JP4772197B2 - Gas adsorption concentrator - Google Patents

Gas adsorption concentrator Download PDF

Info

Publication number
JP4772197B2
JP4772197B2 JP2001084447A JP2001084447A JP4772197B2 JP 4772197 B2 JP4772197 B2 JP 4772197B2 JP 2001084447 A JP2001084447 A JP 2001084447A JP 2001084447 A JP2001084447 A JP 2001084447A JP 4772197 B2 JP4772197 B2 JP 4772197B2
Authority
JP
Japan
Prior art keywords
gas adsorption
zone
air
heat
seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001084447A
Other languages
Japanese (ja)
Other versions
JP2002273158A (en
Inventor
恒 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP2001084447A priority Critical patent/JP4772197B2/en
Publication of JP2002273158A publication Critical patent/JP2002273158A/en
Application granted granted Critical
Publication of JP4772197B2 publication Critical patent/JP4772197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば有機溶剤蒸気などの除去に用いられるガス吸着濃縮装置に関するものである。
【0002】
【従来の技術】
現在、多くの工場から有機溶剤蒸気が発生している。例えば、塗装工場からはトルエンやキシレンなどが発生し、その多くが大気中に放出されている。また半導体工場からはジメチルスルフォキサイド(DMSO)などが発生している。
【0003】
このような有機溶剤蒸気は大気中に放出すると害を及ぼすため、種々の除去手段が提案されている。その除去手段の1つに吸着剤を担持したハニカム・ロータを用いるものがある。つまりセラミックシートなどコルゲート加工してハニカム体を構成し、これに疎水性ゼオライトなどの吸着剤を担持した吸着ローターを用いるものがある。
【0004】
上記の蒸気の内でトルエンやキシレンなどは沸点が低いため吸着ローターに吸着されたこれらの物質を、吸着ローターに140〜180℃程度の脱着空気を通すことによって簡単に脱着することができる。このようにして脱着された有機溶剤蒸気は触媒や燃焼装置を通すことによって無害化し、大気に放出することができる。
【0005】
【発明が解決しようとする課題】
しかしDMSOなどの沸点の高い有機溶剤は脱着空気の温度を200℃以上に上げないと完全な脱着は困難であった。しかし脱着空気の温度を高くすると吸着ゾーンと脱着ゾーンとの間の気密を保持するシール材が温度の高い有機溶剤によって損傷を受けるという問題がある。
【0006】
つまりシール材としては気密を維持するという観点からは吸着ローターに密着する必要があり、また有機溶剤蒸気に侵されない材料である必要があるためフッ素ゴムなどの化学的に比較的安定な弾性体が使用されてきた。しかしフッ素ゴムは200℃の温度の有機溶剤蒸気には耐えることができない。
【0007】
一方フッ素樹脂は200℃以上の温度の有機溶剤蒸気に耐えることができるが、弾性が低く気密を維持するという観点から好ましくない。本発明はこのような問題点を解消し、沸点の高い有機溶剤の蒸気であっても処理可能なガス吸着濃縮装置を提供しようとするものである。
【0008】
【課題を解決するための手段】
本件発明は以上のような課題を解決するため、ガス吸着ローターを吸着ゾーンと脱着ゾーンとに分割する分割手段を設け、分割手段の脱着ゾーンの側に高耐熱材料で作られた耐熱シールを設け、耐熱シールの外側に弾性の高い気密シールを設けたものである。
【0009】
【発明の実施の形態】
本発明の請求項1に記載の発明は、ハニカム状のガス吸着ローターと、ガス吸着ローターを吸着ゾーンと脱着ゾーンとに分割する分割手段を有し、分割手段の脱着ゾーンの側に高耐熱材料で作られた耐熱シールを設け、耐熱シールの外側に弾性の高い気密シールを設けたものであり、耐熱シールで気密シールへの温度の高いの有機溶剤蒸気の伝達を防止するという作用を有する。
【0010】
【実施例】
以下本発明のガス吸着濃縮装置の実施例について図に沿って詳細に説明する。図2において1はガス吸着ローターであり、このガス吸着ローター1はケーシング2の中に回転自在に収納されている。またガス吸着ローター1はケーシング2内に設けられたギヤドモーター(図示せず)によって図2の矢印方向に回転駆動される。
【0011】
3はゾーン構成枠であり、ガス吸着ローター1を吸着ゾーン4、パージゾーン5、脱着ゾーン6に分割するものである。このゾーン構成枠3のガス吸着ローター1対向側には各ゾーン間でガス漏れを防止するシール手段が設けられている。このシール手段について以下説明をする。
【0012】
図1は図2のA−A断面拡大図である。7は気密シールであり、断面形状が半円である。この気密シール7は弾性を有し、気密性の高いフッ素ゴムより作られている。また気密シール7の頂部はガス吸着ローター1の面を多少弾圧する状態で接している。
【0013】
8は耐熱シールであり、テフロン(米国デュポン社の商品名)等のフッ素樹脂より作られ、高温の有機溶剤蒸気に対する対抗性が高い。また耐熱シール8はガス吸着ローター1の面に対して垂直な板を3枚有する形状である。この耐熱シール8も先端がガス吸着ローター1の面と接している。
【0014】
また耐熱シール8は脱着ゾーン6側に位置するように配置されている。つまり気密シール7と耐熱シール8とは互いに並べた状態でゾーン構成枠3に取り付けられており、脱着ゾーン6を囲む部分の内側に耐熱シール8が位置し、その外側に気密シール7が位置している。
【0015】
図4にガス吸着濃縮装置全体の構成を示す。9は処理ファンであり有機溶剤蒸気を含む被処理空気を吸着ゾーン4へ送るものである。10は脱着ファンであり、脱着ゾーン6から濃縮された有機溶剤蒸気を含む空気を吸い込むものである。11はヒーターであり、パージゾーン5を通過した空気がヒーター11を介して脱着ゾーン6へ送られるように送気管路が構成されている。
【0016】
本発明のガス吸着濃縮装置は上記の如く構成され以下その動作について説明する。先ず処理ファン9及び脱着ファン10を起動し、次にガス吸着ローター1を図2の矢印方向に回転させる。そしてヒーター11を動作させる。
【0017】
すると例えば100ppmの濃度の有機溶剤蒸気を含む被処理空気は吸着ゾーン4へ送られ、ここで空気中の有機溶剤蒸気がガス吸着ローター1に吸着され、有機溶剤蒸気濃度2ppm程度の清浄空気となって大気に放出される。
【0018】
吸着ゾーン4で有機溶剤蒸気を吸着したガス吸着ローター1の部分は、その回転に伴って脱着ゾーン6へ移動する。すると脱着ゾーン6にはヒーター11によって250〜280℃に加熱された空気が送られるため、吸着された有機溶剤蒸気がガス吸着ローター1から脱着され、脱着ファン10によって脱着ゾーン6から吸い出されて、燃焼装置(図示せず)などの無害化手段へ送られる。この脱着された有機溶剤蒸気は10倍濃縮であると1000ppmの濃度になる。
【0019】
脱着ゾーン6を通過したガス吸着ローター1の部分は、その回転に伴ってパージゾーン5へ移動する。ガス吸着ローター1は脱着ゾーン6で加熱されており、温度の高い状態でパージゾーン5へ入る。ガス吸着ローター1はパージゾーン5で冷却され、反対にパージゾーン5を通過する空気は加熱される。
【0020】
以上が一連の有機溶剤蒸気の濃縮過程であるが、さらにその詳細について説明する。先ず脱着ファン10は脱着ゾーン6の空気を吸い込むように構成されているため、脱着ゾーン6は負圧である。すると気密シール7に空気漏れが発生した場合、気密シール7及び耐熱シール8を通過した漏れ空気は図3のようにパージゾーン5あるいは吸着ゾーン4から脱着ゾーン6に侵入する。つまり脱着ゾーン6を通過する空気は外部に漏れないため、濃縮された有機溶剤蒸気が外部に漏れることはない。
【0021】
脱着ゾーン6入り口にはヒーター11を通過した空気が流れるため、ここの温度が最も高い。具体的には脱着ゾーン6へ流れる空気の温度は上記のとおり250〜280℃程度である。一方、パージゾーン5出口の空気の温度はせいぜい150〜180℃程度である。従って漏れ空気は温度の低いゾーンつまり吸着ゾーン4やパージゾーン5から温度の高い脱着ゾーン6へと流れることになる。
【0022】
従って漏れ空気が発生した場合には気密シール7とガス吸着ローター1の間には温度の低い空気が流れ、気密シール7には温度の低い空気が接触することになる。
【0023】
漏れ空気が発生しない場合は、気密シール7の一面は温度の低いパージゾーン5あるいは吸着ゾーン4の空気と触れ、気密シール7の他面は耐熱シール8との間の空気と触れる。耐熱シール8と気密シール7との間の空気は当然脱着空気の温度より低く気密シール7は常に温度の低い空気と接することになる。一方耐熱シール8は高温の脱着空気と触れるが、耐熱シール8はフッ素樹脂などの耐熱性および耐溶剤性の高い材料で構成され、温度の高い有機溶剤蒸気による損傷を受けることがない。
【0024】
このように気密シール7として弾性の高い材料を使い、耐熱シール8として温度の高い有機溶剤蒸気に耐える材料を使うことによって、気密性を維持しながら耐熱性の高いシールとすることができ、再生空気の温度を高くすることができる。
【0025】
つまり脱着ゾーン6の入り口は有機溶剤蒸気の濃度は低いもののヒーター11を通過した直後の250〜280℃に加熱された空気が触れ、シール手段としては極めて過酷な条件であり、一方脱着ゾーン6の出口は温度が下がっているものの有機溶剤蒸気の濃度が濃縮倍率の分だけ上がるため、ここもシール手段としては極めて過酷な条件であるが、上述のとおり気密シール7は直接脱着ゾーン6入り口の高温空気や脱着ゾーン6出口空気に触れないため有機溶剤蒸気による損傷を受けることがない。
【0026】
また漏れ空気が発生した場合に、図3に示すようにガス吸着ローター1の面と3つの耐熱シール8の間の隙間に空気が流れるため、この部分で渦が発生し、この渦の作用によって空気抵抗が増大するため、漏れ空気が少なくなる。
【0027】
以上の実施例ではパージゾーン5を設ける例を示したが、場合によってはパージゾーン5を設けることなく、脱着ゾーン6と吸着ゾーン4のみでもよい。さらに耐熱シールとして3つの板状体をガス吸着ローターの面に垂直に当てる構成にしたが、空気の漏れが少ない場合は耐熱シールを1枚あるいは2枚の板状体で構成してもよい。2枚の場合には空気の漏れに伴って2枚の板の間及び耐熱シールと気密シールとの間に渦が発生する。1枚の場合には空気の漏れに伴って耐熱シールと気密シールとの間に渦が発生する。また板状体を3枚以上にしてもよい。
【0028】
【発明の効果】
本発明のガス吸着濃縮装置は上記の如く気密シールと耐熱シールとを組み合わせて構成したので、気密シールが直接高温の有機溶剤蒸気を含む脱着空気に晒されないため、脱着ゾーンに高温の脱着空気を流すことができ沸点の高い有機溶剤の蒸気であっても濃縮処理を行うことができるものである。
【0029】
また気密シールを弾性の高い材料とし耐熱シールを耐熱性の高い材料としたので両者の特徴の相乗効果を得ることができ、気密性を維持しつつ耐熱性を高めることができる。
【0030】
さらに本発明のガス吸着濃縮装置はゾーンを分割する分割手段の脱着ゾーン側に耐熱シールを配置し、反脱着ゾーン側に気密シールを配置するとともに脱着ゾーンを負圧にしたため空気の漏れが発生しても気密シールには高温の空気が触れることがなく、気密シールの熱による損傷を防ぐことができる。
【図面の簡単な説明】
【図1】本発明のガス吸着濃縮装置の実施例1を示す部分拡大断面図である。
【図2】本発明に用いられるガス吸着濃縮装置の一例を示す斜視図である。
【図3】図1のさらに拡大断面図である。
【図4】本発明に用いられるガス吸着濃縮装置の一例を示すフロー図である。
【符号の説明】
1 ガス吸着ローター
2 ケーシング
3 ゾーン構成枠
4 吸着ゾーン
5 パージゾーン
6 脱着ゾーン
7 気密シール
8 耐熱シール
9 処理ファン
10 脱着ファン
11 ヒーター
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas adsorption concentrator used for removing organic solvent vapor, for example.
[0002]
[Prior art]
Currently, organic solvent vapor is generated from many factories. For example, toluene, xylene, and the like are generated from a painting factory, and most of them are released into the atmosphere. Also, dimethyl sulfoxide (DMSO) is generated from semiconductor factories.
[0003]
Since such organic solvent vapors are harmful when released into the atmosphere, various removal means have been proposed. One of the removing means uses a honeycomb rotor carrying an adsorbent. In other words, there is a ceramic sheet or the like that corrugates to form a honeycomb body that uses an adsorption rotor carrying an adsorbent such as hydrophobic zeolite.
[0004]
Since toluene, xylene, and the like have a low boiling point among the above vapors, these substances adsorbed on the adsorption rotor can be easily desorbed by passing desorption air at about 140 to 180 ° C. through the adsorption rotor. The organic solvent vapor desorbed in this manner can be rendered harmless by passing through a catalyst or a combustion device and released to the atmosphere.
[0005]
[Problems to be solved by the invention]
However, complete desorption of organic solvents having a high boiling point such as DMSO is difficult unless the temperature of the desorption air is increased to 200 ° C. or higher. However, when the temperature of the desorption air is increased, there is a problem that the sealing material that maintains the airtightness between the adsorption zone and the desorption zone is damaged by the organic solvent having a high temperature.
[0006]
In other words, the sealing material needs to be in close contact with the adsorption rotor from the viewpoint of maintaining hermeticity, and it must be a material that is not attacked by organic solvent vapor. Have been used. However, fluororubber cannot withstand organic solvent vapor at a temperature of 200 ° C.
[0007]
On the other hand, a fluororesin can withstand organic solvent vapor at a temperature of 200 ° C. or higher, but is not preferable from the viewpoint of low elasticity and airtightness. The present invention is intended to solve such problems and to provide a gas adsorption concentrator capable of processing even a vapor of an organic solvent having a high boiling point.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a dividing means for dividing the gas adsorption rotor into an adsorption zone and a desorption zone, and a heat resistant seal made of a high heat resistant material is provided on the desorption zone side of the dividing means. A highly elastic airtight seal is provided outside the heat resistant seal.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention has a honeycomb-like gas adsorption rotor, and a dividing means for dividing the gas adsorption rotor into an adsorption zone and a desorption zone, and a high heat resistant material is provided on the desorption zone side of the dividing means. The heat-resistant seal made in (1) is provided, and a highly elastic air-tight seal is provided outside the heat-resistant seal, and the heat-resistant seal has the effect of preventing the high temperature organic solvent vapor from being transmitted to the air-tight seal.
[0010]
【Example】
Embodiments of the gas adsorption concentration apparatus of the present invention will be described in detail below with reference to the drawings. In FIG. 2, reference numeral 1 denotes a gas adsorption rotor, and the gas adsorption rotor 1 is rotatably housed in a casing 2. The gas adsorption rotor 1 is rotationally driven in the direction of the arrow in FIG. 2 by a geared motor (not shown) provided in the casing 2.
[0011]
Reference numeral 3 denotes a zone frame, which divides the gas adsorption rotor 1 into an adsorption zone 4, a purge zone 5, and a desorption zone 6. Sealing means for preventing gas leakage between the zones is provided on the side of the zone constituting frame 3 facing the gas adsorption rotor 1. This sealing means will be described below.
[0012]
FIG. 1 is an enlarged cross-sectional view taken along the line AA in FIG. Reference numeral 7 denotes an airtight seal having a semicircular cross-sectional shape. The hermetic seal 7 is made of fluoro rubber having elasticity and high hermeticity. Further, the top of the hermetic seal 7 is in contact with the surface of the gas adsorption rotor 1 with some pressure.
[0013]
Reference numeral 8 denotes a heat-resistant seal, which is made of a fluororesin such as Teflon (trade name of DuPont, USA) and has high resistance to high-temperature organic solvent vapor. The heat-resistant seal 8 has a shape having three plates perpendicular to the surface of the gas adsorption rotor 1. The tip of this heat-resistant seal 8 is also in contact with the surface of the gas adsorption rotor 1.
[0014]
The heat-resistant seal 8 is disposed so as to be located on the desorption zone 6 side. That is, the hermetic seal 7 and the heat-resistant seal 8 are attached to the zone frame 3 in a state where they are arranged side by side. The heat-resistant seal 8 is located inside the portion surrounding the desorption zone 6 and the air-tight seal 7 is located outside the part. ing.
[0015]
FIG. 4 shows the overall configuration of the gas adsorption concentrator. Reference numeral 9 denotes a processing fan that sends to-be-treated air containing an organic solvent vapor to the adsorption zone 4. Reference numeral 10 denotes a desorption fan which sucks in air containing organic solvent vapor concentrated from the desorption zone 6. Reference numeral 11 denotes a heater, and an air supply line is configured so that air that has passed through the purge zone 5 is sent to the desorption zone 6 via the heater 11.
[0016]
The gas adsorption concentrator of the present invention is configured as described above, and its operation will be described below. First, the processing fan 9 and the desorption fan 10 are started, and then the gas adsorption rotor 1 is rotated in the direction of the arrow in FIG. Then, the heater 11 is operated.
[0017]
Then, for example, the air to be treated containing the organic solvent vapor having a concentration of 100 ppm is sent to the adsorption zone 4, where the organic solvent vapor in the air is adsorbed by the gas adsorption rotor 1 and becomes clean air having an organic solvent vapor concentration of about 2 ppm. Released into the atmosphere.
[0018]
The portion of the gas adsorption rotor 1 that has adsorbed the organic solvent vapor in the adsorption zone 4 moves to the desorption zone 6 as it rotates. Then, since the air heated to 250 to 280 ° C. by the heater 11 is sent to the desorption zone 6, the adsorbed organic solvent vapor is desorbed from the gas adsorption rotor 1 and sucked out from the desorption zone 6 by the desorption fan 10. , And sent to a detoxifying means such as a combustion device (not shown). If the desorbed organic solvent vapor is 10 times concentrated, the concentration becomes 1000 ppm.
[0019]
The portion of the gas adsorption rotor 1 that has passed through the desorption zone 6 moves to the purge zone 5 as it rotates. The gas adsorption rotor 1 is heated in the desorption zone 6 and enters the purge zone 5 in a high temperature state. The gas adsorption rotor 1 is cooled in the purge zone 5, and conversely, the air passing through the purge zone 5 is heated.
[0020]
The above is a series of organic solvent vapor concentration processes, which will be described in detail. First, since the desorption fan 10 is configured to suck the air in the desorption zone 6, the desorption zone 6 has a negative pressure. Then, when an air leak occurs in the hermetic seal 7, the leaked air that has passed through the hermetic seal 7 and the heat-resistant seal 8 enters the desorption zone 6 from the purge zone 5 or the adsorption zone 4 as shown in FIG. That is, since the air passing through the desorption zone 6 does not leak to the outside, the concentrated organic solvent vapor does not leak to the outside.
[0021]
Since the air passing through the heater 11 flows at the entrance of the desorption zone 6, the temperature here is the highest. Specifically, the temperature of the air flowing to the desorption zone 6 is about 250 to 280 ° C. as described above. On the other hand, the temperature of the air at the outlet of the purge zone 5 is at most about 150 to 180 ° C. Accordingly, the leaked air flows from the low temperature zone, that is, the adsorption zone 4 and the purge zone 5 to the high temperature desorption zone 6.
[0022]
Therefore, when leaked air is generated, air having a low temperature flows between the hermetic seal 7 and the gas adsorption rotor 1, and air having a low temperature contacts the hermetic seal 7.
[0023]
When no leakage air is generated, one surface of the hermetic seal 7 comes into contact with the air in the purge zone 5 or the adsorption zone 4 having a low temperature, and the other surface of the hermetic seal 7 comes into contact with air between the heat-resistant seal 8. The air between the heat-resistant seal 8 and the airtight seal 7 is naturally lower than the temperature of the desorption air, and the airtight seal 7 is always in contact with the air having a low temperature. On the other hand, the heat-resistant seal 8 is in contact with high-temperature desorption air, but the heat-resistant seal 8 is made of a material having high heat resistance and solvent resistance such as fluororesin and is not damaged by the high temperature organic solvent vapor.
[0024]
In this way, by using a highly elastic material as the airtight seal 7 and using a material that can withstand high temperature organic solvent vapor as the heat resistant seal 8, a highly heat resistant seal can be obtained while maintaining airtightness. The temperature of the air can be increased.
[0025]
In other words, although the concentration of the organic solvent vapor is low at the entrance of the desorption zone 6, the air heated to 250 to 280 ° C. immediately after passing through the heater 11 is in contact with it, which is a very severe condition as a sealing means. Although the temperature of the outlet is lowered, the concentration of the organic solvent vapor is increased by the concentration factor, so this is also an extremely severe condition as a sealing means. However, as described above, the hermetic seal 7 has a high temperature at the entrance of the direct desorption zone 6. Since it does not touch the air or the desorption zone 6 outlet air, it is not damaged by the organic solvent vapor.
[0026]
In addition, when leaked air is generated, air flows in the gap between the surface of the gas adsorption rotor 1 and the three heat resistant seals 8 as shown in FIG. Since the air resistance increases, the amount of leakage air decreases.
[0027]
In the above embodiment, the purge zone 5 is provided. However, in some cases, the purge zone 5 is not provided, and only the desorption zone 6 and the adsorption zone 4 may be provided. Further, although the three plate-like bodies are configured to contact the surface of the gas adsorption rotor perpendicularly as the heat-resistant seal, the heat-resistant seal may be constituted by one or two plate-like bodies when there is little air leakage. In the case of two sheets, vortices are generated between the two plates and between the heat-resistant seal and the hermetic seal as air leaks. In the case of one sheet, a vortex is generated between the heat-resistant seal and the hermetic seal as air leaks. The number of plate-like bodies may be three or more.
[0028]
【The invention's effect】
Since the gas adsorption concentrator of the present invention is configured by combining the hermetic seal and the heat-resistant seal as described above, since the hermetic seal is not directly exposed to the desorption air containing the high temperature organic solvent vapor, the high temperature desorption air is supplied to the desorption zone. Even if it is the vapor | steam of an organic solvent with a high boiling point which can be flowed, a concentration process can be performed.
[0029]
In addition, since the hermetic seal is made of a highly elastic material and the heat-resistant seal is made of a highly heat-resistant material, a synergistic effect of both features can be obtained, and heat resistance can be enhanced while maintaining airtightness.
[0030]
Furthermore, in the gas adsorption concentrator of the present invention, a heat-resistant seal is arranged on the desorption zone side of the dividing means for dividing the zone, an airtight seal is arranged on the anti-desorption zone side, and the desorption zone is set to a negative pressure. However, the airtight seal is not exposed to high-temperature air, and the airtight seal can be prevented from being damaged by heat.
[Brief description of the drawings]
FIG. 1 is a partially enlarged cross-sectional view showing a first embodiment of a gas adsorption concentration apparatus of the present invention.
FIG. 2 is a perspective view showing an example of a gas adsorption concentration apparatus used in the present invention.
3 is a further enlarged cross-sectional view of FIG. 1. FIG.
FIG. 4 is a flowchart showing an example of a gas adsorption concentration apparatus used in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gas adsorption | suction rotor 2 Casing 3 Zone structure frame 4 Adsorption zone 5 Purge zone 6 Desorption zone 7 Airtight seal 8 Heat-resistant seal 9 Processing fan 10 Desorption fan 11 Heater

Claims (4)

ハニカム状のガス吸着ローターと、前記ガス吸着ローターを吸着ゾーンと脱着ゾーンとに分割する分割手段を有するとともに、前記分割手段の脱着ゾーン側に高耐熱材料で作られ前記吸着ローターに垂直な互いに離間した複数の板状の耐熱シールを設け、前記耐熱シールの外側に前記耐熱シールと別体の弾性の高くガス吸着ローター面に弾圧する気密シールを設けたガス吸着濃縮装置。A honeycomb-shaped gas adsorption rotor, and a dividing unit that divides the gas adsorption rotor into an adsorption zone and a desorption zone, and is made of a high heat-resistant material on the desorption zone side of the division unit and is perpendicular to the adsorption rotor. a plurality of provided shaped heat sealing plate, said refractory sealing the heat seal and separate high rather gas adsorption concentration device provided with a hermetic seal for repression in the gas adsorption rotor surface elasticity of the outside of that. 耐熱シールとしてフッ素樹脂を用いた請求項1記載のガス吸着濃縮装置。The gas adsorption concentration apparatus according to claim 1, wherein a fluororesin is used as the heat-resistant seal. 気密シールとしてフッ素ゴムを用いた請求項1記載のガス吸着濃縮装置。The gas adsorption concentration apparatus according to claim 1, wherein fluororubber is used as an airtight seal. 脱着ゾーンを負圧にした請求項1記載のガス吸着濃縮装置。The gas adsorption concentration apparatus according to claim 1, wherein the desorption zone has a negative pressure.
JP2001084447A 2001-03-23 2001-03-23 Gas adsorption concentrator Expired - Fee Related JP4772197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001084447A JP4772197B2 (en) 2001-03-23 2001-03-23 Gas adsorption concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001084447A JP4772197B2 (en) 2001-03-23 2001-03-23 Gas adsorption concentrator

Publications (2)

Publication Number Publication Date
JP2002273158A JP2002273158A (en) 2002-09-24
JP4772197B2 true JP4772197B2 (en) 2011-09-14

Family

ID=18940117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001084447A Expired - Fee Related JP4772197B2 (en) 2001-03-23 2001-03-23 Gas adsorption concentrator

Country Status (1)

Country Link
JP (1) JP4772197B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1301778C (en) * 2004-01-16 2007-02-28 株式会社西部技研 Rotary gas adsorption and concentration apparatus
JP2006068582A (en) * 2004-08-31 2006-03-16 Seibu Giken Co Ltd Rotary gas adsorption and concentration device
JP4616091B2 (en) * 2005-06-30 2011-01-19 株式会社西部技研 Rotary gas adsorption concentrator
US7753995B2 (en) * 2007-12-11 2010-07-13 Seibu Giken Co., Ltd. Gas concentrator
US8655833B2 (en) * 2008-06-17 2014-02-18 Qualcomm Incorporated Database architecture for supporting group communications among wireless communication devices

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290922A (en) * 1988-09-26 1990-03-30 Kobe Steel Ltd Concentrator for fluorocarbon containing gas
JPH0694185B2 (en) * 1990-02-27 1994-11-24 ダイキン工業株式会社 Fluorocarbon rubber sponge laminate and honeycomb rotor device using the same
JP2536860Y2 (en) * 1990-10-04 1997-05-28 株式会社西部技研 Seal for rotary gas adsorber or heat exchanger
JPH0465115U (en) * 1990-10-13 1992-06-05
JPH05220336A (en) * 1992-02-13 1993-08-31 Hitachi Zosen Corp Adsorbent regenerator in rotary adsorptive denitrator
JPH1024215A (en) * 1996-07-11 1998-01-27 Babcock Hitachi Kk Waste gas purifier
JP2000189750A (en) * 1998-12-28 2000-07-11 Seibu Giken Co Ltd Organic solvent vapor treating device
JP2000317257A (en) * 1999-05-10 2000-11-21 Seibu Giken Co Ltd Device for treating organic solvent vapor

Also Published As

Publication number Publication date
JP2002273158A (en) 2002-09-24

Similar Documents

Publication Publication Date Title
US8257470B2 (en) System of treating odor and hazardous gas with rotary regenerative heat exchanger and its apparatus
JP4899005B2 (en) Method and apparatus for purifying exhaust gas loaded with organic hazardous substances
JP3581255B2 (en) Gas adsorption concentrator
US20050246918A1 (en) Dry air-supplying apparatus and treating apparatus
JP4772197B2 (en) Gas adsorption concentrator
JP2004050170A (en) Exhaust gas treatment method and apparatus for gas sterilizer
JP2003010626A (en) Gas adsorption concentration device
KR102260102B1 (en) Rotary type gas adsorption concentration device
JP2004160444A (en) Dry air feeding device and treatment apparatus
KR101102931B1 (en) Hybrid filter system
KR101524635B1 (en) Poppet Valve for Regenerative Thermal Oxidizer Using Packing for Reducing Leak And Regenerative Thermal Oxidizer Using Same
JP4616091B2 (en) Rotary gas adsorption concentrator
JP2010032178A (en) Organic solvent containing gas treatment system
JP2011072919A (en) System for treating gas containing organic solvent
JP2009082797A (en) Organic solvent-containing gas treatment system
JP2006068582A (en) Rotary gas adsorption and concentration device
TWM542718U (en) Continuous rotary valve of volatile organic substance treatment system
KR101362705B1 (en) Recovery method and apparatus of volatile organic compounds(voc) by concentration and condensation
JP3803799B2 (en) Gas adsorption concentrator
JP2020089858A (en) Air purifier
JP2001137640A (en) Gas treating device
JP5675508B2 (en) VOC abatement equipment
TWM542717U (en) Rotary valve structure of volatile organic substance treatment system
US9895645B2 (en) Apparatus for treating substrate
TWI490027B (en) Rotary Suction Absorbing Device and Its Gas Purification Treatment System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4772197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees