JP4769768B2 - 拡径掘削用バケット、中間拡径部の掘削方法、及び拡底部の掘削方法 - Google Patents

拡径掘削用バケット、中間拡径部の掘削方法、及び拡底部の掘削方法 Download PDF

Info

Publication number
JP4769768B2
JP4769768B2 JP2007170323A JP2007170323A JP4769768B2 JP 4769768 B2 JP4769768 B2 JP 4769768B2 JP 2007170323 A JP2007170323 A JP 2007170323A JP 2007170323 A JP2007170323 A JP 2007170323A JP 4769768 B2 JP4769768 B2 JP 4769768B2
Authority
JP
Japan
Prior art keywords
side wall
expanded
bucket
diameter
excavation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007170323A
Other languages
English (en)
Other versions
JP2009007836A (ja
Inventor
芳雄 平井
修一 若井
正人 中島
雅路 青木
光生 伊藤
光範 洗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2007170323A priority Critical patent/JP4769768B2/ja
Publication of JP2009007836A publication Critical patent/JP2009007836A/ja
Application granted granted Critical
Publication of JP4769768B2 publication Critical patent/JP4769768B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Earth Drilling (AREA)

Description

本発明は、杭孔に拡径部を形成する拡径掘削用バケット、中間拡径部を形成する中間拡径部の掘削方法、及び拡底部を形成する拡底部の掘削方法に関する。
建築物の大型化や高層化に伴い、高い鉛直支持性能が基礎杭に要求されている。そこで、図39に示すように、基礎杭500の先端部502を拡径した拡底部を形成することによって鉛直支持力を大きくする場所打ちコンクリート杭が採用されている。
さらに、図40に示すように、基礎杭504の先端部506だけでなく、中間にも拡径した中間拡径部508を設けた場所打ちコンクリート杭が提案されている。この杭は、中間拡径部508が地中でネジ山のような働きをするので、周囲の地盤から大きな鉛直支持力及び引抜抵抗力を得ることができる。
図39、40に示すような場所打ちコンクリート杭は、杭径を小さくしても十分な鉛直支持力及び引抜抵抗力が得られるので、建設副産物となる掘削土や杭施工時に使用する孔壁安定液を削減でき、環境負荷低減を図ることができる。
また、杭材料であるコンクリートや鉄筋を削減することができるので、コスト低減や工期短縮を図ることができる。
図41(A)に示す、特許文献1の分割バケット型回転掘削装置512では、ケリーバ514の下端に連結された角筒状の外筒516の内側に、スライド可能に嵌合された角筒状の内筒518が設けられている。そして、内筒518の下端部には、下面にビット(不図示)が配設された底板520が水平に取付けられている。
外筒516の内部には、外筒516の頂部に後端部が回転可能に連結された油圧シリンダ526が備えられており、油圧シリンダ526のピストンロッド528の先端部に設けられたピン530によってピストンロッド528の先端部と内筒518の下端部が連結されているので、油圧シリンダ526のピストンロッド528を伸縮させることにより、内筒518が伸縮する。
外筒516及び内筒518の周りには、外壁面にビット(不図示)が配設された湾曲側壁板522が設けられており、外筒516及び内筒518と、湾曲側壁板522とが平行リンク機構524によって連結されている。
よって、油圧シリンダ526のピストンロッド528が最長の状態になると、湾曲側壁板522は平行リンク機構524の作用によって内側に平行移動するので、バケットの径は図41(A)のように最小になる。
そして、この状態の分割バケット型回転掘削装置512を拡径する杭孔の底部に載置し、回転駆動装置(不図示)によりケリーバ514を介して分割バケット型回転掘削装置512を回転させると共に、油圧シリンダ526のピストンロッド528を縮めながら、分割バケット型回転掘削装置512を沈下させていくと杭孔の底部は拡径掘削される。そして、分割バケット型回転掘削装置512は図41(B)のような全開状態になる。
杭孔底部の拡径掘削により掘削された土砂は、湾曲側壁板522を再び図41(A)の状態に戻すことによって、全閉状態となったバケット内に収容される。そして、分割バケット型回転掘削装置512は、クレーンによって地上に吊り上げられた後にバケット内に収容した土砂を地上に排出する。
ここで、1回の掘削ステップで排出できる掘削土砂量はバケット容量に依存する。特許文献1の分割バケット型回転掘削装置512のように、バケットの側壁(湾曲側壁板522)が土砂掘削のカッターの役割りを兼ねる装置では、バケット容量を大きくするために側壁を高くすると掘削負荷が大きくなってしまうので好ましくない。
よって、特許文献1の分割バケット型回転掘削装置512では、1回の掘削ステップで排出できる掘削土砂量を大きくすることが難しく、このようなバケット容量の小さい分割バケット型回転掘削装置512で拡径掘削を行う場合、掘削土砂を地上に排出するための分割バケット型回転掘削装置512の昇降回数を多くしなければならないので施工効率が低下してしまう。
また、杭孔中間に中間拡径部を形成した後に杭孔底部の拡底掘削を行う場合、杭孔底部の掘削土砂を地上に排出するための分割バケット型回転掘削装置512の昇降回数が多くなると、掘削が完了した中間拡径部の法尻等に分割バケット型回転掘削装置512が接触して崩落し、杭孔の品質が低下することが懸念される。
ここで、容量の大きな土砂回収用バケットを分割バケット型回転掘削装置512の湾曲側壁板522の下方に別途設けることが考えられるが、例えば、中間拡径部の下部に傾斜面を形成するために、湾曲側壁板522の下端部にカッターを取り付けようとする場合、土砂回収用バケットは、このカッターの下端よりも下に設けられることになるので、分割バケット型回転掘削装置512の機械高さがかなり大きくなり、クレーンによって吊り上げるのが困難になってしまう。
また、拡底部を形成する場合には、土砂回収用バケットが邪魔になって、拡底部の下部を形成することができない。
特開昭60−242292号公報
本発明は係る事実を考慮し、杭孔の中間拡径部又は拡底部を形成することができると共に、地上に掘削物を排出するための拡径掘削用バケットの昇降回数を減らすことができる拡径掘削用バケット、中間拡径部の掘削方法、及び拡底部の掘削方法を提供することを課題とする。
請求項1に記載の発明は、掘削機本体に懸架されて回転する回転軸に設けられ、拡縮して縦孔の孔壁を掘削し、前記縦孔に拡径部を形成する拡翼部と、前記拡翼部の下端部に着脱可能に取り付けられ、前記拡径部の下部に前記縦孔の下方中心に向う傾斜面を形成するアーム部と、前記回転軸の下端部に着脱可能に取り付けられ、前記縦孔の孔壁に外周が接触する大きさの桶状容器と、を有し、前記桶状容器の側壁は、前記アーム部の下端に開口面が位置する第1の高さと、前記拡翼部の下端に開口面が位置する第2の高さと、に変更可能であることを特徴としている。
請求項1に記載の発明では、掘削機本体に懸架されて回転する回転軸に拡翼部が設けられている。拡翼部は拡縮することによって縦孔の孔壁を掘削し、縦孔に拡径部を形成する。
拡翼部の下端部には、アーム部が着脱可能に取り付けられている。アーム部は、拡翼部の拡縮によって拡径部の下部に縦孔の下方中心に向う傾斜面を形成する。
そして、回転軸の下端部に桶状容器が着脱可能に取り付けられている。
桶状容器は、縦孔の孔壁に外周が接触する大きさを有している。そして、桶状容器の側壁は、アーム部の下端に開口面が位置する第1の高さと、拡翼部の下端に開口面が位置する第2の高さと、に変更することができる。
よって、桶状容器の側壁が第1の高さのときには、拡翼部及びアーム部によって掘削された孔壁の掘削物を桶状容器が回収し、桶状容器の側壁が第2の高さのときには、拡翼部によって掘削された孔壁の掘削物を桶状容器が回収するので、縦孔の底部に落ちて溜まる掘削物をなくす、又は少なくすることができる。
これにより、縦孔の底部に溜まった掘削物を地上に排出するために土砂回収用バケットを昇降させる作業をなくす、又は回収用バケットを昇降させる回数を減らすことができる。
また、拡径部の下部の傾斜面を掘削するときには、桶状容器の側壁を第1の高さにしてアーム部を取り付けられるようにし、それ以外の掘削のときには、側壁を第1の高さにした桶状容器よりも1回の掘削ステップで多くの掘削物を回収することができるように桶状容器の側壁を第2の高さにする。
これにより、拡径部の下部に傾斜面を形成することができると共に、地上に掘削物を排出するための拡径掘削用バケットの昇降回数を減らすことができ、施工効率が向上する。
また、桶状容器の側壁の高さを変更しても拡径掘削用バケットに対する桶状容器の底面の鉛直方向の位置は変わらない。よって、桶状容器の側壁を第2の高さにしたときの拡径掘削用バケットの機械高さを、アーム部を取り付けて桶状容器の側壁を第1の高さにしたときの拡径掘削用バケットの機械高さに抑えることが可能になる。
これにより、アーム部を取り付けて桶状容器の側壁を第1の高さにした拡径掘削用バケットを懸架する掘削機本体(例えば、クレーン)によって、桶状容器の側壁を第2の高さにした拡径掘削用バケットを地上に引き上げることができる。
また、拡径掘削用バケットを縦孔の上から下に移動させながら孔壁の掘削を行う場合において、桶状容器が回転軸の中心を縦孔の中心位置にガイドするので、拡径部の真円度を高めることができる。さらに、側壁を第2の高さにした桶状容器は、側壁を第1の高さにした桶状容器よりも、孔壁に接触する周面積が大きくなる。よって、拡径掘削用バケットの回転をより安定させることができる。
また、桶状容器を回転軸の下端部から取り外さないで、桶状容器の側壁の高さを変更することができる。よって、段取り替え作業が容易になり、作業の時間短縮を図ることができる。
請求項2に記載の発明は、前記桶状容器の側壁は、該側壁の一部を着脱することによって高さの変更が可能であることを特徴としている。
請求項2に記載の発明では、桶状容器の側壁の一部を着脱することによって側壁の高さを変更するので、簡易な方法で桶状容器の側壁の高さを変更することができる。
請求項3に記載の発明は、前記桶状容器の側壁は、該側壁を伸縮させることによって高さの変更が可能であることを特徴としている。
請求項3に記載の発明では、桶状容器の側壁を伸縮させることによって側壁の高さを変更するので、桶状容器の側壁を第1の高さに変更した場合においても、縮められた分の側壁は桶状容器中に収納される。
これにより、側壁を仮置きするヤードを確保しなくてよい。
請求項4に記載の発明は、縦孔の孔壁を掘削して前記縦孔の中間部に中間拡径部を形成する中間拡径部の掘削方法において、掘削機本体に懸架されて回転する回転軸に設けられた拡翼部の下端部にアーム部を取り付け、かつ開口面が前記アーム部の下端に位置するように桶状容器を前記回転軸の下端部に取り付けた第1の状態で、前記拡翼部を拡縮して前記アーム部により前記中間拡径部の下部傾斜面を形成する中間拡径下部形成工程と、前記第1の状態の前記桶状容器の側壁を該桶状容器の開口面が前記拡翼部の下端に位置するように高くした第2の状態で、前記アーム部が取り外された前記拡翼部を拡縮して該拡翼部により前記中間拡径部の上部傾斜面及び鉛直面の形成を行う中間拡径上中部形成工程と、を有し、前記桶状容器は、前記縦孔の孔壁に外周が接触する大きさであることを特徴としている。
請求項4に記載の発明では、中間拡径下部形成工程と中間拡径上中部形成工程とによって、縦孔の孔壁を掘削して縦孔の中間部に中間拡径部を形成する。
中間拡径下部形成工程では、第1の状態で拡翼部を拡縮してアーム部により中間拡径部の下部傾斜面を形成する。ここで、第1の状態とは、掘削機本体に懸架されて回転する回転軸に設けられた拡翼部の下端部にアーム部を取り付け、かつアーム部の下端に開口面が位置するように回転軸の下端部に桶状容器を取り付けた状態のことである。桶状容器は、縦孔の孔壁に外周が接触する大きさになっている。
中間拡径上中部形成工程では、第2の状態で拡翼部を拡縮してこの拡翼部により中間拡径部の上部傾斜面及び鉛直面を形成する。ここで、第2の状態とは、掘削機本体に懸架されて回転する回転軸に設けられた拡翼部の下端に開口面が位置するように、第1の状態の桶状容器の側壁を高くした状態のことである。
よって、中間拡径部の下部傾斜面を形成するときには桶状容器の側壁を低くして(第1の状態)アーム部を取り付けられるようにし、中間拡径部の上部傾斜面及び鉛直面を形成するときには1回の掘削ステップで多くの掘削物を回収することができるように桶状容器の側壁を高くする(第2の状態)。
これにより、アーム部による中間拡径部の下部傾斜面を形成できると共に、地上に掘削物を排出するための拡径掘削用バケットの昇降回数を減らすことができ、施工効率が向上する。
また、桶状容器の側壁の高さを変更しても拡径掘削用バケットに対する桶状容器の底面の鉛直方向の位置は変わらない。よって、第2の状態にしたときの拡径掘削用バケットの機械高さを、アーム部を取り付けて第1の状態にしたときの拡径掘削用バケットの機械高さに抑えることが可能になる。
これにより、アーム部を取り付けて第1の状態にした拡径掘削用バケットを懸架する掘削機本体(例えば、クレーン)によって、第2の状態にした拡径掘削用バケットを地上に引き上げることができる。
請求項5に記載の発明は、縦孔の孔壁を掘削して前記縦孔の底部に拡底部を形成する拡底部の掘削方法において、掘削機本体に懸架されて回転する回転軸に設けられた拡翼部の下端に上面が位置するように前記回転軸の下端部に底蓋部材を取り付けた状態で、前記拡翼部を拡縮して該拡翼部により前記拡底部の下部を形成する拡底下部形成工程と、前記拡翼部の下端に開口面が位置するように、前記回転軸を下方へ伸ばして前記底蓋部材上に側壁を設けた状態で、前記拡翼部を拡縮して該拡翼部により前記拡底部の上部を形成する拡底上部形成工程と、を有し、前記底蓋部材は、前記縦孔の孔壁に外周が接触する大きさであることを特徴としている。
請求項5に記載の発明では、拡底下部形成工程と拡底上部形成工程とによって、縦孔の孔壁を掘削して縦孔の底部に拡底部を形成する。
拡底下部形成工程では、掘削機本体に懸架されて回転する回転軸の下端部に底蓋部材を取り付けた状態で、回転軸に設けられた拡翼部を拡縮してこの拡翼部により拡底部の下部を形成する。底蓋部材は、上面が拡翼部の下端に位置するように取り付けられている。また、底蓋部材は、縦孔の孔壁に外周が接触する大きさになっている。
拡底上部形成工程では、回転軸を伸ばして底蓋部材上に側壁を設けた状態で、拡翼部を拡縮してこの拡翼部により拡底部の上部を形成する。このとき、側壁は開口面が拡翼部の下端に位置するように設けられている。
よって、拡底部の上部を形成するときには1回の掘削ステップで多くの掘削物を回収することができるように底蓋部材上に側壁を設け、拡底部の下部を形成するときには、側壁を外して底蓋部材のみにする。
これにより、拡底部の下部を形成できると共に、地上に掘削物を排出するための拡径掘削用バケットの昇降回数を減らすことができ、施工効率が向上する。
本発明は上記構成としたので、杭孔の中間拡径部又は拡底部を形成することができると共に、地上に掘削物を排出するための拡径掘削用バケットの昇降回数を減らすことができる。
図面を参照しながら、本発明の実施形態に係る拡径掘削用バケットを説明する。
図1には、場所打ちコンクリート杭を構築するための杭孔20の中間に中間拡径部を形成する掘削機10の全体構成が示されている。
ケリーバ12が、掘削機本体としてのクレーン16のワイヤー88に接続されて懸架されている。また、ケリーバ12の途中には旋回装置14が設けられており、ケリーバ12の上下方向の移動を拘束せずに、ケリーバ12を回転させる。
クレーン16の前方から張出した位置決めアーム18は、旋回装置14の水平位置を調整し、縦孔としての杭孔20の中心位置にケリーバ12を配置する。
図9(C)に示すように、回転軸としての固定ポスト24の上端部には、軸部材60が接続されている。そして、この軸部材60上に設けられた連結ブラケット26にケリーバ12がピン連結されている。
なお、図1の杭孔20は、事前にケリーバ用のドリリングバケットによって地盤28を掘削して形成したものであり、杭孔20内には孔壁の倒壊を防止するベントナイト等の安定液Lが満たされている。
拡径掘削用バケット22は、図2に示すように、上部スタビライザ部36、拡縮バケット部38、下部スタビライザ部40によって構成され、上からこの順に配置されている。
上部スタビライザ部36は、図3の平面図に示すように、軸部材60を囲む円弧状のガイド部材42を対角状に4つ配置したものである。
各ガイド部材42の内側には、角筒状のスライド部材44の後端部が固定され、スライド部材44の先端部は軸部材60に向っている。スライド部材44は、軸部材60の各コーナー部から外側に張出した角筒状の支持部材46の内側に、スライド可能に嵌合されている。これにより、図3の状態よりも外側(矢印Nの方向)にガイド部材42を拡げることができる。
支持部材46にはボルト48を通す2つの貫通孔50が開けられており、スライド部材44にはボルト48を通す7つの貫通孔52が等間隔に開けられている。
杭孔20の孔壁面とガイド部材42の間にわずかな隙間を残す程度に、スライド部材44をスライドさせてガイド部材42の位置を調整し、貫通孔50と貫通孔52が一致する位置で、2本のボルト48によって固定する。
このとき、各スライド部材44のスライド量を等しくすることによって、軸部材60に接続された固定ポスト24の中心を杭孔20の中心位置にガイドすることができる。
図2に示すように、拡縮バケット部38には、固定ポスト24を囲む拡翼部としての側壁板30が4つ設けられている。4つの側壁板30はすべて同形状であり、側壁板30の平断面は円弧状になっている。また、側壁板30の下部30Bは略鉛直面を形成しており、側壁板30の上部30Aは内側に傾斜している。
各側壁板30の回転方向(矢印Mの方向)先頭側の端部には、掘削ビット32が上下方向に等間隔で配設されている。掘削ビット32は、図2のA−A断面図の図4に示すように、杭孔20の孔壁面に向って尖った形状をしている。よって、旋回装置14によりケリーバ12を介して固定ポスト24を矢印Mの方向に回転させ、側壁板30が杭孔20の孔壁面側に移動することにより、杭孔20の孔壁が掘削されて中間拡径部が形成される。
図2の各側壁板30の下端部には、先端部が下方内側に向うように、アーム部としてのアーム部材34が着脱可能に取付けられている。対向するアーム部材34の長さは同じであり、隣り合うアーム部材34同士の長さは異なっている。すなわち、対向する1組のアーム部材34の長さは長く、対向するもう1組のアーム部材34の長さは短くなっている。これにより、拡径掘削用バケット22のバケット径が最小のときに、長い方のアーム部材34は交差し、短い方のアーム部材34は、この交差した長い方のアーム部材34にぶつからないようになっている。図5に示すように、側壁板30の下部30Bは、鉛直線62と略平行な鉛直面を形成しており、側壁板30の上部30Aは、鉛直線62に対して角度Eだけ内側に傾斜している。この角度Eが、中間拡径部56を掘削した際の中間拡径部上部の傾斜面56Aの傾斜角度になる。
また、アーム部材34は、鉛直線62に対して角度Fだけ内側に傾斜するように、側壁板30の内側に設けられたブラケット74の下端部に固定されている。この角度Fが、中間拡径部56を掘削した際の中間拡径部下部の傾斜面56Cの傾斜角度になる。
図5のアーム部材34を外側から見た正面図の図6(A)に示すように、アーム部材34にも、側壁板30の掘削ビット32と同様の掘削ビット58が上下方向に等間隔で配設されている。
掘削ビット58は、図6(A)のB−B断面図の図6(B)に示すように、中間拡径部下部の傾斜面56C側に尖った形状をしている。よって、旋回装置14によりケリーバ12を介して固定ポスト24を矢印Mの方向に回転させ、側壁板30と共にアーム部材34が外側に移動することにより杭孔20の孔壁が削られ、中間拡径部下部の傾斜面56Cが形成される。
アーム部材34は、図7に示す構造によって側壁板30の下端部に着脱可能に取り付けられる。アーム部材34の上端部に設けられたブラケット160には、ボルト163の貫通孔161A、161Bが形成されている。
側壁板30の内側に設けられたブラケット74にも、ボルト163の貫通孔162A、162Bが形成されており、アーム部材34を側壁板30の下端部に装着してブラケット160をブラケット74に添わせたときに、貫通孔162A、162Bは貫通孔161A、161Bと一致する。
そして、図7の右図に示すように、貫通孔161A、161Bと貫通孔162A、162Bの位置を合わせてボルト163を通し、ナットで締め付けてアーム部材34を固定する。
なお、このアーム部材34の取付け構造は、アーム部材34の着脱が容易にでき、かつ杭孔の孔壁をアーム部材34が掘削できる程度にしっかりと固定できるものであればよく、図8のような構造にしてもよい。
図8では、アーム部材34の上端部に設けられたブラケット164に、ボルト168の貫通孔165A、165Bが上向きに形成されている。
ブラケット74の下端部に設けられたブラケット166にも、ボルト168の貫通孔167A、167Bが下向きに形成されており、アーム部材34を側壁板30の下端部に装着したときに、貫通孔167A、167Bは貫通孔165A、165Bと一致する。
そして、図8の右図に示すように、貫通孔165A、165Bと貫通孔167A、167Bの位置を合わせてボルト168を通し、ナット169で締め付けてアーム部材34を固定する。
側壁板30及びアーム部材34は、図9に示すリンク機構66によって拡縮される。
図9(C)に示すように、ケリーバ12の下端部が、軸部材60上の連結ブラケット26にピン連結されている。そして、この軸部材60は、拡径掘削用バケット22の回転軸としての角筒状の固定ポスト24の上端部に接続されている。
固定ポスト24の外側には、角筒状の昇降ポスト64が設けられている。昇降ポスト64の長さは固定ポスト24の長さよりも短く、固定ポスト24の長さ方向に沿って昇降ポスト64がスライドするように、昇降ポスト64の内側に固定ポスト24が挿入されている。
昇降ポスト64の左右には、ブラケット68が固定されており、ブラケット68の上部には、ブラケット72がさらに外側に食み出るように設けられている。そして、油圧シリンダ70の中央部は、このブラケット72に回転可能に連結されている。
リンク部材76の両端は、ブラケット68の外側中央部と、側壁板30の内側に設けられたブラケット74の上部にそれぞれ回転可能に連結されており、このリンク部材76と平行になるように設けられたリンク部材78の両端は、ブラケット68の下部と、ブラケット74の下部に回転可能に連結されている。
リンク部材80の両端は、リンク部材76、78の略中央部にそれぞれ回転可能に連結されており、リンク部材82の両端は、リンク部材80の下端部と、固定ポスト24の下端部に設けられたブラケット84にそれぞれ回転可能に連結されている。
略三角形状のブラケット90はリンク部材78と連動するように、その下辺がリンク部材78に固定されており、ブラケット90の頂部連結部92は、油圧シリンダ70のピストンロッド86の先端部と回転可能に連結されている。
ここで、図9(A)に示すような、拡径掘削用バケット22のバケット径が最小の状態において、油圧シリンダ70を作動させ、油圧シリンダ70のピストンロッド86を矢印Pの方向に縮めるとブラケット90の頂部連結部92は、リンク部材78のブラケット68との連結部78Aを回転中心として矢印Qの方向に回転する。
すると、このブラケット90の動きに連動して、リンク部材76、78が矢印Rの方向に旋回し、これに伴って昇降ポスト64は矢印Sの方向へ、側壁板30は矢印Tの方向へ移動し、図9(B)の状態になる。
さらに、油圧シリンダ70のピストンロッド86を矢印Pの方向に縮めると、最終的には図9(C)に示すような、拡径掘削用バケット22のバケット径が最大の状態になる。
このように、図9(A)、(B)、(C)の順に動作することによって拡径掘削用バケット22は拡径し、また、この逆の動作手順(図9(C)、(B)、(A))によって拡径掘削用バケット22は縮径する。
このようなリンク機構66によって、油圧シリンダ70がリンク機構66内にコンパクトに収めることができるので、大きな拡径率(孔杭の拡径部と軸部との断面積の比率)の中間拡径部を孔杭の中間に形成することができる。
従来の拡径掘削用バケットで掘削できるのは、3.2以下程度の拡径率の拡径部であったが、本実施形態の拡径掘削用バケット22においては、リンク機構66を用いることによって最大で約5.0程度の拡径率の拡径部の掘削を行うことができる。
また、油圧シリンダ70をリンク機構66に組込んだ構造としたことで、拡縮バケット部38の高さを低く抑えることができるので、拡径掘削用バケット22の機械高さを小さくすることができる。
また、側壁板30の支持アームとなるリンク部材78を油圧シリンダ70で直接動作させるので、伝達力のロスがなく、機械効率を向上させることができる。
なお、図9では2つの油圧シリンダ70のみが示されているが、4つの側壁板30のそれぞれに油圧シリンダ70及びリンク機構66が設けられている。すなわち、拡縮バケット部38には4つの油圧シリンダ70が搭載されている。
図2に示すように、スタビライザ部としての下部スタビライザ部40は、吊り支柱94と、桶状容器としての土砂回収用バケット96とによって構成されている。土砂回収用バケット96は、底板100を有する円筒状の容器であり、杭孔20の孔壁に外周が接触する大きさになっている。すなわち、土砂回収用バケット96の外径は、土砂回収用バケット96の側壁面と杭孔20の孔壁の間に若干の隙間が形成される程度に、杭孔20の径よりも小さくなっている。
図10に示すように、スタビライザ部としての下部スタビライザ部40は、回転軸としての固定ポスト24の下端部に着脱可能に設けられている。4つの吊り支柱94の上端部が、固定ポスト24の下端部に着脱可能に取付けられた連結手段としての接続部材98の下面に接合され、下方外側に向かって四方に広がっている。吊り支柱94の下端部は、土砂回収用バケット96の側壁上部に接合されている。
図11に示すように、下部スタビライザ部40の接続部材98上部は、円筒状の嵌入部170となっている。また、嵌入部170にはボルト174の貫通孔171が形成されている。
回転軸としての固定ポスト24下部には、嵌入部170の嵌入孔172が設けられている。また、固定ポスト24下部には、嵌入部170が嵌入孔172に完全に嵌入されたときの貫通孔171と一致するように、貫通孔173が形成されている。
そして、図11の右図に示すように、貫通孔171と貫通孔173の位置を合わせてボルト174を通し、ナット175で締め付けて嵌入部170を固定ポスト24に連結する。このとき、土砂回収用バケット96の開口面はアーム部材34の下端に位置するように設けられる(図9参照のこと)。すなわち、土砂回収用バケット96の側壁部127の高さは、アーム部材34の下端に開口面が位置する第1の高さXになっている。なお、土砂回収用バケット96は、図9に示すように、土砂回収用バケット96の開口面が常にアーム部材34の先端部よりも低い位置になるように取付けられていればよい。
なお、この下部スタビライザ部40の取付け構造は、固定ポスト24下端部への着脱が容易にでき、かつ固定ポスト24下端部にしっかりと下部スタビライザ部40を固定できるものであればよく、ピンによって固定ポスト24と嵌入部170を連結してもよい。
図10に示すように、土砂回収用バケット96の蓋となる円盤状の底板100は、土砂回収用バケット96の側壁部127の下部の内側に設けられたヒンジ102によって矢印Vの方向に開閉可能に連結されている。この開閉によって、土砂回収用バケット96に積載された掘削土砂を地上にて排出する。
土砂回収用バケット96のヒンジ102と対向する側壁付近には、底板100のロック機構104が設けられている。土砂回収用バケット96の側壁下部及び上部に設けられ、内側に張出した上部サポート106及び下部サポート108に、丸棒110が回転可能に支持されて、蓋をした状態の底板100の水平面に対して略垂直に立設している。
丸棒110の上端部にはハンドル112が設けられており、下端部にはロック部材114が設けられている。ハンドル112は、丸棒110の上端部に設けられたフランジ111とハンンドル112の下端部に設けられたフランジ109とをボルト等によって接続することによって、丸棒110の上端部に接続されている。
ロック部材114の下部は、図12に示すような、傾斜面114A、114Bを有する形状をしている。
土砂回収用バケット96を上から見た図13に示すように、ハンドル112の略中央部と、上部サポート106から張出したブラケット120との間にはスプリング118が設けられており、矢印Wと逆の方向にハンドル112を付勢している。このとき、上部サポート106の上面に固定されたストッパー部材122にハンドル112が当たるので、ハンドル112はこの位置よりもさらにブラケット120側に回ることはない。さらに、上部サポート106の上面には、ハンドル112が矢印Wの方向に回って符号112Aの位置に達したときに当たるストッパー部材126が固定されている。
底板100には、ロック部材114の平面外形(幅d)よりも若干大きい開口部124(幅d)が形成されている。この開口部124は、ハンドル112を矢印Wの方向に回しストッパー部材126に当たったときにロック部材114と嵌合する位置に形成されている。
図13(A)では、ロック部材114の角部と、これに対向するロック部材114のもう一方の角部との間の長さdが開口部124の幅dよりも大きくなっているので、ロック部材114が開口部124の縁に引掛かりロックされる。これによって、底板100が閉まった状態を維持する。
スプリング118に抗してハンドル112を矢印Wの方向に回すと、図13(B)に示すように、ロック部材114が開口部124と嵌合する位置(d>d)に配置されてロックが解除される。
そして、土砂の重量によってヒンジ102を回転中心にして矢印Yの方向に底板100が回転して開放される。
開放した底板100を閉じるには、底板100を外力によって押し上げるか、又は拡径掘削用バケット22を地上に下ろせば、装置の自重によって底板100が閉じられる。
底板100を下から見た平面図の図14に示すように、底板100が押し上げられると開口部124の縁部128の裏側がロック部材114の傾斜面114A、114B、と接し(図14(A)参照のこと)、さらに底板100を押し上げることによってロック部材114が、丸棒110の中心を軸としてスプリング118に抗して回転し(図14(B)参照のこと)、ついにロック部材114が開口部124と嵌合する位置になったときに(図14(C)参照のこと)開口部124がロック部材114を通過して底板100が閉じられる。
開口部124を通過したロック部材114は、スプリング118の付勢力により図14(A)と同じ位置に戻り底板100が自動的にロックされる(図14(D)参照のこと)。
図15、16には、下部スタビライザ部40の土砂回収用バケット96の側壁部127上に側壁部129を設けて土砂回収用バケット96の側壁を高くした拡径掘削用バケット23が示されている。
図17に示すように、側壁部129は、円管を3層積み重ねて形成されている。円管は、この円管を二分割した側壁部材116を分解可能に接合したものであり、側壁部材116は、円弧状の平断面を有している。側壁部129の外径及び内径は、土砂回収用バケット96の側壁部127の外径及び内径と等しくなっている。
なお、図17(A)は、側壁部材116が接合されて、土砂回収バケット96の側壁部127上に側壁部129が形成されている状態を示し、図17(B)は、側壁部129が側壁部材116に分解された状態を示している。図17(A)、(B)共に、上の図が平面図、下の図が正面図である。
側壁部材116と土砂回収用バケット96の側壁部127との接合や、側壁部材116同士の接合は、バケット側壁129によって形成されたバケットに土砂を積載したときに、バケット側壁129が崩壊しない接合強度を確保でき、かつ隙間なく接合できる接合方法であればよく、ボルト接合や嵌合構造等を用いてもよい。
また、側壁部材116は、円管を何分割した部材であってもよいし、側壁部材116の高さや側壁部材116の積層数は適宜決めればよい。
そして、図15、16に示すように、側壁部127及び側壁部129によって形成された土砂回収用バケット96の側壁は、側壁板30の下端に開口面が位置する第2の高さXになっている。
このように、拡径掘削用バケット23における、側壁部127及び側壁部129によって形成された土砂回収用バケット96の側壁は、拡径掘削用バケット22における、側壁部127のみによって形成された土砂回収用バケット96の側壁の高さよりも高さが高くなっており、側壁部127のみによって形成された土砂回収用バケット96よりも多くの掘削土砂を積載することができる。
また、土砂回収用バケット96上に土砂回収用バケット96の側壁の一部となる側壁部材116を着脱することによって、土砂回収用バケット96の側壁を第1の高さXと第2の高さXに変更することができる。
拡径掘削用バケット23では、図16に示すように、ロック機構104の丸棒110は短いので、上端部が側壁板30上端部の上方に突出する長さの丸棒113を接続して、この丸棒113の上端部にハンドル112を設けている。丸棒113は、丸棒110の上端部に設けられたフランジ111と丸棒113の下端部に設けられたフランジ115とをボルト等によって接続することによって、丸棒110の上端部に接続されている。ロック機構104の他の構成は、図10で示したものと同じなので説明を省略する。
図18には、図1の杭孔20に中間拡径部56を形成した杭孔154において、この底部に拡底部を形成する掘削機130の全体構成が示されている。
杭孔の底部に配置された拡径掘削用バケット132以外の構成は、図1とほぼ同様であるので、同符号を付すると共に、適宜省略して説明する。
ケリーバ12の下端部は、拡径掘削用バケット132の固定ポスト24の上端部に接続された軸部材60上の連結ブラケット26にピン連結されている。
杭孔154は、拡径掘削されていない軸部54と拡径掘削用バケット22によって掘削された中間拡径部56とによって構成されている。また、この中間拡径部56は、上部傾斜面56A、鉛直面56B、下部傾斜面56Cからなり、杭孔154の中間2箇所に形成されている。
拡径掘削用バケット132は、図19に示すように、上部スタビライザ部36、拡縮バケット部136、底蓋部138によって構成され、上からこの順に配置されている。
拡縮バケット部136は、図2の拡縮バケット部38のアーム部材34と下部スタビライザ部40を外して、着脱可能な底蓋部138を取付けたものである。
そして、図20に示すような、図9と同様の動作手順で、側壁板30の拡縮が行われる。
図21に示すように、固定ポスト24の下端部に支持部材140が着脱可能に固定されている。そして、支持部材140の端部に設けられたヒンジ142に底蓋部材としての底蓋144が回転可能に連結されている。
図22に示すように、回転軸としての固定ポスト24の内側には、固定ポスト24の内壁137に沿ってスライド可能な角筒状の内筒134が設けられている。また、この内筒134には、固定ポスト24に形成された貫通孔173と一致する貫通孔135が形成されている。そして、貫通孔173と貫通孔135との位置を合わせた状態でボルト174を通し、ナット175で締め付けて内筒134を固定ポスト24に固定している。
内筒134の上端部付近にもボルト174の貫通が可能な貫通孔143が形成されている。また、内筒134の下端部付近にはボルト145の貫通が可能な貫通孔147が形成されている。
支持部材140の上面には、内筒134を嵌入可能な角筒状の支持部139が設けられており、支持部139の上端部付近にはボルト145の貫通が可能な貫通孔149が形成されている。
そして、図22の右図に示すように、支持部139に内筒134の下端部を嵌入して、
貫通孔147と貫通孔149の位置を合わせてボルト145を通し、ナット151で締め付けて内筒134を固定ポスト24に連結する。
このようにして、回転軸としての固定ポスト24に底蓋部138が着脱可能に取付けられている。このとき、底蓋144の上面が側壁板30の下端に位置するように、底蓋144は固定ポスト24の下端部に取り付けられている(図21参照のこと)。
また、底蓋144の径は、杭孔154の径とほぼ等しく、側壁板30の内壁が底蓋144の外周に接触した状態で、この側壁板30の外周が杭孔154の孔壁に接触する大きさになっている。
図21に示すように、板状の底蓋144は下方向に尖った円錐形状になっており、ヒンジ142によって矢印Kの方向に開閉可能になっている。これによって、拡縮バケット部136に積載された掘削土砂を地上にて排出する。
ヒンジ142は底蓋144の直径方向において、約1/4ほど内側の位置に設けられているので、底蓋144を開放したときに、拡縮バケット部136の下端から地上面までの距離を小さくすることができる。よって、土砂排出時の拡径掘削用バケット132の機械高を小さくすることができるので、掘削土砂の排出を容易にするために底蓋を大きくした場合でも拡径掘削用バケット132の機械高は大きくならない。
底蓋144を下から見た平面図である図23に示すように、底蓋144には底蓋144の中心に対して対称な位置に2つの略扇状の開口部146が形成されている。開口部146の回転方向端部の一方には長尺な掘削ビット148が取付けられており、さらに、底蓋144には、開口部146を底蓋144の上面側から覆う開閉板150が設けられている。
開閉板150は、図23のC−C断面図である図24に示すように、掘削ビット148に対向するように開口部146の縁部付近に設けられたヒンジ152によって矢印Gの方向に開閉する。
掘削ビット148は下方に尖った形状をしている。よって、旋回装置14によりケリーバ12を介して固定ポスト24を矢印Mの方向に回転させ、側壁板30と共に底蓋144を回転させると、孔底に溜まっている掘削土砂、及び掘削ビット148によって掘削された土砂は、矢印Jの方向に流れ、これによって底蓋144上に掘削土砂が集められる。
土砂排出のために拡径掘削用バケット132をクレーン16で地上へ持ち上げる際には、開閉板150上に載った土砂の自重で開閉板150は閉まった状態になるので、開口部146から土砂がこぼれ落ちることはない。
図25には、図21の拡縮バケット部136の固定ポスト24に固定されていた内筒134を下方へ伸ばして、図17で示した側壁部129を底蓋144上に設けた拡径掘削用バケット133が示されている。そして、支持部材140によって、側壁部129の下層に配置された側壁部材116が支持されている(不図示)。
下方へ伸ばされた内筒134は、内筒134の上端部付近に形成された貫通孔143と固定ポスト24に形成された貫通孔173との位置を合わせてボルト174を通し、ナット175で締め付けることによって固定ポスト24に固定されている(図22参照のこと)。
側壁部129の外径は、底蓋144の外径とほぼ等しくなっている。
このようにして、側壁部129の開口面が側壁板30の下端に位置するように、底蓋144は固定ポスト24の下端部に取り付けられている(図25参照のこと)。
拡径掘削用バケット133では、図25に示すように、上端部が側壁板30上端部の上方に突出する長さの丸棒121を接続して、この丸棒121の上端部にハンドル112を設けている。丸棒121は、丸棒119の上端部に設けられたフランジ117と丸棒121の下端部に設けられたフランジ125とをボルト等によって接続することによって、丸棒119の上端部に接続されている。また、ハンドル112は、丸棒121の上端部に設けられたフランジ123とハンドル112の下端部に設けられたフランジ109とをボルト等によって接続することによって、丸棒121の上端部に接続されている。
次に、本発明の実施形態に係る拡径掘削用バケットの作用及び効果について説明する。
図26〜30の施工手順図に示すように、本実施形態では、まず中間拡径部の掘削を行い、最後に拡底部の掘削を行う。
まず、図26(A)においては、事前にケリーバ用のドリリングバケットによって地盤28を掘削して孔杭20を形成する。そして、孔壁の倒壊を防止するベントナイト等の安定液Lで満たされた孔杭20内の中間拡径部を形成する位置に拡径掘削用バケット23を配置する。このときの拡径掘削用バケット23には、下部スタビライザ部40が設けられ、この下部スタビライザ40の土砂回収用バケット96上に側壁部129が設けられている(以降、土砂回収用バケット96と側壁部129によって形成されたバケットを大バケット153と記載する)。また、拡径掘削用バケット23には、アーム部材34は取り付けられていない。
ここで、図3に示すように、拡径掘削用バケット23上部に設けられた上部スタビライザ部36は、杭孔20の孔壁とガイド部材42の間にわずかな隙間を残す程度に、スライド部材44をスライドさせてガイド部材42の位置を調整し、貫通孔50と貫通孔52が一致する位置で、2本のボルト48によって固定されている。また、全てのスライド部材44のスライド量は等しくなっている。
これにより、ガイド部材42が、杭孔20の孔壁に接触して、軸部材60に接続された固定ポスト24の中心を杭孔20の中心位置にガイドする。よって、上部スタビライザ部36により、回転軸となる固定ポスト24の中心が常に杭孔20の中心位置にあるので、下から上へ中間拡径部を掘削したときの真円度を高めることができる。
また、アーム部材34の下方にも下部スタビライザ部40が設けられている。この下部スタビライザ部40の土砂回収用バケット96の側壁面が、杭孔20の孔壁に接触して固定ポスト24の中心を杭孔20の中心位置にガイドする。よって、下部スタビライザ部40により、固定ポスト24の中心が常に杭孔20の中心位置にあるので、上から下へ中間拡径部を掘削したときの真円度を高めることができる。
次に、図26(B)においては、図9と同様の動作手順に従い、旋回装置14によりケリーバ12を介して固定ポスト24を矢印Mの方向に回転させながら側壁板30を外側に拡げていく。
このとき、側壁板30の掘削ビット32が杭孔20の孔壁を掘削し、中間拡径部56の上部傾斜面としての傾斜面56A及び鉛直面56Bが形成される。側壁板30に設けられた掘削ビット32によって掘削された土砂は、大バケット153に流れ込む(図9(C)の矢印Uを参照のこと)。このとき、土砂回収用バケット96及び側壁部129の側壁面と杭孔20の孔壁の間の隙間が小さい方が、この隙間からこぼれ落ちる土砂も少なくなるので、土砂回収用バケット96及び側壁部129の外径は杭孔20の径に出来るだけ近い長さであることが好ましい。
流れ込んだ掘削土砂で大バケット153が一杯になったら、図26(C)に示すようにクレーン16により拡径掘削用バケット23を地上に引上げて、下部スタビライザ部40の底板100を開放し、掘削土砂を排出する。
そして、図26(A)〜(C)の作業を適宜繰返し、中間拡径部56の傾斜面56A及び鉛直面56Bの形成が終了したならば、図27(D)に示すように、拡径掘削用バケット23の土砂回収用バケット96上の側壁部129を取外し、側壁板30の下端部にアーム部材34を取り付けて、拡径掘削バケット22の構成にする。
そして、図27(E)に示すように、孔杭20内の中間拡径部の傾斜面56Cを形成する位置に拡径掘削用バケット22を配置し、旋回装置14によりケリーバ12を介して固定ポスト24を矢印Mの方向に回転させながら側壁板30を外側に拡げていく。
このとき、アーム部材34の掘削ビット58が杭孔20の孔壁を掘削し、中間拡径部56の下部傾斜面56Cが形成される。アーム部材34の掘削ビット58によって掘削された土砂は、土砂回収用バケット96に流れ込む(図9(C)の矢印Uを参照のこと)。このとき、土砂回収用バケット96の側壁面と杭孔20の孔壁の間の隙間が小さい方が、この隙間からこぼれ落ちる土砂も少なくなるので、土砂回収用バケット96の外径は杭孔20の径に出来るだけ近い長さであることが好ましい。
流れ込んだ掘削土砂で土砂回収用バケット96が一杯になったら、図27(F)に示すようにクレーン16により拡径掘削用バケット22を地上に引上げて、下部スタビライザ部40の底板100を開放し、掘削土砂を排出する。
そして、図27(E)、(F)の作業を適宜繰返し、中間拡径部56の傾斜面56Cを形成する。
このように、中間拡径部56は、段階掘削によって行う。段階掘削とは、中間拡径部56を鉛直方向に複数回に分けて掘削する方法である。この段階掘削による中間拡径部56の掘削方法には、図31、32に示すような、上から下へ掘削する方法と、図33、34に示すような、下から上へ掘削する方法がある。どちらの方法を用いるかは、中間拡径部の形状、土質、拡縮回数等を考慮して適宜決めればよい。
図31(A)に示すように、まず、下部スタビライザ部40が設けられ、この下部スタビライザ部40の土砂回収用バケット96上に側壁部129を設けた拡径掘削用バケット23の径を最小にした状態で、クレーン16により拡径掘削用バケット23を所定の位置まで下ろして配置する。
次に、図31(B)に示すように、固定ポスト24、及び側壁板30を回転させながら、予定した中間拡径部上部の傾斜面56Aの位置まで側壁板30を拡げていく。この掘削が終わった後に、拡径掘削用バケット22の径を最小にした図31(A)の状態に戻し、次の掘削位置まで拡径掘削用バケット23を下ろす。
そして、この位置で、図31(B)のときと同じような掘削を行い(図31(C)参照のこと)、この手順(図31(B)、31(C))を繰返し、図31(D)の状態になる(側壁板30の下端が中間拡径部56の傾斜面56Cの上端部に達する)まで拡径掘削用バケット23を徐々に下方へ移動させて行き、中間拡径部56の傾斜面56A及び鉛直面56Bを形成する。
このように、中間拡径上中部形成工程(図28(A)〜(D))では、側壁板30の下端部にアーム部材34を取り付けたときのアーム部材34の下端に開口面が位置するように、固定ポスト24の下端部に土砂回収用バケット96を取り付けた状態を第1の状態とすると、この第1の状態の土砂掘削用バケット96の側壁をこの土砂掘削用バケット96の開口面が側壁板30の下端に位置するように高くした第2の状態で、アーム部材34が外された側壁板30を拡縮してこの側壁板30により中間拡径部56の傾斜面56A及び鉛直面56Bの形成を行う。
次に、図32(E)に示すように、土砂回収用バケット96上に設けられた側壁部129を取り外して、アーム部材34及び下部スタビライザ部40が設けられている拡径掘削用バケット22の径を最小にした状態で、アーム部材34の上端部が中間拡径部56の傾斜面56Cの上端部の高さに位置するように、クレーン16により拡径掘削用バケット22を下ろす。
次に、図32(F)に示すように、固定ポスト24、側壁板30、及びアーム部材34を回転させながら、予定した中間拡径部下部の傾斜面56Cの位置まで側壁板30を拡げていく。この掘削が終わった後に、拡径掘削用バケット22の径を最小にした図32(E)の状態に戻し、次の掘削位置まで拡径掘削用バケット22を下ろす。
そして、この位置で、図32(F)のときと同じような掘削を行い、この手順を繰返し、図32(G)の状態になる(中間拡径部56の傾斜面56Cの形成が完了する)まで拡径掘削用バケット22を徐々に下方へ移動させて行く。すなわち、アーム部材34によって、中間拡径部56下部に杭孔20の下方中心に向う傾斜面56Cを形成する。
このように、中間拡径下部形成工程(図29(E)〜(G))では、側壁板30の下端部にアーム部材34を取り付けたときのアーム部材34の下端に開口面が位置するように、固定ポスト24の下端部に土砂回収用バケット96を取り付けた状態を第1の状態とすると、この第1の状態で、側壁板30を拡縮してアーム部材34により中間拡径部56の傾斜面56Cの形成を行う。
よって、中間拡径部上部の傾斜面56Aは側壁板上部30Aの掘削ビット32によって掘削され、中間拡径部56の最も大きな径の部分の鉛直面56Bは側壁板下部30Bの鉛直な壁面に設けられた掘削ビット32によって削られ、中間拡径部56下部の傾斜面56Cはアーム部材34に設けられた掘削ビット58によって掘削される。
図33、34においては、図31、32とほぼ逆の手順で、下から上へ中間拡径部56を掘削していく。
なお、本実施形態では、掘削予定の位置まで一度に側壁板30及びアーム部材34を拡げたが、拡径掘削用バケット22を中間拡径部56の上下範囲に渡って上下に複数回往復させて、少しずつ拡径するような横分割の掘削を併用してもよい。
また、中間拡径部56は、杭孔20の必要な箇所に、必要な数だけ形成すればよい。
すべての中間拡径部56の掘削が終了したならば、図28(G)に示すように、拡径掘削用バケット22のアーム部材34及び下部スタビライザ部40を取り外し、固定ポスト24から下方へ内筒134を引き出してこの内筒134の下端部へ底蓋部138を取り付ける(図25参照のこと)。そして、この底蓋部138上に側壁部129を設けて拡径掘削用バケット133とし、拡径掘削用バケット133の径を最小にした状態でクレーン16によって杭孔の底部まで下ろす。
次に、図25(H)、(I)に示すように、固定ポスト24及び側壁板30を回転させながら、図20と同様の動作手順で拡底部158上部の拡底掘削を行う。側壁板30に設けられた掘削ビット32によって掘削された土砂は、底蓋144と側壁部129によって形成されたバケット(以降、中バケット155と記載する)に流れ込む。
次に、回収した土砂が、中バケット155の最大積載量に達したときに、側壁板30を内側に移動させて拡径掘削用バケット133の径を最小の状態にし、図29(J)に示すように、クレーン16にて拡径掘削用バケット133を地上に引上げて、底蓋100を開放し、掘削土砂を排出する。
土砂を地上に排出した後には、拡径掘削用バケット133を再び杭孔154の底部に下ろし、拡底掘削を行う。そして、図28(H)、(I)、図29(J)の作業を繰返して拡底部158上部を形成し、拡径掘削用バケット133に取り付けられた底蓋144の下面が杭孔154の底面付近に到達したときに、地上にて側壁部材116を取り外して、内筒134を固定ポスト24に引き込み、拡径掘削バケット132の構成にする(図21参照のこと)。
このように、拡底上部形成工程(図28(H)、(I)、図29(J))では、側壁板30の下端に開口面が位置するように、固定ポスト24を下方へ伸ばして底蓋144上に側壁部129を設けた状態で、側壁板30を拡縮してこの側壁板30により拡底部158の上部の形成を行う。
次に、図29(L)に示すように、拡径掘削用バケット132の径を最小にした状態でクレーン16によって杭孔の底部まで下ろす。
次に、図30(M)に示すように、固定ポスト24、側壁板30、及び底蓋144を回転させながら、図20と同様の動作手順で拡底部158下部の拡底掘削を行う。杭孔154の底部に溜まっている掘削土砂、及び底蓋144に設けられた掘削ビット148によって掘削された土砂は図23、24の矢印Jの方向に流れて底蓋144上に溜まる。
次に、回収した土砂が、拡径掘削用バケット132の最大積載量に達したときに、側壁板30を内側に移動させて拡径掘削用バケット132の径を最小の状態にし、図30(N)に示すように、クレーン16にて拡径掘削用バケット132を地上に引上げて、底蓋144を開放し、掘削土砂を排出する。そして、図30(M)、(N)の作業を繰返して拡底部158下部を形成し、図30(O)に示すような、多段に拡径された杭孔156を構築する。
このように、拡底下部形成工程(図29(L)、図30(M)、(N))では、側壁板30の下端に上面が位置するように固定ポスト24の下端部に底蓋144を取り付けた状態で、側壁板30を拡縮してこの側壁板30により拡底部158の下部の形成を行う。
図28(H)、(I)、図29(J)〜(L)、図30(M)〜(O)に示したように、拡底部158は中間拡径部56と同様に段階掘削によって行う。この段階掘削による拡底部158の掘削方法には、図35に示すような、上から下へ((A)から(D)へ)掘削する方法と、図36に示すような、下から上へ((A)から(D)へ)掘削する方法がある。どちらの方法を用いるかは、中間拡径部の形状、土質、拡縮回数等を考慮して適宜決めればよい。
なお、拡径掘削用バケット132の油圧シリンダ70は伸びる動作のときの方が大きなパワーを出力することができる。また、杭孔の孔壁を掘削する際の側壁板30の拡径動作よりも掘削土砂を中央に集める縮径動作の際に大きなパワーを必要とする。よって、リンク機構66は、油圧シリンダ70のピストンロッド86が伸びたときに側壁板30が縮径する機構なので、油圧シリンダ70を有効に作用させることができる。
これまで述べたように、本実施形態では、以下の(1)〜(3)の効果を得ることができる。
(1)拡径掘削用バケットに、下部スタビライザ部40及びアーム部材34が着脱可能なので、下部スタビライザ部40及びアーム部材34を外して、拡底掘削用の着脱可能な底蓋部138を取り付けることができる。これにより、1つの拡径掘削用バケットで中間拡径と拡底の両方の掘削を行うことができるので、施工機械の低コスト化を図ることができる。
(2)上部スタビライザ部36、下部スタビライザ部40、及び側壁部129により、回転する固定ポスト24の中心を杭孔の中心位置にガイドすることができるので、中間拡径部56や拡底部158の真円度を高めることができる。
また、側側壁部129は、孔壁に接触する周面積が大きいので、拡径掘削用バケットの回転をより安定させることができる。
(3)土砂回収用バケット96及び底蓋144を回転軸の下端部から取り外さないで、土砂回収用バケット96及び底蓋144の側壁の高さを変更することができる。よって、段取り替え作業が容易になり、作業の時間短縮を図ることができる。また、土砂回収用バケット96及び底蓋144の側壁の一部となる側壁部129を着脱することにより、簡易な方法で、土砂回収用バケット96及び底蓋144の側壁の高さを変更することができる。
また、中間拡径部56の形成においては、以下の(4)〜(8)の効果を得ることができる。
(4)アーム部材34が側壁板30の下端部に着脱可能に設けられているので、掘削予定の中間拡径部56下部の傾斜面に合ったアーム部材34を装着することによって、中間拡径部下部のさまざまな傾斜面の掘削に対応することができる。
(5)下部傾斜面を有する中間拡径部56を形成することができるので、掘削後の中間拡径部56下部の法尻の崩落を防止し、孔壁安定液中のスライム等が中間拡径部56下部に堆積しないようにすることができる。
(6)土砂回収用バケット96が設けられ、この土砂回収用バケット96上に側壁部129が設けられていない拡径掘削用バケット22の場合(土砂回収用バケットの側壁が第1の高さXのとき)には、アーム部材34によって掘削された孔壁の掘削物を土砂回収用バケット96が回収し、大バケット153を形成する拡径掘削バケット23の場合(土砂回収用バケットの側壁が第2の高さXのとき)には、側壁板30によって掘削された孔壁の掘削物を大バケット153が回収するので、杭孔の底部に落ちて溜まる掘削物をなくす、又は少なくすることができる。
よって、縦孔の底部に溜まった掘削物を地上に排出するために土砂回収用バケットを昇降させる作業をなくす、又は回収用バケットを昇降させる回数を減らすことができる。
(7)中間拡径部56下部の傾斜面56Cを掘削するときには、拡径掘削用バケット22の構成(土砂回収用バケットの側壁を第1の高さX)にして、アーム部材34を取り付けられるようにし(第1の状態)、それ以外の掘削のときには、1回の掘削ステップで多くの掘削物を回収することができるように、大バケット153を形成する拡径掘削用バケット23の構成(土砂回収用バケットの側壁を第2の高さX)にする(第2の状態)。
これによって、中間拡径部56の傾斜面56Cを形成することができると共に、地上に掘削物を排出するための拡径掘削用バケットの昇降回数を減らすことができ、施工効率が向上する。
(8)土砂回収用バケット96の側壁の高さを変更しても拡径掘削用バケットに対する土砂回収用バケット96の底面の鉛直方向の位置は変わらない。よって、大バケット153を形成したときの拡径掘削用バケット23の機械高さ(図37(B)参照のこと)を、アーム部を取り付けて土砂回収用バケット96上に側壁部129を設けた(土砂回収用バケットの側壁を第1の高さXにした)ときの拡径掘削用バケット22の機械高さ(図37(C)参照のこと)程度に抑えることが可能になる。
よって、土砂回収用バケットの側壁を第1の高さXにした拡径掘削用バケット22を懸架する掘削機本体(例えば、クレーン)によって、大バケット153を形成した拡径掘削用バケット23を地上に引き上げることができる。
拡翼部の下端部にアーム部材34を設けた状態で側壁の高い土砂回収用バケットを設けると、拡径掘削用バケットの機械高さHは高すぎてしまうか(図37(A)参照のこと)、又は土砂回収用バケットにアーム部材34が干渉してしまう(図37(C)参照のこと)。
また、拡底部158の形成においては、以下の(9)の効果を得ることができる。
(9)拡底部の上部を形成するときには1回の掘削ステップで多くの掘削物を回収することができるように底蓋144上に側壁部129を設け、拡底部の下部を形成するときには、側壁部129を外して底蓋144のみにする。これによって、拡底部の下部を形成できると共に、地上に掘削物を排出するための拡径掘削用バケットの昇降回数を減らすことができ、施工効率が向上する。
このように、本実施形態の拡径掘削用バケット22、23、132、133を用いることによって、杭孔に中間拡径部や拡底部を形成することができるので、この杭孔に杭を構築したときに中間拡径部や拡底部が地中でネジ山のような働きをして周囲の地盤から大きな鉛直支持力と引抜抵抗力を得ることができる。そして、杭の径を小さくしても十分な鉛直支持力と引抜抵抗力が得られるので、建設副産物となる掘削土や杭施工時に使用する孔壁安定液を削減でき、環境負荷低減を図ることができる。
さらに、杭の材料であるコンクリートや鉄筋を削減することができるので、コスト低減や工期短縮を図ることができる。高強度コンクリートは、杭自体の強度を上げることができるので、高拡径率の中間拡径部や拡底部を有する杭の材料として適している。
なお、本実施形態では、中間拡径部56の掘削を行った後に拡底部158の掘削を行った例を示したが、これに限らずに、拡底部158の掘削を行った後に中間拡径部56の掘削を行ってもよい。中間拡径部の掘削を行った後に拡底部の掘削を行う場合、杭孔の底部に溜まった掘削土砂を最後にまとめて回収することができる。
また、事前にケリーバ用のドリリングバケットによって地盤28を掘削して孔杭20のすべてを形成した後に中間拡径部56及び拡底部158を掘削する例を示したが、孔杭を段階的に掘り進めながら、中間拡径部を掘削するようにしてもよい。すべての孔杭を形成した後に中間拡径部及び拡底部を掘削する方が、掘削が完了した中間拡径部を掘削用バケットが通過する回数を減らすことができるので、掘削が完了した中間拡径部の法尻等の崩落を防ぐことができる。
また、杭孔20は、拡径掘削用バケット23、132、133によって掘削してもよい。
また、4つの側壁板30を設けた例を示したが、側壁板30は分割できるように2つ以上で構成されていればよい。側壁板30が2つの場合、拡縮する力が2方向に偏ってしまって十分な真円度の確保が難しく、また、側壁板30を多くすると構造が複雑になり多くの油圧シリンダを必要とするので、側壁板30は4つとするのが好ましい。
また、掘削ビット32、58、148は、地盤を掘削できるものであればよく、大きさや配置等については、必要に応じて適宜決めればよい。
また、底板100の開閉を行うヒンジ102は、土砂回収用バケット96の側壁下部の内側に設けられているが、構造的に可能であれば、底蓋144のようにヒンジをさらに内側に入った位置に設けてもよい。これにより、底板100を開放したときに、土砂回収用バケット96の下端から地上面までの距離を小さくすることができるので、掘削土砂を排出し易くするために大きな底板100を用いた場合においても、土砂排出時の拡径掘削用バケット22、23の機械高は大きくならない。
また、拡縮バケット部38は、下部スタビライザ部、アーム部、及び底蓋部が着脱可能に取付けられ、拡翼部が拡縮するものであればよく、リンク機構66を用いたものでなくてもよい。
また、拡径掘削用バケット22は、掘削予定の中間拡径部下部の傾斜面に合ったアーム部材34を装着することによって、中間拡径部下部のさまざまな傾斜面の掘削に対応することができるものであるが、中間拡径部下部の傾斜面の傾斜角は45度程度であることが施工及び構造的に好ましい。
また、杭孔20の中間の2箇所に中間拡径部56を形成した例を示したが、中間拡径部の配置や数は、杭に求められる鉛直支持性能等に応じて適宜決めればよい。
また、油圧シリンダ70は、ピストンロッド86に相当する部材を伸縮する装置であればよい。
また、上部スタビライザ部36は、拡径掘削用バケット22、23、132、133の回転軸を杭孔の中心位置にガイドできるものであれば、どのような形状でもよく、拡径部の十分な真円度が得られる掘削が可能であれば上部スタビライザ部36はなくてもよい。
また、本実施形態では、土砂回収用バケットの側壁の一部となる側壁部129を着脱することによって土砂回収用バケットの側壁の高さを変更する例を示したが、土砂回収用バケットの側壁の高さを変えることができる方法であればよく、例えば、図38に示すような伸縮式の側壁157を用いてもよい。このようにすれば、土砂回収用バケットの側壁を低くした場合においても、縮められた分の側壁は土砂回収バケット96の側壁部127中に収納されるので、側壁を仮置きするヤードを現場に確保しなくてよい。
以上、本発明の実施形態について説明したが、本発明はこうした実施形態に何等限定されるものでなく、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。
本発明の実施形態に係る掘削機を示す概略図である。 本発明の実施形態に係る拡径掘削用バケットを示す斜視図である。 本発明の実施形態に係る上部スタビライザ部を示す平面図である。 図2のA−A断面図である。 本発明の実施形態に係る拡径掘削用バケットを示す正面図である。 本発明の実施形態に係るアーム部材を示す正面図及び断面図である。 本発明の実施形態に係るアーム部材の着脱方法を示す説明図である。 本発明の実施形態に係るアーム部材の着脱方法を示す説明図である。 本発明の実施形態に係る拡径掘削用バケットの拡縮動作を示す説明図である。 本発明の実施形態に係る下部スタビライザ部を示す正面図である。 本発明の実施形態に係る下部スタビライザ部の着脱方法を示す説明図である。 本発明の実施形態に係る下部スタビライザ部のロック部材を示す斜視図である。 本発明の実施形態に係る下部スタビライザ部のロック機構を示す説明図である。 本発明の実施形態に係る下部スタビライザ部のロック機構を示す説明図である。 本発明の実施形態に係る拡径掘削用バケットを示す斜視図である。 本発明の実施形態に係る下部スタビライザ部を示す正面図である。 本発明の実施形態に係る側壁部を示す説明図である。 本発明の実施形態に係る掘削機を示す概略図である。 本発明の実施形態に係る拡径掘削用バケットを示す斜視図である。 本発明の実施形態に係る拡径掘削用バケットの拡縮動作を示す説明図である。 本発明の実施形態に係る底蓋部を示す正面図である。 本発明の実施形態に係る底蓋部の着脱方法を示す説明図である。 本発明の実施形態に係る底蓋部を示す平面図である。 本発明の実施形態に係る拡径掘削用バケットの土砂回収方法を示す説明図である。 本発明の実施形態に係る拡径掘削用バケットを示す正面図である。 本発明の実施形態に係る拡径掘削用バケットの施工手順を示す説明図である。 本発明の実施形態に係る拡径掘削用バケットの施工手順を示す説明図である。 本発明の実施形態に係る拡径掘削用バケットの施工手順を示す説明図である。 本発明の実施形態に係る拡径掘削用バケットの施工手順を示す説明図である。 本発明の実施形態に係る拡径掘削用バケットの施工手順を示す説明図である。 本発明の実施形態に係る中間拡径部の掘削方法を示す説明図である。 本発明の実施形態に係る中間拡径部の掘削方法を示す説明図である。 本発明の実施形態に係る中間拡径部の掘削方法を示す説明図である。 本発明の実施形態に係る中間拡径部の掘削方法を示す説明図である。 本発明の実施形態に係る拡底部の掘削方法を示す説明図である。 本発明の実施形態に係る拡底部の掘削方法を示す説明図である。 本発明の実施形態に係る拡径掘削用バケットの機械高さを示す説明図である。 本発明の実施形態に係る側壁部の変形例を示す説明図である。 従来の拡底杭を示す概略図である。 従来の中間拡径杭を示す概略図である。 従来の分割バケット型回転掘削装置を示す概略図である。
符号の説明
16 クレーン(掘削機本体)
20、154 杭孔(縦孔)
22、23 拡径掘削用バケット
24 固定ポスト(回転軸)
30 側壁板(拡翼部)
34 アーム部材(アーム部)
56 中間拡径部(拡径部)
56C 傾斜面
96 土砂回収用バケット(桶状容器)
144 底蓋(底蓋部材)
158 拡底部
第1の高さ
第2の高さ

Claims (5)

  1. 掘削機本体に懸架されて回転する回転軸に設けられ、拡縮して縦孔の孔壁を掘削し、前記縦孔に拡径部を形成する拡翼部と、
    前記拡翼部の下端部に着脱可能に取り付けられ、前記拡径部の下部に前記縦孔の下方中心に向う傾斜面を形成するアーム部と、
    前記回転軸の下端部に着脱可能に取り付けられ、前記縦孔の孔壁に外周が接触する大きさの桶状容器と、
    を有し、
    前記桶状容器の側壁は、
    前記アーム部の下端に開口面が位置する第1の高さと、
    前記拡翼部の下端に開口面が位置する第2の高さと、
    に変更可能であることを特徴とする拡径掘削用バケット。
  2. 前記桶状容器の側壁は、該側壁の一部を着脱することによって高さの変更が可能であることを特徴とする請求項1に記載の拡径掘削用バケット。
  3. 前記桶状容器の側壁は、該側壁を伸縮させることによって高さの変更が可能であることを特徴とする請求項1に記載の拡径掘削用バケット。
  4. 縦孔の孔壁を掘削して前記縦孔の中間部に中間拡径部を形成する中間拡径部の掘削方法において、
    掘削機本体に懸架されて回転する回転軸に設けられた拡翼部の下端部にアーム部を取り付け、かつ開口面が前記アーム部の下端に位置するように桶状容器を前記回転軸の下端部に取り付けた第1の状態で、前記拡翼部を拡縮して前記アーム部により前記中間拡径部の下部傾斜面を形成する中間拡径下部形成工程と、
    前記第1の状態の前記桶状容器の側壁を該桶状容器の開口面が前記拡翼部の下端に位置するように高くした第2の状態で、前記アーム部が取り外された前記拡翼部を拡縮して該拡翼部により前記中間拡径部の上部傾斜面及び鉛直面の形成を行う中間拡径上中部形成工程と、
    を有し、
    前記桶状容器は、前記縦孔の孔壁に外周が接触する大きさであることを特徴とする中間拡径部の掘削方法。
  5. 縦孔の孔壁を掘削して前記縦孔の底部に拡底部を形成する拡底部の掘削方法において、
    掘削機本体に懸架されて回転する回転軸に設けられた拡翼部の下端に上面が位置するように前記回転軸の下端部に底蓋部材を取り付けた状態で、前記拡翼部を拡縮して該拡翼部により前記拡底部の下部を形成する拡底下部形成工程と、
    前記拡翼部の下端に開口面が位置するように、前記回転軸を下方へ伸ばして前記底蓋部材上に側壁を設けた状態で、前記拡翼部を拡縮して該拡翼部により前記拡底部の上部を形成する拡底上部形成工程と、
    を有し、
    前記底蓋部材は、前記縦孔の孔壁に外周が接触する大きさであることを特徴とする拡底部の掘削方法。
JP2007170323A 2007-06-28 2007-06-28 拡径掘削用バケット、中間拡径部の掘削方法、及び拡底部の掘削方法 Active JP4769768B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007170323A JP4769768B2 (ja) 2007-06-28 2007-06-28 拡径掘削用バケット、中間拡径部の掘削方法、及び拡底部の掘削方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007170323A JP4769768B2 (ja) 2007-06-28 2007-06-28 拡径掘削用バケット、中間拡径部の掘削方法、及び拡底部の掘削方法

Publications (2)

Publication Number Publication Date
JP2009007836A JP2009007836A (ja) 2009-01-15
JP4769768B2 true JP4769768B2 (ja) 2011-09-07

Family

ID=40323188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007170323A Active JP4769768B2 (ja) 2007-06-28 2007-06-28 拡径掘削用バケット、中間拡径部の掘削方法、及び拡底部の掘削方法

Country Status (1)

Country Link
JP (1) JP4769768B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115030170B (zh) * 2022-06-06 2023-12-12 中铁十二局集团有限公司 一种钻孔桩塌孔回填施工方法及回填辅助装置
CN117868802B (zh) * 2024-02-01 2024-06-07 菏泽市建设工程勘察院 一种岩土工程勘察钻孔水位测量仪

Also Published As

Publication number Publication date
JP2009007836A (ja) 2009-01-15

Similar Documents

Publication Publication Date Title
JP6144542B2 (ja) 中堀掘削機
JP6099955B2 (ja) 中堀掘削機
JP2007291850A (ja) 地中施工杭を作るための掘削装置および方法
KR920005499B1 (ko) 분할 버킷형 회전 굴착장치
CN102425372B (zh) 振动钻进式冲挖钻机
AU2012200469B2 (en) Boom sheave with tubular reinforcing members
JP4667309B2 (ja) 拡径掘削用バケット
JP4296450B1 (ja) 土留め体設置回収式基礎縦杭施工システム
JP4949756B2 (ja) 拡径掘削用バケット
JP4769767B2 (ja) 拡径掘削用バケット、中間拡径部の掘削方法、及び拡底部の掘削方法
JP4769768B2 (ja) 拡径掘削用バケット、中間拡径部の掘削方法、及び拡底部の掘削方法
CN214497638U (zh) 一种成槽机清土装置
US20210164185A1 (en) Methods and apparatuses for compacting soil and granular materials
JP5773523B2 (ja) 現場造成杭の構築装置および現場造成杭の構築方法
AU2014318024B2 (en) Methods and apparatuses for compacting soil and granular materials
CN209907464U (zh) 一种带钻杆的地连墙成槽机
CN202417302U (zh) 振动钻进式冲挖钻机
JP6162356B1 (ja) 杭底堆積土掘削及び孔内攪拌方法及びこれに用いるロータリーテーブル装置
CN206860102U (zh) 一种冲击钻头及冲击钻机
JP2016132909A (ja) 現場造成杭の構築装置および現場造成杭の構築方法
JP2013142244A (ja) 土中試料の採取装置および採取方法
JP2008150787A (ja) 掘削機械及び掘削方法
CN114319304B (zh) 一种水泥粉煤灰碎石桩组合柱锤冲扩桩结构及施工方法
CN210766939U (zh) 一种用于内支撑基坑工程的水力冲挖绞吸设备
US20240026625A1 (en) Methods and apparatuses for compacting soil and granular materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

R150 Certificate of patent or registration of utility model

Ref document number: 4769768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3