JP4768043B2 - ロケーションネットワーク内の移動する位置受信機の位置を決定する方法 - Google Patents

ロケーションネットワーク内の移動する位置受信機の位置を決定する方法 Download PDF

Info

Publication number
JP4768043B2
JP4768043B2 JP2009068864A JP2009068864A JP4768043B2 JP 4768043 B2 JP4768043 B2 JP 4768043B2 JP 2009068864 A JP2009068864 A JP 2009068864A JP 2009068864 A JP2009068864 A JP 2009068864A JP 4768043 B2 JP4768043 B2 JP 4768043B2
Authority
JP
Japan
Prior art keywords
signal
position determination
positioning
carrier
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009068864A
Other languages
English (en)
Other versions
JP2009145360A (ja
Inventor
デイヴィッド スモール
Original Assignee
ロケイタ コーポレイション プロプライエタリー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ロケイタ コーポレイション プロプライエタリー リミテッド filed Critical ロケイタ コーポレイション プロプライエタリー リミテッド
Publication of JP2009145360A publication Critical patent/JP2009145360A/ja
Application granted granted Critical
Publication of JP4768043B2 publication Critical patent/JP4768043B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/20Systems for determining direction or position line using a comparison of transit time of synchronised signals transmitted from non-directional antennas or antenna systems spaced apart, i.e. path-difference systems
    • G01S1/24Systems for determining direction or position line using a comparison of transit time of synchronised signals transmitted from non-directional antennas or antenna systems spaced apart, i.e. path-difference systems the synchronised signals being pulses or equivalent modulations on carrier waves and the transit times being compared by measuring the difference in arrival time of a significant part of the modulations, e.g. LORAN systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/10Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/256Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to timing, e.g. time of week, code phase, timing offset
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0081Transmission between base stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/009Transmission of differential positioning data to mobile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/021Calibration, monitoring or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0226Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0284Relative positioning
    • G01S5/0289Relative positioning of multiple transceivers, e.g. in ad hoc networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • G01S5/145Using a supplementary range measurement, e.g. based on pseudo-range measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/0065Synchronisation arrangements determining timing error of reception due to propagation delay using measurement of signal travel time

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Small-Scale Networks (AREA)
  • Numerical Control (AREA)

Description

本発明は、概括的には、移動式装置に関する正確な位置判定(測位)を行うためのシステム及び方法に関する。特に、本発明は、正確な到着時間位置判定システムに適用される。本発明は、送信器ビーコンの間の物理的接続、各送信器に接続されている原子時標準の必要性、又は、差分修正技術の必要性の様な先行技術の要件には制約されない。
正確な到着時間位置判定が、使用されている送信器時計の精度次第であることは、当該技術では周知である。最も初歩的な形態では、既知の位置に配置されており、3つの同じ長さのケーブルで共通の時計に接続されている3つの送信器ビーコンであれば、到着時間位置判定システムのベースとして十分である。しかしながら、この初歩的な位置判定システムは、ビーコンの間の長い可能性のある距離に亘って高周波数のタイミング信号を配送する正確に時間合わせされたケーブルに対する要件のため、製造し設置するのは非常に非現実的ある。替わりに、非常にドリフト率の低い正確な原子時標準を各送信器ビーコンに装着し、既知の位置に配置され、基準時間ベースに接続されている基準受信器を使って監視してもよい。送信器ビーコンから受信した位置判定信号に応えて、時計修正値が、後でユーザーの装置に再送信するのに備えて、基準受信器からRFデータリンクを通じて各ビーコンへ送られる。GPSのような最新の衛星位置判定技術は、この技法を利用しており、各GPS衛星にはセシウム及びルビジウム時間標準が設置されており、GPS地上管制部は、全GPS衛星を連続的に監視し、時計修正値を、各衛星に24時間毎に伝送している。これらの修正値は、次に各衛星の航行メッセージを介して、GPSユーザー装置に再度同報通信されるので、GPSユーザー装置内の位置判定アルゴリズムは、衛星の時計誤差に責任を持つことができる。視界内に少なくとも4つのGPS衛星があれば、GPSユーザー装置内で、従来のコードベースのGPS位置解として知られている標準的な技法を使って、3次元の位置を判定することができる。この標準技法は、当業者には、一般的に「単一点位置」とも呼ばれている。
従来型コードベースGPS位置解法(単一点位置)
従来型のコードベースGPSでは、地上に近いあらゆる点の緯度、経度、高度を、視界内の少なくとも4つのGPS衛星からの位置判定信号の伝播時間から計算することができる。GPS受信器は、内部的に生成された擬似乱数コード(PRN)シーケンスの各GPS衛星から受信した擬似乱数コードシーケンスとの相関関係に基づいて、範囲(距離)計算を行う。測定された範囲(距離)は、衛星上の時計とGPS受信器内の時計の間に時間差又はオフセットがあるため、擬似範囲(擬似距離)と呼ばれる。衛星の擬似乱数コードシーケンス送信と、その擬似乱数コードシーケンスのGPS受信器による受信との間の経過時間を正確に測定するために、受信器の時計は、衛星配列の時計と確実に同期している必要がある。各衛星からは航行メッセージも送信され、これには、時間情報、衛星軌道情報及び衛星時計修正値の表現が含まれている。3次元の位置判定には、GPS受信器は、4つの未知の位置(x、y、z)と時間(t)を解くのに4つの衛星信号を必要とする。2次元(2−D)の位置判定の際は、高度が固定され、3つの未知の位置(x、y)と時間(t)を解くのに3つの衛星信号を必要とする。従来型のコードベースGPS位置解法は、視界内に少なくとも4つの衛星があれば、GPS受信器に、約10から20メートルの精度で絶対3次元(3−D)位置を判定できる能力を提供することができる。
この従来型のコードベースのGPS位置解法は自律解法であり、基準受信器からの差分修正データ無しに、位置、速度及び時間(PVT)を判定することができる。従って、これは、当該技術では「単一点」位置解法として知られている。
従来型コードベース差分GPS(相対位置判定)
正確な原子時間ベースが確立している状態では、GPS配列は、GPS受信器に、約10から20メートルの絶対3次元位置精度を提供できるのみである。これは、6つの主要誤差源、即ち(1)電離層遅延、(2)対流圏遅延、(3)暦表誤差、(4)衛星時計誤差、(5)GPS受信器ノイズ、(6)多重経路、による位置判定信号の改変によるものである。電離層遅延は、電磁波が電離層のイオン粒子の帯域を通過する際に電磁波から被る変動時間遅延である。対流圏遅延は、もっと低い大気圏内の水分の間を通過する際に電磁波から被る時間遅延である。暦表誤差は、実際の衛星位置と衛星の軌道データから推測される位置の間の差である。受信器ノイズは、GPS受信器の内部電子機器によって生じるノイズである。多重経路は、GPS受信器近くの局所的信号反射によって生じる信号遅延である。これら誤差源の多くは、比較的短い距離(例えば数十キロメートル)で空間的に相関関係がある。これは、互いに近接している2つの異なるGPS受信器が、同じ誤差を観測することを意味している。従って、「差分修正」として知られている技法を使用して空間的に相関関係にある誤差源を改良することができる。周知の位置に配置されている基準受信器は、検出した各衛星信号に対して想定される擬似範囲を計算する。基準受信器は、次に、GPS衛星から受信した擬似範囲を測定し、受信した擬似範囲から想定した擬似範囲を減じ、視界内の各衛星に対する差分範囲修正値を導き出す。基準受信器は、次いで、この修正値をデジタルデータとしてRFデータリンクを介してGPS受信器へ送る。
GPS受信器は、位置解を計算する前に、この修正値を、(基準受信器にとって視界内の同じ衛星に関して)測定した擬似範囲に加える。この手続きによって、基準受信器とGPS受信器の両方に共通の誤差は、完全に取り除かれる。多重経路及び受信器ノイズのような相関関係の無い誤差源は、擬似範囲内に残り、従って位置精度を悪化させる。数メートル程度の位置精度は、低い多重経路環境であれば、コードベースの差分GPS修正によって実現することができる。
従来型の搬送波ベース差分GPS(相対位置判定)
従来型の搬送波ベース差分GPS(CDGPS)は、基準受信器とユーザー受信器で測定される衛星の搬送波位相の間の差を使用して、基準位置とユーザー位置の間の差を計算する。周知の位置に設置されているCDGPS基準受信器は、視界内の全衛星について同時搬送波位相測定値を計算して、搬送波位相データを、RFデータリンクを介してユーザー受信器へ同報通信する。ユーザー受信器も、視界内の全衛星について同時搬送波位相測定値を計算し、次いで位相差を計算して、基準受信器位置に対するユーザー受信器の位置を判定する。搬送波位相測定値は、GPS衛星からの搬送波周波数に存在するドップラー周波数偏移に基づく移動サイクル計数である。各時期、この移動サイクル計数(先の時期からの値に、現在の時期の間の位相の進行を加えたもの)は、受信器から入手できる。更に具体的には、或る時期の間の搬送波位相の進行は、時期の間隔に亘る搬送波ドップラー偏移を積分することによって求められるので、積分搬送波位相と名付けられている。
ユーザー受信器は、搬送波の端数の位相と任意の数の完全なサイクルの和を測定することができるが、擬似範囲内の完全サイクルの正確な数を直接求めることはできない。「整数サイクル曖昧性」として知られるこの数は、別の手段で求めなければならない。搬送波位相整数曖昧性を解決するための伝統的戦略は、検索方法、濾過方法及び地理的方法の3つの広範なクラスに分かれる。これらの伝統的方法は、瞬間的整数サイクル曖昧性の回答を生み出すものではない。非瞬間的整数サイクル曖昧性問題を克服するために、「ワイドレーニング」として知られる技法が開発されている。ワイドレーニングを、2つの搬送波周波数(通常、GPS L1とL2の周波数)に乗じてフィルターに掛け、うなり周波数信号を形成する。このうなり周波数の波長は、2つの個々の搬送波よりかなり長い。その結果、擬似範囲を観察して、うなり周波数信号によって形成された広い「レーン」の整数曖昧性を求めることによって、整数の解決を達成することができる。これは、次には、整数曖昧性を解決するために探究しなければならない整数の量を大きく低減する。
CDGPS法に関する主要な制約は、第1に、RFデータリンクの保全性と待ち時間であり、第2に、ユーザー受信器における時間判定の欠如である。RFデータリンクのデータ帯域幅は、差分データ更新速度を制限するので、データ待ち時間を発生させ、位置精度を低下させる。物理的障害と多重経路によって生じる差分データの受信品質の低下は、データを改変し、最善の場合でも位置精度を低下させるので、全体的なリンク故障となり、最悪の場合は位置が更新されない。CDGPSの第2の欠点は、時間判定の欠如である。
従来型の単一点位置解法は、4つの未知の位置(x、y、z)と時間(t)に対する解を出す。CDGPSは、「二重差」として知られている処理を使用して基準受信器とユーザー受信器両方に関する受信器時計の項を削除する。従って、ユーザー受信器は、基準受信器位置に対する正確な位置を判定することはできるが、時間を判定することはできない。
ユーザーが単に位置のみに関心がある場合には、これは重要ではない。しかしながら、正確なシステム時間ベースの正確な知識は、コンピューターネットワーク及び電話通信システムを含む多くのユーザー装置にとって非常に有用である。時間判定の欠如は、CDGPS先行技術システムに関わる重要な問題である。
疑似衛星増強
GPS位置判定を支援するのに使用されるもう1つの方法は、疑似衛星のような地上ベースの増強システムを使用することである。疑似衛星は、基盤要件を追加することなく、従来型のコード及び搬送波ベースの差分GPSシステムに組み込むことができる。疑似衛星は、追加の範囲設定信号として、そして差分修正値をユーザー装置に送るためのRFデータリンクとしても用いることができる。替わりに、疑似衛星をGPS時間ベースに同期化させることもできる。GPS受信器は、少なくとも4つのGPS衛星を使って、従来型のコードベースGPS解法からGPS時間を判定し、決定された時間を、同時配置された疑似衛星の送信器へ送る。GPS時間ベースの精度は、電離層及び対流圏遅延、衛星時間誤差、衛星位置誤差、受信器ノイズ、及び多重経路を含むGPS誤差源によって制限される。約50から100ナノ秒の時間精度は、GPS時間ベース法を使用することによって実現できるが、これは、数十メートル程度でしか位置精度に転換できない。この精度は、正確な航行システムには粗すぎる。
「無指向性マーカー」疑似衛星を使用する搬送波ベース差分GPS
Cohenに発行の米国特許第5,583,513号「正確なコードベース及び搬送波位相位置判定を行うためのシステムと方法」は、いわゆる「無指向性マーカー」疑似衛星が、差分範囲設定の修正を行うための位置受信器に情報を中継するためのチャネルとして働く差分修正法について記載している(6段、43行から46行)。無指向性マーカー疑似衛星は、GPS衛星信号が、既知の無指向性マーカー疑似衛星位置から位置受信器へ同位相で「反射される」隠喩的ミラーとして説明できる。従って、各ビーコンマーカー信号の出て行く搬送波及びPRNコード成分は、GPS信号内の入ってくる相手に関して正確に位相の一貫性(位相コヒーレンス)がある(6段、28行から32行)。上空を飛行する飛行機に設置されている位置受信器は、GPS衛星から位置判定信号を受信し、更に無指向性マーカー疑似衛星から「反射された」GPS位置判定信号も受信し、続いて差分範囲測定値を計算する。
Cohenの差分法は、従来型のコード及び搬送波ベースの差分システムに必要な伝統的デジタルデータリンクの必要性を取り除く。しかしながら、無指向性マーカー位置受信器は、なおGPS衛星と無指向性マーカー信号の両方を受信し、差分範囲測定値を計算しなければならない。無指向性マーカー信号を受信するだけでは、位置計算はできない。更に、無指向性マーカーは、視界内の各GPS衛星に関する個々の搬送波及びPRN成分を生成し、送信しなければならず、無指向性マーカーを複雑且つ高価にする。現在、これには、1つの無指向性マーカーから12もの個別送信が必要である。更に、無指向性マーカー位置受信器には、従来型の差分GPS受信器の受信チャネルを倍にする必要があり、経費と複雑さが追加されることになる。
先行技術のシステムは、(a)送信器ビーコンの間の物理的接続、(b)各送信器における原子時標準、(c)GPS時間ベースへの同期化、(d)何らかの形態の差分修正値の内の少なくとも1つを要求することなしに、到着時間位置判定を行うことはできない。
これらの制約なしに、非常に正確な到着時間位置判定信号を提供することのできるシステムが大いに望まれている。本発明は、以下に説明するように、送受信器のシステム(以後、位置判定ユニット装置と呼ぶ)を時系列的に同期化することによって、この望ましい目標を達成する。
米国特許第5,583,513号
本発明の目的は、位置判定ユニット装置の間の物理的相互接続の必要なしに、正確なコード及び搬送波位相位置判定を行うための位置判定システム及び方法を提供することである。
本発明の又別の目的は、原子時標準の必要なしに、正確なコード及び搬送波位相位置判定を行うための位置判定システム及び方法を提供することである。
本発明の又別の目的は、大域航行衛星システム時間ベースの必要なしに、正確なコード及び搬送波位相位置判定を行うための位置判定システム及び方法を提供することである。
本発明の又別の目的は、差分修正技法の必要なしに、正確なコード及び搬送波位相位置判定を行うための位置判定システム及び方法を提供することである。
本発明の又別の目的は、システム時間ベースは必ずしも絶対精度ではないが、位置判定ユニット装置をシステム時間ベースに時系列的に同期化させることである。
本発明の又別の目的は、地理的に分散されている位置判定ユニット装置を通して基準時間ベースを伝播することである。
本発明の又別の目的は、差分修正の支援無しに単一点コード位相位置解を求めることがきるように、移動する位置受信器に時系列的同期化コード位相擬似範囲を提供することである。
本発明の又別の目的は、整数サイクル曖昧性が解決されると、差分修正の支援無しに単一点搬送波位相位置の解を求めることができるように、移動する位置受信器に時系列的同期化搬送波位相擬似範囲を提供することである。
本発明の又別の目的は、移動する位置受信器に正確なネットワーク時間変換情報を提供することである。
本発明の上記目的は、基準座標システムに対して既知の位置に配置されている位置判定ユニット装置を含んでいて、基準座標システムに対して既知の位置に配置されている基準送信器から1つ又は複数の基準位置判定信号を受信する位置判定システムによって実現される。基準送信器は、他の位置判定ユニット装置、広域増強システム(WASS)衛星、大域航行衛星システム(GNSS)衛星、疑似衛星、又はタイミング情報を組み込んでいる何らかの他の信号、を含んでいる。受信された基準位置判定信号は、それぞれ、搬送波成分、擬似乱数コード成分、及びデータ成分を有しているのが望ましい。位置判定ユニット装置は、受信した基準位置判定信号とその既知の位置に応えて、固有の位置判定信号を生成する。固有の位置判定信号は、受信した位置判定信号の1つ又は複数の搬送波成分に時系列的に同期化された搬送波成分と、受信した位置判定信号の1つ又は複数の擬似乱数コード成分に時系列的に同期化された擬似乱数コード成分と、受信した位置判定信号の1つ又は複数のデータ成分に時系列的に同期化されたデータ成分とを有している。位置判定ユニット装置が基準送信器に時系列的に同期化されると、ネットワークに入っている他の位置判定ユニット装置は、その固有の送信された位置判定信号を基準位置判定信号として使用することができる。時系列的に同期化された位置判定ユニット装置の地理的分散は、位置判定信号の、時間一貫性(時間コヒーレンス)のあるネットワークを作る。それによって、本発明の方法は、非常に正確な時間ベースを実質的な地理領域に亘って伝播させる固有の能力を有することになる。
本システムは、少なくとも1つの移動する位置受信器も含んでいる。移動する位置受信器は、受信された時系列的に同期化されている擬似乱数コード成分それぞれについて擬似範囲測定を行うことにより、コードベースの単一点位置判定を行うことができ、搬送波整数サイクル曖昧性が解決されると、受信された時系列的に同期化されている搬送波成分それぞれについて擬似範囲測定を行うことにより、搬送波ベースの単一点位置判定を行うことができる。時系列的に同期化される位置判定システムの形成は、移動する位置受信器に、差分修正の必要なしに、コードベースと正確な搬送波ベース両方の単一点位置の解を自律的に計算する能力を与える。更に、ネットワーク内の絶対時間精度に関する要件(先行技術では、通常、原子時標準によって導き出される)は、無くなる。
位置判定ユニット装置が少なくとも1つの基準送信器に時系列的に同期化する上記方法を、以後「タイムロック」と呼ぶ。
位置判定ユニット装置は、専用の送受信器であり、既知の位置に配置されており、少なくとも1つの基準送信器から少なくとも1つの基準位置判定信号を受信する。基準送信器は、もう1つの位置判定ユニット装置又はWAAS衛星であるのが望ましい。受信した基準位置判定信号に応えて、位置判定ユニット装置は、内部に生成された位置判定信号を基準送信器時間ベースに対して時系列的に同期化させ、その固有の位置判定信号を視界内の他の全ての位置判定受信器へ送信する。自律的位置ネットワークを形成するための最低要件は、少なくとも2つの位置判定ユニット装置が1つの基準送信器に時系列的に同期化されていることである。移動する位置判定受信器は、この自律ネットワーク内の全ての送信信号の点に鑑み、差分修正の必要無しに、自律コードと、搬送波単一点位置の解とを求めることができる。更に、基準送信器の発振器は、先行技術のシステムが必要とする原子時標準の本来的な安定性を必要としないので、位置ネットワーク全体の基準時間ベースとして、安価な水晶体発振器を用いることができる。
従って、以下に説明するように、位置判定ユニット装置は、時系列的に同期化された位置判定信号を移動する位置受信器に配送するための隠喩的「チャネル」として働く。これにより、移動する位置受信器は、位置判定ユニット装置の間の物理的接続の必要なしに、原子時標準又はGNSS時間ベースの必要なしに、そして差分修正の必要なしに、コードベース及び搬送波ベース両方の単一点位置判定を計算することができる。
システム及び方法
図1は、コードベースと搬送波ベースの単一点位置計算を使って、正確な位置判定を生成する位置判定システムの1つの構成を示している。複数の位置判定ユニット装置101−1、101−2は、基準座標システムに関して既知の位置に配置されており、これも基準座標システムに関して既知の位置に配置されている少なくとも1つの基準送信器103によって同報通信される少なくとも1つの基準位置判定信号102をそれぞれ受信する。
受信された基準位置判定信号102に応えて、位置判定ユニット装置101−1、101−2は、1つ又は複数の固有の位置判定信号104−1、104−2を送信し、それ等は基準送信器103に時系列的に同期化されている。装置101−1、102−2、103のネットワーク内に位置している移動する位置受信器105は、基準送信器103からの基準位置判定信号102と、位置判定ユニット装置101−1、101−2からの固有の位置判定信号104−1、104−2を受信し、時系列的に同期化された位置判定信号のネットワークから、コードベースと搬送波ベース両方の単一点位置判定を自律的に計算する。
タイムロック
タイムロック位置判定ユニット装置は、共通の時系列的時間ベースに同期化するが、これは任意の値であってもよいし、任意の分散を有していてもよい。従って、水晶体発振器のような簡単で安価な時計源であっても、基準送信器内の基準時計として十分である。好適な実施形態では、温度補正水晶体発振器(TCXO)又はそれより優れたものが用いられている。位置判定ユニット装置は、先ず、基準送信器位置判定信号を入手し、基準送信器の既知の座標と位置判定ユニット装置の既知の座標から、いわゆる経過時間オフセットを計算する。経過時間オフセットは、基準送信器から位置判定ユニット装置へ移動する間に基準位置判定信号に生じる伝播時間遅延を考慮する。自由空間では、電磁波は、3ナノ秒毎に約1メートル移動する。次に、位置判定ユニット装置は、内部的に生成された位置判定信号に経過時間オフセットを適用し、この位置判定信号を入ってくる基準位置判定信号に整列(整合)させ、内部的に生成された位置判定信号を基準送信器と時系列的に整列させる。
具体的には、タイムロックは、位置判定ユニット装置の内部的に生成された位置判定信号が、入ってくる基準位置判定信号と周波数一貫性(周波数コヒーレンス)を有しており、基準送信器時間ベースと時系列的一貫性(時系列的コヒーレンス)を有しているときに実現される。
基準位置判定信号は、基準送信器から無線周波数(RF)搬送波を介して送信される。
基準位置判定信号は、位置判定ユニット装置、広域増強システム(WAAS)衛星、大域航行衛星システム(GNSS)衛星、疑似衛星、又は有効な源の何らかの組み合わせを含む、何らかの有効な時間源から生成することができる。図2では、基準送信器202から既知の距離に配置されている位置判定ユニット装置201は、基準送信器202が送信する基準位置判定信号203を受信する。基準位置判定信号203は、搬送波成分、固有擬似乱数コード成分、及びデータ成分を有している。位置判定ユニット装置201には、位置受信器204と同時配置された送信器205が組み込まれている。位置受信器204は、視界内の全ての基準位置判定信号からの位置判定信号203と、その同時配置されている送信器205からの位置判定信号とを受信することができる。位置判定ユニット装置201は、受信した基準位置判定信号203に応えて、いわゆる従属位置判定信号206をその送信器205から送信し、それは位置判定ユニット装置位置受信器204に受信される。従属位置判定信号206は、搬送波成分、固有の擬似乱数コード成分、及びデータ成分を有している。位置判定ユニット装置位置受信器204は、基準送信器202からの基準位置判定信号203と、同時配置されている送信器205からの従属位置判定信号206を受信し、同時にサンプル採取する。次に、受信した基準位置判定信号203と受信した従属位置判定信号206の間の送信時間差が計算される。好適な実施形態で用いられている送信時間の差は、
(a)基準位置判定信号203の搬送波成分から求められた積分搬送波位相(ICP)測定値と従属位置判定信号206を比較して、搬送波周波数の差を求める段階と、
(b)基準位置判定信号203からの航行データ成分と従属位置判定信号206を復調して比較し、粗い送信時間の差を求める段階と、
(c)基準位置判定信号203の擬似乱数コード成分から求められた擬似範囲測定値と従属位置判定信号206を比較し、コード擬似範囲の差を求める段階と、
(d)基準位置判定信号203の搬送波成分から求められた瞬間搬送波位相測定値と従属位置判定信号206を比較し、搬送波位相の差を求める段階と、
によって求められる。
従属位置判定信号206を基準送信器202の時間ベースに正確に時間同期化するには、基準送信器アンテナ207と位置判定ユニット装置位置受信器アンテナ208の間の信号伝播遅延を考慮しなければならない。基準送信器のアンテナ207から位置判定ユニット装置位置受信器アンテナ208までの、メートルでの既知の地理的距離209は、経過時間=距離/光速の式によって単一の経過時間に変換できる。位置判定ユニット装置201には、制御(steering)される送信器時計210が組み込まれており、位置判定ユニット装置のCPU211によって周波数調整することができる。制御される送信器時計210への修正値は、位置判定ユニット装置のCPU211によって、基準位置判定信号203と、位置判定ユニット装置受信器204によって測定される従属位置判定信号206との間の時間差から決定され、基準位置判定信号の経過時間209によってオフセットされる。これにより、従属位置判定信号206は、基準送信器202の時間ベースと時系列的同期化される。
受信した基準位置判定信号203の従属位置判定信号206との差を計算するプロセスは、位置判定ユニット装置の位置受信器時計項を削除するので、位置判定ユニット装置201は、局所位置判定ユニット装置発振器212によって生じる何らの時計バイアス無しに、基準送信器202の時間ベースに従うことができる。更に、同じ位置受信器204の2つのチャネルの間の差を計算することにより、位置受信器電子機器によって生じる全ての受信器配線バイアス又はグループ遅延が削除される。
位置判定ユニット装置の制御状態
好適な実施形態では、位置判定ユニット装置は、以下の制御状態を使って、基準送信器にタイムロックする。
状態0:リセット
全てのハードウェアをリセットする
状態1:基準を入手
位置判定ユニット装置CPU211は、位置判定ユニット装置位置受信器204によって基準位置判定信号203の探索を開始する
状態2:基準にロック
位置判定ユニット装置位置受信器204は、基準位置判定信号203を入手し、基準送信器202の位置と時間は、その航行データー成分から、位置判定ユニット装置CPU211によって復調される。
状態3:従属を同期化
位置判定ユニット装置CPU211は、基準位置判定信号航行データ成分との粗い時間整列に配慮するために待機する。次に、内部時計生成器が、CPU211によって開始される。
状態4:従属を初期化
位置判定ユニット装置CPU211は、この特定の位置判定ユニット装置201に関する適切且つ固有のPRNコードシーケンスを定め、このRPNコードシーケンスを位置判定ユニット装置送信器205に割り当てる。基準位置判定信号203の(位置判定ユニット装置発振器212に対する)現在の周波数オフセットも、位置判定ユニット装置CPU211によって、位置判定ユニット装置の制御される送信器時計210に割り当てられる。これは、位置判定ユニット装置送信器205を、基準位置判定信号203の周波数とほぼ同じ周波数に初期化するように作用する。位置判定ユニット装置CPU211は、更に、求められたPRNシーケンスを、位置判定ユニット装置位置受信器204内の自由受信器チャネルに割り当てる。受信器チャネルは、位置判定ユニット装置位置受信器204による従属位置判定信号206の入手を支援するため、位置判定ユニット装置送信器205と同じ周波数オフセット及び擬似乱数コード位相値で初期化される。位置判定ユニット装置は、次に、従属位置判定信号206の送信を開始する。
状態5:従属を入手
位置判定ユニット装置位置受信器204は、従属位置判定信号206の探索を開始する。
状態6:従属にロック
位置判定ユニット装置位置受信器204は、従属位置判定信号206を入手し、その航行データ成分から、粗い従属時間が復調される。
状態7:基準/従属周波数ロック
基準位置判定信号203と従属位置判定信号206に対する同時積分周波数位相(ICP)測定値は、位置判定ユニット装置位置受信器204によって初期化(ゼロ化)され、差が計算される。この差の値は、基準位置判定信号203と従属位置判定信号206の間の周波数及び位相の差を示している。位置判定ユニット装置CPU211内の制御ループは、位置判定ユニット装置の制御される送信器時計210へ修正を継続的に適用し、基準位置判定信号203と従属位置判定信号206の間のICP差をゼロに維持し、周波数ロックを維持する。
代わりに、位置判定ユニット装置位置受信器204によって測定される、受信された基準位置判定信号周波数オフセット値を、位置判定ユニット装置の制御される送信器時計210へ直接供給し、いわゆる「周波数追跡システム」(FTS)を作ることもできる。制御される送信器時計210は、入ってくる基準位置判定信号203の周波数オフセットを単純にエミュレートし、周波数ロックを維持する。この方法は、位置判定ユニット装置発振器212が、位置受信器204と送信器205の間で共有されていなければならない。
状態8:基準/従属コードロック
状態7の基準/従属周波数ロックが実現されると、基準位置判定信号203と従属位置判定信号206の間の時間差を正確に測定し、時間バイアスを削除することができる。基準/従属コードロックは、位置判定ユニット装置の制御される送信器時計210が必要な時間の量だけ回され、基準及び従属位置判定信号をPRNコードと整列させたときに実現される。経過時間値209は、測定された基準とスレーブの時間差をオフセットし、基準信号伝播遅延の影響を排除するのに用いられ、計算された時間差は、次に時計修正値として位置判定ユニット装置の制御される送信器時計210に適用される。時計修正は、周波数追跡システム(FTS)を係合させ、追加の周波数オフセットを所定の期間に対し制御される送信器時計210へ適用することによって実現される。この追加の周波数オフセットは、従属位置判定信号206が、基準送信器202の時間ベースと時間の一貫性(時間コヒーレンス)が保てるようになるまで、回転できるようにする。この時間の回転が完了すると、制御ループが再係合される。代わりに、コードロックは、位置判定ユニット装置送信器205のPRNコード生成器を、周波数ロックを維持しながら必要量のコード位相(チップ)だけ回転させることによって、実現させることもできる。
コードロックはPRNコードの精度に基いており、PRNコードは本来的にノイズが多い。好適な実施形態では、静止位置判定ユニット装置は、PRNコードのノイズにフィルターを掛け、副搬送波サイクルレベルにする。
状態9:基準/従属位相ロック
状態7の基準/従属周波数ロックと状態8の基準/従属コードロックが実現された状態では、(1)180度位相曖昧性と(2)経過時間位相オフセットの2つの時間誤差がまだ残っており、修正しなければならない。
(1)180度位相曖昧性の修正:データは、当該技術では「コスタスループ」として周知の専用の位相ロックループを使って、PRNコード位置判定信号から復調される。コスタスループ技法は、本来的に180度位相曖昧性を組み込んでいるので、半サイクルの曖昧性で位置判定信号を入手し追跡することができる。この半サイクル曖昧性は、2.4ギガヘルツで約200ピコ秒の時間オフセットを示す。コスタスループ曖昧性は、一般的に前文と呼ばれるデータビットの所定のシーケンスを参照することによって解決し、ロケーションネットワーク内の送信器によって、航行データ成分で送信することができる。コスタスループ曖昧性が解決されると、周波数ロックされた基準の位置受信器位相レジスタと従属位置判定信号の間の任意固定位相差が明らかになる。この任意位相オフセットは、従属位置判定信号の任意位相によるものであり、以下の段階(2)で調整される。
(2)経過時間位相オフセットの修正:端数サイクルの経過時間位相オフセットは、基準送信器アンテナ207と位置判定ユニット装置アンテナ208の間の基準位置判定信号伝播遅延のために存在する。基準送信器と位置判定ユニット装置の間の地理的距離209は、完全搬送波サイクル(整数成分)213の数と、端数搬送波サイクル(端数成分)214の和で表すことができる。経過時間位相オフセットは、基準送信器アンテナ207と位置判定ユニット装置アンテナ208の間の既知の地理的距離から計算される端数サイクル量214である。整数成分213は、上記状態8の基準/従属コードロック制御状態で修正される。しかしながら、端数成分214は、状態8の基準/従属コードロック状態で修正するには小さ過ぎるので、搬送波位相調整として修正しなければならない。周波数追跡システム(FTS)が係合され、位置判定ユニット装置の制御される送信器時計210が、(上記段階(1)で求められたその現在の測定された任意位相値から)新しく求められた経過時間位相値まで、必要な端数サイクル量だけ時間回転される。次にタイムロックループ(TLL)が再係合される。位置判定ユニット装置アンテナ208から発せられた位置判定ユニット装置搬送波位相従属位置判定信号206は、ここで、基準送信器アンテナ207から発せられる基準送信器202の搬送波位相位置判定信号と時系列的に同期化される。
状態10:基準/従属全ロック
上記の状態が全て実現されると、CPU211はタイムロックを宣言し、位置判定ユニット装置201は、現在完全に同期化されている固有の位置判定信号215の送信を開始する。位置判定ユニット装置の固有の位置判定信号215は、ここで基準送信器202の時間ベースに、ピコ秒の正確さと実質的に先行技術の能力を超える能力で、時系列的に同期化される。
固有の位置判定信号
好適な実施形態では、各位置判定ユニット装置は、搬送波成分、擬似乱数コード成分及び航行データ成分から成る固有の位置判定信号を送信する。搬送波成分は、2.4GHz ISM帯域で送信されるのが望ましい正弦波無線周波数波であるが、本発明の方法は他の周波数帯域にも等しく適用できる。擬似乱数番号(PRN)コード成分は、搬送波成分上で変調され、同じ搬送波周波数で他の装置によって送信される他の擬似乱数コードシーケンスの中にあっても識別できる固有コードシーケンスで構成されている。この技法は、コード分割多重アクセス(CDMA)として知られており、当該技術では周知である。航行データ成分は、擬似乱数コード成分上で変調される私有情報であり、航行情報を位置判定ユニット装置と移動する位置受信器へ伝送するための通信リンクを提供する。航行情報は、ネットワーク時間と、位置判定ユニット装置位置と、隠喩的「基準時計リンケージ」情報と、他の必要なネットワークデータを含んでいる。
タイムロック構成
タイムロックは、多数の異なる構成で実施することができる。これらの構成には、
1.単一の位置判定ユニット装置に同報通信する単一の基準送信器
2.複数の位置判定ユニット装置に同報通信する単一の基準送信器
3.中間の位置判定ユニット装置を通して同報通信する1つ又は複数の基準送信器
4.1つ又は複数の位置判定ユニット装置に同報通信する複数の基準送信器
5.点位置時間同期化
が含まれている。
単一の位置判定ユニット装置へ同報通信する単一の基準送信器
単一の基準送信器を使って、基準位置判定信号を単一の位置判定ユニット装置へ同報通信することができる。図2は、既知の場所に位置している位置判定ユニット装置201と、これも既知の場所に位置している基準送信器202とを示している。位置判定ユニット装置送信201は、基準送信器202が送信する基準位置判定信号203と、位置判定ユニット装置送信器205が送信する従属位置判定信号206を受信する。受信した基準位置判定信号203に応えて、位置判定ユニット装置送信201は、基準位置判定信号伝播遅延209を求め、適切な送信器時計修正を適用して、その内部的に生成された従属位置判定信号206の搬送波成分、固有のPRNコード成分及びデータ成分を、基準送信器位置判定信号203の搬送波成分、PRNコード成分及びデータ成分と、時系列的に同期化する。位置判定ユニット装置は、次いで、固有の位置判定信号215を送信し、位置判定信号215は、基準送信器202の時間ベースに時系列的に同期化される。
2つの位置判定信号では、移動する位置受信器の位置の解を求めるのに十分ではない。
しかしながら、基準送信器がWAAS衛星であれば、タイムロックされた位置判定ユニット装置の信号は、ピコ秒レベルまでGPS時間と同期しているので、位置受信器で、従来のコードベースのGPS解用の追加の正確な範囲設定源として使用することができる。
複数の位置判定ユニット装置に同報通信する単一の基準送信器
複数の位置判定ユニット装置が基準送信器の明らかに視界内にあれば、単一の基準送信器を使用して位置判定ユニット装置のネットワークを形成することができる。
図3は、既知の場所に位置している複数の位置判定ユニット装置301−1、301−2と、これも既知の場所に位置している基準送信器302とを示している。位置判定ユニット装置301−1、301−2は、基準送信器302が送信する基準位置判定信号303を受信する。受信した基準位置判定信号303に応えて、各位置判定ユニット装置301−1、301−2は、基準送信器302からの各信号伝播遅延304−1、304−2を求め、適切な送信器時計修正値を適用して、その内部的に生成された位置判定信号の搬送波成分、固有のPRNコード成分及びデータ成分を、基準送信器位置判定信号303の搬送波成分、PRNコード成分及びデータ成分に時系列的に同期化させる。各位置判定ユニット装置は、続いて固有の位置判定信号305−1、305−2を送信し、位置判定信号305−1、305−2は、基準送信器302の時間ベースに時系列的に同期化される。
中間の位置判定ユニット装置を通して同報通信する1つ又は複数の基準送信器
全ての位置判定ユニット装置が基準送信器の明確な視界内になくても、1つ又は複数の時間同期化基準送信器を使って、位置判定ユニット装置のネットワークを形成することができる。この構成では、タイミング信号は、中間の位置判定ユニット装置を介して縦続伝送される。中間の位置判定ユニット装置がタイムロックを宣言すると、後続の位置判定ユニット装置は、この中間の位置判定ユニット装置をその基準位置判定信号として使用することができる。
図4は、既知の場所に位置している基準送信器401と、これも既知の場所に位置している第1位置判定ユニット装置402を示している。第1位置判定ユニット装置402は、基準送信器401が送信する位置判定信号403を受信する。受信した基準位置判定信号403に応えて、第1位置判定ユニット装置402は、基準送信器401からの信号伝播遅延404を求め、適切な時計修正値を適用して、その内部的に生成された位置判定信号の搬送波成分、固有のPRNコード成分及びデータ成分を、基準送信器位置判定信号403の搬送波成分、PRNコード成分及びデータ成分に時系列的に同期化させる。第1位置判定ユニット装置402は、続けて固有の位置判定信号405を送信し、位置判定信号405は基準送信器401の時間ベースに時系列的に同期化される。
既知の場所に位置しているが、建築物409によって生じる信号障害のために基準位置判定信号410の視界内にはない第2位置判定ユニット装置406は、続いて、第1位置判定ユニット装置402から位置判定信号405を受信する。受信した位置判定信号405に応えて、第2位置判定ユニット装置406は、第1位置判定ユニット装置402からの信号伝播遅延407を求め、適切な時計修正値を適用して、その内部的に生成された位置判定信号の搬送波成分、固有のPRNコード成分及びデータ成分を、第1位置判定ユニット装置の位置判定信号405の搬送波成分、PRNコード成分及びデータ成分に時系列的に同期化させる。第2位置判定ユニット装置406は、続けて、搬送波成分、PRNコード成分及びデータ成分を組み込んでいる固有の位置判定信号408を送信する。この固有の位置判定信号408は、第1位置判定ユニット装置402の時間ベースに時系列的に同期化され、この第1位置判定ユニット装置402の時間ベースは、基準送信器401の時間ベースに時系列的に同期化される。
1つ又は複数の位置判定ユニット装置に同報通信する複数の基準送信器
複数の時間同期化された基準送信器を使って、基準位置判定信号を1つ又は複数の位置判定ユニット装置に同報通信することができる。この構成では、多重経路及び対流圏遅延のようなどの様な基準誤差源でも基準送信器の間で平均化して、時間ベースの精度を改良することができる。
図5は、既知の場所に位置している位置判定ユニット装置501と、これも既知の場所に位置している、共通の時間ベースを有する複数の基準送信器502−1、502−2を示している。位置判定ユニット装置501は、基準送信器502−1、502−2が送信する基準位置判定信号503−1、503−2を受信する。受信した基準位置判定信号503−1、503−2に応えて、位置判定ユニット装置501は、各基準送信器502−1、502−2からの信号伝播遅延504−1、504−2を求め、適切な時計修正値を適用して、その内部的に生成された位置判定信号の搬送波成分、固有のPRNコード成分及びデータ成分を、2つの基準送信器位置判定信号503−1、503−2の搬送波成分、PRNコード成分及びデータ成分に時系列的に同期化させる。位置判定ユニット装置501は、続いて固有の位置判定信号505を送信し、位置判定信号505は基準送信器502−1、502−2の時間ベースに時系列的に同期化される。
点位置タイムロック
位置判定ユニット装置は、基準送信器と位置判定ユニット装置の間の地理的距離(基準位置判定信号伝播遅延)が分かっていなくても、ネットワークの時間ベースに同期化することができる。タイムロックのこの実施形態では、少なくとも4つのタイムロックされた位置判定ユニット装置が視界内になければならない。ネットワークへ入ることを求めている位置判定ユニット装置は、その3次元の位置を、位置判定ユニット装置位置受信器時計オフセットを組み込んでいる単一点位置を計算することによって自己調査する。位置判定ユニット装置位置受信器時計オフセットは、位置判定ユニット装置の従属送信器が正確なネットワーク時間ベースとして利用することができる(局所位置受信器時計に対する)ネットワーク時間を正確に提供する。好適な実施形態では、位置判定ユニット装置は、単一点搬送波解法を使って、正確なネットワーク時間をピコ秒まで求めることができ、これは先行技術システムの能力を実質的に超える能力である。
WAAS基準
この好適な実施形態では、基準送信器は広域増強システム(WAAS)衛星である。WAAS衛星は、静止通信衛星であり、GPS受信器にGPS差分修正値を送信する。WAAS衛星は、更に、固有の位置判定信号を、1575.42MHzのGPSL1搬送波周波数で送信する。この固有の位置判定信号は、UTCに提供される修正値でGPS時間に正確に同期化されている。従って、WAAS衛星は、UTCの世界標準時間ベースと同期している理想的な基準送信器になる。
好適な実施形態では、位置判定ユニット装置の位置受信器は、2.4GHzISM帯域で他の位置判定ユニット装置から位置判定信号を、そしてL帯域周波数でWAAS及びGNSS衛星から位置判定信号を受信するための手段を組み込んでいる。位置判定ユニット装置は、WAAS衛星を基準送信器として使用し、その2.4GHzの従属位置判定信号を1575.42MHzのWAAS位置判定信号にタイムロックすることができる。異種の搬送波周波数の間のタイムロックは、入ってくるWAAS及び位置判定ユニット装置の搬送波を、位置判定ユニット装置位置受信器の共通のベースバンド周波数に一貫性(周波数コヒーレンス)をもってダウンコンバートすることによって開始される。次に、タイムロックは、先に述べた方法によって実行される。一貫した(コヒーレントな)ダウンコンバートには、位置判定ユニット装置の位置受信器の局所発振器が、共通の発振器で駆動されている必要がある。好適な実施形態では、共通の発振器は、位置受信器、送信器及び中央演算処理装置を含む位置判定ユニット装置の全構成要素に時計情報を生成する。周波数間のタイムロックを計算する場合、ダウンコンバート前のWAAS及び位置判定ユニット装置の搬送波周波数の受信経路が異なるために、配線バイアス及びグループ遅延が考慮される。
図6では、位置判定ユニット装置601−1、601−2、601−3、601−4は、空がよく見えて、望ましくは丘の上602−1、602−2及び/又は高い建築物603−1、603−2のような高い位置にある既知の場所に配置されている。必要ならば、指向性受信アンテナ604−1、604−2、604−3、604−4を、各位置判定ユニット装置601−1、601−2、601−3、601−4に組み込んで、静止WAAS衛星605に向けてもよい(これら追加のアンテナは、好ましいが、本方法にとって不可欠ではない)。位置判定ユニット装置に指向性アンテナを展開すると、多重経路を減らし、WAAS信号の受信される信号対ノイズ比が改善され、その結果、基準時間ベース精度が改善される。各位置判定ユニット装置601−1、601−2、601−3、601−4は、WAAS衛星信号606にタイムロックされ、ピコ秒の精度を有する正確なUTC同期化ネットワークが作られる。歩行者608が保持している位置受信器607は、建築物609内に位置している。WAAS衛星信号606は、信号出力が低いため、建築物609を貫通できない。しかしながら、位置判定ユニット装置601−1、601−2、601−3、601−4からの位置判定ユニット装置信号610−1、610−2、610−3、610−4は、近接しているので、建築物609を貫通することができる。位置受信器607は、4つの位置判定ユニット装置の全てから位置判定ユニット装置の位置判定信号を受信することができるので、衛星から遮蔽された領域内でも正確な単一点位置判定を行うことができる。更に、位置受信器607が位置の解を算出すると、UTCを正確に判定することができる。従って、本発明は、更に、衛星遮蔽領域内でも正確なUTC時間伝送を提供する。更に、位置受信器607が建築物609を出ると、視界内のあらゆる位置判定ユニット装置601−1、601−2、601−3、601−4、WAAS衛星605又はGNSS衛星からの信号を用いて、過剰規定されている位置の解を形成し、歩行者計算位置に位置の完全性を追加する。
中間のWAAS基準
別の実施形態では、WAAS衛星の明確な視界内に配置されている位置判定ユニット装置を、中間基準信号としても使用する。WAAS衛星信号を受信することができない位置判定ユニット装置は、その時間基準源として中間の「バックボーン」位置判定ユニット装置を使用することができる。従って、UTCは、全ての位置判定ユニット装置が基準WAAS衛星の明確な視界内になくても、ネットワーク中に配布される。
位置判定ユニット装置基準
WAAS衛星が使用できない場合、少なくとも1つの位置判定ユニット装置が、位置判定ユニット装置のネットワーに時間ベースを提供するのが望ましい。図7では、既知の場所に位置している第1位置判定ユニット装置701は、基準送信器として規定されており、その内部的に生成された時計702からシステムの時間ベースを作り出す。既知の場所に位置している2つの後続の位置判定ユニット装置703、704は、第1位置判定ユニット装置の基準位置判定信号705にタイムロックされる。既知の場所ではあるが第1位置判定ユニット装置701の範囲外に位置している第4位置判定ユニット装置706は、第2位置判定ユニット装置の固有位置判定信号707にタイムロックされる。従って、システムは、中間位置判定ユニット装置を通して、正確に縦続接続された時間伝送を行うことができる。位置受信器708は、視界内の全ての位置判定ユニット装置701、703、704、706が送信する時間同期化位置判定信号709を受信し、続いて単一点位置の解を計算する。更に、位置受信器708で計算される時間は、基準位置判定ユニット装置701の基準時計702と時系列的に同期化される。ユーザーが位置判定のみに関心がある場合、位置判定ユニット装置701内の基準時計702の任意時間値は重要ではない。ユーザーが大域の時間ベースとの時間整列を行いたい場合は、基準位置判定ユニット装置701内の基準時計702をUTCに合わせる必要がある。
GNSS時間ベースに制御される位置判定ユニット装置基準
WAAS衛星信号を使用することができず、ネットワークを大域時間ベースに整列させなければならない場合、基準位置判定ユニット装置をGNSS時間ベースによって制御しUTCに合わせるのが望ましい。GNSS時間ベースは、少なくとも1つのGNSS衛星を使って時間解を計算するのに、既知の場所に配置されている位置受信器を必要とする。
この技法を使えば、50ナノ秒オーダーの時間精度を実現することができる。基準位置判定ユニット装置にタイムロックされている位置判定ユニット装置の間の相対的な時間精度は、ピコ秒レベルに留まる。
ネットワーク内位置の解
複数の基準送信器を使用して、複数の自律ネットワークを作ることができる。自律ネットワークは、基準送信器によって生成される固有の時間ベースを有している。単一の自律ネットワーク内に位置している位置受信器は、単一点の位置の解を使って位置、速度及び時間(PVT)を判定することができる。位置受信器の時間は、ネットワーク時間ベースに対して判定され(即ち、基準送信器時計)イントラネットワーク位置解と称される。2つの自律ネットワークの境界に位置していて、位置判定ユニット装置からの位置判定信号を両方のネットワークから受信する位置受信器は、位置を判定する前に、先ず2つのネットワーク時間ベースの間で識別を行わなければならない。これは、ネットワーク内位置の解として説明することができ、移動する位置受信器は、先ず単一の時間ベースを選択し、単一点位置の解を計算する前に第2時間ベースに時計修正値を適用する必要がある。
好適な実施形態では、位置判定ユニット装置は、ネットワークデータ内のネットワーク識別(ネットワークID)情報も含んでいる。ネットワークI.D.は、位置判定ユニット装置の基準時間相互接続性を、位置判定ユニット装置と位置受信器が、視界の中の各位置判定ユニット装置毎に、基準時計データの元の及び隠喩的「血統」を判定することができるように、マップする。これにより、2つの自律ネットワークの境界に位置する位置判定ユニット装置又は位置受信器が、どの位置判定ユニット装置が各ネットワークと関係付けられているか、従って、どの位置判定ユニット装置が、移動する位置受信器の位置計算で時計修正値を必要としているか、判定できるようになる。各位置判定ユニット装置は、視界内の他の全ての位置判定ユニット装置からネットワークI.D.情報を受信し、それに応えて、それ自身のネットワークI.D.情報を生成し、視界内の他の全ての位置判定ユニット装置及び移動する位置受信器に送信する。
図8では、位置判定ユニット装置の2つの自律ネットワーク801、802を描いている。位置判定ユニット装置801−1、801−2及び801−3は、互いに視界内にあり、位置判定信号803−1、803−2及び803−3を介して互いに通信する。位置判定ユニット装置802−1、802−2及び802−3は、互いに視界内にあり、位置判定信号804−1、804−2及び804−3を介して互いに通信する。2つのネットワーク801−3の境界付近に位置する位置判定ユニット装置は、隣接するネットワーク位置判定ユニット装置802−3から位置判定ユニット装置の位置判定信号804−3を受信し、それ自身のネットワーク801の時間ベースに対する隣接ネットワーク時間ベースの時間ベースの差、即ち時計バイアスを測定する。位置判定ユニット装置801−3は、隣接するネットワーク位置判定ユニット装置802−1、802−2、802−3に関する時計修正値を、位置判定信号803−3内に組み込まれているネットワークデータで送信する。1つの自律ネットワーク内の全ての時計は時間に一貫性(時間コヒーレンス)があるので、ネットワーク修正値を形成する際、位置判定ユニット装置801−3は、隣接するネットワークの位置判定ユニット装置802−3からの位置判定信号を1つだけ受信すればよい。更に、位置判定ユニット装置801−3の1つだけが、隣接するネットワークを測定すればよく、そうすれば、それ自身の位置判定信号803−3で送信されるネットワーク時計修正値が、それ自身のネットワーク内の他の位置判定ユニット装置に受信され、中継され、その後に続く送信803−1、803−2で、移動する位置判定受信器805に送信されることになる。
位置判定ユニット装置801−3の位置判定信号803−3のネットワークデータで送信される修正値は、ネットワーク801と802の間を移動している位置受信器805に受信される。移動する位置受信器は、位置判定ユニット装置801−3から受信したネットワーク時計修正値を適用し、次いで、視界内の全ての位置判定ユニット装置の位置判定信号803−1、803−2及び803−3と、隣接するネットワークの位置判定ユニット装置の位置判定信号804−3とを使って、単一点位置の解を計算する。単一点位置の解が計算されると、移動する位置受信器805の時計は、時計修正値を提供するネットワーク801の時間ベースと時間一貫性(時間コヒーレンス)を持つことになる。更に、隣接するネットワークの位置判定ユニット装置802−3は、第1位置判定ユニット装置801−3から位置判定信号803−3を受信し、自身のネットワーク802の時間ベースに対する第1ネットワーク801の時間ベース差を測定することができる。隣接するネットワークの位置判定ユニット装置802−3は、次に、その隣接するネットワークの位置判定ユニット装置801−1、801−2及び801−3に対する時計修正値を、その位置判定信号804−3内の自身のネットワークデータで送るので、必要であれば、移動する位置受信器805は、時間ベース間で選択できるようになる。
多重周波数タイムロック
好適な実施形態では、複数の位置判定信号は、各位置判定ユニット装置から複数の周波数で送信される。位置受信器は、次いで複数の位置判定信号を解釈して、整数搬送波サイクル曖昧性の解(AR)にいわゆるワイドレーンを作る。RF搬送波信号は、送信器と受信器の電子機器を通過する間に、「グループ遅延」として知られている時間遅延を経験する。グループ遅延は、周波数と周囲温度次第で数ナノ秒変動することもある。従って、共通の発振器から生成され、同じ送信経路を通して送信される複数の搬送波周波数は、搬送波周波数の差によって等しくない時間遅延を経験し、更に送信器電子機器の温度変化によって生じる変動する時間遅延を経験することになる。その結果、位相一貫性(位相コヒーレンス)のない位置判定信号が送信されることになる。位相一貫性(位相コヒーレンス)のない位置判定信号は、ワイドレーン曖昧性の解(AR)の段階に範囲誤差を誘発する。
位置判定ユニット装置は、それぞれの入ってくる基準位置判定信号に個々にタイムロックされている複数の多様な周波数の(周波数が異なる)位置判定信号を送信することにより、非一貫性(インコヒーレンス)の位相問題を基準送信器から削除することができる。位置判定ユニット装置は、複数の搬送波周波数で送信される複数の位置判定信号を制御することのできる複数の制御される送信器時計を組み込んでいる。位置判定ユニット装置の位置受信器は、複数の多様な周波数の基準位置判定信号を追跡し、複数の多様な周波数の従属位置判定信号も追跡する。位置判定ユニット装置は、多様な周波数の基準位置判定信号それぞれを、そのそれぞれの多様な周波数の従属位置判定信号に、各従属位置判定信号が基準送信器と時系列的に同期化されるようにタイムロックする。位置判定ユニット装置は、次に、基準送信器からのグループ遅延と時間一貫性(時間コヒーレンス)のある、その複数の多様な周波数の位置判定信号を送信する。視界内に少なくとも3つのタイムロックされた位置判定ユニット装置があれば、位置受信器は、視界内の各位置判定ユニット装置からワイドレーン整数曖昧性の解(AR)を求めることができる。基準送信器のグループ遅延は、タイムロックされた位置判定ユニット装置には一般的なAR範囲誤差を作ってきた。従って、各位置判定ユニット装置の擬似範囲には、同一のAR誘発範囲誤差が明白に存在する。位置受信器は、この共通の擬似範囲誤差を受信器時計バイアスと解釈し、単一点位置計算内の誤差を削除する。
ネットワーク座標フレーム
タイムロックの前提条件は、基準座標フレームに対する位置判定ユニット装置の位置が分かっていることである。有効な座標フレームであれば何を使用してもよいが、好適な実施形態では、地球中心地球固定(ECEF)座標フレームが用いられ、これはGPS及びWAASが使用している座標フレームでもある。好適な実施形態では、位置判定ユニット装置は、GNSS及び/又はWAAS及び/又は他の位置判定ユニット装置から自己調査し、ECEF座標を判定する。
送信周波数
好適実施形態では、位置判定ユニット装置は、2.4GHzから2.48GHzの許可を与えられていない科学医療(ISM)帯域で送信する。2.4GHzのISM帯域は、規制を受ける制約無しに、そしてGPSのような現在の航行システムとの干渉無しに、位置判定ユニット装置のネットワークを展開することができる。2.4GHzのISM帯域は、直列拡散スペクトル位置判定信号の高速化したチッピング速度に用いることができる83.5MHzの帯域幅、又はワイドレーンの整数サイクル曖昧性解のための多重搬送波の使用も可能にする。
位置判定ユニット装置ハードウェアの説明
好適な実施形態では、位置判定ユニット装置には、位置受信器、送信器、中央演算処理装置(CPU)及び共通の発振器が組み込まれている。位置受信器には、それぞれ搬送波成分、PRNコード成分及びデータ成分を備えている複数の位置判定信号を受信することのできる複数の受信チャネルが組み込まれている。送信器には、少なくとも1つのRF搬送波生成器と、少なくとも1つのPRNコード生成器と、少なくとも1つの制御される時計が組み込まれている。CPUは、位置受信器が受信した位置判定信号を解釈するための手段と、送信器の制御される時計を制御するための応答手段と、航行データを生成するための手段を備えている。共通の発振器は、位置判定ユニット装置の全構成要素に一貫する(コヒーレントな)局所時間ベースを提供する。
図9では、位置受信器902、送信器903、中央演算処理装置(CPU)904及び共通の発振器905が組み込まれている位置判定ユニット装置901を示している。位置受信器902には、複数の受信チャネル906が組み込まれており、送信器903には、1つ又は複数の搬送波生成器907と、1つ又は複数のコード生成器908と、1つ又は複数の制御される時計909が組み込まれている。CPU904には、位置受信器通信用の手段910と、送信器通信用の手段911と、送信器の制御される時計通信用の手段912が含まれている。
位置判定ユニット装置の位置受信器
位置判定ユニット装置の位置受信器は、基準送信器からの少なくとも1つの基準位置判定信号を受信し復調することができる少なくとも1つの受信チャネルと、少なくとも1つの同時配置された送信器の従属位置判定信号を受信し復調することができる少なくとも1つの受信チャネルとを備えている。位置判定ユニット装置の位置受信器は、精度と保全性を増すために、複数の基準位置判定信号を受信できるのが望ましい。位置判定ユニット装置の位置受信器は、他の位置判定ユニット装置から2.4GHzのISM帯域で位置判定信号を、そしてWAAS及びGNSS衛星から電磁波L帯域周波数で送信している位置判定信号を受信できるのが望ましい。位置判定ユニット装置の位置受信器は、従来型のGPS受信器の設計で使用されているのと同じ方法を使って位置判定信号を追跡し、復調し、解釈する。GPS受信器の処理と設計は、当該技術では周知であり、本明細書で説明する問題ではない。
位置判定ユニット装置の送信器
位置判定ユニット装置の送信器は、従来型のGPSの疑似衛星と多くの類似点を有し、主要且つ重要な1つの改良点が制御される送信器時計である。好適な実施形態では、制御される送信器時計は、直接デジタル合成(DDS)技法を使ってデジタルドメインで生成される。DDS技術は、ミリヘルツの精度まで周波数制御することのできる、デジタル的に生成される発振器を作り、送信器時計を、入ってくる基準信号に正確に「従属」させることができるようにする。送信器には、少なくとも1つの無線周波数(RF)搬送波生成器と、少なくとも1つの擬似乱数番号(PRN)コード生成器も組み込まれている。RF搬送波生成器は、正弦波無線周波数波で、望ましくは2.4GHzのISM帯域で送信される搬送波成分を作り、PRNコード生成器は、同じ搬送波周波数で送信される他の擬似乱数コードシーケンスの中で識別できる固有のコードシーケンスを備えたコード成分を作る。複数のコードを複数の周波数上で生成していわゆる「ワイドレーン」を作ることができ、そうすれば、搬送波整数サイクルの曖昧性を移動する位置受信器で解明することができる。好適な実施形態では、位置判定ユニット装置の送信器は、時分割多重アクセス(TDMA)方式でパルス状に駆動されるので、強力なCDMA位置判定信号は、同じ搬送波周波数で送信される弱いCDMA位置判定信号を妨害しない。この現象は「近/遠問題」として知られており、当該技術では周知である。
位置判定ユニット装置の中央演算処理装置
位置判定ユニット装置のCPUは、以下の手段を備えている。
a)位置判定ユニット装置の現在の位置を判定するための手段。位置判定は、自己調査又は手動初期化の何れかを通して実現することができる。自己調査では、3次元の単一点位置の解を求めるには、位置判定ユニット装置が、少なくとも4つの他の基準位置判定ユニット装置の視界内に在るか、或いは、位置判定ユニット装置が、少なくとも3つのGNSS衛星と少なくとも1つの基準位置判定ユニット装置の視界内に在る必要がある。この実施形態では、基準位置判定ユニット装置は、視界内の全てのGNSS衛星に関するコードと搬送波両方の差分修正値を位置判定ユニット装置に供給する。すると、位置判定ユニット装置は、基準位置判定ユニット装置に対する正確な位置を計算する。
手動初期化は、所定の場所に位置判定ユニット装置を配置し、地理的座標値を位置判定ユニット装置メモリに手動入力することによって実現される。好適な実施形態では、第1位置判定ユニット装置は、正確に分かっている座標を使って手動で初期化され、次いでGNSS衛星及び第1位置判定ユニット装置からの位置判定ユニット装置の自己調査が行われる。
b)位置受信器による基準信号探索を開始する手段。
位置受信器の全チャネルは、視界内のあらゆる基準位置判定信号を探索するよう設定される。
c)少なくとも1つの基準位置判定信号を入手し、航行データ成分からネットワーク時間とネットワークデータを抽出する手段。
d)基準送信器から位置判定ユニット装置への単一の伝播遅延を判定する手段。
先ず、基準位置判定信号航行データから基準送信器の位置座標が抽出され、既知の位置判定ユニット装置の場所と比較される。基準送信器と位置判定ユニット装置の間の計算された地理的距離は、経過時間オフセットに変換される。
e)適切な固有のPRNコードによって従属送信器コード生成器を初期化する手段。
f)従属位置判定信号内の航行データ成分として送信される適切なネットワーク時間及びネットワークデータを生成して、送信器に送る手段。
航行データは、送信器で生成されるPRNコード上で変調され、続いて送信器で生成されるRF搬送波上で変調される。航行データは、週の時間情報と、位置判定ユニット装置の場所と、他の位置判定ユニット装置及びGNSS衛星の場所及び状態のような他のネットワークデータを含んでいる。
g)計算された経過時間オフセットを適用し、従属送信器を初期化して、ネットワークの時間と周波数に近似させる手段。
h)位置受信器を初期化して、従属位置判定信号を探索する手段。
i)従属位置判定信号を入手し、制御ループを適用して、基準位置判定信号と従属位置判定信号の間に周波数一貫性(周波数コヒーレンス)を得る手段。
CPUは、基準位置判定信号と従属位置判定信号の瞬間積分搬送波位相(ICP)差を測定し、「タイムロックループ(TLL)」として知られている制御ループを適用する。
TLLの出力は、ICP差をゼロにするために、制御される送信器時計に修正値を適用する。
j)従属位置判定信号の航行データ成分から送信された従属時間を抽出し、基準位置判定信号と従属位置判定信号の間の時間差を求める手段。
k)制御される送信器時計を必要量タイムスルーして、基準位置判定信号と従属位置判定信号の間の時間差をゼロにして、従属位置判定信号が、基準送信器時間と時系列的に整列するようにする手段。
l)タイムロック状態を宣言する手段。
共通の発振器
共通の発振器は、位置判定ユニット装置の全ての構成要素に一貫性(コヒーレンス)のある局所時間ベースを提供する。特に、同じ発振器を使用して、位置受信器、CPU、及び制御される送信器時計を駆動している。一貫性(コヒーレンス)のある局所時間ベースによって、いわゆる周波数追跡システム(FTS)を使って、受信した基準位置判定信号のオーブンループ周波数を追跡できるようになる。受信した基準位置判定信号の、位置判定ユニット装置位置受信器が測定した周波数オフセットは、FTSで、位置判定ユニット装置の制御される送信器時計に直接送られる。制御される送信器時計は、入ってくる基準位置判定信号の周波数オフセット値を単純にエミュレートし、共通の発振器項を削除して、基準位置判定信号と従属位置判定信号の間の基準/従属周波数ロックを維持する。FTSは、従属位置判定信号の入手及び時間調整を支援する。
移動システムの説明
移動する位置受信器は、望ましくは2.4GHzのISM帯域内で送信されている位置判定ユニット装置からの位置判定信号を受信し解釈することのできる複数の受信チャネルを備えているのが望ましい。移動する位置受信器は、更に、L帯域周波数で送信されているGNSS及びWASS衛星からの位置判定信号を受信し解釈できることが望ましい。移動する位置受信器は、視界内の全ての位置判定信号からのネットワークデータが組み込まれている航行データを復調できるのが望ましい。これにより、位置判定ユニット装置のネットワーク時間、GNSS時間、位置判定ユニット装置の場所、衛星の場所、及び他のネットワーク及びGNSSデータの判定が行えるようになる。好適な実施形態では、ネットワーク時間は、WASS衛星経由でGNSS時間から抽出されるので、ネットワーク時間とGNSS時間に時間の一貫性(時間コヒーレンス)を持たせることができる。移動する位置受信器には、更に、視界内の各位置判定信号毎にコードベース擬似範囲測定を行う手段と、視界内の各位置判定信号毎に搬送波位相測定を行う手段と、単一点位置判定を使用して位置、速度及び時間(PVT)を解く手段が組み込まれているのが望ましい。単一点位置判定は、従来型のGPS位置解法を使用して実現することができるが、これは、一般的には、当該技術では周知の最小二乗回帰の形をしている。
移動する位置受信器には、整数サイクル曖昧性を判定する手段が組み込まれているのが望ましい。好適な実施形態では、整数サイクルの曖昧性は、ワイドレーン技法を使って解かれる。整数サイクルの曖昧性が解明されると、移動する位置受信器から位置判定ユニット装置まで、正確な搬送波位相擬似範囲が求められる。搬送波擬似範囲は、整数の搬送波サイクル(整数成分)と、端数の搬送波サイクル(分数成分、即ち位相成分)の和から成り、位置受信器の時計バイアスが分かっていないため擬似範囲と称される。タイムロックされた位置判定ユニット装置は、10ピコ秒まで時間一貫性(時間コヒーレンス)を呈するので、単一点位置の解を、正確な搬送波擬似範囲から、差分修正値の必要なしに形成することができる。
位置受信器は、タイムロックされた位置判定ユニット装置のネットワークによって生成された位置判定信号を、従来型のGPS受信器設計で用いられているのと同じ方法で、追跡し、復調し、解釈する。GPS受信器の処理と設計は、ワイドレーンの曖昧性解析同様に、当該技術では周知であり、本明細書で説明すべき対象ではない。
上記説明は本発明の例を示すためのものであり、上記及びその他の修正及び変更は、当業者には自明のように、本明細書に説明する本発明の広い範囲と領域内に入るものとみなされる。
本発明によるタイムロックの或る実施形態の図であり、複数の位置判定ユニット装置に同報通信する単一の基準送信器と、自律した単一点位置の解を求める移動する位置受信器とが描かれている。 本発明によるタイムロックの別の実施形態の図であり、単一の位置判定ユニット装置に同報通信する単一の基準送信器が描かれている。 本発明によるタイムロックの別の実施形態の図であり、複数の位置判定ユニット装置に同報通信する単一の基準送信器が描かれている。 本発明によるタイムロックの別の実施形態の図であり、中継の位置判定ユニット装置を通して同報通信する基準送信器が描かれている。 本発明によるタイムロックの別の実施形態の図であり、単一の位置判定ユニット装置に同報通信する複数の基準送信器が描かれている。 本発明によるタイムロックの別の実施形態の図であり、4つの位置判定ユニット装置に同報通信する広域増強システム(WAAS)基準送信器が描かれている。位置判定ユニット装置は、次いで、その固有の時系列的に同期化された位置判定信号を、衛星から遮蔽された環境内に位置している移動する位置受信器へ送る。 本発明によるタイムロックの別の実施形態の図であり、3つの他の位置判定ユニット装置に同報通信する位置判定ユニット装置基準送信器が描かれている。位置判定ユニット装置は、続いて、その固有の時系列的に同期化された位置判定信号を、移動する位置受信器へ送信する。 本発明によるタイムロックの別の実施形態の図であり、位置判定ユニット装置の2つの自律的ネットワークと、2つのネットワークの境界上に位置している移動する位置受信器とが描かれている。境界上の位置判定ユニット装置は、続いて、移動する位置受信器にインターネットワークの修正を送る。 本発明による位置判定ユニット装置ハードウェアのブロック図である。

Claims (40)

  1. 少なくとも1つの基準送信機少なくとも1つの測位ユニット装置、及び移動する位置受信機を含む測位システムにおいて、前記移動する位置受信機の位置を決定する方法であって、
    a)前記少なくとも1つの基準送信機の時間ベースに従って前記少なくとも1つの基準送信機のそれぞれが基準測位信号を生成し、送信する段階であって、前記少なくとも1つの基準送信機は既知の場所にある段階と、
    b)前記少なくとも1つの測位ユニット装置のそれぞれが、
    i)前記少なくとも1つの基準送信機又は前記少なくとも1つの測位ユニット装置のいずれか、又は前記少なくとも1つの基準送信機及び前記少なくとも1つの測位ユニット装置の両方によって送信された信号を受信し、解釈し、
    ii)前記少なくとも1つの基準送信機と前記測位ユニット装置の間の基準測位信号伝播遅延を決定し、
    iii)固有の測位信号を生成し、送信し、
    iv)前記固有の測位信号を受信し、解釈し、
    v)段階(i)で受信され、解釈された信号と、段階(iv)からの前記固有の測位信号を比較し、送信差を推論し、
    vi)前記固有の測位信号の生成及び送信を、
    a)段階(v)からの前記推論された送信差、及び
    b)段階(ii)からの前記基準測位信号伝播遅延、
    に従って、前記固有の測位信号が前記基準測位信号と時系列的に同期するように、連続的に調節する段階と、
    c)前記移動する位置受信機が、
    i)前記時系列的に同期させられた固有の測位信号、又は
    ii)前記基準測位信号及び前記時系列的に同期させられた固有の測位信号の両方、
    のいずれかを受信し、
    それに続いて、差分修正の必要なくそれ自身の位置を計算する段階と、からなる方法。
  2. 請求項1に記載の方法において、
    段階(c)での前記移動する位置受信機の計算された位置は、搬送波の単一点の位置−速度−時間(PVT)解によって決定されることを特徴とする方法。
  3. 請求項1に記載の方法において、
    段階(c)で受信された前記信号は、擬似乱数コード成分を含み、前記移動する位置受信機はそれぞれの受信された信号内の前記擬似乱数コード成分から導出される擬似乱数コードの単一点の位置解を決定することを特徴とする方法。
  4. 請求項1に記載の方法において、
    段階(c)で受信された前記信号は、搬送波成分を含み、前記移動する位置受信機はそれぞれの受信された信号内の前記搬送波成分から導出される搬送波の単一点の位置解を決定することを特徴とする方法。
  5. 請求項1に記載の方法において、
    段階(c)で受信された前記信号は、データ分を含み、前記移動する位置受信機はそれぞれの受信された信号内の前記データ成分から導出されるデータの単一点の位置解を決定することを特徴とする方法。
  6. 請求項1に記載の方法において、
    前記移動する位置受信機の段階(c)で計算された前記位置は、位置−速度−時間(PVT)解を計算することによって前記少なくとも1つの基準送信機の時間ベースを決定することを特徴とする方法。
  7. 請求項1に記載の方法において、
    前記移動する位置受信機の段階(c)で計算された前記位置は、搬送波の単一点の位置解を計算することによって前記少なくとも1つの基準送信機の時間ベースを決定することを特徴とする方法。
  8. 請求項1に記載の方法において、
    前記移動する位置受信機の段階(c)で計算された前記位置は、最初の曖昧な数の搬送波サイクルの成分及び端数のサイクル成分を含む搬送波成分を含むことを特徴とする方法。
  9. 請求項に記載の方法において、前記移動する位置受信機の段階(c)で計算された位置は、
    a)前記最初の曖昧な数の搬送波サイクル成分を解決し、解決された整数サイクル成分を生成し、
    b)前記解決された整数サイクル成分に前記端数のサイクル成分を加え、正確な搬送波位相擬似距離を生成し、
    c)それぞれの受信された信号内の前記正確な搬送波位相擬似距離から搬送波単一点位置解を決定し、
    それにより前記搬送波単一点位置解は差分修正の必要なく決定可能であるような段階によって決定される方法。
  10. 請求項1に記載の方法において、
    前記少なくとも1つ又はそれ以上の基準送信機のそれぞれは測位ユニット装置、広域増強システム衛星、大域航行衛星システム衛星、疑似衛星、又はタイミング情報を組み込んだ置を含んでいることを特徴とする方法。
  11. 移動する位置受信機にそれ自身の位置を決定することを可能にする測位システムであって、
    a)少なくとも1つの基準送信機の時間ベースに従って基準測位信号を生成し、送信するようにそれぞれが構成された当該少なくとも1つの基準送信機と、
    b)少なくとも1つの測位ユニット装置であって、そのそれぞれが、
    i)前記少なくとも1つの基準送信機又は前記少なくとも1つの測位ユニット装置のいずれか、又は前記少なくとも1つの基準送信機及び前記少なくとも1つの測位ユニット装置の両方によって送信された信号を受信し、解釈する手段、
    ii)前記少なくとも1つの基準送信機と前記測位ユニット装置の間の基準測位信号伝播遅延を決定する手段、
    iii)固有の測位信号を生成し、送信する手段、
    iv)前記固有の測位信号を受信し、解釈する手段、
    v)段階(i)で受信され、解釈された信号と、段階(iv)からの前記固有の測位信号を比較し、送信差を推論する手段、
    vi)前記固有の測位信号の生成及び送信を、
    a)段階(v)からの前記推論された送信差、及び
    b)段階(ii)からの前記基準測位信号伝播遅延、
    に従って、前記固有の測位信号が前記基準測位信号と時系列的に同期するように、連続的に調節する手段、を含む当該少なくとも1つの測位ユニット装置と、
    c)前記移動する位置受信機であって
    i)前記時系列的に同期させられた固有の測位信号、又は
    ii)前記基準測位信号及び前記時系列的に同期させられた固有の測位信号の両方、
    のいずれかを受信し、
    それに続いて、差分修正の必要なくそれ自身の位置を計算する手段を有する当該位置受信機と、からなる測位システム。
  12. 請求項11に記載の測位システムにおいて、
    段階(c)での前記移動する位置受信機の計算された位置は、搬送波の単一点の位置−速度−時間(PVT)解によって決定されることを特徴とする測位システム。
  13. 請求項11に記載の測位システムにおいて、
    段階(c)で受信された前記信号は、擬似乱数コード成分を含み、前記移動する位置受信機はそれぞれの受信された信号内の前記擬似乱数コード成分から導出される擬似乱数コードの単一点の位置解を決定することを特徴とする測位システム。
  14. 請求項11に記載の測位システムにおいて、
    段階(c)で受信された前記信号は、搬送波成分を含み、前記移動する位置受信機はそれぞれの受信された信号内の前記搬送波成分から導出される搬送波の単一点の位置解を決定することを特徴とする測位システム。
  15. 請求項11に記載の測位システムにおいて、
    段階(c)で受信された前記信号は、データ分を含み、前記移動する位置受信機はそれぞれの受信された信号内の前記データ成分から導出されるデータの単一点の位置解を決定することを特徴とする測位システム。
  16. 請求項11に記載の測位システムにおいて、
    前記移動する位置受信機の段階(c)で計算された前記位置は、位置−速度−時間(PVT)解を計算することによって前記少なくとも1つの基準送信機の時間ベースを決定することを特徴とする測位システム。
  17. 請求項11に記載の測位システムにおいて、
    前記移動する位置受信機の段階(c)で計算された前記位置は、搬送波の単一点の位置解を計算することによって前記少なくとも1つの基準送信機の時間ベースを決定することを特徴とする測位システム。
  18. 請求項11に記載の測位システムにおいて、
    前記移動する位置受信機の段階(c)で計算された前記位置は、最初の曖昧な数の搬送波サイクルの成分及び端数のサイクル成分を含む搬送波成分を含むことを特徴とする測位システム。
  19. 請求項18に記載の測位システムにおいて、前記移動する位置受信機の段階(c)で計算された位置は、
    a)前記最初の曖昧な数の搬送波サイクル成分を解決し、解決された整数サイクル成分を生成し、
    b)前記解決された整数サイクル成分に前記端数のサイクル成分を加え、正確な搬送波位相擬似距離を生成し、
    c)それぞれの受信された信号内の前記正確な搬送波位相擬似距離から搬送波単一点位置解を決定し、
    それにより前記搬送波単一点位置解は差分修正の必要なく決定可能であるような段階によって決定される測位システム。
  20. 請求項11に記載の測位システムにおいて、
    前記少なくとも1つ又はそれ以上の基準送信機のそれぞれは測位ユニット装置、広域増強システム衛星、大域航行衛星システム衛星、疑似衛星、又はタイミング情報を組み込んだ置を含んでいることを特徴とする測位システム。
  21. 少なくとも1つの基準送信機少なくとも1つの測位ユニット装置、及び移動する位置受信機を含む測位システムにおいて、移動する位置受信機の位置を決定する方法であって、
    a)前記少なくとも1つの基準送信機の時間ベースに従って前記少なくとも1つの基準送信機のそれぞれが基準測位信号を生成し、送信する段階であって、前記少なくとも1つの基準送信機は既知の場所にある段階と、
    b)前記少なくとも1つの測位ユニット装置のそれぞれが、
    i)前記少なくとも1つの基準測位信号を受信し、解釈し、
    ii)周波数可変クロックに整合させられた固有の測位信号を生成し、送信し、
    iii)前記固有の測位信号を受信し、解釈し、
    iv)前記受信された少なくとも1つの基準測位信号(i)と前記受信された固有の測位信号(iii)の周波数差を測定し、
    v)前記測定された周波数差(iv)から導出される量によって周波数可変クロックの周波数を調節し、その結果、前記固有の測位信号を調節し、
    vi)前記少なくとも1つの基準送信機と前記測位ユニット装置の間の基準測位信号伝播遅延を決定し、
    vii)前記受信された基準測位信号(i)と前記受信された固有の測位信号(iii)の間の時間差を測定し、
    viii)段階(vii)で測定された前記時間差及び段階(vi)で測定された前記伝播遅延から導出される時間の期間の間で前記周波数可変クロックの周波数をオフセットし、その結果、前記固有の測位信号を調節し、
    それにより前記固有の測位信号を前記基準測位信号に時系列的に同期させる段階と、
    c)前記移動する位置受信機が、
    i)前記時系列的に同期させられた固有の測位信号、又は
    ii)前記基準測位信号及び前記時系列的に同期させられた固有の測位信号の両方、
    のいずれかを受信し、
    それに続いて、差分修正の必要なくそれ自身の位置を計算する段階と、からなる方法。
  22. 請求項21に記載の方法において、
    段階(c)での前記移動する位置受信機の計算された位置は、搬送波の単一点の位置−速度−時間(PVT)解によって決定されることを特徴とする方法。
  23. 請求項21に記載の方法において、
    段階(c)で受信された前記信号は、擬似乱数コード成分を含み、前記移動する位置受信機はそれぞれの受信された信号内の前記擬似乱数コード成分から導出される擬似乱数コードの単一点の位置解を決定することを特徴とする方法。
  24. 請求項21に記載の方法において、
    段階(c)で受信された前記信号は、搬送波成分を含み、前記移動する位置受信機はそれぞれの受信された信号内の前記搬送波成分から導出される搬送波の単一点の位置解を決定することを特徴とする方法。
  25. 請求項21に記載の方法において、
    段階(c)で受信された前記信号は、データ分を含み、前記移動する位置受信機はそれぞれの受信された信号内の前記データ成分から導出されるデータの単一点の位置解を決定することを特徴とする方法。
  26. 請求項21に記載の方法において、
    前記移動する位置受信機の段階(c)で計算された前記位置は、位置−速度−時間(PVT)解を計算することによって前記少なくとも1つの基準送信機の時間ベースを決定することを特徴とする方法。
  27. 請求項21に記載の方法において、
    前記移動する位置受信機の段階(c)で計算された前記位置は、搬送波の単一点の位置解を計算することによって前記少なくとも1つの基準送信機の時間ベースを決定することを特徴とする方法。
  28. 請求項21に記載の方法において、
    前記移動する位置受信機の段階(c)で計算された前記位置は、最初の曖昧な数の搬送波サイクルの成分及び端数のサイクル成分を含む搬送波成分を含むことを特徴とする方法。
  29. 請求項28に記載の方法において、前記移動する位置受信機の段階(c)で計算された位置は、
    a)前記最初の曖昧な数の搬送波サイクル成分を解決し、解決された整数サイクル成分を生成し、
    b)前記解決された整数サイクル成分に前記端数のサイクル成分を加え、正確な搬送波位相擬似距離を生成し、
    c)それぞれの受信された信号内の前記正確な搬送波位相擬似距離から搬送波単一点位置解を決定し、
    それにより前記搬送波単一点位置解は差分修正の必要なく決定可能であるような段階によって決定される方法。
  30. 請求項21に記載の方法において、
    前記少なくとも1つ又はそれ以上の基準送信機のそれぞれは測位ユニット装置、広域増強システム衛星、大域航行衛星システム衛星、疑似衛星、又はタイミング情報を組み込んだ置を含んでいることを特徴とする方法。
  31. 移動する位置受信機にそれ実施の位置を決定することを可能にする測位システムであって、
    a)少なくとも1つの基準送信機の時間ベースに従って基準測位信号を生成し、送信するようにそれぞれが構成された当該少なくとも1つの基準送信機と、
    b)少なくとも1つの測位ユニット装置であって、そのそれぞれが、
    i)前記少なくとも1つの基準測位信号を受信し、解釈する手段、
    ii)周波数可変クロックに整合させられた固有の測位信号を生成し、送信する手段、 iii)前記固有の測位信号を受信し、解釈する手段、
    iv)前記受信された少なくとも1つの基準測位信号(i)と前記受信された固有の測位信号(iii)の周波数差を測定する手段、
    v)前記測定された周波数差(iv)から導出される量によって周波数可変クロックの周波数を調節し、その結果、前記固有の測位信号を調節する手段、
    vi)前記少なくとも1つの基準送信機と前記測位ユニット装置の間の基準測位信号伝播遅延を決定する手段、
    vii)前記受信された基準測位信号(i)と前記受信された固有の測位信号(iii)の間の時間差を測定する手段、
    viii)段階(vii)で測定された前記時間差及び段階(vi)で測定された前記伝播遅延から導出される時間の期間の間で前記周波数可変クロックの周波数をオフセットし、その結果、前記固有の測位信号を調節する手段、を有し、
    それにより前記固有の測位信号を前記基準測位信号に時系列的に同期させる当該少なくとも1つの測位ユニット装置と、
    c)動する位置受信機であって
    i)前記時系列的に同期させられた固有の測位信号、又は
    ii)前記基準測位信号及び前記時系列的に同期させられた固有の測位信号の両方、
    のいずれかを受信し、
    それに続いて、差分修正の必要なくそれ自身の位置を計算する手段を有する前記位置受信機と、からなる測位システム。
  32. 請求項31に記載の測位システムにおいて、
    段階(c)での前記移動する位置受信機の計算された位置は、搬送波の単一点の位置−速度−時間(PVT)解によって決定されることを特徴とする測位システム。
  33. 請求項31に記載の測位システムにおいて、
    段階(c)で受信された前記信号は、擬似乱数コード成分を含み、前記移動する位置受信機はそれぞれの受信された信号内の前記擬似乱数コード成分から導出される擬似乱数コードの単一点の位置解を決定することを特徴とする測位システム。
  34. 請求項31に記載の測位システムにおいて、
    段階(c)で受信された前記信号は、搬送波成分を含み、前記移動する位置受信機はそれぞれの受信された信号内の前記搬送波成分から導出される搬送波の単一点の位置解を決定することを特徴とする測位システム。
  35. 請求項31に記載の測位システムにおいて、
    段階(c)で受信された前記信号は、データ分を含み、前記移動する位置受信機はそれぞれの受信された信号内の前記データ成分から導出されるデータの単一点の位置解を決定することを特徴とする測位システム。
  36. 請求項31に記載の測位システムにおいて、
    前記移動する位置受信機の段階(c)で計算された前記位置は、位置−速度−時間(PVT)解を計算することによって前記少なくとも1つの基準送信機の時間ベースを決定することを特徴とする測位システム。
  37. 請求項31に記載の測位システムにおいて、
    前記移動する位置受信機の段階(c)で計算された前記位置は、搬送波の単一点の位置解を計算することによって前記少なくとも1つの基準送信機の時間ベースを決定することを特徴とする測位システム。
  38. 請求項31に記載の測位システムにおいて、
    前記移動する位置受信機の段階(c)で計算された前記位置は、最初の曖昧な数の搬送波サイクルの成分及び端数のサイクル成分を含む搬送波成分を含むことを特徴とする測位システム。
  39. 請求項38に記載の測位システムにおいて、前記移動する位置受信機の段階(c)で計算された位置は、
    a)前記最初の曖昧な数の搬送波サイクル成分を解決し、解決された整数サイクル成分を生成し、
    b)前記解決された整数サイクル成分に前記端数のサイクル成分を加え、正確な搬送波位相擬似距離を生成し、
    c)それぞれの受信された信号内の前記正確な搬送波位相擬似距離から搬送波単一点位置解を決定し、
    それにより前記搬送波単一点位置解は差分修正の必要なく決定可能であるような段階によって決定される測位システム。
  40. 請求項31に記載の測位システムにおいて、
    前記少なくとも1つ又はそれ以上の基準送信機のそれぞれは測位ユニット装置、広域増強システム衛星、大域航行衛星システム衛星、疑似衛星、又はタイミング情報を組み込んだ置を含んでいることを特徴とする測位システム。
JP2009068864A 2001-11-02 2009-02-25 ロケーションネットワーク内の移動する位置受信機の位置を決定する方法 Expired - Fee Related JP4768043B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPR8634 2001-11-02
AUPR8634A AUPR863401A0 (en) 2001-11-02 2001-11-02 A method & device for precision time-lock

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003540684A Division JP4293907B2 (ja) 2001-11-02 2002-11-01 ロケーションネットワークを時系列的に同期化するための方法及び装置

Publications (2)

Publication Number Publication Date
JP2009145360A JP2009145360A (ja) 2009-07-02
JP4768043B2 true JP4768043B2 (ja) 2011-09-07

Family

ID=3832456

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2003540684A Expired - Fee Related JP4293907B2 (ja) 2001-11-02 2002-11-01 ロケーションネットワークを時系列的に同期化するための方法及び装置
JP2009068864A Expired - Fee Related JP4768043B2 (ja) 2001-11-02 2009-02-25 ロケーションネットワーク内の移動する位置受信機の位置を決定する方法
JP2009068865A Expired - Fee Related JP4927117B2 (ja) 2001-11-02 2009-02-25 ロケーションネットワーク内で周波数コヒーレンスを発生させる方法及び装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2003540684A Expired - Fee Related JP4293907B2 (ja) 2001-11-02 2002-11-01 ロケーションネットワークを時系列的に同期化するための方法及び装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009068865A Expired - Fee Related JP4927117B2 (ja) 2001-11-02 2009-02-25 ロケーションネットワーク内で周波数コヒーレンスを発生させる方法及び装置

Country Status (13)

Country Link
US (4) US7616682B2 (ja)
EP (4) EP2624008B1 (ja)
JP (3) JP4293907B2 (ja)
KR (4) KR100951748B1 (ja)
CN (4) CN100549722C (ja)
AU (2) AUPR863401A0 (ja)
BR (1) BR0213888A (ja)
CA (1) CA2479579A1 (ja)
ES (4) ES2540873T3 (ja)
IL (5) IL161718A0 (ja)
MX (1) MXPA04004245A (ja)
SG (3) SG138489A1 (ja)
WO (1) WO2003038469A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150906A (ja) * 2001-11-02 2009-07-09 Locata Corp Pty Ltd ロケーションネットワークを時系列的に同期化するための方法及び装置

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003040752A1 (en) * 2001-11-06 2003-05-15 Chang-Don Kee Pseudolite-based precise positioning system with synchronised pseudolites
GB2388264A (en) * 2002-01-10 2003-11-05 Roke Manor Research GPS based networked time synchronised unit
AU2004232832B2 (en) 2003-04-17 2009-03-05 Secretary Of State For Defence Correction of troposphere induced errors in global positioning systems
AU2003904083A0 (en) * 2003-08-05 2003-08-21 Locata Corporation A method & device for providing assistance data within a chronologically synchronized location network
DE10350746A1 (de) * 2003-10-30 2005-06-16 Infineon Technologies Ag Verfahren und System zum Lokalisieren einer Position eines Objekts
US7356618B2 (en) * 2003-12-31 2008-04-08 Intel Corporation Method and system for synchronizing platform clocks in a distributed wireless platform
US7266713B2 (en) * 2004-01-09 2007-09-04 Intel Corporation Apparatus and method for adaptation of time synchronization of a plurality of multimedia streams
US7123186B2 (en) * 2004-03-26 2006-10-17 Topcon Gps, Llc Controlling solution latency in a global navigation satellite receiver
US7610065B2 (en) * 2005-02-28 2009-10-27 Cardiac Pacemakers, Inc. Method and apparatus for antenna selection in a diversity antenna system for communicating with implantable medical device
US8352040B2 (en) * 2005-02-28 2013-01-08 Cardiac Pacemakers, Inc. Diversity antenna system for communication with an implantable medical device
US8126488B2 (en) * 2005-04-22 2012-02-28 Axiometric Llc Wireless communication system and related methods
US8351409B2 (en) * 2005-04-22 2013-01-08 Axiometric, Llc Timing synchronization in wireless mesh networks
US8428558B2 (en) * 2005-04-22 2013-04-23 Axiometric, Llc System and method for routing in a wireless mesh network
US7330122B2 (en) 2005-08-10 2008-02-12 Remotemdx, Inc. Remote tracking and communication device
US8981996B2 (en) 2005-09-27 2015-03-17 Qualcomm Incorporated Position location using transmitters with timing offset and phase adjustment
US9354297B2 (en) * 2005-09-27 2016-05-31 Qualcomm Incorporated Position location using phase-adjusted transmitters
US7511667B2 (en) * 2006-02-22 2009-03-31 Novariant, Inc. Precise local positioning systems using ground-based transmitters
US7880676B2 (en) * 2006-04-19 2011-02-01 Wichorus Inc. Method and system for hybrid positioning using partial distance information
US7511662B2 (en) * 2006-04-28 2009-03-31 Loctronix Corporation System and method for positioning in configured environments
US9097783B2 (en) 2006-04-28 2015-08-04 Telecommunication Systems, Inc. System and method for positioning using hybrid spectral compression and cross correlation signal processing
GB2443242A (en) * 2006-07-03 2008-04-30 Roke Manor Research Means for alleviating a discontinuity in the coverage between adjacently located multilateration systems
US7545318B2 (en) * 2006-07-14 2009-06-09 Remotemdx Remote tracking system and device with variable sampling and sending capabilities based on environmental factors
US7737841B2 (en) 2006-07-14 2010-06-15 Remotemdx Alarm and alarm management system for remote tracking devices
US8797210B2 (en) * 2006-07-14 2014-08-05 Securealert, Inc. Remote tracking device and a system and method for two-way voice communication between the device and a monitoring center
US9791545B2 (en) 2006-12-07 2017-10-17 Digimarc Corporation Space-time calibration system and method
US9008198B2 (en) * 2007-01-05 2015-04-14 Qualcomm Incorporated Methods and apparatus for timing synchronization based on transitional pilot symbols
JP2008191012A (ja) * 2007-02-05 2008-08-21 Sumitomo Electric Ind Ltd 通信システム、車載機、車両及び送信機
CA2704264C (en) * 2007-11-02 2015-03-17 Novatel Inc. System and method for distributing accurate time and frequency over a network
KR100976439B1 (ko) * 2007-12-17 2010-08-18 한국전자통신연구원 무선 센서망에서의 이동 노드의 위치 추정 방법
EP2083282A1 (en) * 2008-01-28 2009-07-29 Technische Universiteit Delft Transmitter-receiver system
US7800531B2 (en) * 2008-03-06 2010-09-21 Atheros Communications, Inc. High precision positioning system
US8232876B2 (en) 2008-03-07 2012-07-31 Securealert, Inc. System and method for monitoring individuals using a beacon and intelligent remote tracking device
KR100957215B1 (ko) * 2008-03-07 2010-05-11 한국전자통신연구원 무선 센서망에서 이동 노드의 위치 추정 방법
US8406280B2 (en) * 2008-03-18 2013-03-26 Argon St, Inc. System and method for mitigating severe multipath interference for geolocation and navigation
US7952512B1 (en) * 2008-10-14 2011-05-31 Sprint Communications Company L.P. Mobile device enabled radar tags
US8249116B2 (en) * 2008-12-24 2012-08-21 Qualcomm Incorporated Methods and systems for timing acquisition robust to channel fading
KR101260570B1 (ko) 2009-03-10 2013-05-06 엘에스산전 주식회사 실시간 위치추적시스템에서의 시각 동기화 장치 및 그 방법
ES2374485T3 (es) * 2009-03-19 2012-02-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Método y aparato para estimar desviaciones de reloj, para sincronización virtual de relojes de funcionamiento libre y para determinar la posición de un objeto móvil.
US8035556B2 (en) * 2009-08-17 2011-10-11 Electronics And Telecommunications Research Institute Apparatus for transmitting pseudollite signal based on single clock and positioning system using the same
WO2011031825A2 (en) * 2009-09-10 2011-03-17 Rf Controls, Llc Calibration and operational assurance method and apparatus for rfid object monitoring systems
EP2330433A1 (en) * 2009-09-30 2011-06-08 Astrium Limited Positioning system
US8159367B2 (en) * 2009-10-16 2012-04-17 Rf Controls, Llc Methods for noise validated phase ranging RFID location
US8493182B2 (en) * 2009-10-16 2013-07-23 Rf Controls, Llc Phase ranging RFID location system
US8907321B2 (en) * 2009-12-16 2014-12-09 Lehigh Univeristy Nitride based quantum well light-emitting devices having improved current injection efficiency
US8514070B2 (en) 2010-04-07 2013-08-20 Securealert, Inc. Tracking device incorporating enhanced security mounting strap
CA2804179C (en) * 2010-07-06 2020-01-14 Galileo Satellite Navigation Ltd. Indoor satellite navigation system
US8463290B2 (en) 2010-07-09 2013-06-11 Digimarc Corporation Mobile device positioning in dynamic groupings of communication devices
EP2420855A1 (en) * 2010-08-20 2012-02-22 EPFL Ecole Polytechnique Fédérale de Lausanne Location system and corresponding calibration method
US8482434B2 (en) * 2010-09-17 2013-07-09 United Technologies Corporation Wireless sensor for an aircraft propulsion system
JP2012122775A (ja) * 2010-12-06 2012-06-28 Nec Corp 航空機位置測定システム、該システムに用いられる時刻同期方法及び時刻同期プログラム
KR102176551B1 (ko) * 2011-08-02 2020-11-10 넥스트나브, 엘엘씨 광역 포지셔닝 시스템(waps)에서의 셀 구조 및 전송 스킴
CN102928857A (zh) * 2011-08-10 2013-02-13 中国科学院国家天文台 卫星导航中多载波的定位方法
RU2474838C1 (ru) * 2011-08-19 2013-02-10 Открытое акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (ОАО "Российские космические системы") Электронное устройство оперативного восстановления измерений псевдодальности
US9590411B2 (en) * 2011-12-15 2017-03-07 Schweitzer Engineering Laboratories, Inc. Systems and methods for time synchronization of IEDs via radio link
CA2862643A1 (en) * 2012-01-25 2013-08-01 Inova Ltd. High-precision time synchronization for a cabled network in linear topology
FR2987136A1 (fr) * 2012-02-17 2013-08-23 St Microelectronics Sa Procede de localisation d'un objet
US9282471B2 (en) 2012-03-21 2016-03-08 Digimarc Corporation Positioning systems for wireless networks
KR20130127157A (ko) * 2012-05-14 2013-11-22 한국전자통신연구원 Gnss에서 크기가 제어된 항법신호를 송출하는 의사위성 및 방법
US9423507B2 (en) * 2012-05-30 2016-08-23 Csr Technology Inc. Methods and apparatuses for multipath estimation and correction in GNSS navigation systems
US9191844B2 (en) 2012-08-10 2015-11-17 Aviat U.S., Inc. Systems and methods for phase determination over a wireless link
CN102843164A (zh) * 2012-08-27 2012-12-26 中国科学院国家授时中心 超宽带室内定位系统发射时序控制方法
BR112015008592A2 (pt) 2012-10-19 2017-07-04 Schweitzer Engineering Lab Inc método, dispositivo de distribuição de tempo, e, mídia de armazenamento legível por computador não temporária
US9599719B2 (en) 2012-10-19 2017-03-21 Schweitzer Engineering Laboratories, Inc. Detection of manipulated satellite time signals
US10349630B2 (en) 2012-10-31 2019-07-16 Gea Farm Technologies Gmbh System and a method for real time detection of the position and behavior of a plurality of animals
US10234535B2 (en) 2012-10-31 2019-03-19 Gea Farm Technologies Gmbh Computer system for measuring real time position of a plurality of animals
KR102079350B1 (ko) * 2013-03-20 2020-02-19 삼성전자주식회사 캐리어 어그리게이션 처리 장치와 회로
US9521508B2 (en) 2013-06-19 2016-12-13 Blackberry Limited Architecture and method to 4G-mobile positioning
JP2015023333A (ja) * 2013-07-17 2015-02-02 国立大学法人東北大学 無線通信システム、無線通信方法および無線通信用端末
US9872293B1 (en) * 2013-11-22 2018-01-16 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Intelligent data transfer for multiple sensor networks over a broad temperature range
CN104703274B (zh) * 2013-12-04 2019-06-18 中兴通讯股份有限公司 一种带内伪卫星无线定位方法、系统及装置
US9507010B2 (en) 2013-12-20 2016-11-29 Blackberry Limited Method for improving clock accuracy in a wide area positioning pseudolite receiver system architecture
JP6712590B2 (ja) * 2014-07-25 2020-06-24 ロケイタ コーポレイション プロプライエタリー リミテッド 動的位置ネットワークを時系列的に同期させる方法及び装置
JP6499837B2 (ja) * 2014-08-11 2019-04-10 国立大学法人 名古屋工業大学 移動中継端末位置推定システム
US9606238B2 (en) 2015-03-06 2017-03-28 Gatekeeper Systems, Inc. Low-energy consumption location of movable objects
CN105182382A (zh) * 2015-08-05 2015-12-23 中国电子科技集团公司第五十四研究所 一种伪卫星厘米级定位方法
US10001541B2 (en) 2015-09-04 2018-06-19 Gatekeeper Systems, Inc. Magnetometer and accelerometer calibration for cart navigation system
US9731744B2 (en) 2015-09-04 2017-08-15 Gatekeeper Systems, Inc. Estimating motion of wheeled carts
CN105182386A (zh) * 2015-09-15 2015-12-23 安徽省综合交通研究院股份有限公司 智能车载定位终端及定位方法
EP3745615B1 (en) * 2015-10-30 2023-07-26 Huawei Technologies Co., Ltd. Clock synchronization method, receiver and clock synchronization system
WO2017083829A1 (en) * 2015-11-13 2017-05-18 Pyrotechnics Management, Inc. Time code controlled logic device
CN113472669B (zh) * 2016-03-18 2022-09-16 华为技术有限公司 更新时钟同步拓扑的方法、确定时钟同步路径的方法及设备
DE102016009197B3 (de) * 2016-04-26 2017-07-27 Diehl Metering Systems Gmbh Verfahren und Einrichtung zu bidirektionaler Kommunikation zwischen Messgeräten und Datensammler
US10727970B2 (en) * 2016-05-13 2020-07-28 Telefonaktiebolaget Lm Ericsson (Publ) Methods and user equipment, radio transmitter and network node for managing positioning reference signals
EP3465273A4 (en) 2016-05-24 2020-01-15 Topcon Positioning Systems, Inc. DETERMINING THE POSITION OF A MOBILE STATION USING WI-FI SIGNALS
US10775510B2 (en) 2016-06-06 2020-09-15 Brian G. Agee Blind despreading of civil GNSS signals for resilient PNT applications
US11125888B2 (en) 2016-06-06 2021-09-21 Brian G. Agee Multi-subband methods for reduced complexity, wideband blind resilient detection and geo-observable estimation of global navigation satellite signals
US10405287B1 (en) * 2016-07-27 2019-09-03 Robotic Research, Llc Covert timing synchronization
DE102017102116A1 (de) * 2017-02-03 2018-08-09 Jungheinrich Aktiengesellschaft Verfahren und System zur Positionsbestimmung von mindestens einem Flurförderzeug
EP3593333A4 (en) 2017-03-08 2021-01-20 Gatekeeper Systems, Inc. NAVIGATION SYSTEMS FOR WHEEL CARTS
EP3635435A4 (en) 2017-05-12 2021-02-24 Locata Corporation Pty Ltd METHOD AND DEVICE FOR CHARACTERIZING THE ENVIRONMENT OF A USER PLATFORM
US20190107629A1 (en) * 2017-10-05 2019-04-11 Panasonic Automotive Systems Company Of America, Division Of Panasonic Corporation Of North America Delivery of precise time to gps receivers in an on-board unit over dedicated short range communications or c-v2x and way in dsrc connected vehicle network to enhance obe gps performance
JP6879235B2 (ja) * 2018-03-13 2021-06-02 日本電信電話株式会社 時刻同期システム、管理装置、時刻同期方法およびプログラム
SG11202008665WA (en) * 2018-03-14 2020-10-29 Locata Corp Method and apparatus for synchronising a location network
EP3671254A1 (en) 2018-12-20 2020-06-24 HERE Global B.V. Service for real-time spoofing/jamming/meaconing warning
EP3672305B1 (en) 2018-12-20 2023-10-25 HERE Global B.V. Enabling flexible provision of signature data of position data representing an estimated position
EP3672310A1 (en) * 2018-12-20 2020-06-24 HERE Global B.V. Identifying potentially manipulated radio signals and/or radio signal parameters based on radio map information
EP3672304A1 (en) 2018-12-20 2020-06-24 HERE Global B.V. Statistical analysis of mismatches for spoofing detection
EP3671253A1 (en) 2018-12-20 2020-06-24 HERE Global B.V. Crowd-sourcing of potentially manipulated radio signals and/or radio signal parameters
EP3672311A1 (en) 2018-12-20 2020-06-24 HERE Global B.V. Device-centric learning of manipulated positioning
US11852725B2 (en) 2019-02-08 2023-12-26 Topcon Positioning Systems, Inc. System and method for determining an elevation of a laser detector
US20200351814A1 (en) 2019-05-02 2020-11-05 Qualcomm Incorporated Group delay timing accuracy for positioning in new radio
US20220400453A1 (en) * 2019-12-03 2022-12-15 Locata Corporation Pty Ltd Methods and apparatus for improving the resilience of a positioning network
US11503563B2 (en) * 2020-02-04 2022-11-15 Alibaba Group Holding Limited Distance estimation using signals of different frequencies
US20210250885A1 (en) * 2020-02-10 2021-08-12 Mediatek Singapore Pte. Ltd. Method And Apparatus For Timing And Frequency Synchronization In Non-Terrestrial Network Communications
US12072411B2 (en) * 2020-10-26 2024-08-27 James Albert Flynn System for accurate geospatial location and time transfer using radio transmissions without satellite signals
US12072410B2 (en) * 2020-10-26 2024-08-27 James Albert Flynn System for accurate geospatial location and time transfer using radio transmissions without satellite signals
CN113093251B (zh) * 2021-03-18 2022-05-27 中国电子科技集团公司第五十四研究所 一种基于伪卫星载波相位的高精度室内定位方法
CN113507742B (zh) * 2021-07-09 2022-04-29 电子科技大学 一种地基导航定位系统时间同步方法
CN115278877B (zh) * 2022-09-28 2022-12-13 长沙迪迈数码科技股份有限公司 基于移动式基站的井下uwb定位方法、系统及存储介质

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4472720A (en) * 1980-03-24 1984-09-18 Reesor Thomas W Area navigational system using geosynchronous satellites
US4455651A (en) * 1980-10-20 1984-06-19 Equatorial Communications Company Satellite communications system and apparatus
US4965534A (en) * 1989-05-19 1990-10-23 Scientific Atlanta Channel frequency generator for use with a multi-frequency output generator
JPH04293907A (ja) * 1991-03-22 1992-10-19 Toyo Ink Mfg Co Ltd 水系感光性樹脂組成物
US5583513A (en) 1993-03-24 1996-12-10 Board Of Trustees Of The Leland Stanford Junior University System and method for generating precise code based and carrier phase position determinations
JP3187222B2 (ja) * 1993-10-19 2001-07-11 株式会社東芝 基準局の擬似gps信号送出システム
US5701328A (en) * 1994-12-23 1997-12-23 Stanford Telecommunications, Inc. Chirped spread spectrum positioning system
CN1134123C (zh) * 1995-09-20 2004-01-07 英国国防部 探测一个未知信号源的位置
JP3405624B2 (ja) * 1995-09-29 2003-05-12 株式会社東芝 静止衛星のgpsオーバーレイシステム
US5970400A (en) * 1996-04-30 1999-10-19 Magellan Corporation Adjusting the timing and synchronization of a radio's oscillator with a signal from an SATPS satellite
US6101178A (en) * 1997-07-10 2000-08-08 Ksi Inc. Pseudolite-augmented GPS for locating wireless telephones
US6873612B1 (en) * 1997-10-30 2005-03-29 Nortel Networks Limited Methods and devices for asynchronous operation of a CDMA mobile communication system
US6353412B1 (en) * 1998-03-17 2002-03-05 Qualcomm, Incorporated Method and apparatus for determining position location using reduced number of GPS satellites and synchronized and unsynchronized base stations
US6433739B1 (en) * 1998-03-17 2002-08-13 Qualcomm, Incorporated Method and apparatus for synchronizing base stations using remote synchronizing stations
US6501393B1 (en) * 1999-09-27 2002-12-31 Time Domain Corporation System and method for using impulse radio technology to track and monitor vehicles
SE9801092L (sv) * 1998-03-30 1999-10-01 Telia Ab Arrangemang och metod vid ett mobilt radiokommunikationssystem
CA2330280A1 (en) * 1998-04-24 1999-11-04 Telefonaktiebolaget Lm Ericsson Absolute time synchronization for mobile positioning in a cellular communications system
US5982324A (en) * 1998-05-14 1999-11-09 Nortel Networks Corporation Combining GPS with TOA/TDOA of cellular signals to locate terminal
AUPP375498A0 (en) * 1998-05-29 1998-06-18 Small, David A method for creating a network positioning system (NPS)
KR100506198B1 (ko) * 1998-07-20 2005-08-08 삼성전자주식회사 지상 위치 탐색 시스템용의 다중 채널 디지털 수신기
US6121928A (en) * 1998-08-18 2000-09-19 Trimble Navigation Limited Network of ground transceivers
US6067045A (en) * 1998-09-01 2000-05-23 Hughes Electronics Corporation Communication network initialization apparatus and method for fast GPS-based positioning
US20040198386A1 (en) * 2002-01-16 2004-10-07 Dupray Dennis J. Applications for a wireless location gateway
US6184829B1 (en) * 1999-01-08 2001-02-06 Trueposition, Inc. Calibration for wireless location system
US6829534B2 (en) * 1999-04-23 2004-12-07 Global Locate, Inc. Method and apparatus for performing timing synchronization
US7649925B2 (en) * 1999-06-14 2010-01-19 Time Domain Corporation Time transfer utilizing ultra wideband signals
JP3344377B2 (ja) * 1999-07-15 2002-11-11 日本電気株式会社 疑似gps衛星
GB9918348D0 (en) * 1999-08-05 1999-10-06 Koninkl Philips Electronics Nv Location finding system and method
US6526265B1 (en) * 1999-09-14 2003-02-25 Skyworks Solutions, Inc. Wireless transmitter having a modified translation loop architecture
CA2399930A1 (en) * 2000-01-24 2001-08-09 Integrinautics Corporation Multi-frequency pseudolites for carrier-based differential-position determination
US6469663B1 (en) * 2000-03-21 2002-10-22 Csi Wireless Inc. Method and system for GPS and WAAS carrier phase measurements for relative positioning
JP3544915B2 (ja) * 2000-03-23 2004-07-21 株式会社東芝 航法支援gps測位システムの地上疑似衛星装置および地上疑似衛星装置の疑似gps衛星信号同期化方法
EP1273111B9 (en) * 2000-04-07 2007-06-27 Interdigital Technology Corporation Base station synchronization for wireless communication systems
US6763241B2 (en) * 2000-04-14 2004-07-13 Varitek Industries, Inc. Data communications synchronization using GPS receiver
US6665541B1 (en) * 2000-05-04 2003-12-16 Snaptrack, Incorporated Methods and apparatuses for using mobile GPS receivers to synchronize basestations in cellular networks
US7366463B1 (en) * 2000-05-05 2008-04-29 The Directv Group, Inc. Military UHF and commercial Geo-mobile system combination for radio signal relay
US7236883B2 (en) * 2000-08-14 2007-06-26 Sirf Technology, Inc. Aiding in a satellite positioning system
US7373175B2 (en) * 2001-03-09 2008-05-13 Qualcomm Incorporated Method and apparatus for timebase synchronization for use with cellular base stations
US6727847B2 (en) * 2001-04-03 2004-04-27 Rosum Corporation Using digital television broadcast signals to provide GPS aiding information
US6965754B2 (en) * 2001-10-09 2005-11-15 Motorola, Inc. Satellite positioning system receiver with reference oscillator circuit and methods therefor
AUPR863401A0 (en) * 2001-11-02 2001-11-29 Qx Corporation Pty Ltd A method & device for precision time-lock
KR20050087784A (ko) * 2002-10-04 2005-08-31 시그네이브 피티와이 엘티디. 위성 기반 위치 지정 시스템
US7170447B2 (en) * 2003-02-14 2007-01-30 Qualcomm Incorporated Method and apparatus for processing navigation data in position determination

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150906A (ja) * 2001-11-02 2009-07-09 Locata Corp Pty Ltd ロケーションネットワークを時系列的に同期化するための方法及び装置

Also Published As

Publication number Publication date
IL161718A (en) 2009-08-03
IL188514A0 (en) 2008-04-13
EP2624007B1 (en) 2015-01-07
KR100951747B1 (ko) 2010-04-08
CN101487889B (zh) 2011-09-14
US7616682B2 (en) 2009-11-10
ES2532602T3 (es) 2015-03-30
EP2624006B1 (en) 2015-04-22
US20090002238A1 (en) 2009-01-01
KR20050042242A (ko) 2005-05-06
KR100973104B1 (ko) 2010-07-29
SG146449A1 (en) 2008-10-30
BR0213888A (pt) 2005-01-11
KR100929277B1 (ko) 2009-11-27
KR20070116177A (ko) 2007-12-06
MXPA04004245A (es) 2005-03-31
EP2624007A1 (en) 2013-08-07
EP2624006A1 (en) 2013-08-07
IL161718A0 (en) 2004-09-27
ES2539238T3 (es) 2015-06-29
SG146450A1 (en) 2008-10-30
EP1451606A1 (en) 2004-09-01
CN1643395A (zh) 2005-07-20
AU2002336808B2 (en) 2007-01-25
EP1451606B1 (en) 2013-07-03
US20050001742A1 (en) 2005-01-06
CN101487882B (zh) 2012-06-20
US7859462B2 (en) 2010-12-28
AUPR863401A0 (en) 2001-11-29
US20070040739A1 (en) 2007-02-22
EP1451606A4 (en) 2010-12-08
CN101487882A (zh) 2009-07-22
KR100951748B1 (ko) 2010-04-08
SG138489A1 (en) 2008-01-28
CN101644755B (zh) 2014-06-18
US7474265B1 (en) 2009-01-06
EP2624008B1 (en) 2015-04-22
IL188515A0 (en) 2008-04-13
ES2429434T3 (es) 2013-11-14
IL188514A (en) 2010-11-30
IL188516A0 (en) 2008-04-13
CN101487889A (zh) 2009-07-22
JP2005507085A (ja) 2005-03-10
KR20070116283A (ko) 2007-12-07
ES2540873T3 (es) 2015-07-14
EP2624008A1 (en) 2013-08-07
JP2009150906A (ja) 2009-07-09
WO2003038469A1 (en) 2003-05-08
KR20070118678A (ko) 2007-12-17
CA2479579A1 (en) 2003-05-08
JP2009145360A (ja) 2009-07-02
US7848397B2 (en) 2010-12-07
CN100549722C (zh) 2009-10-14
US20070041427A1 (en) 2007-02-22
JP4927117B2 (ja) 2012-05-09
JP4293907B2 (ja) 2009-07-08
CN101644755A (zh) 2010-02-10

Similar Documents

Publication Publication Date Title
JP4768043B2 (ja) ロケーションネットワーク内の移動する位置受信機の位置を決定する方法
JP4809222B2 (ja) ロケーションネットワークにおいて補助データを提供するためのシステム及び方法
AU2002336808A1 (en) A method and device for chronologically synchronizing a location network
AU2006202938B2 (en) Frequency Coherence within a Location Network
AU2006202917B2 (en) Inter-Network Operation of Multiple Location Networks

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100315

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100615

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100618

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100715

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100721

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100816

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110615

R150 Certificate of patent or registration of utility model

Ref document number: 4768043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees