなく、例えば、硬化性樹脂領域が個々に分離した状態で光触媒層3の表面に点在していてもよいし、硬化性樹脂領域が互いに連なった状態で光触媒層3の表面に分散していてもよいし、これら双方の分散状態が混在していてもよいが、いずれの分散形態の場合も、硬化性樹脂領域が光触媒層3の表面全体に亘って実質的に均一に分散している必要がある。   The dispersion form of the curable resin region 4 is not particularly limited. For example, the curable resin regions may be scattered on the surface of the photocatalyst layer 3 in a state where the curable resin regions are individually separated. It may be dispersed on the surface of the photocatalyst layer 3 in a state of being connected to each other, or both of these dispersion states may be mixed, but in any of the dispersed forms, the curable resin region of the photocatalyst layer 3 It must be distributed substantially uniformly over the entire surface.

硬化性樹脂領域の面積は分散状態によって異なるため、特に限定されるものではないが、個々に分離した状態での硬化性樹脂領域は1.0×10-4〜0.1mm2程度の面積であることが好ましく、1.0×10-4mm2よりも小さくなると、摩擦によって硬化性樹脂領域が剥脱しやすくなり、0.1mmよりも大きくなると、光触媒性能、特に有機物分解能が阻害され悪臭分解や抗菌・防黴性の効果が薄くなる等の不都合が生じる。 Since the area of the curable resin region varies depending on the dispersion state, it is not particularly limited. However, the curable resin region in an individually separated state has an area of about 1.0 × 10 −4 to 0.1 mm 2. It is preferable that the curable resin region is easily peeled off by friction when the size is smaller than 1.0 × 10 −4 mm 2 , and the photocatalytic performance, particularly the organic matter resolution is hindered when the size is larger than 0.1 mm 2. Inconveniences such as degradation and antibacterial / antifungal effects are reduced.

また、光触媒部材Aの表面における悪臭成分や低分子量有機物を分解したり、抗菌・防黴性を発揮する作用を、後述する実施例の説明のなかで記載するメチレンブルー分解試験を調べたところ、分解活性示数Rは4.2〜5.0[nmol/l/min]であり、十分な作用を奏することができる。   Further, when the methylene blue decomposition test described in the description of the examples described later was conducted to decompose the malodorous components and low molecular weight organic substances on the surface of the photocatalyst member A, or to exhibit antibacterial / antifungal properties, The activity index R is 4.2 to 5.0 [nmol / l / min], and can exhibit a sufficient effect.

なお、この光触媒部材Aには、必要に応じて、帯電防止機能、導電機能、熱線反射機能、熱線吸収機能、電磁波吸収機能、電磁波反射機能、ハードコート機能、酸化防止機能、撥水機能、撥油機能、対傷自己治癒機能などを付与してもよい。また、光触媒層3の光触媒粒子として前述の可視光活性化粒子を含有させる場合は、光触媒作用を阻害しない程度で、紫外線吸収剤を硬化性樹脂領域に含有させて耐候性機能を付与してもよい。   The photocatalyst member A has an antistatic function, a conductive function, a heat ray reflecting function, a heat ray absorbing function, an electromagnetic wave absorbing function, an electromagnetic wave reflecting function, a hard coat function, an antioxidant function, a water repellent function, a water repellent function, as necessary. An oil function, a self-healing function for scratches, and the like may be imparted. Moreover, when the above-mentioned visible light activation particles are included as the photocatalyst particles of the photocatalyst layer 3, the ultraviolet ray absorbent may be included in the curable resin region to the extent that the photocatalytic action is not hindered to provide a weather resistance function. Good.

このような光触媒部材Aは、例えば次の方法で製造することができる。   Such a photocatalytic member A can be manufactured, for example, by the following method.

一つの方法は、予め、液状の硬化性樹脂(例えば、液状のメラミン樹脂)と、保護層用塗料(例えば、シリカとバインダー樹脂を混合、分散させた塗料、ポリシロキサンとアクリル樹脂を混合、分散させた塗料、シリコーン樹脂とアクリル樹脂との共重合樹脂を主成分とする塗料など)と、光触媒層用塗料(例えば、光触媒粒子と、シリカ又はシリコーン樹脂と、必要に応じて1質量%以下の分散剤とを溶剤又は水に混合、分散させた塗料)を調製する。そして、ディップコート、スプレーコート、スピンコート、ロールコート、バーコート等の方式を用いて、基材1の表面に保護層用塗料を塗布、乾燥して保護層2を形成し、その上に光触媒層用塗料を塗布、乾燥して光触媒層3を形成した後、スプレーコーター等を用いて、光触媒層3の表面に液状の硬化性樹脂を散布、硬化させて硬化性樹脂領域4を形成することにより、光触媒部材Aを得る方法である。   One method is to previously mix and disperse a liquid curable resin (for example, a liquid melamine resin) and a coating for a protective layer (for example, a paint in which silica and a binder resin are mixed and dispersed, a polysiloxane and an acrylic resin). Paint, a paint mainly composed of a copolymer resin of a silicone resin and an acrylic resin, etc.), a paint for a photocatalyst layer (for example, photocatalyst particles, silica or silicone resin, and if necessary, 1% by mass or less A coating material in which a dispersing agent is mixed and dispersed in a solvent or water is prepared. Then, using a method such as dip coating, spray coating, spin coating, roll coating, bar coating, etc., a protective layer coating is applied to the surface of the substrate 1 and dried to form the protective layer 2, and a photocatalyst is formed thereon. After forming the photocatalyst layer 3 by coating and drying the layer coating, a curable resin region 4 is formed by spraying and curing a liquid curable resin on the surface of the photocatalyst layer 3 using a spray coater or the like. Thus, the photocatalytic member A is obtained.

もう一つの方法は、予め、剥離フィルムの上に上記の光触媒層用塗料を塗布、乾燥して光触媒層3を形成し、更にその上に上記の保護層用塗料を塗布、乾燥して保護層2を形成することにより、転写フィルムを作製する。そして、この転写フィルムを保護層2が基材1側となるようにして基材1(例えば、熱可塑性樹脂板など)に重ねてホットプレスにより熱圧着一体化した後、剥離フィルムを除去し、光触媒層3の表面にスプレーコーター等を用いて、液状の硬化性樹脂を散布した後、硬化させて硬化性樹脂領域4を形成することにより、光触媒部材Aを得る方法である。   Another method is to previously apply the photocatalyst layer paint on a release film and dry it to form the photocatalyst layer 3, and then apply the protective layer paint onto the release film and then dry the protective layer. 2 is formed to produce a transfer film. Then, this transfer film is laminated on the base material 1 (for example, a thermoplastic resin plate) so that the protective layer 2 is on the base material 1 side and integrated by thermocompression bonding by hot pressing, and then the release film is removed. This is a method of obtaining the photocatalyst member A by forming a curable resin region 4 by spraying a liquid curable resin on the surface of the photocatalyst layer 3 using a spray coater or the like and then curing it.

以上のような構成の光触媒部材Aは、基材1が例えば熱可塑性樹脂板などである場合には、熱曲げ加工や常温での曲げ加工が可能であり、板状のまま、或は、曲げ加工されて、前述の建築資材や道路資材として使用されたり、空気清浄器、クーラー、冷蔵庫などの電機器具の内装部材として使用される。そして、自然光や照明光、照射光が光触媒層3に当たると、光触媒粒子が活性化されて硬化性樹脂領域相互間の光触媒層3の露出表面で光触媒作用が発揮されると共に、硬化性樹脂領域を越えてその表面側でも発揮され、悪臭成分、低分子量有機物等の分解作用や、抗菌・防黴作用が行われる。しかも、この光触媒部材Aは、硬化性樹脂領域4によって光触媒層3の一部ないし大半が被覆保護されているため、その表面を繰り返し拭き掃除したり、物が当たったりしても、光触媒層3が剥脱したり傷付いたりすることが殆どなく、長期に亘って良好な光触媒機能を発揮することができる。   The photocatalyst member A having the above-described configuration can be subjected to thermal bending or bending at room temperature when the substrate 1 is, for example, a thermoplastic resin plate, and remains plate-like or bent. After being processed, it is used as the above-mentioned building material or road material, or used as an interior member of an electric appliance such as an air purifier, a cooler or a refrigerator. When natural light, illumination light, or irradiation light hits the photocatalyst layer 3, the photocatalyst particles are activated and the photocatalytic action is exerted on the exposed surface of the photocatalyst layer 3 between the curable resin regions. Beyond that, it is also exerted on the surface side, and it has the effect of decomposing malodorous components, low molecular weight organic substances, etc., and antibacterial and antifungal effects. Moreover, since part or most of the photocatalyst layer 3 is covered and protected by the curable resin region 4, the photocatalyst layer 3 is protected even if the surface is repeatedly wiped or hit. There is almost no exfoliation or damage, and a good photocatalytic function can be exhibited over a long period of time.

図2は、硬化性樹脂領域4が光触媒層3の表面から突出している点のみで、本発明に係る光触媒部材とは構成が異なる他の参考形態の光触媒部材Bを示す断面図である。 FIG. 2 is a cross-sectional view showing a photocatalyst member B of another reference form having a configuration different from that of the photocatalyst member according to the present invention only in that the curable resin region 4 protrudes from the surface of the photocatalyst layer 3 .

この光触媒部材Bは、基材1と保護層2との間に更に接着剤層5が形成されたものである。この接着剤層5は、ウレタン系樹脂、アクリル系樹脂、ポリビニルアルコール系樹脂、酢酸ビニル系樹脂、熱可塑性エポキシ系樹脂、シリコーン系樹脂などの接着性樹脂の中から、基材1と保護層2の双方に良好に接着するものを選択して形成することが好ましい。この接着剤層5の厚さは0.1〜50μm程度に形成することが好ましく、0.1μmより薄くなると、接着力が乏しくなって剥離する恐れがあり、50μmより厚くしても、接着力の更なる向上が見られないので、材料の無駄使いとなる。接着剤層5のより好ましい厚さは1〜10μmである。   In this photocatalyst member B, an adhesive layer 5 is further formed between the substrate 1 and the protective layer 2. The adhesive layer 5 includes a base material 1 and a protective layer 2 among adhesive resins such as urethane resin, acrylic resin, polyvinyl alcohol resin, vinyl acetate resin, thermoplastic epoxy resin, and silicone resin. It is preferable to select and form a material that adheres well to both. The thickness of the adhesive layer 5 is preferably about 0.1 to 50 μm. If the thickness is less than 0.1 μm, the adhesive strength may be poor and may peel off. Since no further improvement is observed, the material is wasted. A more preferable thickness of the adhesive layer 5 is 1 to 10 μm.

この光触媒部材Bにおける接着剤層以外の構成は、前述した光触媒部材Aと同様であるので、説明を省略する。   Since the configuration of the photocatalyst member B other than the adhesive layer is the same as that of the photocatalyst member A described above, the description thereof is omitted.

このような光触媒部材Bは、例えば次の方法で製造される。即ち、アクリル系樹脂などの接着性樹脂からなるフィルムを準備し、この接着性樹脂フィルムに、光触媒部材Aの製造に用いた前記の保護層用塗料と光触媒層用塗料を順次塗布、乾燥させて、保護層2と光触媒層3をそれぞれ形成したラミネートフィルムを作製する。そして、このラミネートフィルムを基材1に重ね合せてホットプレスにより接着一体化し、その光触媒層3の上にスプレーコーター等を用いて、液状の硬化性樹脂を散布した後、硬化させて硬化性樹脂領域4を形成すると、光触媒部材Bが得られる。   Such a photocatalyst member B is manufactured by the following method, for example. That is, a film made of an adhesive resin such as an acrylic resin is prepared, and the protective layer paint and the photocatalyst layer paint used in the production of the photocatalyst member A are sequentially applied to the adhesive resin film and dried. Then, a laminate film having the protective layer 2 and the photocatalyst layer 3 formed thereon is prepared. Then, this laminate film is superposed on the base material 1 and bonded and integrated by hot pressing, and a liquid curable resin is sprayed on the photocatalyst layer 3 using a spray coater or the like and then cured to be curable resin. When the region 4 is formed, the photocatalytic member B is obtained.

尚、基材の上に、接着性樹脂塗料、保護層用塗料、光触媒層用塗料をこの順で塗布、乾燥して、接着剤層5、保護層2、光触媒層3を積層形成し、更に、光触媒層3の表面にスプレーコーター等を用いて、液状の硬化性樹脂を散布した後、硬化させて硬化性樹脂領域4を形成することにより、光触媒部材Bを製造しても勿論よい。
また、光触媒層用塗料、保護層用塗料、接着性樹脂塗料、をこの順で塗布、乾燥させた転写フィルムを作製して基材に転写し、基材1に重ねてホットプレスにより熱圧着一体化した後、剥離フィルムを除去し、光触媒層3の表面にスプレーコーター等を用いて、液状の硬化性樹脂を散布した後、硬化させて硬化性樹脂領域4を形成する方法を用いてもよい。
In addition, an adhesive resin paint, a protective layer paint, and a photocatalyst layer paint are applied and dried in this order on the base material, and an adhesive layer 5, a protective layer 2, and a photocatalyst layer 3 are laminated and further formed. Of course, the photocatalyst member B may be manufactured by spraying a liquid curable resin on the surface of the photocatalyst layer 3 and then curing it to form the curable resin region 4.
In addition, a transfer film in which the photocatalyst layer coating material, the protective layer coating material, and the adhesive resin coating material are applied and dried in this order is produced and transferred to the base material. After forming, the release film is removed, and a liquid curable resin is sprayed on the surface of the photocatalyst layer 3 using a spray coater or the like, followed by curing to form the curable resin region 4. .

このような光触媒部材Bも、前記の光触媒部材Aと同様の作用効果を奏する。そして、基材1と保護層2とが直接接合できない場合でも、接着剤層5を介して剥離しないように接着一体化することができる。   Such a photocatalyst member B also has the same effect as the photocatalyst member A described above. And even when the base material 1 and the protective layer 2 cannot be directly joined, they can be bonded and integrated so as not to peel off through the adhesive layer 5.

図3は、硬化性樹脂領域4が光触媒層3の表面から突出している点のみで、本発明に係る光触媒部材とは構成が異なる更に他の参考形態の光触媒部材Cを示す断面図である。 FIG. 3 is a sectional view showing a photocatalyst member C of still another reference embodiment having a configuration different from that of the photocatalyst member according to the present invention only in that the curable resin region 4 protrudes from the surface of the photocatalyst layer 3 .

この光触媒部材Cは、基材1として、無機繊維や有機繊維からなる繊維と熱硬化性樹脂と無機材とからなる芯材層1aと、その上に積層された樹脂含浸化粧層1bとよりなる化粧板10を使用し、その表面に接着剤層5、保護層2、光触媒層3を積層すると共に、光触媒層3の表面に硬化性樹脂領域4を突出した状態で分散させて形成した板状の部材である。   This photocatalyst member C includes, as a base material 1, a fiber layer made of inorganic fibers or organic fibers, a core material layer 1a made of a thermosetting resin and an inorganic material, and a resin-impregnated decorative layer 1b laminated thereon. Using a decorative board 10, the adhesive layer 5, the protective layer 2, and the photocatalyst layer 3 are laminated on the surface, and the curable resin region 4 is projected and dispersed on the surface of the photocatalyst layer 3. It is a member.

化粧板10としては、例えば、ガラス繊維に熱硬化性メラミン樹脂、熱硬化性フェノール樹脂などの熱硬化性樹脂を含浸させると共に、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、タルクなどの無機材を全体の95〜80質量%となるように含有させて芯材層1aを形成し、この芯材層1aの表面に、酸化チタンを含有する化粧紙に熱硬化性メラミン樹脂などの熱硬化性樹脂を60〜150質量%となるように含浸させた樹脂含浸化粧層1bを積層したものなどが好ましく使用される。このように、芯材層1aの無機材と樹脂含浸化粧層1bの熱硬化性樹脂量とを上記の範囲にすると、難燃性ないし不燃性の化粧板10とすることができる。   As the decorative board 10, for example, glass fibers are impregnated with a thermosetting resin such as a thermosetting melamine resin or a thermosetting phenol resin, and an inorganic material such as aluminum hydroxide, magnesium hydroxide, calcium carbonate, or talc is used. The core material layer 1a is formed so as to contain 95 to 80% by mass of the whole, and a thermosetting resin such as a thermosetting melamine resin or the like on a decorative paper containing titanium oxide on the surface of the core material layer 1a. A laminate of the resin-impregnated decorative layer 1b impregnated so as to be 60 to 150% by mass is preferably used. As described above, when the inorganic material of the core material layer 1a and the thermosetting resin amount of the resin-impregnated decorative layer 1b are within the above ranges, the flame-retardant or non-combustible decorative board 10 can be obtained.

なお、保護層2、光触媒層3、硬化性樹脂領域4、接着剤層5は、前述した光触媒部材A又は光触媒部材Bのそれらと同じであるので、説明を省略する。   In addition, since the protective layer 2, the photocatalyst layer 3, the curable resin area | region 4, and the adhesive bond layer 5 are the same as those of the photocatalyst member A or the photocatalyst member B mentioned above, description is abbreviate | omitted.

このような光触媒部材Cは、例えば次の方法で製造される。即ち、剥離フィルムの上に前記の光触媒層用塗料を塗布、乾燥して光触媒層3を形成し、その上に前記の保護層用塗料を塗布、乾燥して保護層2を形成し、更に接着性樹脂を溶剤に溶解して得た接着剤層用塗料を塗布、乾燥して接着剤層5を形成することにより、転写フィルムを作製する。一方、前記芯材層1aと前記樹脂含浸化粧層1bとを重ね合わせてホットプレスして化粧板10を作製する。そして、化粧板10の表面に転写フィルムの接着剤層5が重なるように転写フィルムを重ね合わせて熱圧して接合一体化した後、剥離フィルムを除去し、光触媒層3の上にスプレーコーター等を用いて、液状の硬化性樹脂を散布した後、硬化させて硬化性樹脂領域4を形成すると、光触媒部材Cが得られる。   Such a photocatalyst member C is manufactured by the following method, for example. That is, the photocatalyst layer coating material is applied onto a release film and dried to form the photocatalyst layer 3, and the protective layer coating material is applied thereon and dried to form the protective layer 2, and further bonded. A transfer film is prepared by applying an adhesive layer coating obtained by dissolving an adhesive resin in a solvent and drying to form an adhesive layer 5. On the other hand, the core layer 1a and the resin-impregnated decorative layer 1b are superposed and hot pressed to produce a decorative board 10. Then, the transfer film is superposed on the surface of the decorative plate 10 so that the adhesive layer 5 of the transfer film overlaps and is heat-pressed and joined and integrated. Then, the release film is removed, and a spray coater or the like is placed on the photocatalyst layer 3. The photocatalytic member C is obtained when the liquid curable resin is sprayed and then cured to form the curable resin region 4.

上記の製造方法で、化粧板10を作製する際に、転写フィルムを未硬化の樹脂含浸化粧層1bの上に、上記の転写フィルムの接着剤層5が重なるように転写フィルムを重ね合わせ、ホットプレスにより化粧板10の含浸樹脂を硬化させると同時に、樹脂含浸化粧層1bと保護層2を接合し、その後、剥離フィルムを除去し、光触媒層3の上にスプレーコーター等を用いて、液状の硬化性樹脂を散布した後、硬化させて硬化性樹脂領域4を形成しても、光触媒部材Cが得られる。そのため、この製法においては樹脂含浸化粧層1bの未硬化樹脂により保護層2が該樹脂含浸化粧層1bと接合するのであれば、接着剤層5は省略することができる。   When the decorative board 10 is manufactured by the above manufacturing method, the transfer film is superposed on the uncured resin-impregnated decorative layer 1b so that the adhesive layer 5 of the transfer film is overlaid. The impregnating resin of the decorative board 10 is cured by pressing, and at the same time, the resin-impregnated decorative layer 1b and the protective layer 2 are joined, and then the release film is removed, and a liquid coater is applied on the photocatalyst layer 3 using a spray coater or the like. The photocatalyst member C can be obtained even when the curable resin region 4 is formed by spraying the curable resin and then curing. Therefore, in this manufacturing method, if the protective layer 2 is bonded to the resin-impregnated decorative layer 1b by the uncured resin of the resin-impregnated decorative layer 1b, the adhesive layer 5 can be omitted.

尚、化粧板10の上に、接着性樹脂塗料、保護層用塗料、光触媒層用塗料をこの順で塗布、乾燥させたのち、光触媒層3の上にスプレーコーター等を用いて、液状の硬化性樹脂を散布した後、硬化させて硬化性樹脂領域4を形成したり、或は保護層用塗料、光触媒層用塗料をこの順で塗布、乾燥させたのち、光触媒層3の上にスプレーコーター等を用いて、液状の硬化性樹脂を散布した後、硬化させて硬化性樹脂領域4を形成したりして光触媒部材Cを製造してもよいことは言うまでもない。
さらに、接着性樹脂塗料、保護層用塗料、光触媒層用塗料をこの順で塗布、乾燥させたラミネートフィルムを作製してホットプレスにより一体化したのち、光触媒層3の上に硬化させて硬化性樹脂領域4を形成して光触媒部材Cを製造してもよい。
In addition, after apply | coating an adhesive resin coating material, the coating material for protective layers, and the coating material for photocatalyst layers in this order on the decorative board 10, and drying, it is liquid hardening using a spray coater etc. on the photocatalyst layer 3. After spraying the photosensitive resin, it is cured to form the curable resin region 4, or after applying and drying the protective layer coating and the photocatalyst layer coating in this order, the spray coater is applied onto the photocatalyst layer 3. It is needless to say that the photocatalyst member C may be manufactured by spraying a liquid curable resin using the above and then curing to form the curable resin region 4.
Further, an adhesive resin paint, a protective layer paint, and a photocatalyst layer paint are applied and dried in this order, integrated by hot pressing, and then cured on the photocatalyst layer 3 to be curable. The photocatalytic member C may be manufactured by forming the resin region 4.

上記の方法で得られる光触媒部材Cは、基材1となる化粧板10が難燃性ないし不燃性とすることが容易であり、表面の硬化性樹脂領域4も高耐熱性のメラミン樹脂の層であるため、難燃性ないし不燃性の光触媒部材となり、硬化性樹脂領域4と光触媒層3を通して樹脂含浸化粧層1bの模様や図柄を目視できるので、内装材等の建築資材として好適に使用される。そして、前述の光触媒部材AやBと同様に、光触媒層3の光触媒作用が部材Cの表面にまで及んで悪臭成分等の分解や、抗菌・防黴の機能が発揮され、しかも、光触媒層3が一部ないし大半被覆保護されているので、拭き掃除を繰り返したり物が当たったりしても、光触媒層3の剥脱や損傷がなく、長期間に亘って良好な光触媒作用を保つことができる。   The photocatalytic member C obtained by the above method is easy to make the decorative board 10 as the base material 1 flame-retardant or non-flammable, and the curable resin region 4 on the surface is also a layer of a highly heat-resistant melamine resin. Therefore, it becomes a flame-retardant or non-flammable photocatalyst member, and the pattern and design of the resin-impregnated decorative layer 1b can be visually observed through the curable resin region 4 and the photocatalyst layer 3, so that it is suitably used as a building material such as an interior material. The Then, like the photocatalyst members A and B described above, the photocatalytic action of the photocatalyst layer 3 reaches the surface of the member C, and the functions of decomposition of malodorous components and the like, antibacterial and antifungal functions are exhibited, and the photocatalyst layer 3 Since the coating is partially or mostly protected, even if wiping and cleaning are repeated or an object hits, the photocatalyst layer 3 is not peeled off or damaged, and a good photocatalytic action can be maintained over a long period of time.

図4は本発明に係る光触媒部材の一実施形態を示す断面図である。 FIG. 4 is a sectional view showing an embodiment of the photocatalytic member according to the present invention.

この光触媒部材Dは、硬化性樹脂領域4が光触媒層3の表面と面一になるように光触媒層3に埋入された状態で分散して形成されている点を除いて、前記の光触媒部材と同様に構成されたものである。このように硬化性樹脂領域4を面一に埋入した場合も、摩擦力や衝撃力が硬化性樹脂領域4の表面に作用して受け止められ、領域相互間の光触媒層3の露出した表面には摩擦力や衝撃力が強く作用しないため、拭き掃除を繰り返したり物が当たったりしても、光触媒層3の剥脱や損傷がなく、長期間に亘って良好な光触媒作用を保つことができる。なお、基材1となる化粧板10、芯材層1a、樹脂含浸化粧層1b、保護層2、光触媒層3、硬化性樹脂領域4、接着剤層5は、いずれも前述したものと同じものであるので説明を省略する。 This photocatalyst member D is the above-mentioned photocatalyst member except that the curable resin region 4 is dispersed and formed in a state of being embedded in the photocatalyst layer 3 so as to be flush with the surface of the photocatalyst layer 3. The configuration is the same as C. Thus, even when the curable resin region 4 is embedded flush, frictional force or impact force acts on the surface of the curable resin region 4 and is received, and the photocatalyst layer 3 between the regions is exposed to the exposed surface. Since the frictional force and impact force do not act strongly, the photocatalyst layer 3 is not exfoliated or damaged even when repeated wiping or hitting an object, and a good photocatalytic action can be maintained over a long period of time. The decorative plate 10, the core layer 1a, the resin-impregnated decorative layer 1b, the protective layer 2, the photocatalyst layer 3, the curable resin region 4, and the adhesive layer 5 that are the base material 1 are all the same as described above. Therefore, explanation is omitted.

このような光触媒部材Dは、例えば次の方法で製造される。即ち、剥離フィルムの上に、前記のスプレーコーター等を用いて、液状の硬化性樹脂を散布した後、硬化させて硬化性樹脂樹脂領域4を形成し、その上から前記の光触媒層用塗料、保護層用塗料、接着性樹脂塗料をこの順で塗布、乾燥して光触媒層3、保護層2、接着剤層5を形成することにより、転写フィルムを作製する。そして、この転写フィルムを接着剤層5が化粧板10の表面と接するように重ねてホットプレスにより熱圧着一体化した後、剥離フィルムを除去すると、光触媒部材Dを得ることができる。この場合においても、基材が化粧板10の代わりに前述の合成樹脂、ガラス、セメント、無機材、石、セラミック、金属などの如何なる素材で形成されていてもよいことは言うまでもない。   Such a photocatalyst member D is manufactured by the following method, for example. That is, after spraying a liquid curable resin on the release film using the spray coater or the like, it is cured to form the curable resin resin region 4, and the photocatalyst layer coating material is formed thereon. The transfer film is produced by applying the coating for protective layer and the adhesive resin coating in this order and drying to form the photocatalyst layer 3, the protective layer 2, and the adhesive layer 5. Then, after the transfer film is overlapped so that the adhesive layer 5 is in contact with the surface of the decorative plate 10 and thermocompression integrated by hot press, the photocatalyst member D can be obtained by removing the release film. Also in this case, it goes without saying that the base material may be formed of any material such as the above-mentioned synthetic resin, glass, cement, inorganic material, stone, ceramic, metal, etc. instead of the decorative board 10.

また、前述の光触媒部材Aや光触媒部材B、光触媒部材Cをプレスすることにより、硬化性樹脂領域を光触媒層3に面一に埋入しても、光触媒部材Dを得ることができる。 Further, by pressing the above-described photocatalyst member A, photocatalyst member B, or photocatalyst member C, the photocatalyst member D can be obtained even if the curable resin region is embedded in the photocatalyst layer 3 in a flush manner.

尚、この光触媒部材Dにおいて、化粧板10を作製する際に、転写フィルムを未硬化の樹脂含浸化粧層1bの上に、上記の転写フィルムの接着剤層5が接するように転写フィルムを重ね合わせ、ホットプレスにより化粧板10の含浸樹脂を硬化させると同時に、樹脂含浸化粧層1bと接着剤層5を接合し、その後、剥離フィルムを除去してもよく、さらに、この製法においては樹脂含浸化粧層1bの未硬化樹脂により保護層2が該樹脂含浸化粧層1bと接合するのであれば、接着剤層5は省略することができる。   In this photocatalyst member D, when the decorative board 10 is produced, the transfer film is superposed on the uncured resin-impregnated decorative layer 1b so that the adhesive layer 5 of the transfer film is in contact with the transfer film. The resin impregnated on the decorative board 10 may be cured by hot pressing, and at the same time, the resin-impregnated decorative layer 1b and the adhesive layer 5 may be bonded together, and then the release film may be removed. If the protective layer 2 is bonded to the resin-impregnated decorative layer 1b by the uncured resin of the layer 1b, the adhesive layer 5 can be omitted.

以上の光触媒部材A,B,C,Dはいずれも平板状(プレート状、シート状、フィルム状を含む)に形成されているが、本発明は平板状の光触媒部材に限定されるものではなく、例えば、パイプ又は棒体を基材1として、その外周面に各層2,3,5と硬化性樹脂領域4を形成したものや、三次元立体形状の基材1の表面に各層2,3,5と硬化性樹脂領域4を形成したものなど、所望形状の光触媒部材とすることができる。   The above photocatalyst members A, B, C, and D are all formed in a flat plate shape (including a plate shape, a sheet shape, and a film shape), but the present invention is not limited to a flat plate photocatalyst member. For example, a pipe or a rod is used as the base material 1, and the layers 2, 3, 5 and the curable resin region 4 are formed on the outer peripheral surface thereof, or the layers 2, 3 are provided on the surface of the three-dimensional solid base material 1. , 5 and a curable resin region 4 formed on the photocatalyst member having a desired shape.

次に、本発明の更に具体的な実施例を説明する。   Next, more specific examples of the present invention will be described.

[実施例1]
基材として、ガラス繊維に熱硬化性メラミン樹脂を含浸させると共に無機材としての水酸化アルミニウム、炭酸カルシウムを含有させた芯材層用シートと、酸化チタンを含有する化粧紙に熱硬化性メラミン樹脂を含浸させた樹脂含浸化粧層用シートとを準備した。
[Example 1]
As a base material, a glass fiber is impregnated with a thermosetting melamine resin and an inorganic hydroxide such as aluminum hydroxide and calcium carbonate is contained, and a core material layer sheet and titanium oxide-containing decorative paper are used as a thermosetting melamine resin. And a resin-impregnated decorative layer sheet impregnated with.

一方、保護層用塗料として、ポリジメチルシロキサンとアクリル樹脂とを均一に混合した塗料を準備し、光触媒層用塗料として、窒素をドープした可視光応答型光触媒酸化チタン4質量%と、シリカ0.5質量%を、アルコール系分散液で均一に分散させた塗料を準備した。また、硬化性樹脂領域4を形成するための熱硬化性メラミン樹脂液も準備した。   On the other hand, a paint in which polydimethylsiloxane and an acrylic resin are uniformly mixed is prepared as a protective layer paint. As a photocatalyst layer paint, 4% by mass of visible light responsive photocatalytic titanium oxide doped with nitrogen, and 0. A coating material in which 5% by mass was uniformly dispersed with an alcohol-based dispersion was prepared. Moreover, the thermosetting melamine resin liquid for forming the curable resin area | region 4 was also prepared.

そして、ポリエチレンテレフタレートよりなる剥離フィルムの表面に、上記の熱硬化性メラミン樹脂液をスプレーコーター(アネスト岩田(株)製エアーブラシハイラインHP-BH、ノズル口径0.2mm)によって散布した後、硬化させて、厚さが100nmとなるように硬化性樹脂領域4を部分的に形成し、その上に上記の光触媒層用塗料を塗布、乾燥して厚さ100nmの光触媒層(光触媒層の厚さはメラミン樹脂領域の厚さを含まない厚さを示す。以下も同様とする。)を形成し、更にその上に上記の保護層用塗料を塗布、乾燥して厚さ3.0μmの保護層を形成することにより、転写フィルムを作製した。   And after spreading the above-mentioned thermosetting melamine resin liquid on the surface of the release film made of polyethylene terephthalate with a spray coater (Anest Iwata Airbrush Highline HP-BH, nozzle diameter 0.2 mm), curing Then, the curable resin region 4 is partially formed so as to have a thickness of 100 nm, and the photocatalyst layer coating material is applied thereon and dried to dry the photocatalyst layer having a thickness of 100 nm (the thickness of the photocatalyst layer). Indicates a thickness not including the thickness of the melamine resin region, and the same shall apply hereinafter), and the above protective layer coating material is applied thereon and dried to provide a protective layer having a thickness of 3.0 μm. By forming, a transfer film was produced.

上記未硬化の芯材層用シートと未硬化の樹脂含浸化粧層用シートとを重ねるとともに、上記転写フィルムを、その保護層側が未硬化の樹脂含浸化粧層用シートと接するように上に重ねて、プレス成形機にセットし、温度140℃、圧力80kgf/cmの条件で、15分間熱圧着して、芯材層用シートと樹脂含浸化粧層用シートとの熱硬化性メラミン樹脂を硬化させると同時に、樹脂含浸化粧層用シートと転写フィルムの保護層を接合し、しかる後、プレス成形機から取出して剥離フィルムを除去することによって、化粧板の表面に保護層、光触媒層、光触媒層の一部に表面に面一になるように埋入された硬化性樹脂領域がこの順で積層一体化した平板状の光触媒部材を作製した。 The uncured core material layer sheet and the uncured resin-impregnated decorative layer sheet are stacked, and the transfer film is stacked on top so that the protective layer side is in contact with the uncured resin-impregnated decorative layer sheet. The thermosetting melamine resin between the core material layer sheet and the resin impregnated decorative layer sheet is cured by thermocompression bonding for 15 minutes under the conditions of a temperature of 140 ° C. and a pressure of 80 kgf / cm 2 . At the same time, the resin-impregnated decorative layer sheet and the protective layer of the transfer film are joined, and then removed from the press molding machine and the release film is removed, so that the protective layer, photocatalyst layer, and photocatalyst layer are formed on the surface of the decorative plate. A flat photocatalyst member was produced in which a part of the curable resin region embedded so as to be flush with the surface was laminated and integrated in this order.

得られた光触媒部材について、光触媒層の表面に占める硬化性樹脂領域の合計面積の割合を以下の方法で測定したところ、硬化性樹脂領域は光触媒層の表面の33%を占めていた。
以下の方法における2値化処理した後の画面を図5に示す。この図5からわかるよう、硝酸銀反応による淡黒色部分が斑点状に散在していて、部分的にしか反応していないことがわかった。この結果、硬化性樹脂領域が光触媒層の一部にしか存在していないことがわかる。
About the obtained photocatalyst member, when the ratio of the total area of the curable resin area | region occupied to the surface of a photocatalyst layer was measured with the following method, the curable resin area | region occupied 33% of the surface of the photocatalyst layer.
FIG. 5 shows a screen after binarization processing in the following method. As can be seen from FIG. 5, it was found that light black portions due to the silver nitrate reaction were scattered in spots, and only partially reacted. As a result, it can be seen that the curable resin region exists only in a part of the photocatalyst layer.

(試験方法)
容器内に0.1Nの硝酸銀水溶液を入れ、この硝酸銀水溶液中に得られた光触媒部材を浸漬して、この光触媒部材の上方に配置したブラックライトブルー(BLB)ランプから0.5±0.05mW/cmの出力で紫外線を30分間照射した。これは、光触媒層上に硬化性樹脂領域が存在する部分は硝酸銀水溶液中で光触媒部材に紫外線照射を照射しても短時間では硝酸銀反応によって淡黒色を呈さず、光触媒層上に硬化性樹脂領域が存在しない部分は硝酸銀反応によって速やかに淡黒色を呈する性質を利用したものである。紫外線照射後、光触媒部材を硝酸銀水溶液から取出し、(株)キーエンス製デジタルHFマイクロスコープVH-8000を用いて450倍で観察・撮影し、その写真を(株)キーエンス製Picture Folderを用いて2値化処理したのち、淡黒色に呈色した部分の面積をデジタル算出した。
上記の淡黒色に呈色した合計面積を、淡黒色の呈色部分を算定した範囲の面積で除することにより、光触媒層の表面に占める全ての硬化性樹脂領域の合計面積の割合を算定した。
(Test method)
A 0.1N silver nitrate aqueous solution is placed in a container, the photocatalyst member obtained is immersed in the silver nitrate aqueous solution, and 0.5 ± 0.05 mW from a black light blue (BLB) lamp disposed above the photocatalyst member. UV light was irradiated for 30 minutes at an output of / cm 2 . This is because the portion where the curable resin region exists on the photocatalyst layer does not exhibit a light black color due to the silver nitrate reaction in a short time even if the photocatalyst member is irradiated with ultraviolet rays in an aqueous silver nitrate solution, and the curable resin region on the photocatalyst layer The portion where no is present utilizes the property of promptly showing a light black color by the silver nitrate reaction. After UV irradiation, the photocatalyst member is taken out from the silver nitrate aqueous solution, observed and photographed at 450 times using a Keyence Digital HF Microscope VH-8000, and the photograph is binary using a Keyence Picture Folder. After the conversion, the area of the light black portion was digitally calculated.
The ratio of the total area of all the curable resin regions in the surface of the photocatalyst layer was calculated by dividing the total area colored in light black by the area in the range in which the light black colored portion was calculated. .

また、得られた光触媒部材に、ブラックライトブルー(BLB)ランプにて1±0.05mW/cmの紫外線を168時間照射した。一定時間毎に、マイクロシリンジを用いて表面の硬化性樹脂層にイオン交換水20mlを滴下し、その表面の水滴の接触角を画像処理接触角度計(協和界面科学(株)製、CA−A)を用いて3点法で各3箇所を測定し、その平均値を求めた。その結果、接触角は照射前は83°であったが、24時間後、48時間後、72時間後、120時間後、168時間後には、夫々82°、81°、81°、80°、78°であった。 Further, the obtained photocatalyst member was irradiated with ultraviolet rays of 1 ± 0.05 mW / cm 2 for 168 hours with a black light blue (BLB) lamp. At regular intervals, 20 ml of ion-exchanged water is dropped onto the curable resin layer on the surface using a microsyringe, and the contact angle of the water droplets on the surface is measured by an image processing contact angle meter (Kyowa Interface Science Co., Ltd., CA-A). ) Were measured at three points by the three-point method, and the average value was obtained. As a result, the contact angle was 83 ° before irradiation, but after 24 hours, 48 hours, 72 hours, 120 hours, and 168 hours, 82 °, 81 °, 81 °, 80 °, It was 78 °.

更に、得られた光触媒部材について、以下のメチレンブルー分解試験を行うことにより有機物分解性を調べたところ、分解活性示数Rは4.5[nmol/l/min]であり、光触媒層がメラミン硬化性樹脂領域で一部被覆されているにも拘わらず、良好な分解作用を発揮することが確認された。   Further, when the obtained photocatalyst member was examined for organic matter decomposability by conducting the following methylene blue decomposition test, the decomposition activity index R was 4.5 [nmol / l / min], and the photocatalyst layer was cured by melamine. Although it was partially covered with the conductive resin region, it was confirmed that a good decomposition action was exhibited.

(メチレンブルー分解試験)
光触媒部材を60mm角の大きさに切断して3個の試験片を作製し、各試験片の上に円筒形のセルをシリコーングリースで液密的に取付けて、各セルにメチレンブルー吸着液(メチレンブルー三水和物を精製水に0.02mmol/l濃度となるように溶解させた液)を35ml注入し、カバーガラスで蓋をして、吸着飽和状態になるまでメチレンブルーを吸着させる。そして、セル中のメチレンブルー吸着液を新しいメチレンブルー試験液0.01mmolに交換して、真上から各試験片に1±0.05mW/cmの紫外線を20分照射し、照射後直ちにメチレンブルー試験液の600〜700nmの波長域での吸光スペクトルを分光光度計で測定し、測定に使用した液をすみやかにセルに戻して再び紫外線を照射する。この手順で紫外線を20分照射して吸光スペクトルを測定する作業を、照射時間の合計が3時間になるまで9回繰り返す。そして、次の手順で分解活性示数を求める。
即ち、紫外線t分照射後の吸光スペクトルのピークトップにおける吸光度Abs(t)を読み取る(t=20,40,60,80,100,120,140,160,180)と共に、初期吸光スペクトルのピークトップにおける吸光度を読み取ってこれをAbs(0)とする。そして、Abs(0)を用いて、下記の式(1)より、吸光度を濃度に換算するための換算係数Kを求め、この換算係数Kを用いて、下記の式(2)より、吸光度Abs(t)を、t分後のメチレンブルー試験液濃度C(t)[μmol/l]に換算し、図4に示すように、縦軸にC(t)[μmol/l]を、横軸に紫外線照射時間(分)をとって、3個の試験片のそれぞれについてデータをプロットする。そして、各試験片について求めた傾き(最も傾きが大きくなる4点を選んで最小二乗法で直線近似した傾き)をa(n=1,2,3)とし、下記の式(3)により分解活性示数Rを求める。
K=10[μmol/l]/Abs(0) …式(1)

C(t)=K×Abs(t)[μmol/l] …式(2)

R=|(a+a+a)/3|×10[nmol/l/] …式(3)
(Methylene blue decomposition test)
The photocatalyst member is cut to a size of 60 mm square to prepare three test pieces. A cylindrical cell is liquid-tightly attached to each test piece with silicone grease, and a methylene blue adsorbent (methylene blue) is attached to each cell. 35 ml of a solution obtained by dissolving trihydrate in purified water so as to have a concentration of 0.02 mmol / l) is injected, covered with a cover glass, and adsorbed with methylene blue until adsorption saturation is achieved. Then, the methylene blue adsorbed liquid in the cell was replaced with 0.01 mmol of a new methylene blue test liquid, and each test piece was irradiated with ultraviolet rays of 1 ± 0.05 mW / cm 2 for 20 minutes from directly above. The absorption spectrum in the wavelength range of 600 to 700 nm is measured with a spectrophotometer, and the liquid used for the measurement is immediately returned to the cell and again irradiated with ultraviolet rays. The operation of irradiating ultraviolet rays for 20 minutes in this procedure and measuring the absorption spectrum is repeated nine times until the total irradiation time reaches 3 hours. Then, the decomposition activity index is obtained by the following procedure.
That is, the absorbance Abs (t) at the peak top of the absorption spectrum after irradiation for ultraviolet t minutes is read (t = 20, 40, 60, 80, 100, 120, 140, 160, 180), and the peak top of the initial absorption spectrum is read. The absorbance at is read and this is defined as Abs (0). Then, using Abs (0), a conversion coefficient K for converting the absorbance into the concentration is obtained from the following formula (1), and using this conversion coefficient K, the absorbance Abs is obtained from the following formula (2). (T) is converted to methylene blue test solution concentration C (t) [μmol / l] after t minutes, and as shown in FIG. 4, C (t) [μmol / l] is plotted on the vertical axis, and the horizontal axis is plotted on the horizontal axis. Take the UV irradiation time (minutes) and plot the data for each of the three specimens. Then, the slope calculated for each specimen (the most inclination is linearly approximated by the least square method to choose four points greater inclination) and a n (n = 1, 2, 3), by the following equation (3) The decomposition activity index R is obtained.
K = 10 [μmol / l] / Abs (0) Formula (1)

C (t) = K × Abs (t) [μmol / l] (2)

R = | (a 1 + a 2 + a 3 ) / 3 | × 10 3 [nmol / l /] Formula (3)

また、得られた光触媒部材を切断して作製した3個の試験片について、以下の方法で耐払拭性を調べたところ、払拭しない初期においても試験片の全表面の全てが硝酸銀の呈色反応を示し、払拭回数が500回であっても、3000回に達しても試験片の全表面の全てが硝酸銀の呈色反応を示した。このことから、光触媒層がメラミン硬化性樹脂領域で被覆されていても、光触媒部材表面では光触媒作用を発揮されていることがわかった。そして、メラミン硬化性樹脂領域で被覆された光触媒層は、3000回払拭しても磨滅、剥脱されないことが分かった。   Further, when the wiping resistance of the three test pieces prepared by cutting the obtained photocatalyst member was examined by the following method, the entire surface of the test piece was colored with silver nitrate even in the initial period when it was not wiped. Even when the number of wipings was 500 times or 3000 times, the entire surface of the test piece showed a color reaction of silver nitrate. From this, it was found that even when the photocatalyst layer was covered with the melamine curable resin region, the photocatalytic action was exhibited on the surface of the photocatalyst member. And it turned out that the photocatalyst layer coat | covered with the melamine curable resin area | region is not worn out and exfoliated even if it wipes 3000 times.

(耐払拭試験)
染色堅牢度試験用摩擦試験機(JIS L 0823)を平板用に改良し、この試験機に錘(200g)と摩擦用白綿布かなきん3号(JIS L 0862)を取付け、試験片を500回、及び3000回払拭する。そして、各試験片を0.1Nの硝酸銀溶液に浸漬し、ブラックライトブルーランプにて1±0.05mW/cmの紫外線を10時間照射し、各試験片の表面における銀の析出の有無(硝酸銀の呈色反応の有無)によって、試験片の光触媒層の有無を判断する。
(Wiping resistance test)
Friction tester for dyeing fastness test (JIS L 0823) was improved to flat plate, weight (200g) and white cotton cloth for friction Kanaki No. 3 (JIS L 0862) were attached to this tester, and test piece was 500 times And wipe 3000 times. Then, each test piece was immersed in a 0.1N silver nitrate solution and irradiated with ultraviolet light of 1 ± 0.05 mW / cm 2 for 10 hours with a black light blue lamp, and the presence or absence of silver deposition on the surface of each test piece ( The presence or absence of the photocatalyst layer of the test piece is determined by the presence or absence of a color reaction of silver nitrate.

[実施例2]
基材として、ガラス繊維に熱硬化性メラミン樹脂を含浸させると共に無機材としての水酸化アルミニウム、炭酸カルシウムとを含有させた芯材層と、酸化チタンを含有する化粧紙に熱硬化性メラミン樹脂を含浸させた樹脂含浸化粧層とをホットプレスによって積層一体化してなる化粧板を準備した。
[Example 2]
As a base material, a glass fiber is impregnated with a thermosetting melamine resin, and a core layer containing aluminum hydroxide and calcium carbonate as inorganic materials, and a thermosetting melamine resin on a decorative paper containing titanium oxide. A decorative board was prepared by laminating and integrating the impregnated resin-impregnated decorative layer with a hot press.

接着剤層用塗料として日本ポリウレタン工業(株)製のウレタン接着剤ニッポラン2301を準備し、その他に実施例1と同じ保護層用塗料、光触媒層用塗料、熱硬化性メラミン樹脂液を準備した。   A urethane adhesive Nipponporan 2301 manufactured by Nippon Polyurethane Industry Co., Ltd. was prepared as an adhesive layer coating material. In addition, the same protective layer coating material, photocatalyst layer coating material, and thermosetting melamine resin solution as in Example 1 were prepared.

そして、ポリエチレンテレフタレートよりなる剥離フィルムの表面に、上記の熱硬化性メラミン樹脂液をスプレーコーターによって散布、硬化させて、厚さが100nmとなるように硬化性樹脂領域を形成し、その上に上記の光触媒層用塗料を塗布、乾燥して厚さ100nmの光触媒層を形成し、更にその上に上記の保護層用塗料を塗布、乾燥して厚さ3.0μmの保護層を形成し、そして更にその上に上記の接着剤用塗料を塗布、乾燥して厚さ5.0μmの接着剤層を形成することにより、転写フィルムを作製した。   And, on the surface of the release film made of polyethylene terephthalate, the above thermosetting melamine resin liquid is sprayed and cured by a spray coater to form a curable resin region having a thickness of 100 nm, on which the above-mentioned The photocatalyst layer coating was applied and dried to form a 100 nm thick photocatalyst layer, and the above protective layer coating was further applied and dried to form a 3.0 μm thick protective layer, and Furthermore, the above-mentioned adhesive coating material was applied thereon and dried to form an adhesive layer having a thickness of 5.0 μm, thereby producing a transfer film.

この転写フィルムを、その接着剤層が上記化粧板の樹脂含浸化粧層の上に重なるように、化粧板に重ねて、プレス成形機にセットし、温度140℃、圧力10kgf/cmの条件で、3分間熱圧着して、化粧板と転写フィルムを接合し、しかる後、プレス成形機から取出して剥離フィルムを除去することによって、化粧板の表面に接着剤層、保護層、光触媒層、光触媒層の表面と面一になるように埋入された硬化性樹脂領域がこの順で積層一体化した平板状の光触媒部材を作製した。 This transfer film was placed on a decorative plate so that the adhesive layer was superimposed on the resin-impregnated decorative layer of the decorative plate, and set in a press molding machine under the conditions of a temperature of 140 ° C. and a pressure of 10 kgf / cm 2 . Bonded the decorative board and transfer film by thermocompression for 3 minutes, and then removed from the press molding machine and removed the release film, so that the adhesive layer, protective layer, photocatalyst layer, photocatalyst on the surface of the decorative board A flat photocatalyst member was produced in which the curable resin regions embedded so as to be flush with the surface of the layer were laminated and integrated in this order.

得られた光触媒部材について、光触媒層の表面に占める硬化性樹脂領域の合計面積の割合を実施例1と同じ方法で測定したところ、硬化性樹脂領域は光触媒層の表面の62%を占めていた。   About the obtained photocatalyst member, when the ratio of the total area of the curable resin area | region occupied to the surface of a photocatalyst layer was measured by the same method as Example 1, the curable resin area | region occupied 62% of the surface of the photocatalyst layer. .

また、得られた光触媒部材に、実施例1と同様にブラックライトブルー(BLB)ランプにて紫外線を168時間照射した後に、実施例1で用いた方法と同じ方法で水の接触角を測定した。その結果、照射前は85°であった接触角は、168時間照射後には80°となり親水性は示さなかった。   Further, after the obtained photocatalyst member was irradiated with ultraviolet light for 168 hours with a black light blue (BLB) lamp in the same manner as in Example 1, the contact angle of water was measured by the same method as that used in Example 1. . As a result, the contact angle, which was 85 ° before irradiation, became 80 ° after irradiation for 168 hours, indicating no hydrophilicity.

さらに、得られた光触媒部材について、実施例1と同じ方法で有機物分解性を調べたところ、分解活性示数Rは4.2[nmol/l/min]であり、光触媒層がメラミン樹脂領域で被覆されているにも拘わらず、光触媒部材表面は良好な分解作用を発揮することが確認された。   Further, when the obtained photocatalyst member was examined for organic matter decomposability by the same method as in Example 1, the decomposition activity index R was 4.2 [nmol / l / min], and the photocatalyst layer was in the melamine resin region. Although it was coated, it was confirmed that the surface of the photocatalyst member exhibits a good decomposition action.

また、得られた光触媒部材を切断して作製した3個の試験片について、耐払拭性を調べたところ、払拭しない初期においても試験片の全表面の全てが硝酸銀の呈色反応を示し、払拭回数が3000回に達しても、試験片の全表面の全てが硝酸銀の呈色反応を示した。このことから、本製法により得られた光触媒部材であっても、その表面では光触媒作用を発揮されていることがわかった。そして、メラミン硬化性樹脂領域で被覆された光触媒層は、3000回払拭しても磨滅、剥脱されないことが分かった。   In addition, when the wiping resistance of three test pieces prepared by cutting the obtained photocatalyst member was examined, all the surfaces of the test piece exhibited a color reaction of silver nitrate even in the initial stage where no wiping was performed. Even when the number of times reached 3000, all the surfaces of the test piece exhibited a color reaction of silver nitrate. From this, it was found that even the photocatalyst member obtained by this production method exhibited a photocatalytic action on its surface. And it turned out that the photocatalyst layer coat | covered with the melamine curable resin area | region is not worn out and exfoliated even if it wipes 3000 times.

参考例
基材として、実施例2と同じ化粧板を準備した。
[ Reference example ]
As the substrate, the same decorative board as in Example 2 was prepared.

さらに、実施例2と同じ接着剤層用塗料、保護層用塗料、光触媒層用塗料、熱硬化性メラミン樹脂液を準備した。   Furthermore, the same adhesive layer coating material, protective layer coating material, photocatalyst layer coating material, and thermosetting melamine resin solution as those in Example 2 were prepared.

そして、上記の化粧板の上に接着剤層用塗料を塗布、乾燥して厚さ0.5μmの接着剤層を形成し、その上に上記の保護層用塗料を塗布、乾燥して厚さ3.0μmの保護層を形成し、更にその上に上記の光触媒層用塗料を塗布、乾燥して厚さ100nmの光触媒層を形成し、そして更にその上に上記の熱硬化性メラミン樹脂液をスプレーコーターによって散布、硬化させて、厚さが100nmとなるように硬化性樹脂領域を形成することにより、化粧板の表面に接着剤層、保護層、光触媒層、光触媒層の表面から突出した硬化性樹脂領域が、この順で積層一体化した平板状の光触媒部材を作製した。   Then, the adhesive layer paint is applied on the decorative plate and dried to form an adhesive layer having a thickness of 0.5 μm, and the protective layer paint is applied thereon and dried to obtain a thickness. A protective layer having a thickness of 3.0 μm is formed, and the photocatalyst layer coating material is applied thereon and dried to form a photocatalyst layer having a thickness of 100 nm. Further, the thermosetting melamine resin liquid is applied thereon. Curing that protrudes from the surface of the adhesive layer, protective layer, photocatalyst layer, and photocatalyst layer on the surface of the decorative board by spraying and curing with a spray coater to form a curable resin region having a thickness of 100 nm A flat photocatalyst member in which the conductive resin region was laminated and integrated in this order was produced.

得られた光触媒部材について、光触媒層の表面に占める硬化性樹脂領域の合計面積の割合を実施例1と同じ方法で測定したところ、硬化性樹脂領域は光触媒層の表面の30%を占めていた。   About the obtained photocatalyst member, when the ratio of the total area of the curable resin area | region occupied to the surface of a photocatalyst layer was measured by the same method as Example 1, the curable resin area | region occupied 30% of the surface of the photocatalyst layer. .

また、得られた光触媒部材の硬化性樹脂領域を通して光触媒層に、実施例1と同様に、ブラックライトブルー(BLB)ランプを168時間照射した後に、実施例1で用いた方法と同じ方法で水の接触角を測定した。その結果、照射前は81°であった接触角は、168時間照射後には75°となり、実施例1及び実施例2よりも低下したが、自己浄化作用を奏する接触角までは低下しなかった。   Further, after irradiating the photocatalyst layer through the curable resin region of the obtained photocatalyst member with a black light blue (BLB) lamp for 168 hours in the same manner as in Example 1, water was obtained by the same method as that used in Example 1. The contact angle of was measured. As a result, the contact angle, which was 81 ° before irradiation, became 75 ° after irradiation for 168 hours, which was lower than that of Example 1 and Example 2, but did not decrease to the contact angle having a self-cleaning action. .

さらに、得られた光触媒部材について、実施例1と同じ方法で有機物分解性を調べたところ、分解活性示数Rは5.0[nmol/l/min]であった。   Furthermore, when the obtained photocatalyst member was examined for organic matter decomposability in the same manner as in Example 1, the decomposition activity index R was 5.0 [nmol / l / min].

得られた光触媒部材を切断して作製した3個の試験片について、耐払拭性を調べたところ、払拭しない初期においても試験片の全表面の全てが硝酸銀の呈色反応を示し、払拭回数が3000回に達しても、試験片の全表面の全てが硝酸銀の呈色反応を示した。   The three test pieces prepared by cutting the obtained photocatalyst member were examined for wiping resistance. Even in the initial stage where no wiping was performed, all the surfaces of the test piece showed a color reaction of silver nitrate, and the number of wiping operations was Even after reaching 3000 times, all the surfaces of the test piece exhibited a color reaction of silver nitrate.

[比較例1]
実施例2で作製した転写フィルムに代えて、剥離フィルムの表面に厚さ100nmの光触媒層と厚さ3.0μmの保護層と厚さ5.0μmの接着剤層を積層した転写フィルムを作製した以外は実施例2と同様にして、化粧板の表面に接着剤層と保護層と光触媒層を積層一体化した比較例1の光触媒部材(表面に硬化性樹脂層のないもの)を作製した。
[Comparative Example 1]
Instead of the transfer film prepared in Example 2, a transfer film was prepared by laminating a photocatalyst layer having a thickness of 100 nm, a protective layer having a thickness of 3.0 μm, and an adhesive layer having a thickness of 5.0 μm on the surface of the release film. A photocatalyst member of Comparative Example 1 (without a curable resin layer on the surface) was produced in the same manner as in Example 2 except that an adhesive layer, a protective layer, and a photocatalyst layer were laminated and integrated on the surface of the decorative board.

この光触媒部材について、実施例1と同様にして、水との接触角、分解活性示数、耐払拭性を調べた。その結果、水との接触角は照射前には60°であったが、24時間照射の段階で10°となり、48時間照射すると4°まで低下し、実施例1,2及び参考例の光触媒部材よりも親水性が増していた。また、分解活性示数は6.5[nmol/l/min]で、実施例1,2及び参考例の光触媒部材よりも大きくなっていた。これは比較例1の光触媒部材の光触媒層が全面で露出している分だけ、実施例1,2及び参考例の光触媒部材よりも光触媒作用が強く発揮されるためと考えられる。また、この比較例1の光触媒部材の試験片はすべて、500回払拭したときに、硝酸銀の呈色反応がなく、既に光触媒層が磨滅、剥脱しており、耐払拭性に劣るものであった。 About this photocatalyst member, it carried out similarly to Example 1, and investigated the contact angle with water, a decomposition activity index, and wiping resistance. As a result, the contact angle with water was 60 ° before irradiation, but it became 10 ° at the stage of irradiation for 24 hours and decreased to 4 ° after irradiation for 48 hours. The photocatalysts of Examples 1 and 2 and Reference Example It was more hydrophilic than the member. The decomposition activity index was 6.5 [nmol / l / min], which was larger than those of the photocatalyst members of Examples 1 and 2 and the reference example . This is presumably because the photocatalytic action is exerted more strongly than the photocatalyst members of Examples 1 and 2 and the reference example because the photocatalyst layer of the photocatalyst member of Comparative Example 1 is exposed on the entire surface. Moreover, all the test pieces of the photocatalyst member of Comparative Example 1 had no silver nitrate color reaction when wiped 500 times, and the photocatalyst layer was already worn out and exfoliated, and the wiping resistance was poor. .

以上の実施例1,2及び参考例と比較例1の結果をまとめて表1に示すと共に、実施例1と比較例1の水との接触角のグラフを図6に示し、またメチレンブルー濃度の変化を図7に示す。 The results of Examples 1 and 2 and Reference Example and Comparative Example 1 are summarized in Table 1, and a graph of the contact angle between Example 1 and Comparative Example 1 is shown in FIG. The change is shown in FIG.

Figure 0004776443
Figure 0004776443

硬化性樹脂領域を有する実施例1,2及び参考例は、紫外線を168時間照射したときの水との接触角が比較例1に比べて非常に大きく、親水性は呈していない。また、分解活性示数については、比較例1に比べて低いが、光触媒層が硬化性樹脂領域で一部ないし大部分が被覆されているにも拘わらず、良好な有機物分解作用を発揮している。そして、光触媒層が硬化性樹脂領域で一部ないし大部分が被覆されていることから、高い耐払拭性を示し、光触媒層が磨滅、剥脱することなく、長期に亘って安定した有機物分解作用を奏することが可能となっている。 In Examples 1 and 2 and Reference Example having a curable resin region, the contact angle with water when irradiated with ultraviolet rays for 168 hours is much larger than that of Comparative Example 1 and does not exhibit hydrophilicity. Although the decomposition activity index is lower than that of Comparative Example 1, the organic catalyst exhibits a good organic substance decomposition action even though the photocatalyst layer is partially or mostly covered with the curable resin region. Yes. Since the photocatalyst layer is partially or mostly covered with the curable resin region, it exhibits high wiping resistance, and the photocatalyst layer does not wear out or peel off, and can stably decompose organic substances over a long period of time. It is possible to play.

参考形態に係る光触媒部材を示す断面図である。It is a sectional view showing a photocatalytic member according to a reference embodiment. 他の参考形態に係る光触媒部材を示す断面図である。It is a sectional view showing a photocatalytic member according to another reference embodiment. 更に他の参考形態に係る光触媒部材を示す断面図である。 Further is a sectional view showing a photocatalytic member according to another reference embodiment. 本発明に係る光触媒部材の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the photocatalyst member which concerns on this invention. 実施例1のサンプルを硝酸銀水溶液に浸漬して、ブラックライトブルーランプで紫外線照射したものを撮影し、撮影写真を2値化処理した写真である。It is the photograph which image | photographed what immersed the sample of Example 1 in the silver nitrate aqueous solution, and irradiated the ultraviolet-ray with the black light blue lamp, and binarized the picked-up photograph. 実施例1と比較例1の水との接触角(°)と紫外線照射時間(時)との関係を示したグラフである。It is the graph which showed the relationship between the contact angle (degree) of the water of Example 1 and Comparative Example 1 and ultraviolet irradiation time (hours). 実施例1と比較例1のメチレンブルー分解試験で得られたデータをプロットしたもので、メチレンブルー試験液濃度C(t)[μmol/l]と紫外線照射時間(分)との関係を示したグラフである。The data obtained in the methylene blue decomposition test of Example 1 and Comparative Example 1 is plotted, and is a graph showing the relationship between the methylene blue test solution concentration C (t) [μmol / l] and the ultraviolet irradiation time (min). is there.

符号の説明Explanation of symbols

1 基材
1a 芯材層
1b 樹脂含浸化粧層
2 保護層
3 光触媒層
4 硬化性樹脂領域
5 接着剤層
A,B,C,D 光触媒部材
DESCRIPTION OF SYMBOLS 1 Base material 1a Core material layer 1b Resin impregnation decorative layer 2 Protective layer 3 Photocatalyst layer 4 Curable resin area | region 5 Adhesive layer A, B, C, D Photocatalyst member

Claims (9)

基材の上に光触媒粒子を含む光触媒層が積層された光触媒部材であって、この光触媒層に、硬化性樹脂領域が光触媒層の表面と面一になるように埋入された状態で分散して形成されていることを特徴とする光触媒部材。   A photocatalyst member in which a photocatalyst layer containing photocatalyst particles is laminated on a substrate, and dispersed in this photocatalyst layer in a state where the curable resin region is flush with the surface of the photocatalyst layer. A photocatalyst member characterized by being formed. 硬化性樹脂領域の厚さが10〜500nmであることを特徴とする請求項1に記載の光触媒部材。 2. The photocatalytic member according to claim 1 , wherein the thickness of the curable resin region is 10 to 500 nm. ブラックライトブルーを用いて1mW/cm2の強度の光を168時間照射したのち、水との接触角が30〜90°である請求項1又は請求項2に記載の光触媒部材。 The photocatalyst member according to claim 1 or 2 , wherein the contact angle with water is 30 to 90 ° after irradiating light of 1 mW / cm 2 with black light blue for 168 hours. 光触媒層の表面の面積に占める全ての硬化性樹脂領域の合計面積の割合が20〜99%である請求項1ないし請求項3のいずれかに記載の光触媒部材。 The photocatalyst member according to any one of claims 1 to 3 , wherein a ratio of the total area of all the curable resin regions to the surface area of the photocatalyst layer is 20 to 99%. 硬化性樹脂領域が、熱硬化性樹脂からなる領域である請求項1ないし請求項4のいずれかに記載の光触媒部材。 The photocatalyst member according to any one of claims 1 to 4 , wherein the curable resin region is a region made of a thermosetting resin. 硬化性樹脂領域が、メラミン樹脂からなる領域である請求項1ないし請求項5のいずれかに記載の光触媒部材。 The photocatalyst member according to any one of claims 1 to 5 , wherein the curable resin region is a region made of a melamine resin. 基材が、繊維と熱硬化性樹脂と無機材とよりなる芯材層と、その上に積層一体化された樹脂含浸化粧層とよりなる化粧板である請求項1ないし請求項6のいずれかに記載の光触媒部材。 Substrate, a core layer more the fibers and the thermosetting resin and inorganic, claims 1 and more becomes decorative plate and integrally laminated resin impregnated decorative layer thereon claim 6 The photocatalyst member described in 1. 基材と光触媒層との間に保護層が形成されている請求項1ないし請求項7のいずれかに記載の光触媒部材。 The photocatalyst member according to any one of claims 1 to 7 , wherein a protective layer is formed between the substrate and the photocatalyst layer. 基材と保護層との間に接着剤層が形成されている請求項8に記載の光触媒部材。 The photocatalyst member according to claim 8 , wherein an adhesive layer is formed between the substrate and the protective layer.
JP2006151083A 2006-05-31 2006-05-31 Photocatalyst member Active JP4776443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006151083A JP4776443B2 (en) 2006-05-31 2006-05-31 Photocatalyst member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006151083A JP4776443B2 (en) 2006-05-31 2006-05-31 Photocatalyst member

Publications (2)

Publication Number Publication Date
JP2007319745A JP2007319745A (en) 2007-12-13
JP4776443B2 true JP4776443B2 (en) 2011-09-21

Family

ID=38852977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006151083A Active JP4776443B2 (en) 2006-05-31 2006-05-31 Photocatalyst member

Country Status (1)

Country Link
JP (1) JP4776443B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208332A (en) * 2010-03-30 2011-10-20 Dainippon Printing Co Ltd Photocatalytic foamed wallpaper
JP6035778B2 (en) * 2012-03-01 2016-11-30 大日本印刷株式会社 Laminated sheet with photocatalytic function
JP6413237B2 (en) * 2013-12-27 2018-10-31 住友ベークライト株式会社 Melamine decorative material and method for producing melamine decorative material

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176834A (en) * 1997-09-11 1999-03-23 Toto Ltd Photocatalytic hydrophilic component and photocatalytic hydrophilic coated composition
JP3773087B2 (en) * 1999-02-26 2006-05-10 昭 藤嶋 Photocatalytic functional member
JP2001260597A (en) * 2000-03-17 2001-09-25 Takiron Co Ltd Transfer film
JP2001276613A (en) * 2000-03-30 2001-10-09 Toshiba Lighting & Technology Corp Photocatalyst body and functional body
JP2001322222A (en) * 2000-05-16 2001-11-20 Toppan Printing Co Ltd Decorative sheet
JP4665329B2 (en) * 2001-03-30 2011-04-06 東レ株式会社 Polyester fiber structure
JP2003071967A (en) * 2001-08-31 2003-03-12 Takiron Co Ltd Decorative sheet having photocatalyst layer formed thereon as outermost layer
JP2004299082A (en) * 2003-03-28 2004-10-28 Takiron Co Ltd Transfer film and resin laminate
JP2005014350A (en) * 2003-06-25 2005-01-20 Takiron Co Ltd Synthetic resin member having photocatalytic function and film using it
JP4390130B2 (en) * 2003-07-30 2009-12-24 タキロン株式会社 Member having photocatalytic function and photocatalyst coating material used therefor
JP2005205378A (en) * 2003-12-25 2005-08-04 Japan Communications 株式会社 Functional particle carrier and its manufacturing method
JP2006175685A (en) * 2004-12-22 2006-07-06 Takiron Co Ltd Molded product having photocatalytic function
JP4695478B2 (en) * 2005-09-29 2011-06-08 タキロン株式会社 Photocatalyst member
JP5128084B2 (en) * 2006-04-27 2013-01-23 タキロン株式会社 Photocatalyst member

Also Published As

Publication number Publication date
JP2007319745A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
US10201809B2 (en) Photocatalyst sheet
US9079155B2 (en) Photocatalyst coated body and photocatalyst coating liquid
JP4092714B1 (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
CN106867283A (en) Light catalyst loating body
WO2011118780A1 (en) Photocatalyst-coated body and photocatalyst coating liquid
JP4933568B2 (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
JP2010099647A (en) Photocatalyst-coated body and photocatalytic coating liquid for the same
JP4776443B2 (en) Photocatalyst member
JP5128084B2 (en) Photocatalyst member
JP4695553B2 (en) Photocatalyst member
JP2009119462A (en) Photocatalytic coated body and photocatalytic coating liquid for the same
JP4695478B2 (en) Photocatalyst member
JP4390130B2 (en) Member having photocatalytic function and photocatalyst coating material used therefor
TWI430841B (en) With the use of photocatalyst layer of composite materials
JP2007187795A (en) Reflection sheet and reflection plate
JP6200567B2 (en) Veneer
JP2004106303A (en) Decorative sheet having stainproofing function
JP2011072935A (en) Photocatalyst-coated object and photocatalyst coating liquid therefor
JP4897781B2 (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
JP2011078916A (en) External structure and coating fluid for external structure
JP2011080272A (en) Building external facing material and coating liquid for building external facing, for use in the same
JP2010005608A (en) Coating comprising photocatalyst and photocatalyst coating liquid for the same
JP2011079980A (en) Exterior item and coating liquid for exterior item
JP2007090618A (en) Antifouling member
JP2011006955A (en) Roof material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110628

R150 Certificate of patent or registration of utility model

Ref document number: 4776443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250