JP4695553B2 - Photocatalyst member - Google Patents

Photocatalyst member Download PDF

Info

Publication number
JP4695553B2
JP4695553B2 JP2006180581A JP2006180581A JP4695553B2 JP 4695553 B2 JP4695553 B2 JP 4695553B2 JP 2006180581 A JP2006180581 A JP 2006180581A JP 2006180581 A JP2006180581 A JP 2006180581A JP 4695553 B2 JP4695553 B2 JP 4695553B2
Authority
JP
Japan
Prior art keywords
photocatalyst
layer
thermosetting resin
photocatalyst layer
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006180581A
Other languages
Japanese (ja)
Other versions
JP2008006389A (en
Inventor
松川聖子
鈴木孝樹
坂内厚一
半澤勝
井平誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2006180581A priority Critical patent/JP4695553B2/en
Publication of JP2008006389A publication Critical patent/JP2008006389A/en
Application granted granted Critical
Publication of JP4695553B2 publication Critical patent/JP4695553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は光触媒機能を有する光触媒部材に関し、更に詳しくは、摩擦堅牢性、特に、耐払拭性に優れた光触媒部材に関する。   The present invention relates to a photocatalyst member having a photocatalyst function, and more particularly to a photocatalyst member having excellent friction fastness, particularly wiping resistance.

近年、セラミックス、金属、合成樹脂などからなる基材の表面に光触媒層を形成し、光触媒機能を付与した種々の光触媒部材が開発されている。かかる光触媒部材は、表面に露出する光触媒粒子によって、悪臭を分解したり、抗菌・防黴作用を発揮したり、親水性を発現したりするため、クーラーや掃除機の内部に使用されたり、カーポートの屋根材や高速道路の防音板等の用途に使用されている。   In recent years, various photocatalytic members having a photocatalytic function formed by forming a photocatalytic layer on the surface of a base material made of ceramics, metal, synthetic resin or the like have been developed. Such photocatalyst members are used in coolers and vacuum cleaners to decompose bad odors, exhibit antibacterial / antifungal effects, and develop hydrophilicity by photocatalyst particles exposed on the surface. It is used for roofing materials for ports and soundproof boards for highways.

また、基材の表面に光触媒粒子を含んだ層を形成し、この層の表面に10〜100nm程度の親水部と親油部をモザイク状に分散形成した親水親油性部材も提案されている(特許文献1)。
特開平10−166495号公報
Further, a hydrophilic / lipophilic member is also proposed in which a layer containing photocatalyst particles is formed on the surface of the base material, and a hydrophilic portion and a lipophilic portion of about 10 to 100 nm are dispersed and formed in a mosaic pattern on the surface of this layer ( Patent Document 1).
Japanese Patent Laid-Open No. 10-166495

しかしながら、従来の光触媒部材のように薄くて脆弱な光触媒層が表面に形成されているものは、物が当ったり擦ったりすると、その衝撃力や摩擦力で光触媒層が損傷したり剥脱したりして、光触媒機能が低下するという問題があった。   However, when a thin and fragile photocatalyst layer is formed on the surface like a conventional photocatalyst member, when the object hits or rubs, the photocatalyst layer is damaged or peeled off by the impact force or frictional force. Thus, there is a problem that the photocatalytic function is lowered.

また、特許文献1の親水親油性部材は、光触媒粒子を含んだ光触媒層の表面に酸素を配位させて親油性表面を形成し、水分子の存在下で光触媒粒子が励起する波長の光を照射して、配位した酸素の開裂反応を局所的に生じさせ、この開裂反応によりチタン原子に水酸基を結合させて、10〜100nm程度の親水部と親油部をモザイク状に分散形成したものであるから、光触媒層それ自体は従来の光触媒部材と同様に脆弱で表面に形成されており、従って、この特許文献1の親水親油性部材も、外部からの衝撃力や摩擦力で光触媒層が損傷したり脱落したりして光触媒機能の低下を招くという問題があった。   Further, the hydrophilic / lipophilic member of Patent Document 1 forms a lipophilic surface by coordinating oxygen to the surface of the photocatalyst layer containing the photocatalyst particles, and emits light having a wavelength that excites the photocatalyst particles in the presence of water molecules. Irradiated to cause a coordinated oxygen cleavage reaction locally, and by this cleavage reaction, a hydroxyl group is bonded to a titanium atom, and a hydrophilic portion and a lipophilic portion of about 10 to 100 nm are dispersed and formed in a mosaic shape. Therefore, the photocatalyst layer itself is fragile and formed on the surface in the same manner as a conventional photocatalyst member. Therefore, the hydrophilic / lipophilic member of Patent Document 1 also has a photocatalyst layer formed by external impact force or friction force. There has been a problem that the photocatalytic function is lowered due to damage or dropping off.

本発明は上記の事情の下になされたもので、摩擦堅牢性、特に、耐払拭性に優れ、傷付きにくい光触媒部材を提供することと、その光触媒部材の製造方法を提供すること解決課題としている。   The present invention has been made under the circumstances described above, and provides a photocatalyst member that is excellent in friction fastness, in particular, wiping resistance and is not easily damaged, and a method for producing the photocatalyst member. Yes.

上記課題を解決するため、本発明に係る光触媒部材は、熱硬化性樹脂からなる基材又は熱硬化性樹脂を含んだ基材の上に、保護層を介して、光触媒粒子を含んだ光触媒層が積層され、且つ該光触媒層表面に熱硬化性樹脂が露出状態で散在した光触媒部材であって、該露出散在する熱硬化性樹脂の少なくとも一部が、光触媒層と保護層を通って基材まで連続していることを特徴とするものである。   In order to solve the above-mentioned problems, a photocatalyst member according to the present invention comprises a photocatalyst layer containing photocatalyst particles via a protective layer on a base material made of a thermosetting resin or a base material containing a thermosetting resin. And a photocatalyst member in which the thermosetting resin is scattered in an exposed state on the surface of the photocatalyst layer, and at least a part of the exposed and scattered thermosetting resin passes through the photocatalyst layer and the protective layer. It is characterized by being continuous.

本発明に係る他の光触媒部材は、熱硬化性樹脂からなる基材又は熱硬化性樹脂を含んだ基材の上に、保護層を介して、光触媒粒子を含んだ光触媒層が積層され、且つ該光触媒層表面に熱硬化性樹脂が露出状態で散在した光触媒部材であって、該露出散在する熱硬化性樹脂の少なくとも一部が、基材から保護層と光触媒層を通って光触媒層の表面まで移行していることを特徴とするものである。   Another photocatalyst member according to the present invention has a photocatalyst layer containing photocatalyst particles laminated on a base material made of a thermosetting resin or a base material containing a thermosetting resin via a protective layer, and A photocatalyst member in which a thermosetting resin is scattered in an exposed state on the surface of the photocatalyst layer, and at least a part of the exposed thermosetting resin passes from the base material through the protective layer and the photocatalyst layer to the surface of the photocatalyst layer It is characterized by having shifted to.

このような本発明の各光触媒部材においては、保護層の厚さが0.3〜5.0μmであること、光触媒層の表面の面積に占める熱硬化性樹脂の露出部の合計面積の割合が20〜99%であること、ブラックライトブルーを用いて1mW/cm2の強度の光を168時間照射した後の表面の水との接触角が30〜90°であることが好ましい。また、基材として、繊維と熱硬化性樹脂と無機材とよりなる芯材層の上に熱硬化性樹脂含浸化粧層を積層一体化した化粧板などが好ましく使用され、熱硬化性樹脂としては熱硬化性メラミン樹脂が好ましく使用される。 In each photocatalyst member of the present invention, the thickness of the protective layer is 0.3 to 5.0 μm, and the ratio of the total area of the exposed portion of the thermosetting resin to the surface area of the photocatalyst layer is The contact angle with water on the surface after irradiation with light of 1 mW / cm 2 intensity for 168 hours using black light blue is preferably 30 to 90 °. In addition, as a base material, a decorative board in which a thermosetting resin-impregnated decorative layer is laminated and integrated on a core layer made of fibers, a thermosetting resin, and an inorganic material is preferably used. A thermosetting melamine resin is preferably used.

一方、本発明に係る光触媒部材の製造方法は、剥離フィルムの上に光触媒粒子を含んだ光触媒層と保護層とを順次形成して転写フィルムを作製し、未硬化の熱硬化性樹脂を含んだ基材形成用材料の上に転写フィルムを保護層が基材側となるように重ねて熱圧着することにより、未硬化の熱硬化性樹脂を基材形成用材料から保護層と光触媒層を通って光触媒層の表面まで移行させて、光触媒層の表面に露出、散在させると共に、未硬化の熱硬化性樹脂を熱硬化させて形成した基材の上に保護層と光触媒層を転写することを特徴とするものである。   On the other hand, in the method for producing a photocatalyst member according to the present invention, a photocatalyst layer containing photocatalyst particles and a protective layer are sequentially formed on a release film to produce a transfer film, and an uncured thermosetting resin is contained. Overlaying the transfer film on the substrate forming material so that the protective layer is on the substrate side and thermocompression bonding allows the uncured thermosetting resin to pass from the substrate forming material through the protective layer and the photocatalyst layer. Transfer to the surface of the photocatalyst layer and expose and scatter on the surface of the photocatalyst layer, and transfer the protective layer and the photocatalyst layer onto the substrate formed by thermosetting the uncured thermosetting resin. It is a feature.

本発明に係る光触媒部材のように、基材の上に保護層を介して光触媒層が積層され、且つ該光触媒層表面に熱硬化性樹脂が露出状態で散在し、該露出散在する熱硬化性樹脂の少なくとも一部が光触媒層と保護層を通って基材まで連続していると、光触媒層が熱硬化性樹脂の散在した露出部によって保護されるため、光触媒部材の摩擦堅牢性、特に、耐払拭性が向上し、防傷性も向上する。しかも、光触媒層表面に露出している熱硬化性樹脂の露出部は、基材から光触媒層表面にまで連続する熱硬化性樹脂によって支持されているため、外部からの衝撃力や摩擦力に対する強度が大きく、優れた保護作用を発揮する。従って、光触媒部材表面が繰り返し擦られても光触媒層や光触媒粒子が剥脱し難く、また、物が当っても光触媒層が損傷し難いので、長期に亘って安定した光触媒作用を発揮することができる。もっとも、厳密に言えば、熱硬化性樹脂の露出部相互間の光触媒層表面は直接的に保護されないが、この熱硬化性樹脂の露出部相互の間隔は狭いため、露出部相互間の光触媒層表面のみに物が当って損傷したり、露出部相互間の光触媒層表面のみが払拭されて光触媒粒子が剥脱するようなことは現実には皆無に等しく、従って、光触媒部材の表面全体に亘って摩擦堅牢性、特に耐払拭性や、防傷性が向上することになる。   As in the photocatalyst member according to the present invention, a photocatalyst layer is laminated on a substrate via a protective layer, and a thermosetting resin is scattered in an exposed state on the surface of the photocatalyst layer, and the exposed and scattered thermosetting When at least a part of the resin is continuous to the substrate through the photocatalyst layer and the protective layer, the photocatalyst layer is protected by the exposed exposed portions of the thermosetting resin. The wiping resistance is improved and the scratch resistance is also improved. Moreover, since the exposed portion of the thermosetting resin exposed on the surface of the photocatalyst layer is supported by the thermosetting resin continuous from the base material to the surface of the photocatalyst layer, the strength against external impact force and friction force Is large and exhibits excellent protective action. Therefore, even if the surface of the photocatalyst member is repeatedly rubbed, the photocatalyst layer and the photocatalyst particles are difficult to exfoliate, and the photocatalyst layer is difficult to be damaged even when hit by an object, so that a stable photocatalytic action can be exhibited over a long period of time. . Strictly speaking, the surface of the photocatalyst layer between the exposed portions of the thermosetting resin is not directly protected, but since the distance between the exposed portions of the thermosetting resin is narrow, the photocatalyst layer between the exposed portions is short. In reality, there is absolutely no case where only the surface hits and damages, or only the surface of the photocatalyst layer between the exposed parts is wiped off and the photocatalyst particles are exfoliated, and therefore, the entire surface of the photocatalyst member is covered. Friction fastness, especially wiping resistance and scratch resistance are improved.

本発明に係る他の光触媒部材のように、熱硬化性樹脂からなる基材又は熱硬化性樹脂を含んだ基材の上に、保護層を介して、光触媒粒子を含んだ光触媒層が積層され、且つ該光触媒層表面に熱硬化性樹脂が露出状態で散在し、該露出散在する熱硬化性樹脂の少なくとも一部が基材から保護層と光触媒層を通って光触媒層の表面まで移行していると、光触媒層が熱硬化性樹脂の散在した露出部によって保護されるため、前記と同様に、光触媒部材の摩擦堅牢性、特に、耐払拭性が向上し、防傷性も向上する。しかも、光触媒層表面に露出している熱硬化性樹脂の露出部は、基材から光触媒層表面にまでの移行通路に存在する熱硬化性樹脂によって支持されているため、前記と同様に、外部からの衝撃力や摩擦力に対する強度が大きく、優れた保護作用を発揮する。従って、光触媒部材表面が繰り返し擦られても光触媒層や光触媒粒子が剥脱し難く、また、物が当っても光触媒層が損傷し難いので、長期に亘って安定した光触媒作用を発揮することができる。   Like other photocatalyst members according to the present invention, a photocatalyst layer containing photocatalyst particles is laminated on a base material made of a thermosetting resin or a base material containing a thermosetting resin via a protective layer. In addition, the thermosetting resin is scattered in an exposed state on the surface of the photocatalyst layer, and at least a part of the exposed thermosetting resin moves from the base material to the surface of the photocatalyst layer through the protective layer and the photocatalyst layer. In this case, since the photocatalyst layer is protected by the exposed portions where the thermosetting resin is scattered, the friction fastness of the photocatalyst member, in particular, the wiping resistance is improved, and the scratch resistance is also improved. Moreover, since the exposed portion of the thermosetting resin exposed on the surface of the photocatalyst layer is supported by the thermosetting resin present in the transition path from the base material to the surface of the photocatalyst layer, High strength against impact force and friction force from the surface, and exhibits excellent protective action. Therefore, even if the surface of the photocatalyst member is repeatedly rubbed, the photocatalyst layer and the photocatalyst particles are difficult to exfoliate, and the photocatalyst layer is difficult to be damaged even when hit by an object, so that a stable photocatalytic action can be exhibited over a long period of time. .

本発明の光触媒部材のように、熱硬化性樹脂が光触媒層表面に散在する状態で露出していても良好な光触媒作用が発揮される理由については明らかでないが、光触媒層の熱硬化性樹脂露出部の相互間において発揮される光触媒作用に加えて、熱硬化性樹脂の露出部を透過した光によっても光触媒層の光触媒粒子が活性化されて発生したラジカル種や活性酸素種などが、熱硬化性樹脂の露出部の表面側へ飛散し、悪臭成分や低分子量有機物の分解作用、抗菌・防黴作用などの光触媒作用を行うからであると推測される。   Although it is not clear why the photocatalytic action is exerted even when the thermosetting resin is exposed in a scattered state on the surface of the photocatalyst layer as in the photocatalyst member of the present invention, exposure of the photocatalytic layer to the thermosetting resin is not clear. In addition to the photocatalytic action exerted between the parts, the radical species and active oxygen species generated by the activation of the photocatalyst particles of the photocatalyst layer by the light transmitted through the exposed portion of the thermosetting resin are also thermoset. This is presumably because it is scattered to the surface side of the exposed portion of the photosensitive resin and performs a photocatalytic action such as a decomposition action of malodorous components and low molecular weight organic substances and an antibacterial / antifungal action.

本発明に係る光触媒部材において、上記のように熱硬化性樹脂の少なくとも一部が、光触媒層と保護層を通って基材まで連続するか、或いは、基材から保護層と光触媒層を通って光触媒層の表面まで移行している状態にあるのは、後述する基材の表面に保護層と光触媒層を熱圧着によって転写して積層する製法を用いた場合、その圧力によって基材の熱硬化性樹脂が保護層と光触媒層を通って光触媒層の表面まで移行したのち、保護層又は/及び光触媒層の変動によって一部の熱硬化性樹脂の移行通路が遮断されるからであると推測される。   In the photocatalyst member according to the present invention, as described above, at least a part of the thermosetting resin continues to the base material through the photocatalyst layer and the protective layer, or from the base material through the protective layer and the photocatalyst layer. When the production method of transferring the protective layer and the photocatalyst layer to the surface of the base material to be described later by thermocompression and laminating them is used, the base material is thermally cured by the pressure. This is presumed to be because some of the thermosetting resin transfer passages are blocked by fluctuations in the protective layer and / or the photocatalyst layer after the photopolymer passes through the protective layer and the photocatalyst layer to the surface of the photocatalyst layer. The

保護層の厚さが0.3〜5.0μmである光触媒部材は、基材まで連続する熱硬化性樹脂形成し易いし、また、光触媒層表面まで移行(滲出)する熱硬化性樹脂の量を適量にすることができるため、光触媒層表面の熱硬化性樹脂の露出部の占める割合や露出部の散在する状態を良好とすることができ、光触媒作用を低下させることなく、光触媒層表面の摩擦堅牢性、特に耐払拭性や、防傷性を大幅に向上させることが可能となる。保護層の厚さが0.3μmよりも薄くなると、保護層の樹脂透過性が良すぎて、光触媒層表面に露出する熱硬化性樹脂の量が多くなりすぎたり、光触媒層表面まで移行(滲出)する熱硬化性樹脂の量が多すぎるため、光触媒部材の外観が低下し、光触媒作用の低下を招く恐れも出てくる。一方、保護層の厚さが5.0μmを超えると、保護層の樹脂透過性が大幅に低下し、光触媒層表面に露出する熱硬化性樹脂の量が少なくなりすぎたり、光触媒層表面まで移行する熱硬化性樹脂の量が激減して光触媒層表面に露出し難くなるため、光触媒層表面の摩擦堅牢性、防傷性を向上させることが困難になる。   The photocatalytic member having a protective layer thickness of 0.3 to 5.0 μm is easy to form a thermosetting resin continuous up to the base material, and the amount of the thermosetting resin that migrates (exudes) to the surface of the photocatalytic layer. Therefore, the ratio of the exposed portion of the thermosetting resin on the surface of the photocatalyst layer and the state where the exposed portion is scattered can be improved, and the photocatalytic layer surface can be dispersed without reducing the photocatalytic action. Friction fastness, particularly wiping resistance and scratch resistance can be greatly improved. When the thickness of the protective layer is less than 0.3 μm, the resin permeability of the protective layer is too good, the amount of the thermosetting resin exposed on the surface of the photocatalyst layer becomes too large, or it migrates to the surface of the photocatalyst layer (exudation) ) The amount of the thermosetting resin is too large, the appearance of the photocatalytic member is lowered, and the photocatalytic action may be lowered. On the other hand, when the thickness of the protective layer exceeds 5.0 μm, the resin permeability of the protective layer is significantly reduced, and the amount of the thermosetting resin exposed on the surface of the photocatalyst layer becomes too small or moves to the surface of the photocatalyst layer. Since the amount of the thermosetting resin to be drastically reduced and it becomes difficult to be exposed on the surface of the photocatalyst layer, it is difficult to improve the friction fastness and scratch resistance of the surface of the photocatalyst layer.

そして、光触媒層の表面の面積に占める熱硬化性樹脂の露出部の合計面積の割合が20〜99%である光触媒部材は、熱硬化性樹脂の露出部相互間の面積や間隔が適度に小さくなるので、光触媒層の表面全体の摩擦堅牢性、特に耐払拭性や、防傷性が更に向上するようになる。熱硬化性樹脂の露出部の合計面積の割合が20%より少なくなると、熱硬化性樹脂の露出部による光触媒層表面の保護作用が低下するため、摩擦堅牢性、特に耐払拭性や、防傷性の向上が不充分になり、その割合が99%を超えると、光触媒部材の外観が悪くなると共に、悪臭成分や低分子量有機物の分解作用、抗菌・防黴作用などの光触媒作用の低下を招く恐れが生じる。   In the photocatalyst member in which the ratio of the total area of the exposed portions of the thermosetting resin to the surface area of the photocatalyst layer is 20 to 99%, the area and interval between the exposed portions of the thermosetting resin are appropriately small. As a result, the friction fastness of the entire surface of the photocatalyst layer, in particular, the wiping resistance and the scratch resistance are further improved. If the ratio of the total area of the exposed portion of the thermosetting resin is less than 20%, the protective action of the surface of the photocatalyst layer by the exposed portion of the thermosetting resin is reduced, so that frictional fastness, particularly wiping resistance and scratch resistance are prevented. If the ratio is more than 99%, the appearance of the photocatalyst member will be deteriorated, and it will lead to degradation of malodorous components and low molecular weight organic substances, photocatalytic action such as antibacterial and antifungal action, etc. Fear arises.

また、ブラックライトブルーを用いて1mW/cm2の強度の光を168時間照射した後の表面の水との接触角が30〜90°である光触媒部材は、親水性に劣り水の濡れ性が悪いため、光触媒作用の一つである親水性化による自己浄化の作用は実質的に発揮されないが、悪臭成分、低分子量有機物等の分解作用や抗菌・防黴作用などの光触媒作用は充分発揮することができ、タバコのヤニを分解したり、シックハウス症候群の原因となる揮発性有機化合物(VOC)ガスの分解等の効果も得ることができる。 Further, the photocatalytic member having a contact angle with water of 30 to 90 ° after irradiating light of 1 mW / cm 2 with black light blue for 168 hours has poor hydrophilicity and water wettability. Because it is bad, the self-purification effect due to hydrophilicity, which is one of the photocatalytic actions, is not substantially exhibited, but the photocatalytic action such as the decomposition action of malodorous components and low molecular weight organic substances and the antibacterial / antifungal action is sufficiently exerted. It is also possible to obtain effects such as decomposition of tobacco crabs and decomposition of volatile organic compound (VOC) gas that causes sick house syndrome.

また、基材として、繊維と熱硬化性樹脂と無機材とよりなる芯材層の上に熱硬化性樹脂含浸化粧層を積層一体化した化粧板を用いた光触媒部材は、化粧板の芯材層の繊維により熱伸縮を抑制することができるため、光触媒層や保護層にクラックが発生するのを防止することができ、熱硬化性樹脂含浸化粧層の模様や図柄を光触媒層と保護層を通して目視できる化粧光触媒部材とすることもできる。しかも、上記の化粧板は難燃性ないし不燃性とすることが容易であるので、そのような化粧板を使用すれば難燃性ないし不燃性の光触媒部材とすることもできる。   A photocatalyst member using a decorative board in which a thermosetting resin-impregnated decorative layer is laminated and integrated on a core material layer made of fibers, a thermosetting resin, and an inorganic material as a base material is a core material of the decorative board. Thermal expansion and contraction can be suppressed by the fibers of the layer, so that cracks can be prevented from occurring in the photocatalyst layer and the protective layer, and the pattern and design of the thermosetting resin-impregnated decorative layer can be passed through the photocatalyst layer and the protective layer. It can also be set as the visible photocatalyst member. In addition, since the decorative board can be easily made flame-retardant or non-flammable, the use of such a decorative board makes it possible to provide a flame-retardant or non-flammable photocatalytic member.

そして、基材の熱硬化性樹脂や光触媒層表面に露出状態で散在する熱硬化性樹脂が熱硬化性メラミン樹脂である光触媒部材は、該メラミン樹脂が三次元に架橋、硬化して高い表面硬度と強度を有し、しかも、表面の摩擦抵抗が小さいものであるため、光触媒層表面の摩擦堅牢性、特に耐払拭性の向上や、防傷性の向上が顕著になる。また、熱硬化性メラミン樹脂は光線透過率が高く、光触媒層の表面に露出していても可視光や紫外線を良く透過させて光触媒層の光触媒粒子を活性化させるので、光触媒作用を充分に発揮させることができる。加えて、熱硬化性メラミン樹脂は撥油性の樹脂であるから、このような撥油性のメラミン樹脂が光触媒層表面に露出状態で散在している光触媒部材を、台所などの油を多用する環境で用いると、油汚れが拭き取りやすくなり、光触媒層による有機物分解作用と相乗して優れた油汚れ防止効果を発揮することができる。   A photocatalytic member in which the thermosetting resin that is exposed on the surface of the thermosetting resin or the photocatalyst layer is a thermosetting melamine resin has a high surface hardness when the melamine resin is cross-linked and cured three-dimensionally. In addition, since the surface frictional resistance is small, the fastness to friction on the surface of the photocatalyst layer, in particular, the improvement in wiping resistance and the improvement in scratch resistance become remarkable. In addition, thermosetting melamine resin has high light transmittance, and even if it is exposed on the surface of the photocatalyst layer, it transmits visible light and ultraviolet rays well and activates the photocatalyst particles of the photocatalyst layer, so it fully exhibits the photocatalytic action. Can be made. In addition, since the thermosetting melamine resin is an oil-repellent resin, the photocatalytic member in which such an oil-repellent melamine resin is scattered in an exposed state on the surface of the photocatalyst layer is used in an environment such as a kitchen where oil is frequently used. When used, oil stains can be easily wiped off, and an excellent oil stain prevention effect can be exhibited in synergy with the organic matter decomposition action by the photocatalyst layer.

このような光触媒部材は、上述した本発明の製造方法によって効率良く量産することができる。   Such a photocatalyst member can be efficiently mass-produced by the production method of the present invention described above.

以下、図面に基づいて、本発明の具体的な実施形態を説明する。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

図1は本発明に係る光触媒部材の一実施形態を示す模式断面図、図2は本発明に係る光触媒部材の他の実施形態を示す模式断面図である。   FIG. 1 is a schematic cross-sectional view showing an embodiment of a photocatalyst member according to the present invention, and FIG. 2 is a schematic cross-sectional view showing another embodiment of the photocatalyst member according to the present invention.

図1、図2にそれぞれ示す光触媒部材A1,A2は、熱硬化性樹脂からなるシート状ないし板状の基材1の上に、保護層2を介して、光触媒粒子を含んだ光触媒層3を積層したものであって、光触媒層3の表面に熱硬化性樹脂4が露出状態で散在して露出部4aを形成していて、光触媒層3の摩擦堅牢性や防傷性を向上させている。そして、該露出散在している熱硬化性樹脂の露出部4aの少なくとも一部は、該露出部4aから光触媒層3を通って基材1まで連続して連結しているか、或いは、基材1から保護層2と光触媒層3を通って光触媒層表面の露出部4aまで移行して連結(以下、これらの連結した熱硬化性樹脂をあわせて称する場合は連結熱硬化性樹脂4と記す)している。   The photocatalyst members A1 and A2 shown in FIG. 1 and FIG. 2, respectively, have a photocatalyst layer 3 containing photocatalyst particles on a sheet-like or plate-like base material 1 made of a thermosetting resin with a protective layer 2 interposed therebetween. It is laminated, and the thermosetting resin 4 is scattered in an exposed state on the surface of the photocatalyst layer 3 to form an exposed portion 4a, thereby improving the friction fastness and scratch resistance of the photocatalyst layer 3. . And at least a part of the exposed portion 4a of the thermosetting resin scattered and exposed is continuously connected from the exposed portion 4a to the base material 1 through the photocatalyst layer 3, or the base material 1 To the exposed portion 4a on the surface of the photocatalyst layer through the protective layer 2 and the photocatalyst layer 3, and connected (hereinafter referred to as a connected thermosetting resin 4 when these connected thermosetting resins are collectively referred to). ing.

これらの光触媒部材A1と光触媒部材A2の構成上の相違点は、光触媒部材A1よりも光触媒部材A2の方が、連結熱硬化性樹脂4の量が若干多く、そのため、光触媒部材A2の連結熱硬化性樹脂4の露出部4aが図2に示すように周囲に拡大して、光触媒部材A1の連結熱硬化性樹脂4の露出部4aよりも面積が大きくなっている点である。その他の構成は、光触媒部材A1も光触媒部材A2も共通している。   The difference in configuration between the photocatalyst member A1 and the photocatalyst member A2 is that the photocatalyst member A2 has a slightly larger amount of the linked thermosetting resin 4 than the photocatalyst member A1, so that the linked thermosetting of the photocatalyst member A2 is performed. As shown in FIG. 2, the exposed portion 4a of the curable resin 4 expands to the periphery, and the area is larger than the exposed portion 4a of the coupled thermosetting resin 4 of the photocatalyst member A1. Other configurations are common to the photocatalyst member A1 and the photocatalyst member A2.

尚、これらの光触媒部材A1,A2はいずれも、保護層2と光触媒層3を基材1の片面に積層しているが、基材1の両面に形成しても勿論よい。また、連結熱硬化性樹脂4は、図においては、直線的に連続して連結しているが、これに限らず曲線的に連続していてもよく、後述する転写製法においては、ランダムな曲線でもって形成されることが一般的である。   In addition, although these photocatalyst members A1 and A2 both have laminated | stacked the protective layer 2 and the photocatalyst layer 3 on the single side | surface of the base material 1, of course, you may form on both surfaces of the base material 1. FIG. Moreover, although the connection thermosetting resin 4 is connected linearly and continuously in the drawing, the connection thermosetting resin 4 is not limited thereto, and may be continuous in a curved line. Thus, it is generally formed.

これらの光触媒部材A1,A2を後述する転写製法を用いて製造した場合、理論的には図1,図2に示すように熱硬化性樹脂の露出部の全てが基材1と連続している筈であるが、熱硬化性樹脂の露出部のうちの大半が基材1と連続し、残りは基材1と不連続になっている場合もある(但し、図1,図2では不連続のものを図示していない)。このように熱硬化性樹脂の露出部のうちの一部が基材1と不連続になるのは、基材1の表面に保護層2と光触媒層3を熱圧着によって転写して積層する際、その圧力によって基材1の熱硬化性樹脂が保護層2と光触媒層3を通って光触媒層3の表面へ移行して露出したのち、その圧力による圧延作用などのために保護層2が変動することによって一部の熱硬化性樹脂の移行通路が遮断されるからであると推測される。また、図2に示すように連結熱可塑性樹脂4の露出部4aが拡大している場合は、拡大した露出部4aの一部が分断されて光触媒層3の表面に分散することも一つの原因であると推測される。   When these photocatalyst members A1 and A2 are manufactured using a transfer manufacturing method to be described later, all the exposed portions of the thermosetting resin are theoretically continuous with the substrate 1 as shown in FIGS. Although most of the exposed portions of the thermosetting resin are continuous with the base material 1 and the rest are discontinuous with the base material 1 (in FIG. 1 and FIG. Not shown). In this way, a part of the exposed portion of the thermosetting resin is discontinuous with the base material 1 when the protective layer 2 and the photocatalyst layer 3 are transferred onto the surface of the base material 1 by thermocompression bonding and laminated. After the thermosetting resin of the base material 1 is exposed to the surface of the photocatalyst layer 3 through the protective layer 2 and the photocatalyst layer 3 due to the pressure, the protective layer 2 fluctuates due to a rolling action or the like due to the pressure. This is presumed to be because a part of the thermosetting resin transition passage is blocked. Further, when the exposed portion 4a of the connected thermoplastic resin 4 is enlarged as shown in FIG. 2, a part of the enlarged exposed portion 4a is divided and dispersed on the surface of the photocatalyst layer 3 as one cause. It is estimated that.

基材1としては、熱硬化性樹脂からなるもの、熱硬化性樹脂に無機繊維(例えばガラス繊維等)や有機繊維(例えばカーボン繊維、セルロース繊維等)や無機フィラーなどを配合したもの、無機又は有機繊維の集合体に熱硬化性樹脂を含浸させたもの、熱硬化性樹脂を含んだ後述の繊維補強化粧材などが用いられる。上記の熱硬化性樹脂に繊維、無機フィラーなどを配合した基材や、繊維の集合体に熱硬化性樹脂を含浸させた基材や、熱硬化性樹脂を含んだ繊維補強化粧材からなる基材は、繊維や無機フィラーによって熱伸縮が抑制され、保護層2や光触媒層3にクラックを発生させることがないので、好ましく使用される。   As the base material 1, what consists of thermosetting resin, what mix | blended inorganic fiber (for example, glass fiber etc.), organic fiber (for example, carbon fiber, cellulose fiber, etc.), an inorganic filler, etc. in thermosetting resin, inorganic or An organic fiber aggregate impregnated with a thermosetting resin, a fiber-reinforced decorative material described later containing the thermosetting resin, or the like is used. A base made of a base material in which fibers, inorganic fillers, etc. are blended with the above thermosetting resin, a base material in which a fiber assembly is impregnated with a thermosetting resin, or a fiber-reinforced decorative material containing a thermosetting resin The material is preferably used because thermal expansion and contraction is suppressed by the fiber and the inorganic filler, and the protective layer 2 and the photocatalyst layer 3 are not cracked.

この基材1は、光触媒部材A1,A2の用途に適合するように、無色透明としても、着色透明としても、着色不透明としても、図柄・模様入りとしてもよいものであり、その厚さや形状についても特に限定されることなく光触媒部材A1,A2の用途に適合した厚さや形状とすればよいものである。また、この基材1には、熱線吸収機能、熱線反射機能、耐候性機能、電磁波吸収機能、電磁波反射機能、制電機能、ハードコート機能などを適宜付与してもよい。   The substrate 1 may be colorless and transparent, colored and transparent, colored and opaque, or may have a pattern or pattern so as to suit the use of the photocatalytic members A1 and A2. The thickness and shape of the photocatalyst members A1 and A2 are not particularly limited. Further, the base material 1 may be appropriately provided with a heat ray absorbing function, a heat ray reflecting function, a weather resistance function, an electromagnetic wave absorbing function, an electromagnetic wave reflecting function, an antistatic function, a hard coat function, and the like.

基材1を構成する熱硬化性樹脂や基材1に含まれる熱硬化性樹脂は、光触媒層3の表面まで連続、又は移行して該表面に露出し、該露出部4aが光触媒層3の表面に散在して光触媒層3の摩擦堅牢性や防傷性を向上させるものであるから、熱硬化時に三次元網目状に架橋、硬化して大きい強度を発揮するメラミン樹脂、フェノール樹脂、ジアリルフタレート樹脂、アクリル樹脂、エポキシ樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、シリコーン樹脂などの単独又は混合若しくは共重合樹脂が用いられる。これらの中でも、透明性が良好で表面硬度の高い熱硬化性のアクリル樹脂、メラミン樹脂、フェノール樹脂などが好ましく使用され、特に、結合エネルギーが高く、光触媒作用で分解されにくく、表面硬度が高くて、透明性に優れたメラミン樹脂は極めて好ましく使用される。また、対傷自己治癒性のあるウレタンアクリレート樹脂なども好適に用いられる。   The thermosetting resin constituting the substrate 1 and the thermosetting resin contained in the substrate 1 are exposed to the surface continuously or transferred to the surface of the photocatalyst layer 3, and the exposed portion 4 a of the photocatalyst layer 3 is exposed. Because it is scattered on the surface and improves the friction fastness and scratch resistance of the photocatalyst layer 3, it is crosslinked and cured in a three-dimensional network during heat curing, and exhibits high strength, melamine resin, phenol resin, diallyl phthalate A resin, an acrylic resin, an epoxy resin, a polyimide resin, an unsaturated polyester resin, a urethane resin, a silicone resin or the like may be used alone or as a mixture or copolymer resin. Among these, thermosetting acrylic resin, melamine resin, phenol resin, etc. with good transparency and high surface hardness are preferably used. Especially, the binding energy is high, it is difficult to be decomposed by photocatalysis, and the surface hardness is high. A melamine resin excellent in transparency is very preferably used. In addition, urethane acrylate resin having self-healing ability against scratches is also preferably used.

保護層2は、光触媒層3の光触媒作用が基材1に及ぶのを阻止して基材1を保護する役目を果たすものであり、かかる保護層2の好ましい例としては、シリカなどの無機物と、ポリジメチルシロキサン等のシリコーン樹脂、アクリル樹脂、フッ素樹脂などのバインダー樹脂とを均一に混合した組成物で形成された層や、シリコーン樹脂とアクリル樹脂との混合樹脂又は共重合樹脂で形成された層や、シリコーン樹脂のみで形成された層や、アモルファスの酸化チタン等の金属酸化物で形成された層などを挙げることができる。   The protective layer 2 serves to protect the base material 1 by preventing the photocatalytic action of the photocatalyst layer 3 from reaching the base material 1. Preferred examples of the protective layer 2 include inorganic substances such as silica and the like. , A layer formed of a composition in which a silicone resin such as polydimethylsiloxane, a binder resin such as an acrylic resin or a fluororesin is uniformly mixed, or a mixed resin or copolymer resin of a silicone resin and an acrylic resin. Examples thereof include a layer, a layer formed of only a silicone resin, and a layer formed of a metal oxide such as amorphous titanium oxide.

この保護層2の厚みは、光触媒層3の表面に露出、散在する熱硬化性樹脂の量をコントロールする上で重要なものであり、適量の熱硬化性樹脂4を光触媒層3の表面に露出、散在させて摩擦堅牢性、特に耐払拭性、及び、防傷性を向上させるためには、保護層2の厚さを0.3〜5.0μmの範囲内に設定することが好ましい。保護層2の厚さが0.3μmよりも薄くなると、保護層2の樹脂透過性が良すぎて光触媒層3の表面に露出、散在する熱硬化性樹脂の量が多くなりすぎるため、光触媒層3の表面の大部分が露出した多量の熱硬化性樹脂で厚く覆われて光触媒部材A1,A2の外観が悪くなり、光触媒層3の光触媒作用を低下させる恐れも出てくる。一方、保護層2の厚さが5.0μmを超えると、保護層2の樹脂透過性が大幅に低下し、光触媒層3の表面に露出する熱硬化性樹脂の量が激減して光触媒層3の表面に露出し難くなるため、光触媒層3の表面の摩擦堅牢性、防傷性を向上させることが困難になる。保護層2のより好ましい厚みは、0.5〜2.0μmである。   The thickness of the protective layer 2 is important in controlling the amount of the thermosetting resin exposed and scattered on the surface of the photocatalyst layer 3, and an appropriate amount of the thermosetting resin 4 is exposed on the surface of the photocatalyst layer 3. In order to improve the fastness to friction, particularly the wiping resistance and the scratch resistance, the thickness of the protective layer 2 is preferably set in the range of 0.3 to 5.0 μm. If the thickness of the protective layer 2 is less than 0.3 μm, the resin permeability of the protective layer 2 is too good and the amount of the thermosetting resin that is exposed and scattered on the surface of the photocatalyst layer 3 becomes too large. 3 is covered with a large amount of exposed thermosetting resin so that the appearance of the photocatalytic members A1 and A2 deteriorates, and the photocatalytic action of the photocatalytic layer 3 may be reduced. On the other hand, if the thickness of the protective layer 2 exceeds 5.0 μm, the resin permeability of the protective layer 2 is significantly reduced, and the amount of the thermosetting resin exposed on the surface of the photocatalyst layer 3 is drastically reduced, so that the photocatalyst layer 3 Therefore, it is difficult to improve the friction fastness and scratch resistance of the surface of the photocatalyst layer 3. A more preferable thickness of the protective layer 2 is 0.5 to 2.0 μm.

また、この保護層2に含まれる上記樹脂の架橋密度を制御しても、光触媒層3の表面に露出する熱硬化性樹脂4の量をコントロールすることができる。即ち、架橋密度を高くすると、樹脂透過性が低下して光触媒層3の表面に露出、散在する熱硬化性樹脂が減少し、架橋密度を低くすると、樹脂透過性が良くなって光触媒層3の表面に露出、散在する熱硬化性樹脂の量が増大する。従って、架橋密度が高くなりすぎると、光触媒層表面に露出、散在する熱硬化性樹脂が激減するため、光触媒層3の表面の摩擦堅牢性、防傷性を向上させることが困難になり、架橋密度を低くしすぎると、多量の熱硬化性樹脂が露出、散在して光触媒部材A1,A2の外観の低下や光触媒層3の光触媒作用の低下を招く恐れが生じると共に、基材1との密着力が低下して剥離や白化が生じるようになるので、架橋密度を適正に制御することが大切である。   Further, even if the crosslinking density of the resin contained in the protective layer 2 is controlled, the amount of the thermosetting resin 4 exposed on the surface of the photocatalyst layer 3 can be controlled. That is, when the crosslink density is increased, the resin permeability is decreased and the thermosetting resin exposed and scattered on the surface of the photocatalyst layer 3 is decreased. When the crosslink density is decreased, the resin permeability is improved and the photocatalyst layer 3 The amount of thermosetting resin exposed and scattered on the surface increases. Therefore, if the crosslinking density becomes too high, the thermosetting resin exposed and scattered on the surface of the photocatalyst layer is drastically reduced, so that it is difficult to improve the friction fastness and scratch resistance of the surface of the photocatalyst layer 3. If the density is too low, a large amount of thermosetting resin may be exposed and scattered, resulting in a decrease in the appearance of the photocatalyst members A1 and A2 and a decrease in the photocatalytic action of the photocatalyst layer 3, and adhesion to the substrate 1. It is important to properly control the crosslinking density because the force decreases and peeling and whitening occur.

架橋密度の制御は、例えば、保護層2がアクリル−シリコーン共重合樹脂からなる場合には、反応基としてアルコキシシリル基などの変性シリコーン基の量を調整したり、硬化剤の種類や添加量を調整したり、後述するように剥離フィルムの上に光触媒層と保護層を形成して転写フィルムを作製する際に保護層を乾燥する熱量(加熱温度×時間)を調整することによって、行うことができる。   For example, when the protective layer 2 is made of an acrylic-silicone copolymer resin, the crosslinking density can be controlled by adjusting the amount of the modified silicone group such as an alkoxysilyl group as the reactive group, or by adjusting the type and amount of the curing agent. It can be done by adjusting or adjusting the amount of heat (heating temperature x time) for drying the protective layer when forming a transfer film by forming a photocatalyst layer and a protective layer on the release film as described later it can.

光触媒層3は、光触媒粒子と、シリカもしくはシリコーン樹脂と、必要に応じて1質量%以下の分散剤やバインダーとを、均一に分散させて形成した層であって、これに含有されている光触媒粒子によって、悪臭成分や低分子量有機物を分解したり、抗菌・防黴作用を発揮したり、親水性を発現させるなどの光触媒作用を行うものである。但し、この光触媒部材A1,A2は、光触媒層3の表面に親水性に劣る熱硬化性樹脂4が露出し、該露出部4aが分散している関係上、親水性化され難いので、親水性化による自己浄化作用は奏しない。   The photocatalyst layer 3 is a layer formed by uniformly dispersing photocatalyst particles, silica or silicone resin, and, if necessary, 1% by mass or less of a dispersant or binder, and the photocatalyst contained therein The particles perform photocatalytic actions such as decomposing malodorous components and low molecular weight organic substances, exhibiting antibacterial and antifungal effects, and developing hydrophilicity. However, the photocatalyst members A1 and A2 are hydrophilic because the thermosetting resin 4 having poor hydrophilicity is exposed on the surface of the photocatalyst layer 3 and the exposed portions 4a are dispersed. There is no self-purification effect due to crystallization.

光触媒層3に分散させる光触媒粒子としては、紫外線で活性化する粒子、可視光で活性化する粒子のいずれもが使用可能である。前者の紫外線活性化粒子としては、例えば、酸化チタン、酸化亜鉛、酸化錫、SrTiO、WOなどの金属酸化物が用いられる。その中でも、酸化チタン、特にアナターゼ型酸化チタンは、光触媒機能が高く、入手もし易いので、最も好ましく用いられる。 As the photocatalyst particles dispersed in the photocatalyst layer 3, any of particles activated by ultraviolet rays and particles activated by visible light can be used. As the former ultraviolet-activated particles, for example, metal oxides such as titanium oxide, zinc oxide, tin oxide, SrTiO 3 and WO 3 are used. Among them, titanium oxide, particularly anatase titanium oxide, is most preferably used because it has a high photocatalytic function and is easily available.

後者の可視光活性化粒子としては、例えば、上記の金属酸化物の粒子に、窒素、フッ素、硫黄、炭素などをドーピングした光触媒粒子、或は、白金担持、酸素欠陥、ブルッカイト型などの光触媒粒子が使用される。これらの光触媒粒子が可視光により光触媒機能を発揮する機構は明らかではないが、例えば、酸化チタンに窒素をドーピングした光触媒粒子の場合は、Ti―N、或はTi―O―Nの化学結合が生じ、可視光を吸収して光触媒機能を発揮すると考えられる。これらの可視光活性化粒子の中でも、酸化チタン、特にアナターゼ型酸化チタンに窒素をドーピングした光触媒粒子は、アナターゼ型酸化チタン自体が他の粒子より活性が高く入手が容易であり、しかも、可視光を吸収して高い光触媒機能を発揮するので、極めて好ましく使用される。   Examples of the latter visible light activated particles include photocatalyst particles obtained by doping the above metal oxide particles with nitrogen, fluorine, sulfur, carbon, or the like, or platinum-supported, oxygen-deficient, brookite-type photocatalyst particles. Is used. Although the mechanism by which these photocatalyst particles exhibit the photocatalytic function by visible light is not clear, for example, in the case of photocatalyst particles in which titanium oxide is doped with nitrogen, Ti—N or Ti—O—N chemical bonds are not present. It is considered that the photocatalytic function is exhibited by absorbing visible light. Among these visible light activated particles, photocatalyst particles in which titanium oxide, particularly anatase-type titanium oxide is doped with nitrogen, have higher activity than other particles and are easily available. Is used preferably because it exhibits a high photocatalytic function.

さらに、上記の紫外線活性化粒子又は可視光活性化粒子に、アパタイト、ゼオライト、シリカ(二酸化ケイ素)、アルミナ、酸化亜鉛、酸化マグネシウム、酸化チタン、リン酸ジルコニウム、ジルコニア、マグネシア、カルシアなどの無機材を網状もしくは多孔質状に被覆してなる網状被覆型光触媒粒子なども好ましく使用される。上記の無機材は、数オングストローム〜数μmの厚さで、0.1〜5.0質量%となるように光触媒粒子に被覆され、網状被覆型光触媒粒子の直径が500μm以下、好ましくは50μm以下、更に好ましくは0.001〜20μmとされている。このような網状被覆型光触媒粒子は、被覆網目を通じて紫外線又は/及び可視光が光触媒粒子に到達して光触媒機能を発揮する。上記の網状被覆型光触媒粒子の中でも、ゼオライト又はシリカの多孔質材で酸化チタンを被覆した光触媒粒子は、ゼオライトやシリカが悪臭成分を捕獲し、酸化チタンの光触媒作用で悪臭成分を分解するので、悪臭成分の分解効果が顕著であり、極めて好ましい。   Further, inorganic materials such as apatite, zeolite, silica (silicon dioxide), alumina, zinc oxide, magnesium oxide, titanium oxide, zirconium phosphate, zirconia, magnesia, and calcia are added to the above-mentioned ultraviolet ray activated particles or visible light activated particles. Reticulated coated photocatalyst particles obtained by coating a mesh with a mesh or porous structure are also preferably used. The inorganic material has a thickness of several angstroms to several μm and is coated on the photocatalyst particles so as to be 0.1 to 5.0% by mass, and the diameter of the reticulated coated photocatalyst particles is 500 μm or less, preferably 50 μm or less. More preferably, the thickness is 0.001 to 20 μm. Such a net-coated photocatalyst particle exhibits a photocatalytic function when ultraviolet rays and / or visible light reach the photocatalyst particle through the coating network. Among the above-mentioned network-coated photocatalyst particles, the photocatalyst particles coated with titanium oxide with a porous material of zeolite or silica capture the malodorous component by zeolite or silica, and decompose the malodorous component by the photocatalytic action of titanium oxide. The decomposition effect of malodorous components is remarkable and is extremely preferable.

上述した光触媒粒子は、光触媒層3の中に均一に分散させて5〜99質量%含有させることが好ましい。5質量%未満では、光触媒作用を発揮させることが困難になり、99質量%より多く含有させると光触媒層3が脆くなって層の形成が困難になる。光触媒粒子の更に好ましい含有率は、紫外線活性化光触媒粒子を含有させる場合には5〜50質量%、可視光活性化光触媒粒子を含有させる場合には5〜99質量%、網状被覆型光触媒粒子を含有させる場合には5〜80質量%である。   The photocatalyst particles described above are preferably dispersed uniformly in the photocatalyst layer 3 and contained in an amount of 5 to 99% by mass. If it is less than 5% by mass, it is difficult to exert a photocatalytic action, and if it is contained in an amount of more than 99% by mass, the photocatalyst layer 3 becomes brittle and it is difficult to form a layer. The more preferable content of the photocatalyst particles is 5 to 50% by mass when the ultraviolet-activated photocatalyst particles are contained, 5 to 99% by mass when the visible-light activated photocatalyst particles are contained, When it is contained, it is 5 to 80% by mass.

光触媒層3中に光触媒粒子と共に含有させる前記シリカとしては、シリカ前駆体、水ガラスなどのシリカを主体とした無機材料が用いられる。また、このシリカに代えてシリコーン樹脂を光触媒粒子と共に含有させて光触媒層3を形成してもよいし、シリカとシリコーン樹脂との混合物を光触媒粒子と共に含有させて光触媒層3を形成してもよい。これらのシリカ、シリコーン樹脂、両者の混合物は光触媒層3に95〜1質量%含有される。   As the silica to be contained in the photocatalyst layer 3 together with the photocatalyst particles, an inorganic material mainly composed of silica such as a silica precursor or water glass is used. Further, the photocatalyst layer 3 may be formed by containing a silicone resin together with the photocatalyst particles instead of the silica, or the photocatalyst layer 3 may be formed by containing a mixture of silica and silicone resin together with the photocatalyst particles. . These silica, silicone resin, and a mixture of both are contained in the photocatalyst layer 3 in an amount of 95 to 1% by mass.

光触媒層3には、直接照射される光、及び、熱硬化性樹脂4の露出部4aを透過して隣接する光触媒層3に照射される光のエネルギーによって充分な光触媒作用を発揮できる量の光触媒粒子を含有させる必要があり、そのためには光触媒層3の厚さを5〜300nmの範囲に設定することが好ましい。5nmより薄くなると、光触媒粒子量が不足して光触媒作用を発揮することが困難になり、また、300nmより厚くしても、光触媒作用の更なる向上が見られず、むしろ長期間使用するうちに光触媒層3にクラックが発生するという不都合が生じる。紫外線等の光触媒粒子を活性化させる光が十分得られる環境で使用する光触媒部材の場合は、光触媒層3の厚さを5〜35nmと薄く設定しても光触媒作用を発揮できるが、十分な光が期待できない環境で使用される光触媒部材の場合は、光触媒層3の厚さを35〜300nm、好ましくは50〜200nmに設定して光触媒粒子の含有量を多くしなければ充分な光触媒作用を発揮し難くなる。   The photocatalyst layer 3 has an amount of photocatalyst that can exert a sufficient photocatalytic action by the energy of light directly irradiated and the energy of light irradiated to the adjacent photocatalyst layer 3 through the exposed portion 4a of the thermosetting resin 4. It is necessary to contain particles, and for that purpose, the thickness of the photocatalyst layer 3 is preferably set in the range of 5 to 300 nm. If the thickness is less than 5 nm, the amount of photocatalyst particles becomes insufficient, and it becomes difficult to exert photocatalytic action. Even if the thickness is greater than 300 nm, no further improvement in photocatalysis is observed. There is a disadvantage that cracks occur in the photocatalyst layer 3. In the case of a photocatalyst member used in an environment where light for activating photocatalyst particles such as ultraviolet rays can be sufficiently obtained, the photocatalytic action can be exerted even if the thickness of the photocatalyst layer 3 is set as thin as 5 to 35 nm. In the case of a photocatalyst member used in an environment where no photocatalysis can be expected, the photocatalyst layer 3 is set to a thickness of 35 to 300 nm, preferably 50 to 200 nm, and the photocatalyst action is sufficiently exhibited unless the photocatalyst particle content is increased. It becomes difficult to do.

この光触媒層3は、例えば、基材1が熱伸縮の大きい熱硬化性樹脂からなるものであると、その基材1の熱伸縮に伴って伸縮しようとし、一定以上の応力が光触媒層3に生じるとクラックを発生することになるが、光触媒層3の厚さが上記のように5〜35nmであると、伸縮に伴う内部応力が小さくなるので、クラックの発生を防止することができる。基材1が透明であるか又は着色したものである場合に光触媒層3にクラックが発生すると、光散乱により白濁して透明性や色相などの初期外観を保てなくなるが、光触媒層3を上記の厚さにしてクラックの発生を防止すると、初期の透明性や色相などを保つことができるようになる。   For example, when the base material 1 is made of a thermosetting resin having a large thermal expansion and contraction, the photocatalytic layer 3 tends to expand and contract with the thermal expansion and contraction of the base material 1, and a certain level of stress is applied to the photocatalytic layer 3. When it occurs, cracks are generated. However, when the thickness of the photocatalyst layer 3 is 5 to 35 nm as described above, the internal stress associated with expansion and contraction is reduced, so that generation of cracks can be prevented. If cracks occur in the photocatalyst layer 3 when the substrate 1 is transparent or colored, it becomes cloudy due to light scattering and cannot maintain the initial appearance such as transparency and hue. By preventing the occurrence of cracks by increasing the thickness, it becomes possible to maintain the initial transparency and hue.

これに対し、基材1が、熱硬化性樹脂に繊維、無機フィラーなどを配合した基材や、繊維の集合体に熱硬化性樹脂を含浸させた基材や、熱硬化性樹脂を含んだ後述の繊維補強化粧材からなる基材のように、熱伸縮の小さい基材である場合は、基材1の熱伸縮に伴う光触媒層3の伸縮が小さいので、光触媒層3を300nmの厚さにしてもクラックが発生することはない。   In contrast, the base material 1 includes a base material in which fibers, inorganic fillers, and the like are blended in a thermosetting resin, a base material in which a fiber assembly is impregnated with a thermosetting resin, and a thermosetting resin. In the case of a base material having a small thermal expansion and contraction, such as a base material made of a fiber-reinforced decorative material, which will be described later, the photocatalyst layer 3 has a thickness of 300 nm because the expansion and contraction of the photocatalyst layer 3 accompanying the thermal expansion and contraction of the base material 1 is small. Even so, cracks do not occur.

以上のことから、光触媒粒子を活性化させる紫外線等の光を充分に得られる環境下に使用される光触媒部材であって熱伸縮の大きい基材1を用いたものでは、光触媒作用の確保、クラックの防止の観点から、光触媒層3の厚さを5〜35nmに設定することが好ましく、一方、光触媒を活性化させる紫外線等の光を十分に得られない環境下に使用される光触媒部材であって熱伸縮の小さい基材1を用いたものでは、光触媒作用の確保、クラックの防止、光干渉模様の防止の観点から、光触媒層3の厚さを35〜300nm、好ましくは35〜200nmに設定するのが大切であることが分かる。   From the above, a photocatalyst member used in an environment in which light such as ultraviolet rays for activating the photocatalyst particles can be sufficiently obtained and using the substrate 1 having a large thermal expansion and contraction ensures the photocatalytic action, cracks From the viewpoint of preventing the photocatalyst, it is preferable to set the thickness of the photocatalyst layer 3 to 5 to 35 nm. On the other hand, the photocatalyst member is used in an environment where light such as ultraviolet rays for activating the photocatalyst cannot be sufficiently obtained. In the case of using the base material 1 having a small thermal expansion and contraction, the thickness of the photocatalyst layer 3 is set to 35 to 300 nm, preferably 35 to 200 nm, from the viewpoints of ensuring photocatalytic action, preventing cracks, and preventing light interference patterns. I understand that it is important to do.

光触媒層3の表面の面積に占める熱硬化性樹脂の露出部4aの合計面積の割合は20〜99%であることが好ましく、この範囲内であれば、露出部4aが細かく略均一に散在して良好な分散状態となり、露出部4aの相互間の間隔や面積が適度に小さくなるので、光触媒層3の表面全体の摩擦堅牢性、特に耐払拭性や、防傷性が顕著に向上するようになる。露出部4aの合計面積の割合が20%より少なくなると、露出部4aによって保護される光触媒層3の面積が小さくなりすぎるため、摩擦堅牢性、特に耐払拭性や、防傷性の向上が不充分になる。一方、露出部4aの合計面積の割合が99%を超えると、露出部4aの分散状態が悪くなって光触媒部材A1,A2の外観が低下すると共に、光触媒層3の占める割合が減少して悪臭成分や低分子量有機物の分解作用、抗菌・防黴作用などの光触媒作用の低下を招く恐れが生じる。光触媒層3の表面に占める露出部4aの合計面積の更に好ましい割合は、20〜80%、更に好ましい割合は25〜70%である。   The ratio of the total area of the exposed portions 4a of the thermosetting resin to the surface area of the photocatalyst layer 3 is preferably 20 to 99%, and within this range, the exposed portions 4a are finely and almost uniformly scattered. Since the distance between the exposed portions 4a and the area between the exposed portions 4a are appropriately reduced, the friction fastness of the entire surface of the photocatalyst layer 3, particularly the wiping resistance and the scratch resistance are remarkably improved. become. If the ratio of the total area of the exposed part 4a is less than 20%, the area of the photocatalyst layer 3 protected by the exposed part 4a becomes too small, so that it is difficult to improve friction fastness, particularly wiping resistance and scratch resistance. It will be enough. On the other hand, when the ratio of the total area of the exposed part 4a exceeds 99%, the dispersion state of the exposed part 4a is deteriorated, the appearance of the photocatalyst members A1 and A2 is deteriorated, and the ratio occupied by the photocatalyst layer 3 is reduced, resulting in bad odor. There is a risk of degrading the photocatalytic activity such as decomposition of components and low molecular weight organic substances, antibacterial / antifungal activity, and the like. A more preferable ratio of the total area of the exposed portions 4a in the surface of the photocatalyst layer 3 is 20 to 80%, and a more preferable ratio is 25 to 70%.

熱硬化性樹脂の露出部4aの占める割合は、既述したように保護層2の厚さ、保護層2の架橋密度などでも調整できるが、後述する基材1の上に保護層と光触媒層を熱圧着で転写する製法を用いる場合には、その圧力などを調整し、保護層2と光触媒層3を通って基材1から光触媒層3の表面へ移行(滲出)する熱硬化性樹脂の量を制御することによって、20〜99%の範囲内に調節できる。即ち、光触媒層3の表面に移行(滲出)する熱硬化性樹脂4の量を増やすと、図2に示すように、個々の露出部4aは周囲に拡大して面積が大きくなり、露出部4aの占める割合は上昇して99%に近づくことになる。一方、光触媒層3の表面に移行(滲出)する熱硬化性樹脂の量を減らすと、図1に示すように、個々の露出部4aは周囲に拡大せず、熱硬化性樹脂の移行通路も細くなるため、露出部4aの占める割合は減少して20%に近づくことになる。   The proportion of the exposed portion 4a of the thermosetting resin can be adjusted by the thickness of the protective layer 2 and the crosslinking density of the protective layer 2 as described above, but the protective layer and the photocatalytic layer are formed on the substrate 1 described later. Of the thermosetting resin that adjusts the pressure or the like and moves (exudes) from the substrate 1 to the surface of the photocatalyst layer 3 through the protective layer 2 and the photocatalyst layer 3. By controlling the amount, it can be adjusted within the range of 20-99%. That is, when the amount of the thermosetting resin 4 that migrates (exudes) to the surface of the photocatalyst layer 3 is increased, as shown in FIG. 2, each exposed portion 4a expands to the periphery and the area increases, and the exposed portion 4a. The proportion of occupancy will rise to approach 99%. On the other hand, when the amount of the thermosetting resin transferred (exuded) to the surface of the photocatalyst layer 3 is reduced, as shown in FIG. 1, the individual exposed portions 4a do not expand to the periphery, and the transfer path of the thermosetting resin also becomes Since it becomes thin, the ratio of the exposed portion 4a decreases and approaches 20%.

この光触媒部材A1,A2の表面の水との接触角は、ブラックライトブルーランプを用いて1mW/cm2の強度の光を168時間照射した直後に測定したとき、30〜90°であることが好ましい。ミクロな視点でみると、厳密には熱硬化性樹脂の露出部4aと、該露出部相互間の光触媒層3の表面とで異なっていると思われるが、露出部4aが略均一に細かく分散しているため、光触媒部材表面のどの部分の水との接触角を測定しても略同じであり、この接触角が上記のように30〜90°であると、光触媒作用の一つである親水性化による自己浄化作用は発揮できないが、悪臭成分や低分子量有機物の分解作用や、抗菌・防黴作用は充分に発揮することができる。また、上記の接触角であると、光触媒作用がそれほど強くないので、長期間経過しても、熱硬化性樹脂の露出部4aが光触媒作用で変質、劣化する恐れは殆どない。 The contact angle between the surfaces of the photocatalyst members A1 and A2 and water is 30 to 90 ° when measured immediately after irradiating light of 1 mW / cm 2 with a black light blue lamp for 168 hours. preferable. From a microscopic viewpoint, strictly speaking, it seems that the exposed portion 4a of the thermosetting resin is different from the surface of the photocatalyst layer 3 between the exposed portions, but the exposed portion 4a is dispersed almost uniformly and finely. Therefore, the contact angle with water on any part of the surface of the photocatalyst member is substantially the same. If the contact angle is 30 to 90 ° as described above, it is one of the photocatalytic actions. Although the self-purifying action due to the hydrophilicity cannot be exhibited, the decomposition action of malodorous components and low molecular weight organic substances, and the antibacterial / antifungal action can be sufficiently exhibited. Further, since the photocatalytic action is not so strong when the contact angle is as described above, the exposed portion 4a of the thermosetting resin is hardly deteriorated or deteriorated by the photocatalytic action even after a long period of time.

光触媒層3の表面に露出、散在する熱硬化性樹脂の露出部4a分散形態は特に限定されるものではなく、例えば、露出部4aが個々に分離した状態で光触媒層3の表面に点在していてもよいし、露出部4aが互いに連なった状態で光触媒層3の表面に分散していてもよいし、これら双方の分散状態が混在していてもよいが、いずれの分散形態の場合も、露出部4aが光触媒層3の表面全体に亘って実質的に均一に分散していることが好ましい。   The dispersion form of the exposed portions 4a of the thermosetting resin exposed and scattered on the surface of the photocatalyst layer 3 is not particularly limited. For example, the exposed portions 4a are scattered on the surface of the photocatalyst layer 3 in a state where the exposed portions 4a are individually separated. Or may be dispersed on the surface of the photocatalyst layer 3 in a state where the exposed portions 4a are continuous with each other, or both of these dispersion states may be mixed, but in any of the dispersion forms The exposed portions 4a are preferably dispersed substantially uniformly over the entire surface of the photocatalyst layer 3.

熱硬化性樹の脂露出部4aの面積は分散状態によって異なるため、特に限定されるものではないが、個々に分離した状態での露出部4aは1.0×10-4〜0.1mm2程度の面積であることが好ましく、1.0×10-4mm2よりも小さくなると、露出部4aによる光触媒層3の保護作用が低下する恐れがあり、一方、0.1mmよりも大きくなると、光触媒作用、特に有機物分解能が阻害されて悪臭分解や抗菌・防黴性の効果が低下する等の不都合を生じる恐れがある。 Since the area of the exposed portion 4a of the thermosetting resin varies depending on the dispersion state, it is not particularly limited, but the exposed portion 4a in the state of being separated individually is 1.0 × 10 −4 to 0.1 mm 2. When the area is smaller than 1.0 × 10 −4 mm 2 , the protective action of the photocatalyst layer 3 by the exposed portion 4a may be lowered. On the other hand, when the area is larger than 0.1 mm 2. In addition, the photocatalytic action, particularly the decomposition of organic matter, is hindered, which may cause inconveniences such as degradation of malodor and antibacterial / antifungal effects.

また、光触媒層3表面における悪臭成分、低分子量有機物などの分解作用や、抗菌・防黴作用の強さは、後述の実施例に記載するメチレンブルー分解試験で判定した場合、その分解活性示数Rが3.0〜5.5[nmol/l/min]の範囲にあることが好ましく、この範囲内の分解活性示数であると、十分な分解作用等を発揮できる。   Further, the decomposition activity of the malodorous component and the low molecular weight organic substance on the surface of the photocatalyst layer 3 and the strength of the antibacterial / antifungal action are determined by the decomposition activity index R when determined by the methylene blue decomposition test described in the examples below. Is preferably in the range of 3.0 to 5.5 [nmol / l / min]. If the decomposition activity index is within this range, sufficient decomposition action and the like can be exhibited.

なお、この光触媒層3の光触媒粒子として前述の可視光活性化粒子を含有させる場合は、光触媒作用を阻害しない程度で、紫外線吸収剤を熱硬化性樹脂に含有させて、その露出部4aの耐候性を向上させるようにしてもよい。   In addition, when the above-mentioned visible light activation particles are included as the photocatalyst particles of the photocatalyst layer 3, the ultraviolet ray absorbent is contained in the thermosetting resin to such an extent that the photocatalytic action is not hindered, and the weather resistance of the exposed portion 4a. You may make it improve property.

以上のような構成の光触媒部材A1,A2は、建築資材や道路資材として使用されたり、空気清浄器、クーラー、冷蔵庫などの電機器具の内装部材として使用される。そして、自然光、照明光、照射光などが光触媒部材表面に当たると、光触媒粒子が活性化されてラジカル種や活性酸素種などを発生し、熱硬化性樹脂の露出部4a相互間の光触媒層3の表面で光触媒作用が発揮されると共に、ラジカル種や活性酸素種などが露出部4aの表面側にも飛散して光触媒作用が発揮されるため、悪臭成分や低分子量有機物等が分解されたり、抗菌や防黴が行われる。しかも、これらの光触媒部材A1,A2は、光触媒層3が細かく散在する露出部4aによって保護されており、特に、この露出部4aの大部分はは基材1から光触媒層3表面まで連結する連結熱硬化性樹脂4で支持されている関係上、外部からの衝撃力や摩擦力に対する強度が大きく優れた保護作用を発揮するため、光触媒部材表面の摩擦堅牢性、特に、耐払拭性が顕著に向上し、防傷性も大幅に向上する。従って、光触媒部材の表面を繰り返し拭き掃除したり、光触媒部材表面に物が当ったりしても、光触媒層3が剥脱したり傷付いたりすることが皆無に等しく、長期に亘って良好な光触媒作用を発揮することができる。   The photocatalyst members A1 and A2 configured as described above are used as building materials and road materials, or as interior members of electrical appliances such as air purifiers, coolers, and refrigerators. When natural light, illumination light, irradiation light, or the like hits the surface of the photocatalyst member, the photocatalyst particles are activated to generate radical species, active oxygen species, and the like, and the photocatalyst layer 3 between the exposed portions 4a of the thermosetting resin is generated. The photocatalytic action is exerted on the surface, and radical species and active oxygen species are scattered on the surface side of the exposed portion 4a to exert the photocatalytic action, so that malodorous components and low molecular weight organic substances are decomposed, antibacterial And defense is done. Moreover, these photocatalyst members A1 and A2 are protected by the exposed portions 4a in which the photocatalyst layer 3 is finely scattered. In particular, most of the exposed portions 4a are connected from the substrate 1 to the surface of the photocatalyst layer 3. Since it is supported by the thermosetting resin 4, it exhibits a great strength against external impact force and friction force, and exhibits excellent protective action, so that the photocatalytic member surface has excellent friction fastness, especially wiping resistance. And the scratch resistance is greatly improved. Accordingly, even if the surface of the photocatalyst member is repeatedly wiped and cleaned, or the object hits the surface of the photocatalyst member, the photocatalyst layer 3 is not peeled off or damaged, and the photocatalytic action is good for a long time. It can be demonstrated.

図3は本発明に係る光触媒部材の更に他の実施形態を示す模式断面図である。   FIG. 3 is a schematic cross-sectional view showing still another embodiment of the photocatalyst member according to the present invention.

この光触媒部材A3は、基材1として、無機又は有機繊維と熱硬化性樹脂と無機フィラーとからなる芯材層1aと、その上に積層された熱硬化性樹脂含浸化粧層1bとを具備してなる化粧板10を使用し、その上に保護層2を介して光触媒層3を積層したものであって、化粧板10の熱硬化性樹脂含浸化粧層1bの上に保護層と光触媒層を転写する際の圧力によって、熱硬化性樹脂含浸化粧層1bの熱硬化性樹脂が保護層2を通り光触媒層3の表面まで移行(滲出)して光触媒層3の表面に略面一に露出しており、この熱硬化性樹脂の露出部4aが光触媒層1の表面に略均一に散在し、光触媒層3の摩擦堅牢性や防傷性を向上させている   This photocatalyst member A3 comprises, as a base material 1, a core layer 1a made of inorganic or organic fibers, a thermosetting resin, and an inorganic filler, and a thermosetting resin-impregnated decorative layer 1b laminated thereon. The photocatalyst layer 3 is laminated on the decorative plate 10 with the protective layer 2 interposed therebetween, and the protective layer and the photocatalyst layer are provided on the thermosetting resin-impregnated decorative layer 1b of the decorative plate 10. Due to the pressure at the time of transfer, the thermosetting resin of the thermosetting resin-impregnated decorative layer 1b passes through the protective layer 2 to the surface of the photocatalyst layer 3 (exudes) and is exposed almost flush with the surface of the photocatalyst layer 3. The exposed portions 4a of the thermosetting resin are scattered almost uniformly on the surface of the photocatalyst layer 1, thereby improving the friction fastness and scratch resistance of the photocatalyst layer 3.

化粧板10としては、例えば、ガラス繊維に熱硬化性メラミン樹脂、熱硬化性フェノール系樹脂などの熱硬化性樹脂を含浸させると共に、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、タルクなどの無機フィラーを全体の95〜80質量%となるように含有させて芯材層1aを形成し、この芯材層1aの表面に、酸化チタンを含有する化粧紙に熱硬化性メラミン樹脂などの熱硬化性樹脂を60〜150質量%となるように含浸させた熱硬化性樹脂含浸化粧層1bを積層したものなどが好ましく使用される。芯材層1aの無機フィラー材の含有量と、熱硬化性樹脂含浸化粧層1bの熱硬化性樹脂の含浸量をそれぞれ上記の範囲にすると、難燃性ないし不燃性の化粧板10とすることができる。   As the decorative board 10, for example, a glass fiber is impregnated with a thermosetting resin such as a thermosetting melamine resin or a thermosetting phenol resin, and an inorganic filler such as aluminum hydroxide, magnesium hydroxide, calcium carbonate, or talc. Core material layer 1a is formed so as to be 95 to 80% by mass of the whole, and a thermosetting material such as a thermosetting melamine resin on a decorative paper containing titanium oxide is formed on the surface of the core material layer 1a. What laminated | stacked the thermosetting resin impregnation decorative layer 1b impregnated so that it might become 60-150 mass% of resin etc. is used preferably. When the content of the inorganic filler material in the core material layer 1a and the amount of the thermosetting resin impregnated in the thermosetting resin-impregnated decorative layer 1b are within the above ranges, a flame-retardant or non-combustible decorative board 10 is obtained. Can do.

この光触媒部材A3の保護層2、光触媒層3、熱硬化性樹脂の露出部4aなどの構成は、前述した光触媒部材A1,A2のそれらと同じであるので、説明を省略する。   Since the configuration of the protective layer 2, the photocatalyst layer 3, the exposed portion 4a of the thermosetting resin, and the like of the photocatalyst member A3 are the same as those of the photocatalyst members A1 and A2, the description thereof is omitted.

上記の光触媒部材A3は、基材1として用いる化粧板10が難燃性ないし不燃性となし得るものであり、光触媒層3の表面の熱硬化性樹脂の露出部4aも高耐熱性のメラミン樹脂からなるものであるため、難燃性ないし不燃性の光触媒部材とすることができ、光触媒層3と保護層2を通して熱硬化性樹脂含浸化粧層1bの模様や図柄を透視することもできるので、内装材等の建築資材として好適に使用される。そして、この光触媒部材A3も、前述した光触媒部材A1,A2と同様に、光を受けて活性化される光触媒層3の光触媒粒子によって悪臭成分等の分解や抗菌・防黴などの光触媒作用が発揮され、しかも、細かく分散して散在する露出部4aによって光触媒層3が保護されているため、拭き掃除を繰り返したり物が当ったりしても光触媒層3の剥脱や損傷がなく、長期間に亘って良好な光触媒作用を保つことができる。   The photocatalyst member A3 is such that the decorative board 10 used as the substrate 1 can be made flame retardant or nonflammable, and the exposed portion 4a of the thermosetting resin on the surface of the photocatalyst layer 3 is also a high heat resistant melamine resin. Therefore, it can be a flame-retardant or non-flammable photocatalytic member, and the pattern and design of the thermosetting resin-impregnated decorative layer 1b can be seen through the photocatalyst layer 3 and the protective layer 2, It is suitably used as building materials such as interior materials. And this photocatalyst member A3 also exhibits photocatalytic actions such as decomposition of malodorous components and the like, and antibacterial and antifungal properties by the photocatalyst particles of the photocatalyst layer 3 activated by receiving light, like the photocatalyst members A1 and A2 described above. In addition, since the photocatalyst layer 3 is protected by the exposed portions 4a that are finely dispersed and scattered, the photocatalyst layer 3 is not peeled off or damaged even when repeated wiping or hitting an object. Good photocatalytic action can be maintained.

以上の光触媒部材A1,A2,A3はいずれも平板状(プレート状、シート状、フィルム状を含む)に形成されているが、本発明は平板状の光触媒部材に限定されるものではなく、平板状以外の所望の三次元立体形状の基材1の表面や全面に保護層2と光触媒層3を積層して所望形状の光触媒部材とすることができる。
また、以上の光触媒部材A1,A2,A3はいずれも、基材1と保護層2との間に接着剤層を設けていないが、基材1と保護層2との接合強度を高めるために、基材1から光触媒層3表面への熱硬化性樹脂4の移行を妨げない程度の厚さを有する接着剤層を設けてもよい。接着剤としては、基材1と保護層2の双方に良好に接着する樹脂接着剤が使用される。
The photocatalyst members A1, A2, and A3 are all formed in a flat plate shape (including a plate shape, a sheet shape, and a film shape), but the present invention is not limited to a flat plate photocatalyst member. The protective layer 2 and the photocatalyst layer 3 can be laminated on the surface or the entire surface of the substrate 3 having a desired three-dimensional shape other than the shape to form a photocatalyst member having a desired shape.
In addition, none of the above photocatalyst members A1, A2, A3 is provided with an adhesive layer between the base material 1 and the protective layer 2, but in order to increase the bonding strength between the base material 1 and the protective layer 2. An adhesive layer having a thickness that does not hinder the transfer of the thermosetting resin 4 from the substrate 1 to the surface of the photocatalyst layer 3 may be provided. As the adhesive, a resin adhesive that adheres well to both the base material 1 and the protective layer 2 is used.

次に、上記の光触媒部材A3を製造する場合を例にとって、本発明の製造方法を説明する。   Next, the manufacturing method of the present invention will be described by taking as an example the case of manufacturing the photocatalyst member A3.

まず、剥離フィルムの上に光触媒層と保護層を積層した転写フィルムを、次の要領で作製する。
即ち、保護層用塗料(例えば、前述のアクリル樹脂とシリコーン樹脂との共重合樹脂を主成分として硬化剤を配合した塗料など)と、光触媒層用塗料(例えば、前述の光触媒粒子と、シリカ又はシリコーン樹脂と、必要に応じて1質量%以下の分散剤とを溶剤又は水に混合、分散させた塗料)を調製する。そして、ディップコート、スプレーコート、スピンコート、ロールコート、バーコート等の手段を用いて、ポリエチレンテレフタレートフィルム等の剥離フィルムの上に上記の光触媒層用塗料を塗布、乾燥して厚さ5〜300nm、好ましくは5〜200μmの光触媒層3を形成し、更にその上に上記の保護層用塗料を塗布、乾燥して厚さ0.3〜5.0μm、好ましくは0.5〜2μmの保護層を形成することにより、転写フィルムを作製する。
First, the transfer film which laminated | stacked the photocatalyst layer and the protective layer on the peeling film is produced in the following way.
That is, a coating material for a protective layer (for example, a coating material containing a copolymer resin of the above-mentioned acrylic resin and silicone resin as a main component and a curing agent) and a coating material for a photocatalyst layer (for example, the above-mentioned photocatalyst particles and silica or A coating material prepared by mixing and dispersing a silicone resin and, if necessary, 1% by mass or less of a dispersant in a solvent or water is prepared. And using means such as dip coating, spray coating, spin coating, roll coating, bar coating, etc., the above photocatalyst layer coating material is applied onto a release film such as a polyethylene terephthalate film and dried to a thickness of 5 to 300 nm. Preferably, the photocatalyst layer 3 having a thickness of 5 to 200 μm is formed, and further, the above-mentioned coating material for the protective layer is applied and dried, and the protective layer having a thickness of 0.3 to 5.0 μm, preferably 0.5 to 2 μm. A transfer film is produced by forming a film.

他方、基材形成用材料として、ガラス繊維に熱硬化性メラミン樹脂などの未硬化の熱硬化性樹脂を含浸させると共に、水酸化アルミニウムや水酸化マグネシウムなどの無機フィラーを全体の95〜80質量%となるように含有させた前記化粧板10の芯材層1aを形成するための材料シート(以下、芯材層形成用材料シートという)と、酸化チタンを含んだ化粧紙に熱硬化性メラミン樹脂などの未硬化の熱硬化性樹脂を60〜150質量%となるように含浸させた前記化粧板10の熱硬化性樹脂含浸化粧層1bを形成するための材料シート(以下、化粧層形成用シートという)を準備する。そして、この芯材層形成用材料シートの上に化粧層形成用材料シートを重ね合わせ、その上に上記転写フィルムをその保護層が下側(化粧層形成用材料シート側)となるように重ね合わせて、熱プレス成形機にセットし、熱圧着する。   On the other hand, as a substrate forming material, glass fiber is impregnated with an uncured thermosetting resin such as a thermosetting melamine resin, and an inorganic filler such as aluminum hydroxide or magnesium hydroxide is 95 to 80% by mass of the whole. A material sheet for forming the core material layer 1a of the decorative board 10 (hereinafter referred to as a core material layer forming material sheet) and a decorative paper containing titanium oxide on a thermosetting melamine resin. Material sheet for forming the thermosetting resin-impregnated decorative layer 1b of the decorative board 10 impregnated with an uncured thermosetting resin such as 60 to 150% by mass (hereinafter referred to as a decorative layer forming sheet) Prepare). Then, the decorative layer forming material sheet is overlaid on the core layer forming material sheet, and the transfer film is stacked on the core layer forming material sheet so that the protective layer is on the lower side (the decorative layer forming material sheet side). At the same time, set in a hot press molding machine and thermocompression bond.

このように熱圧着すると、その圧力によって、化粧層形成用材料シートに含浸されている未硬化の熱硬化性樹脂が保護層2と光触媒層3を通って光触媒層3の表面まで移行(滲出)して細かく分散した状態で該表面に面一に露出する。そして、この移行した未硬化の熱硬化性樹脂や、上記の材料シートに含浸されている未硬化の熱硬化性樹脂が熱硬化すると、この熱硬化により形成された芯材層1aと熱硬化性樹脂含浸化粧層1bが一体化して化粧板10となり、同時に該化粧板10の熱硬化性樹脂含浸化粧1bの表面に保護層2と光触媒層3が転写されて一体化される。そこで、この積層一体化物を熱プレス成形機から取出して剥離フィルムを除去すると、光触媒層3及び保護層2を通して熱硬化性樹脂含浸化粧層1bの美麗な図柄・模様を透視でき、しかも、光触媒層3の表面には、移行し表面に露出した熱硬化性樹脂の露出部4aが散在していて、摩擦堅牢性(特に耐払拭性)及び防傷性に優れた難燃性ないし不燃性の化粧性を有する光触媒部材A3が得られる。   When thermocompression bonding is performed in this manner, the pressure causes the uncured thermosetting resin impregnated in the decorative layer forming material sheet to pass through the protective layer 2 and the photocatalyst layer 3 to the surface of the photocatalyst layer 3 (exudation). Thus, it is exposed on the surface in a finely dispersed state. When the transferred uncured thermosetting resin or the uncured thermosetting resin impregnated in the material sheet is thermoset, the core layer 1a formed by the thermosetting and the thermosetting The resin-impregnated decorative layer 1b is integrated into the decorative plate 10, and at the same time, the protective layer 2 and the photocatalyst layer 3 are transferred and integrated on the surface of the thermosetting resin-impregnated decorative component 1b of the decorative plate 10. Therefore, when this laminated integrated product is taken out from the hot press molding machine and the release film is removed, the beautiful design / pattern of the thermosetting resin-impregnated decorative layer 1b can be seen through the photocatalyst layer 3 and the protective layer 2, and the photocatalyst layer The exposed surface 4a of the thermosetting resin that is transferred and exposed on the surface 3 is scattered, and the flame-resistant or non-flammable makeup excellent in friction fastness (especially wiping resistance) and scratch resistance. The photocatalyst member A3 having properties is obtained.

上記の製造方法においては、転写フィルムを作製する際に、上記のように保護層の厚さを調整したり、保護層を形成する樹脂の架橋密度を調整することによって、熱圧着時に光触媒層3の表面へ移行する熱硬化性樹脂の量が適量となるようにコントロールすることが好ましい。また、熱圧着時の温度や圧力を調整することによって、光触媒層3の表面へ移行する熱硬化性樹脂4の量をコントロールすることも好ましい。熱圧着の好ましい温度、圧力、時間等は、熱硬化性樹脂の種類、保護層及び光触媒層の組成や厚さなどによって多少異なるが、総体的に好ましい概略の温度範囲は80〜160℃、圧力範囲は4.9×10〜9.8×10N/m、時間は20〜100分であり、これらの範囲内で最適の温度、圧力、時間を設定するのがよい。 In the above production method, when the transfer film is produced, the thickness of the protective layer is adjusted as described above, or the crosslink density of the resin forming the protective layer is adjusted, so that the photocatalyst layer 3 is formed at the time of thermocompression bonding. It is preferable to control the amount of the thermosetting resin transferred to the surface of the resin so that it becomes an appropriate amount. It is also preferable to control the amount of the thermosetting resin 4 that moves to the surface of the photocatalytic layer 3 by adjusting the temperature and pressure during thermocompression bonding. The preferred temperature, pressure, time, etc. for thermocompression bonding vary somewhat depending on the type of thermosetting resin, the composition and thickness of the protective layer and the photocatalyst layer, etc., but generally preferred approximate temperature range is 80-160 ° C., pressure The range is 4.9 × 10 6 to 9.8 × 10 6 N / m 2 , and the time is 20 to 100 minutes. The optimum temperature, pressure, and time should be set within these ranges.

なお、本発明の光触媒部材は、上記の本発明の製造方法以外の方法、例えば、上記の転写フィルムを保護層が内側となるように成形型の内面沿いにセットし、未硬化の熱硬化性樹脂を成形型内にモールドして加熱硬化させる方法等によっても、製造することができる。この場合も、未硬化の熱硬化性樹脂がモールド圧により保護層を通って光触媒層の表面まで移行、露出し、該露出部が光触媒層の表面に分散した状態で、成形型内の熱硬化性樹脂及び移行した熱硬化性樹脂が熱硬化するため、脱型後、剥離フィルムを除去すれば、成形型に合致した三次元立体形状を有する熱硬化性樹脂基材1の表面に保護層2と光触媒部材3が積層一体化された、摩擦堅牢性及び防傷性の良好な光触媒部材を得ることができる。
その他に、パンチングなどの処理によって孔のあけられたアクリルなどの接着性樹脂フィルムに保護層と光触媒層を形成したラミネートフィルムを作製し、これを未硬化の熱硬化性樹脂を含む基材に重ね合わせて熱圧着することによっても製造することができる。この場合は、未硬化の熱硬化性樹脂がパンチングの孔を通過し、さらに保護層2と光触媒層3を通って光触媒層の表面まで移行、露出し、該露出部が光触媒層の表面に散在し分散状態で熱硬化性樹脂が熱硬化するため、熱硬化性樹脂基材1の表面に接着樹脂フィルムと保護層2と光触媒部材3が積層一体化された、摩擦堅牢性及び防傷性の良好な光触媒部材を得ることができる。
The photocatalyst member of the present invention is a method other than the above-described production method of the present invention, for example, the transfer film is set along the inner surface of the mold so that the protective layer is on the inside, and is uncured thermosetting It can also be produced by a method in which a resin is molded in a mold and cured by heating. Also in this case, the uncured thermosetting resin passes through the protective layer by the mold pressure to the surface of the photocatalyst layer, is exposed, and the exposed portion is dispersed on the surface of the photocatalyst layer. Since the curable resin and the transferred thermosetting resin are thermoset, if the release film is removed after demolding, the protective layer 2 is formed on the surface of the thermosetting resin substrate 1 having a three-dimensional solid shape that matches the mold. And a photocatalyst member having good friction fastness and scratch resistance can be obtained.
In addition, a laminate film in which a protective layer and a photocatalyst layer are formed on an adhesive resin film made of acrylic or the like that has been perforated by a process such as punching is produced, and this is laminated on a substrate containing an uncured thermosetting resin. They can also be manufactured by thermocompression bonding. In this case, the uncured thermosetting resin passes through the punching holes, passes through the protective layer 2 and the photocatalyst layer 3 to the surface of the photocatalyst layer, and is exposed, and the exposed portion is scattered on the surface of the photocatalyst layer. Since the thermosetting resin is thermoset in a dispersed state, the adhesive resin film, the protective layer 2 and the photocatalyst member 3 are laminated and integrated on the surface of the thermosetting resin base material 1. A good photocatalytic member can be obtained.

次に、本発明の更に具体的な実施例を説明する。   Next, more specific examples of the present invention will be described.

[実施例1]
基材形成用材料として、ガラス繊維に未硬化の熱硬化性メラミン樹脂を含浸させると共に、無機フィラーとして水酸化アルミニウム及び炭酸カルシウムを含有させた芯材層形成用材料シートと、酸化チタンを含有する化粧紙に未硬化の熱硬化性メラミン樹脂を含浸させた化粧層形成用材料シートを準備した。
[Example 1]
As a substrate forming material, glass fiber is impregnated with an uncured thermosetting melamine resin, and a core material layer forming material sheet containing aluminum hydroxide and calcium carbonate as an inorganic filler, and titanium oxide are contained. A decorative layer forming material sheet in which decorative paper was impregnated with uncured thermosetting melamine resin was prepared.

一方、保護層用塗料として、ポリジメチルシロキサンとアクリル樹脂とを均一に混合した塗料を準備し、光触媒層用塗料として、窒素をドープした可視光応答型光触媒酸化チタン4質量%と、シリカ0.5質量%を、アルコール系分散液で均一に分散させた塗料を準備した。   On the other hand, a paint in which polydimethylsiloxane and an acrylic resin are uniformly mixed is prepared as a protective layer paint. As a photocatalyst layer paint, 4% by mass of visible light responsive photocatalytic titanium oxide doped with nitrogen, and 0. A coating material in which 5% by mass was uniformly dispersed with an alcohol-based dispersion was prepared.

そして、ポリエチレンテレフタレートよりなる剥離フィルムの表面に上記の光触媒層用塗料を塗布、乾燥(温度100℃、時間15分)して厚さ100nmの光触媒層を形成し、その上に上記の保護層用塗料を塗布、乾燥(温度130℃、時間30分)して厚さ3.0μmの保護層を形成することにより、転写フィルムを作製した。   Then, the photocatalyst layer coating material is applied to the surface of the release film made of polyethylene terephthalate, and dried (temperature 100 ° C., time 15 minutes) to form a photocatalyst layer having a thickness of 100 nm. A transfer film was produced by applying a paint and drying (temperature 130 ° C., time 30 minutes) to form a protective layer having a thickness of 3.0 μm.

次いで、上記の芯材層形成用材料シートの上に上記の化粧層形成用材料シートを重ね合わせ、その上に上記の転写フィルムをその保護層が化粧層形成用材料シート側となるように重ね合わせて、熱プレス成形機にセットし、温度140℃、圧力7.8×10N/mの条件で、30分間熱圧着することによって、未硬化の熱硬化性メラミン樹脂を化粧層形成用材料シートから保護層と光触媒層を通し光触媒層の表面まで移行(滲出)させて散在した分散状態で略面一に露出させると共に、この移行させた熱硬化性メラミン樹脂と上記の材料シートに含浸されている熱硬化性メラミン樹脂を熱硬化させ、芯材層と熱硬化性樹脂含浸化粧層と保護層と光触媒層が一体に接合された積層一体化物とした。そして、この積層一体化物を熱プレス成形機から取出し、剥離フィルムを除去して、図3に示す構造の光触媒部材、即ち、熱硬化性メラミン樹脂とガラス繊維と無機フィラーとからなる芯材層1aの上に熱硬化性メラミン樹脂含浸化粧層1bを積層一体化した化粧板10を基材1とし、その上に保護層と光触媒層を転写して積層一体化した平板状の光触媒部材であって、熱硬化性メラミン樹脂が化粧層1bから保護層2と光触媒層3を通り光触媒層3の表面まで移行して、その露出部4aが散在している光触媒部材を得た。 Next, the decorative layer forming material sheet is overlaid on the core layer forming material sheet, and the transfer film is stacked on the core layer forming material sheet so that the protective layer is on the decorative layer forming material sheet side. Combined with this, it is set in a hot press molding machine, and it is thermocompression bonded for 30 minutes under conditions of a temperature of 140 ° C. and a pressure of 7.8 × 10 6 N / m 2 to form an uncured thermosetting melamine resin. The material sheet is transferred to the surface of the photocatalyst layer through the protective layer and the photocatalyst layer (exuded), and is scattered and dispersed to be substantially flush with the transferred thermosetting melamine resin and the above material sheet. The impregnated thermosetting melamine resin was thermally cured to obtain a laminated integrated product in which the core layer, the thermosetting resin impregnated decorative layer, the protective layer, and the photocatalyst layer were integrally joined. Then, this laminated integrated product is taken out from the hot press molding machine, the release film is removed, and the photocatalyst member having the structure shown in FIG. 3, that is, the core material layer 1a composed of thermosetting melamine resin, glass fiber, and inorganic filler. A plate-like photocatalyst member in which a decorative plate 10 in which a thermosetting melamine resin-impregnated decorative layer 1b is laminated and integrated is used as a base material 1, and a protective layer and a photocatalyst layer are transferred thereon and laminated and integrated. Then, the thermosetting melamine resin passed from the decorative layer 1b through the protective layer 2 and the photocatalyst layer 3 to the surface of the photocatalyst layer 3 to obtain a photocatalyst member in which the exposed portions 4a were scattered.

得られた光触媒部材について、光触媒層の表面に占める熱硬化性メラミン樹脂露出部の合計面積の割合を以下の試験方法で測定したところ、熱硬化性メラミン樹脂露出部は光触媒層の表面の33%を占めていた。   About the obtained photocatalyst member, when the ratio of the total area of the thermosetting melamine resin exposed part in the surface of the photocatalyst layer was measured by the following test method, the thermosetting melamine resin exposed part was 33% of the surface of the photocatalyst layer. Accounted for.

(試験方法)
容器内に0.1Nの硝酸銀水溶液を入れ、この硝酸銀水溶液中に得られた光触媒部材を浸漬して、この光触媒部材の上方に配置したブラックライトブルー(BLB)ランプから0.5±0.05mW/cmの出力で紫外線を30分間照射した。これは、光触媒層上に熱硬化性メラミン樹脂の露出部が存在していると、その露出部は硝酸銀水溶液中で光触媒部材に紫外線照射を照射しても短時間では硝酸銀反応によって淡黒色を呈さず、光触媒層上に熱硬化性メラミン樹脂露出部が存在しないところは硝酸銀反応によって速やかに淡黒色を呈する性質を利用したものである。紫外線照射後、光触媒部材を硝酸銀水溶液から取出し、(株)キーエンス製デジタルHFマイクロスコープVH-8000を用いて450倍で観察・撮影し、その写真を(株)キーエンス製Picture Folderを用いて2値化処理したのち、淡黒色に呈色した部分の面積をデジタル算出した。そして、上記の淡黒色に呈色した合計面積を、淡黒色の呈色部分を算定した範囲の面積で除することにより、光触媒層の表面に占める全ての熱硬化性メラミン樹脂露出部の合計面積の割合を算定した。
(Test method)
A 0.1N silver nitrate aqueous solution is placed in a container, the photocatalyst member obtained is immersed in the silver nitrate aqueous solution, and 0.5 ± 0.05 mW from a black light blue (BLB) lamp disposed above the photocatalyst member. UV light was irradiated for 30 minutes at an output of / cm 2 . This is because when the exposed portion of the thermosetting melamine resin is present on the photocatalyst layer, the exposed portion exhibits a light black color due to the silver nitrate reaction in a short time even when the photocatalyst member is irradiated with ultraviolet rays in an aqueous silver nitrate solution. In addition, the place where the thermosetting melamine resin exposed portion does not exist on the photocatalyst layer is based on the property of rapidly exhibiting a light black color due to the silver nitrate reaction. After UV irradiation, the photocatalyst member is taken out from the silver nitrate aqueous solution, observed and photographed at 450 times using a Keyence Digital HF Microscope VH-8000, and the photograph is binary using a Keyence Picture Folder. After the conversion, the area of the light black portion was digitally calculated. And the total area of all the thermosetting melamine resin exposure part which occupies the surface of a photocatalyst layer by dividing the total area which developed the above-mentioned light black by the area of the range which calculated the light black colored part The percentage of was calculated.

上記の試験方法において2値化処理した後の画面を図4に示す。この図4を見ると、硝酸銀反応による淡黒色部分は斑点状に散在して、部分的にしか反応しておらず、このことから、熱硬化性メラミン樹脂露出部は光触媒層の一部にしか存在していないことがわかる。   FIG. 4 shows a screen after the binarization process in the above test method. As shown in FIG. 4, the light black portions due to the silver nitrate reaction are scattered in spots and react only partially. From this, the thermosetting melamine resin exposed portion is only part of the photocatalyst layer. You can see that it doesn't exist.

また、得られた光触媒部材に、ブラックライトブルー(BLB)ランプにて1±0.05mW/cmの紫外線を168時間照射した。一定時間毎に、マイクロシリンジを用いて光触媒層側の表面にイオン交換水20mlを滴下し、その表面の水滴の接触角を画像処理接触角度計(協和界面科学(株)製、CA−A)を用いて3点法で各3箇所を測定し、その平均値を求めた。その結果、接触角は、照射前は78°であったが、24時間後、48時間後、72時間後、120時間後、168時間後には、夫々76°、74°、74°、72°、70°であった。 Further, the obtained photocatalyst member was irradiated with ultraviolet rays of 1 ± 0.05 mW / cm 2 for 168 hours with a black light blue (BLB) lamp. At regular intervals, 20 ml of ion-exchanged water is dropped on the surface of the photocatalyst layer using a microsyringe, and the contact angle of water droplets on the surface is measured by an image processing contact angle meter (Kyowa Interface Science Co., Ltd., CA-A). Each of the three points was measured using a three-point method, and the average value was obtained. As a result, the contact angle was 78 ° before irradiation, but after 24 hours, 48 hours, 72 hours, 120 hours, and 168 hours, 76 °, 74 °, 74 °, and 72 °, respectively. 70 °.

更に、得られた光触媒部材について、以下のメチレンブルー分解試験を行うことにより有機物分解性を調べたところ、分解活性示数Rは4.9[nmol/l/min]であり、光触媒層の表面まで熱硬化性メラミン樹脂が移行(湧出)して露出、散在しているにも拘わらず、良好な分解作用を発揮することが確認された。   Further, when the obtained photocatalyst member was examined for organic matter decomposability by conducting the following methylene blue decomposition test, the decomposition activity index R was 4.9 [nmol / l / min], and the surface of the photocatalyst layer was reached. It was confirmed that the thermosetting melamine resin exerted a good decomposing action even though the thermosetting melamine resin was transferred (welled up) to be exposed and scattered.

(メチレンブルー分解試験)
光触媒部材を60mm角の大きさに切断して3個の試験片を作製し、各試験片の上に円筒形のセルをシリコーングリースで液密的に取付けて、各セルにメチレンブルー吸着液(メチレンブルー三水和物を精製水に0.02mmol/l濃度となるように溶解させた液)を35ml注入し、カバーガラスで蓋をして、吸着飽和状態になるまでメチレンブルーを吸着させる。そして、セル中のメチレンブルー吸着液を新しいメチレンブルー試験液0.01mmolに交換して、真上から各試験片に1±0.05mW/cmの紫外線を20分照射し、照射後直ちにメチレンブルー試験液の600〜700nmの波長域での吸光スペクトルを分光光度計で測定し、測定に使用した液をすみやかにセルに戻して再び紫外線を照射する。この手順で紫外線を20分照射して吸光スペクトルを測定する作業を、照射時間の合計が3時間になるまで9回繰り返す。そして、次の手順で分解活性示数を求める。
即ち、紫外線t分照射後の吸光スペクトルのピークトップにおける吸光度Abs(t)を読み取る(t=20,40,60,80,100,120,140,160,180)と共に、初期吸光スペクトルのピークトップにおける吸光度を読み取ってこれをAbs(0)とする。そして、Abs(0)を用いて、下記の式(1)より、吸光度を濃度に換算するための換算係数Kを求め、この換算係数Kを用いて、下記の式(2)より、吸光度Abs(t)を、t分後のメチレンブルー試験液濃度C(t)[μmol/l]に換算し、図6に示すように、縦軸にC(t)[μmol/l]を、横軸に紫外線照射時間(分)をとって、3個の試験片のそれぞれについてデータをプロットする。そして、各試験片について求めた傾き(最も傾きが大きくなる4点を選んで最小二乗法で直線近似した傾き)をa(n=1,2,3)とし、下記の式(3)により分解活性示数Rを求める。

K=10[μmol/l]/Abs(0) …式(1)

C(t)=K×Abs(t)[μmol/l] …式(2)

R=|(a+a+a)/3|×10[nmol/l/] …式(3)
(Methylene blue decomposition test)
The photocatalyst member is cut to a size of 60 mm square to prepare three test pieces. A cylindrical cell is liquid-tightly attached to each test piece with silicone grease, and a methylene blue adsorbent (methylene blue) is attached to each cell. 35 ml of a solution obtained by dissolving trihydrate in purified water so as to have a concentration of 0.02 mmol / l) is injected, covered with a cover glass, and adsorbed with methylene blue until adsorption saturation is achieved. Then, the methylene blue adsorbed liquid in the cell was replaced with 0.01 mmol of a new methylene blue test liquid, and each test piece was irradiated with ultraviolet rays of 1 ± 0.05 mW / cm 2 for 20 minutes from directly above. The absorption spectrum in the wavelength range of 600 to 700 nm is measured with a spectrophotometer, and the liquid used for the measurement is immediately returned to the cell and again irradiated with ultraviolet rays. The operation of irradiating ultraviolet rays for 20 minutes in this procedure and measuring the absorption spectrum is repeated nine times until the total irradiation time reaches 3 hours. Then, the decomposition activity index is obtained by the following procedure.
That is, the absorbance Abs (t) at the peak top of the absorption spectrum after irradiation for ultraviolet t minutes is read (t = 20, 40, 60, 80, 100, 120, 140, 160, 180), and the peak top of the initial absorption spectrum is read. The absorbance at is read and this is defined as Abs (0). Then, using Abs (0), a conversion coefficient K for converting the absorbance into the concentration is obtained from the following formula (1), and using this conversion coefficient K, the absorbance Abs is obtained from the following formula (2). (T) is converted to methylene blue test solution concentration C (t) [μmol / l] after t minutes, and as shown in FIG. 6, C (t) [μmol / l] is plotted on the vertical axis, and the horizontal axis is plotted on the horizontal axis. Take the UV irradiation time (minutes) and plot the data for each of the three specimens. Then, the slope calculated for each specimen (the most inclination is linearly approximated by the least square method to choose four points greater inclination) and a n (n = 1, 2, 3), by the following equation (3) The decomposition activity index R is obtained.

K = 10 [μmol / l] / Abs (0) Formula (1)

C (t) = K × Abs (t) [μmol / l] (2)

R = | (a 1 + a 2 + a 3 ) / 3 | × 10 3 [nmol / l /] Formula (3)

また、得られた光触媒部材を切断して作製した3個の試験片について、以下の方法で耐払拭性を調べたところ、払拭しない初期において、試験片の全てが硝酸銀の呈色反応を示し、払拭回数が500回に達しても、更に、3000回に達しても、試験片の全てが硝酸銀の呈色反応を示した。このことから、熱硬化性メラミン樹脂露出部が散在している光触媒層は、3000回払拭しても磨滅、剥脱されないことが分かった。   Further, for the three test pieces produced by cutting the obtained photocatalyst member, when wiping resistance was examined by the following method, in the initial stage of not wiping, all of the test pieces showed a color reaction of silver nitrate, Even when the number of wipings reached 500 times or even 3000 times, all of the test pieces exhibited a color reaction of silver nitrate. From this, it was found that the photocatalyst layer in which the thermosetting melamine resin exposed portions are scattered is not worn out or detached even after wiping 3000 times.

(耐払拭試験)
染色堅牢度試験用摩擦試験機(JIS L 0823)を平板用に改良し、この試験機に錘(200g)と摩擦用白綿布かなきん3号(JIS L 0862)を取付け、試験片を500回、及び3000回払拭する。そして、各試験片を0.1Nの硝酸銀溶液に浸漬し、ブラックライトブルーランプにて1±0.05mW/cmの紫外線を10時間照射し、各試験片の表面における銀の析出の有無(硝酸銀の呈色反応の有無)によって、試験片の光触媒層の有無を判断する。
(Wiping resistance test)
Friction tester for dyeing fastness test (JIS L 0823) was improved to flat plate, weight (200g) and white cotton cloth for friction Kanaki No. 3 (JIS L 0862) were attached to this tester, and test piece was 500 times And wipe 3000 times. Then, each test piece was immersed in a 0.1N silver nitrate solution and irradiated with ultraviolet light of 1 ± 0.05 mW / cm 2 for 10 hours with a black light blue lamp, and the presence or absence of silver deposition on the surface of each test piece ( The presence or absence of the photocatalyst layer of the test piece is determined by the presence or absence of a color reaction of silver nitrate.

実施例1で得られた光触媒部材について行った以上の試験の結果をまとめて、下記の表1に記載する。また、この光触媒部材の水との接触角のグラフを図5に示し、メチレンブルー濃度の変化を図6に示す。   The results of the above tests conducted on the photocatalyst member obtained in Example 1 are summarized in Table 1 below. Moreover, the graph of the contact angle with water of this photocatalyst member is shown in FIG. 5, and the change of a methylene blue density | concentration is shown in FIG.

[実施例2]
ポリエチレンテレフタレートよりなる剥離フィルムの表面に、実施例1で準備した光触媒層用塗料を塗布、乾燥(温度100℃、時間15分)して厚さ100nmの光触媒層を形成し、その上に実施例1で準備した保護層用塗料を塗布、乾燥(温度130℃、時間30分)して厚さ1.5μmの保護層を形成することにより、転写フィルムを作製した。
[Example 2]
The photocatalyst layer coating material prepared in Example 1 was applied to the surface of a release film made of polyethylene terephthalate and dried (temperature 100 ° C., time 15 minutes) to form a photocatalyst layer having a thickness of 100 nm. The transfer film was produced by applying the coating for protective layer prepared in 1 and drying (temperature 130 ° C., time 30 minutes) to form a protective layer having a thickness of 1.5 μm.

そして、実施例1で準備した芯材層形成用材料シートの上に、実施例1で準備した化粧層形成用材料シートを重ね合わせ、その上に上記の転写フィルムをその保護層が下側となるように重ね合わせて、熱プレス成形機にセットし、温度140℃、圧力7.8×10N/mの条件で30分間熱圧着した後、熱プレス成形機から取り出して剥離フィルムを除去することにより、図3に示す構造の平板状の光触媒部材を得た。 Then, the decorative layer forming material sheet prepared in Example 1 is overlaid on the core layer forming material sheet prepared in Example 1, and the above-mentioned transfer film is placed on the lower side of the protective film. And then set in a hot press molding machine and thermocompression bonded for 30 minutes under the conditions of a temperature of 140 ° C. and a pressure of 7.8 × 10 6 N / m 2 , and then taken out from the hot press molding machine to remove the release film. By removing, a plate-like photocatalyst member having a structure shown in FIG. 3 was obtained.

この光触媒部材について、実施例1と同様にして、光触媒層の表面に占める熱硬化性メラミン樹脂露出部の合計面積の割合、光触媒層側の表面の水との接触角、光触媒層の分解活性示数、光触媒層の耐払拭性を調べた。その結果を下記の表1に併記する。   About this photocatalyst member, in the same manner as in Example 1, the ratio of the total area of the exposed portion of the thermosetting melamine resin in the surface of the photocatalyst layer, the contact angle with water on the surface of the photocatalyst layer, the decomposition activity of the photocatalyst layer The wiping resistance of the photocatalyst layer was investigated. The results are also shown in Table 1 below.

[比較例1]
実施例1で準備した芯材層形成用材料シートと、実施例1で準備した化粧層形成用材料シートを予め熱圧着してメラミン樹脂を硬化させることにより積層一体化した化粧板(芯材層と熱硬化性樹脂含浸化粧層が積層一体化された化粧板)を基材とし、この基材の熱硬化性樹脂含浸化粧層の上に、接着剤(日本ポリウレタン工業(株)製のウレタン接着剤)を塗布、乾燥して厚さ5μmの接着剤層を形成すると共に、更にその上に、実施例1で準備した保護層塗料と光触媒層用塗料を順次塗布、乾燥して、厚さ3μmの保護層と厚さ100nmの光触媒層を形成することにより、平板状の光触媒部材を作製した。
[Comparative Example 1]
A decorative board (core material layer) obtained by stacking and integrating the core material layer forming material sheet prepared in Example 1 and the decorative layer forming material sheet prepared in Example 1 by thermocompression in advance to cure the melamine resin. And a thermosetting resin-impregnated decorative layer laminated on the base material, and an adhesive (urethane adhesive manufactured by Nippon Polyurethane Industry Co., Ltd.) is coated on the thermosetting resin-impregnated decorative layer of the base material. Agent) is applied and dried to form an adhesive layer having a thickness of 5 μm, and further, the protective layer coating material and the photocatalyst layer coating material prepared in Example 1 are sequentially applied and dried to a thickness of 3 μm. By forming a protective layer and a photocatalyst layer having a thickness of 100 nm, a flat photocatalyst member was produced.

この光触媒部材は、熱圧着して硬化した化粧板に、接着層と保護層と光触媒層
とを塗布、形成されたものであるので、この光触媒部材を硝酸銀水溶液中に浸漬し紫外線を照射したところ、全面に均一な硝酸銀反応による淡黒色を呈して、光触媒層表面に露出した熱硬化性メラミン樹脂は存在しなかった。これは、化粧板の熱硬化性樹脂が硬化した後に接着層と保護層と光触媒層を形成したので、熱硬化性樹脂が移行することができなかったためである。
Since this photocatalyst member is formed by applying an adhesive layer, a protective layer and a photocatalyst layer to a decorative board cured by thermocompression bonding, the photocatalyst member is immersed in an aqueous silver nitrate solution and irradiated with ultraviolet rays. There was no thermosetting melamine resin exposed to the surface of the photocatalyst layer, showing a light black color due to a uniform silver nitrate reaction on the entire surface. This is because the thermosetting resin could not be transferred because the adhesive layer, the protective layer, and the photocatalyst layer were formed after the thermosetting resin of the decorative board was cured.

この比較用の光触媒部材について、実施例1と同様にして、光触媒層側の表面の水との接触角、光触媒層の分解活性示数、光触媒層の耐払拭性を調べた。その結果を下記の表1に併記する。また、この光触媒部材の水との接触角のグラフを図5に併記し、メチレンブルー濃度の変化を図6に併記する。   For this comparative photocatalyst member, the contact angle with water on the surface of the photocatalyst layer, the decomposition activity index of the photocatalyst layer, and the wiping resistance of the photocatalyst layer were examined in the same manner as in Example 1. The results are also shown in Table 1 below. Moreover, the graph of the contact angle of this photocatalyst member with water is also shown in FIG. 5, and the change in the methylene blue concentration is also shown in FIG.

[比較例2]
ポリエチレンテレフタレートよりなる剥離フィルムの表面に、実施例1で準備した光触媒層用塗料を塗布、乾燥(温度100℃、時間15分)して厚さ100nmの光触媒層を形成し、その上に実施例1で準備した保護層用塗料を塗布、乾燥(温度130℃、時間50分)して厚さ8.0μmの保護層を形成することにより、転写フィルムを作製した。
[Comparative Example 2]
The photocatalyst layer coating material prepared in Example 1 was applied to the surface of a release film made of polyethylene terephthalate and dried (temperature 100 ° C., time 15 minutes) to form a photocatalyst layer having a thickness of 100 nm. The transfer film was produced by applying the protective layer coating material prepared in 1 and drying (temperature 130 ° C., time 50 minutes) to form a protective layer having a thickness of 8.0 μm.

そして、実施例1で準備した芯材層形成用材料シートの上に、実施例1で準備した化粧層形成用材料シートを重ね合わせ、その上に上記の転写フィルムをその保護層が下側となるように重ね合わせて、熱プレス成形機にセットし、実施例1と同じ条件で熱圧着した後、熱プレス成形機から取出して剥離フィルムを除去することにより、平板状の光触媒部材を作製した。この光触媒部材は、芯材層と熱硬化性樹脂含浸化粧層が積層一体化された化粧板の上に保護層と光触媒層が転写されて一体化されたものであるが、この光触媒部材を硝酸銀水溶液中に浸漬し紫外線を照射したところ、全面に均一な硝酸銀反応による淡黒色を呈したので、化粧層の熱硬化性メラミン樹脂が保護層を通って光触媒層の表面に露出しておらず、保護層によって熱硬化性メラミン樹脂の移行(滲出)が阻止されたものであった。   Then, the decorative layer forming material sheet prepared in Example 1 is overlaid on the core layer forming material sheet prepared in Example 1, and the above-mentioned transfer film is placed on the lower side of the protective film. The plate-shaped photocatalyst member was prepared by removing the release film by removing from the heat press molding machine after being superposed and set in a hot press molding machine and thermocompression bonding under the same conditions as in Example 1. . In this photocatalyst member, a protective layer and a photocatalyst layer are transferred and integrated on a decorative board in which a core layer and a thermosetting resin-impregnated decorative layer are laminated and integrated. When immersed in an aqueous solution and irradiated with ultraviolet rays, the entire surface exhibited a light black color due to a uniform silver nitrate reaction, so the thermosetting melamine resin of the decorative layer was not exposed to the surface of the photocatalytic layer through the protective layer, Migration (exudation) of the thermosetting melamine resin was prevented by the protective layer.

この比較用の光触媒部材について、実施例1と同様にして、光触媒層側の表面の水との接触角、光触媒層の分解活性示数、光触媒層の耐払拭性を調べた。その結果を下記の表1に併記する。   For this comparative photocatalyst member, the contact angle with water on the surface of the photocatalyst layer, the decomposition activity index of the photocatalyst layer, and the wiping resistance of the photocatalyst layer were examined in the same manner as in Example 1. The results are also shown in Table 1 below.

Figure 0004695553
Figure 0004695553

この表1を見ると、保護層の厚さが3.0μmである実施例1の光触媒部材は光触媒層表面へ移行(滲出)する熱硬化性メラミン樹脂の量がやや少ないため、光触媒層の表面に占める熱硬化性メラミン樹脂露出部の合計面積の割合が33%となっているのに対し、保護層の厚さが1.5μmとやや薄い実施例2の光触媒部材は、光触媒層表面へ移行する熱硬化性メラミン樹脂の量がやや多いため、熱硬化性メラミン樹脂露出部の占める割合が62%とやや高くなっている。一方、保護層の厚さが8μmと厚い比較例2の光触媒部材は、熱硬化性メラミン樹脂の移行が保護層により阻止されるため、光触媒層表面における熱硬化性メラミン樹脂の露出は皆無である。以上のことから、転写フィルムを熱圧着して光触媒部材を作製する場合、保護層の厚さを調整することにより、光触媒部材の表面へ移行する熱硬化性メラミン樹脂の量を制御して、熱硬化性メラミン樹脂露出部の占める割合をコントロールできることがわかる。また、熱硬化性メラミン樹脂露出部の占める割合を20〜99%にコントロールするためには、保護層の厚さを0.3〜5.0μm程度にすれば良いことが予測できる。   As shown in Table 1, since the amount of the thermosetting melamine resin that migrates (exudes) to the surface of the photocatalyst layer is slightly small in the photocatalyst member of Example 1 in which the thickness of the protective layer is 3.0 μm, the surface of the photocatalyst layer While the ratio of the total area of the exposed portion of the thermosetting melamine resin in the area is 33%, the photocatalytic member of Example 2 with a slightly thin protective layer thickness of 1.5 μm migrates to the surface of the photocatalytic layer. Since the amount of the thermosetting melamine resin is slightly large, the ratio of the exposed portion of the thermosetting melamine resin is slightly high at 62%. On the other hand, the photocatalyst member of Comparative Example 2 having a thick protective layer of 8 μm has no exposure of the thermosetting melamine resin on the surface of the photocatalytic layer because the migration of the thermosetting melamine resin is blocked by the protective layer. . From the above, when producing a photocatalyst member by thermocompression bonding of a transfer film, the amount of thermosetting melamine resin transferred to the surface of the photocatalyst member is controlled by adjusting the thickness of the protective layer, It can be seen that the ratio of the exposed portion of the curable melamine resin can be controlled. Moreover, in order to control the ratio for which the thermosetting melamine resin exposure part accounts for 20 to 99%, it can be predicted that the thickness of the protective layer may be about 0.3 to 5.0 μm.

また、熱硬化性メラミン樹脂が光触媒層の表面に露出して散在し、その露出部の占める割合が20〜99%の範囲内にある実施例1,2の光触媒部材は、紫外線を168時間照射した後の水との接触角が70°以上であって、親水性化による自己浄化作用を発揮できないものであるが、分解活性示数Rは実施例1の光触媒部材で4.9[nmol/l/min]、実施例2の光触媒部材で3.5[nmol/l/min]であり、悪臭成分や低分子量有機物の充分な分解作用を発揮できることが分かる。しかも、熱硬化性メラミン樹脂が光触媒層の表面に露出、散在した実施例1,2の光触媒部材は、3000回の耐払拭試験に充分耐え、光触媒層の脱落や剥離を防止して良好な光触媒作用を維持できるものであることがわかる。   Moreover, the thermosetting melamine resin is exposed and scattered on the surface of the photocatalyst layer, and the photocatalyst member of Examples 1 and 2 in which the ratio of the exposed portion is within a range of 20 to 99% is irradiated with ultraviolet rays for 168 hours. The contact angle with water after the treatment is 70 ° or more, and the self-purifying action due to the hydrophilicity cannot be exhibited, but the decomposition activity index R is 4.9 [nmol / nm for the photocatalyst member of Example 1. l / min], which is 3.5 [nmol / l / min] in the photocatalyst member of Example 2, and it can be seen that sufficient decomposing action of malodorous components and low molecular weight organic substances can be exhibited. In addition, the photocatalyst member of Examples 1 and 2 in which the thermosetting melamine resin is exposed and scattered on the surface of the photocatalyst layer sufficiently withstands 3,000 wiping resistance tests and prevents the photocatalyst layer from falling off and peeling off, and is a good photocatalyst It can be seen that the action can be maintained.

これに対し、熱硬化性メラミン樹脂が光触媒層の表面に存在しない比較例1,2の光触媒層は、紫外線を48時間照射した後の水との接触角が0°に近くなるので、強く親水性化されて自己浄化作用を発揮でき、また、分解活性示数も6.5[nmol/l/min]、又は6.2[nmol/l/min]と高いので、光触媒作用を強く発揮できるものであるが、耐払拭性に劣るため、わずか500回の耐払拭試験にも耐えられず、短期間で光触媒層が剥離、脱落して光触媒作用が失われるという致命的な欠点を有することが分かる。   In contrast, the photocatalyst layers of Comparative Examples 1 and 2 in which no thermosetting melamine resin is present on the surface of the photocatalyst layer are strongly hydrophilic because the contact angle with water after irradiation with ultraviolet rays for 48 hours is close to 0 °. And can exhibit a self-cleaning action, and the decomposition activity index is as high as 6.5 [nmol / l / min] or 6.2 [nmol / l / min], so that the photocatalytic action can be exerted strongly. However, since it is inferior in wiping resistance, it cannot withstand only 500 wiping resistance tests, and has a fatal defect that the photocatalytic layer is peeled off and dropped off in a short period of time and the photocatalytic action is lost. I understand.

本発明に係る光触媒部材の一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of the photocatalyst member which concerns on this invention. 本発明に係る光触媒部材の他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the photocatalyst member which concerns on this invention. 本発明に係る光触媒部材の更に他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the photocatalyst member which concerns on this invention. 実施例1のサンプルを硝酸銀水溶液に浸漬して、ブラックライトブルーランプで紫外線照射したものを撮影し、撮影写真を2値化処理した写真である。It is the photograph which image | photographed what immersed the sample of Example 1 in the silver nitrate aqueous solution, and irradiated the ultraviolet-ray with the black light blue lamp, and binarized the picked-up photograph. 実施例1のサンプルと比較例1のサンプルについて、水との接触角(°)と紫外線照射時間(時)との関係を示したグラフである。It is the graph which showed the relationship between the contact angle (degree) with water and ultraviolet irradiation time (hour) about the sample of Example 1 and the sample of Comparative Example 1. 実施例1のサンプルと比較例1のサンプルについて、メチレンブルー分解試験で得られたデータをプロットしたものであって、メチレンブルー試験液濃度C(t)[μmol/l]と紫外線照射時間(分)との関係を示したグラフである。The data obtained in the methylene blue decomposition test for the sample of Example 1 and the sample of Comparative Example 1 are plotted, and the methylene blue test solution concentration C (t) [μmol / l], the ultraviolet irradiation time (min), and It is the graph which showed this relationship.

符号の説明Explanation of symbols

1 基材
1a 芯材層
1b 熱硬化性樹脂含浸化粧層
2 保護層
3 光触媒層
4 連結熱硬化性樹脂
4a 連結熱硬化性樹脂の露出部
A1,A2,A3 光触媒部材
DESCRIPTION OF SYMBOLS 1 Base material 1a Core material layer 1b Thermosetting resin impregnation decorative layer 2 Protective layer 3 Photocatalyst layer 4 Connection thermosetting resin 4a Exposed part of connection thermosetting resin A1, A2, A3 Photocatalyst member

Claims (8)

熱硬化性樹脂からなる基材又は熱硬化性樹脂を含んだ基材の上に、保護層を介して、光触媒粒子を含んだ光触媒層が積層され、且つ該光触媒層表面に熱硬化性樹脂が露出状態で散在した光触媒部材であって、該露出散在する熱硬化性樹脂の少なくとも一部が、光触媒層と保護層を通って基材まで連続していることを特徴とする光触媒部材。   A photocatalyst layer containing photocatalyst particles is laminated via a protective layer on a base material made of a thermosetting resin or a base material containing a thermosetting resin, and the thermosetting resin is formed on the surface of the photocatalyst layer. A photocatalyst member scattered in an exposed state, wherein at least a part of the exposed thermosetting resin continues to the substrate through the photocatalyst layer and the protective layer. 熱硬化性樹脂からなる基材又は熱硬化性樹脂を含んだ基材の上に、保護層を介して、光触媒粒子を含んだ光触媒層が積層され、且つ該光触媒層表面に熱硬化性樹脂が露出状態で散在した光触媒部材であって、該露出散在する熱硬化性樹脂の少なくとも一部が、基材から保護層と光触媒層を通って光触媒層の表面まで移行していることを特徴とする光触媒部材。     A photocatalyst layer containing photocatalyst particles is laminated via a protective layer on a base material made of a thermosetting resin or a base material containing a thermosetting resin, and the thermosetting resin is formed on the surface of the photocatalyst layer. A photocatalyst member scattered in an exposed state, wherein at least a part of the exposed thermosetting resin is transferred from the substrate through the protective layer and the photocatalyst layer to the surface of the photocatalyst layer. Photocatalyst member. 保護層の厚さが0.3〜5.0μmである請求項1又は請求項2に記載の光触媒部材。   The photocatalyst member according to claim 1 or 2, wherein the protective layer has a thickness of 0.3 to 5.0 µm. 光触媒層の表面の面積に占める熱硬化性樹脂の露出部の合計面積の割合が20〜99%である請求項1ないし請求項3のいずれかに記載の光触媒部材。   The photocatalyst member according to any one of claims 1 to 3, wherein the ratio of the total area of the exposed portions of the thermosetting resin to the surface area of the photocatalyst layer is 20 to 99%. ブラックライトブルーを用いて1mW/cm2の強度の光を168時間照射した後の表面の水との接触角が30〜90°である請求項1ないし請求項4のいずれかに記載の光触媒部材。 The photocatalyst member according to any one of claims 1 to 4, wherein a contact angle with water on the surface after irradiating light of 1 mW / cm 2 with black light blue for 168 hours is 30 to 90 °. . 基材が、繊維と熱硬化性樹脂と無機フィラーとよりなる芯材層の上に熱硬化性樹脂含浸化粧層を積層一体化した化粧板である請求項1ないし請求項5のいずれかに記載の光触媒部材。   6. The decorative board according to claim 1, wherein the base material is a decorative board in which a thermosetting resin-impregnated decorative layer is laminated and integrated on a core layer made of fibers, a thermosetting resin, and an inorganic filler. Photocatalytic member. 熱硬化性樹脂が熱硬化性メラミン樹脂である請求項1ないし請求項6のいずれかに記載の光触媒部材。   The photocatalyst member according to any one of claims 1 to 6, wherein the thermosetting resin is a thermosetting melamine resin. 剥離フィルムの上に光触媒粒子を含んだ光触媒層と保護層とを順次形成して転写フィルムを作製し、未硬化の熱硬化性樹脂を含んだ基材形成用材料の上に転写フィルムを保護層が基材側となるように重ねて熱圧着することにより、未硬化の熱硬化性樹脂を基材形成用材料から保護層と光触媒層を通って光触媒層の表面まで移行させて、光触媒層の表面に露出、散在させると共に、未硬化の熱硬化性樹脂を熱硬化させて形成した基材の上に保護層と光触媒層を転写することを特徴とする光触媒部材の製造方法。   A transfer film is prepared by sequentially forming a photocatalyst layer containing a photocatalyst particle and a protective layer on a release film, and the transfer film is formed on a substrate forming material containing an uncured thermosetting resin. By overlapping and thermocompression bonding so as to be on the base material side, the uncured thermosetting resin is transferred from the base material forming material to the surface of the photocatalyst layer through the protective layer and the photocatalyst layer. A method for producing a photocatalyst member, wherein the protective layer and the photocatalyst layer are transferred onto a base material formed by being exposed and scattered on a surface and thermosetting an uncured thermosetting resin.
JP2006180581A 2006-06-30 2006-06-30 Photocatalyst member Active JP4695553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006180581A JP4695553B2 (en) 2006-06-30 2006-06-30 Photocatalyst member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006180581A JP4695553B2 (en) 2006-06-30 2006-06-30 Photocatalyst member

Publications (2)

Publication Number Publication Date
JP2008006389A JP2008006389A (en) 2008-01-17
JP4695553B2 true JP4695553B2 (en) 2011-06-08

Family

ID=39065086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006180581A Active JP4695553B2 (en) 2006-06-30 2006-06-30 Photocatalyst member

Country Status (1)

Country Link
JP (1) JP4695553B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7106268B2 (en) * 2017-12-14 2022-07-26 株式会社東芝 SUBSTRATE WITH PHOTOCATALYST, MANUFACTURING METHOD THEREOF, AND PHOTOCATALYST DEVICE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996014932A1 (en) * 1994-11-16 1996-05-23 Toto Ltd. Photocatalytic functional material and method of production thereof
JP2001239607A (en) * 2000-02-29 2001-09-04 Takiron Co Ltd Composite molded body made of synthetic resin and method for preparing it
JP2003276149A (en) * 2002-03-27 2003-09-30 Aica Kogyo Co Ltd Stainproof decorative sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996014932A1 (en) * 1994-11-16 1996-05-23 Toto Ltd. Photocatalytic functional material and method of production thereof
JP2001239607A (en) * 2000-02-29 2001-09-04 Takiron Co Ltd Composite molded body made of synthetic resin and method for preparing it
JP2003276149A (en) * 2002-03-27 2003-09-30 Aica Kogyo Co Ltd Stainproof decorative sheet

Also Published As

Publication number Publication date
JP2008006389A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
US10201809B2 (en) Photocatalyst sheet
KR101144574B1 (en) Photocatalyst-coated body and photocatalytic coating fluid therefor
EP2484445A1 (en) Photocatalyst-coated object and photocatalyst coating liquid therefor
JP4933568B2 (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
JP4776443B2 (en) Photocatalyst member
JP4695553B2 (en) Photocatalyst member
JP2006175685A (en) Molded product having photocatalytic function
JP4295037B2 (en) Film or sheet with photocatalyst for wallpaper
KR101142369B1 (en) Plastic structure with photocatalyst layer on inorganic silica binder and its fabrication method
JP5128084B2 (en) Photocatalyst member
JP3748978B2 (en) Adsorption function body
JP4695478B2 (en) Photocatalyst member
TWI430841B (en) With the use of photocatalyst layer of composite materials
JP2007187795A (en) Reflection sheet and reflection plate
JP4390130B2 (en) Member having photocatalytic function and photocatalyst coating material used therefor
JP2004106303A (en) Decorative sheet having stainproofing function
JP4897781B2 (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
JP2011072935A (en) Photocatalyst-coated object and photocatalyst coating liquid therefor
JP2011078916A (en) External structure and coating fluid for external structure
JP2005058931A (en) Honeycomb catalytic structure
JP2007090618A (en) Antifouling member
JP2010005608A (en) Coating comprising photocatalyst and photocatalyst coating liquid for the same
JP2011080272A (en) Building external facing material and coating liquid for building external facing, for use in the same
JP2009285882A (en) Photocatalyst coated body and photocatalyst coating liquid therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4695553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250