JP4762419B2 - 可変抵抗デバイスおよび方法 - Google Patents

可変抵抗デバイスおよび方法 Download PDF

Info

Publication number
JP4762419B2
JP4762419B2 JP2000620640A JP2000620640A JP4762419B2 JP 4762419 B2 JP4762419 B2 JP 4762419B2 JP 2000620640 A JP2000620640 A JP 2000620640A JP 2000620640 A JP2000620640 A JP 2000620640A JP 4762419 B2 JP4762419 B2 JP 4762419B2
Authority
JP
Japan
Prior art keywords
contact
resistive
contact position
variable resistance
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000620640A
Other languages
English (en)
Other versions
JP2003500849A5 (ja
JP2003500849A (ja
Inventor
アラン イー. スクラム,
マイケル ディー. ロジャース,
Original Assignee
バラタッチ テクノロジー インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バラタッチ テクノロジー インコーポレイテッド filed Critical バラタッチ テクノロジー インコーポレイテッド
Publication of JP2003500849A publication Critical patent/JP2003500849A/ja
Publication of JP2003500849A5 publication Critical patent/JP2003500849A5/ja
Application granted granted Critical
Publication of JP4762419B2 publication Critical patent/JP4762419B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/06Adjustable resistors adjustable by short-circuiting different amounts of the resistive element
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • G05G2009/0474Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks characterised by means converting mechanical movement into electric signals
    • G05G2009/04744Switches

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Adjustable Resistors (AREA)

Description

【0001】
(発明の背景)
本発明は、概して、可変抵抗デバイスおよびその方法に関し、より詳細には、可変抵抗を提供するために抵抗性ゴム材料を採用するデバイスおよび方法に関する。
【0002】
可変抵抗デバイスは、センサ、スイッチおよびトランスデューサを含む多くの用途で使用されている。電位差計は、可変抵抗デバイスの簡単な例である。この電位差計は、2つの端部端子間に伸びる固定線形抵抗素子と、入力端子に固定され、抵抗素子を介して可動接触を行うスライダとを有する。入力端子および2つの端部端子のうちの第1の端子にわたって測定された抵抗または電圧(2つの端部端子間にかかる電圧は一定と仮定する)は、第1の端部端子と抵抗素子上の接触点との間の距離に比例する。
【0003】
抵抗性エラストマーまたは抵抗性ゴム材料は、可変抵抗デバイスを含む抵抗素子として使用されてきた。本明細書中で用いられる用語「抵抗性ゴム」および「抵抗性ゴム材料」は、電気的導電性材料(例えばカーボンブラックまたは金属粉末を含む)を散在させたエラストマー性材料またはゴム材料を指す。従来、可変抵抗デバイスに抵抗性ゴムを使用することは、比較的簡単かつ特定の用途に限られていた。例えば、伸張および圧縮のような変形によって生じる抵抗性ゴムの可変抵抗特性のみを利用した用途がある。抵抗性ゴム材料の抵抗特性をより完全に利用する可変抵抗デバイスおよびその方法が必要とされる。
【0004】
(発明の要旨)
本発明は、抵抗性ゴム材料の種々の抵抗特性を利用する可変抵抗デバイスおよびその方法に関する。本発明者らは、以前は知られていなかったか、または利用されなかった抵抗性ゴム材料の特徴を発見した。
【0005】
レジスタの抵抗は、材料の抵抗率およびレジスタの長さに正比例し、電流の流れる方向に垂直な断面積に反比例する。抵抗は、以下の周知の式によって表される。
【0006】
R=ρl/A (1)
ここでρはレジスタ材料の抵抗率であり、lは電流の流れる方向に沿ったレジスタの長さであり、Aは電流の流れる方向に垂直な断面積である。抵抗率は材料固有の特性であり、典型的には、Ω・cm単位である。レジスタにかかる電圧降下は、周知のオームの法則によって表される。
【0007】
R=E/I (2)
ここでEはレジスタにかかる電圧であり、Iはレジスタを流れる電流である。
【0008】
レジスタが回路網内に互いに接続されると、実効抵抗は、レジスタが直列に接続されている場合には個々の抵抗の和である。直列に接続されるレジスタ数が増えれば、実効抵抗が増加する。つまり、式(1)に基づいて、特定の例による断面積Aが一定であると仮定すると、レジスタの合計長さlが増加すると実効抵抗が増加する。しかしながら、レジスタが並列に接続されると、実効抵抗は、個々の抵抗の逆数の和の逆数である。並列に接続されたレジスタの数が多くなればなるほど、実効抵抗は低くなる。これもまた式(1)に一致しており、特定の例において、長さlが一定であると仮定して、レジスタの合計面積Aが増加すると、実効抵抗は減少する。
【0009】
市販されているレジスタは、典型的には、抵抗を提供するために、2つの端部における導電性端子、または回路内の2点間を接続するリード線を含む。これらのレジスタは、各レジスタが、2つの端部において明確な接触点を有する(その明確な接触点間に固定の抵抗を有している)という点で、構造上簡単であり個別のものである。このような簡単かつ個別の構造を有するレジスタによって形成される抵抗回路網の実効抵抗は、直列に接続されたレジスタについては抵抗を合計し、並列に接続されたレジスタについては抵抗の逆数を合計し、その合計の逆数をとることによって容易に決定される。これらの簡単なレジスタにおいては、幾何学的要因および接触変動がないかまたは十分小さいので、実効抵抗は、上述の簡単な式に従う。しかしながら、レジスタが、構造上簡単でなく個別のものでない場合、実効抵抗の決定はもはや容易ではなくなる。
【0010】
本発明者らは、実効抵抗が、一般的に、直列パスの抵抗成分と並列パスの抵抗成分との組み合わせであることを発見した。直列パスの抵抗成分(すなわち直列の抵抗成分)は、式(1)において、合計長さlが増加し、面積Aが一定である場合に実効抵抗が増加するように、2つの接触位置間の直列の抵抗成分が、2つの接触位置間の距離の増加に伴って増加するという点で、直列に接続されたレジスタに類似している。2つの接触位置間の電流パス中の抵抗性材料の量の増加によって抵抗が増加する。並列パスの抵抗成分は、並列に接続されたレジスタに類似している。上述のように、共通の長さlを有する組み合わされたレジスタの合計面積Aが増加すると、実行抵抗は減少する。この結果、並列に接続されたさらなるレジスタによって提供されるさらなる電流パス、すなわち「並列パス」が生じる。同様に、幾何学的変化または接触変動に起因して、2つの接触位置間の並列パスの量が増加すると、並列パスの抵抗成分が減少する。本明細書中で用いられる用語「並列パス」は、接触位置間を流れる電流に利用可能な複数のパスを意味し、幾何学的に平行なパスに制限されない。
【0011】
本発明の局面によれば、可変抵抗デバイスは、抵抗性ゴム材料を含む抵抗性部材を含む。第1の導体は、第1の接触面積にわたって第1の接触位置で抵抗性部材と電気的に結合されるように構成されている。第2の導体は、第2の接触面積にわたって第2の接触位置で抵抗性部材と電気的に結合されるように構成されている。第1の接触位置および第2の接触位置は、互いにある距離だけ離れている。第1の接触位置での第1の導体と第2の接触位置での第2の導体との間の抵抗は、直列の抵抗成分と並列パスの抵抗成分との和に等しい。直列の抵抗成分は、第1の接触位置と第2の接触位置との間の距離が大きくなるにつれて増加し、第1の接触位置と第2の接触位置との間の距離が小さくなるにつれて減少する。並列パスの抵抗成分は、選択された第1および第2の接触位置と、選択された第1および第2の接触面積とに基づいて、所望の特性に予め設定されている。
【0012】
特定の実施形態において、第1および第2の接触位置と第1および第2の接触面積とは、第1の接触位置と第2の接触位置との間の距離の変化に対して少なくとも実質的に一定である並列パスの抵抗成分を提供するように選択される。その結果、第1の接触位置での第1の導体と第2の接触位置での第2の導体との間の抵抗は、第1の接触位置と第2の接触位置との間の距離が大きくなるにつれて増加し、第1の接触位置と第2の接触位置との間の距離が小さくなるにつれて減少する。
【0013】
別の実施形態において、第1および第2の接触位置と第1および第2の接触面積とは、並列パスの抵抗成分が、直列の抵抗成分よりも実質的に大きくなるように選択される。第1の接触位置での第1の導体と第2の接触位置での第2の導体との間の抵抗の変化は、第1の導体と第2の導体との間の並列パスの抵抗成分の変化に少なくとも実質的に等しい。
【0014】
さらに別の実施形態において、抵抗性部材は、第1および第2の接触位置でそれぞれ第1の導体および第2の導体と接触する抵抗性表面を有している。抵抗性表面は、外部境界および抵抗性表面の表面積の平方根よりも実質的に小さい厚さを有する。第1および第2の接触位置の両方が、抵抗性表面の外部境界から離れて配置される場合には、第1の接触位置での第1の導体と第2の接触位置での第2の導体との間の並列パスの抵抗成分は、直列の抵抗成分よりも実質的に大きい。第1および第2の接触位置のうち少なくとも1つが、抵抗性表面の外部境界にあるか、またはその外部境界の近傍にある場合には、第1の接触位置での第1の導体と第2の接触位置での第2の導体との間の直列の抵抗成分は、並列パスの抵抗成分よりも実質的に大きい。
【0015】
本発明の別の局面によれば、第1の接触位置での第1の導体と第2の接触位置での第2の導体との間の抵抗は、抵抗性部材が第1の接触位置と第2の接触位置との間の伸張する変形を受ける場合には増加する。第1の接触位置での第1の導体と第2の接触位置での第2の導体との間の抵抗は、抵抗性部材が第1の接触位置と第2の接触位置との間で圧力を受ける場合には減少する。第1の接触位置での第1の導体と第2の接触位置での第2の導体との間の抵抗は、抵抗性部材が第1の接触位置と第2の接触位置との間の温度の上昇を受ける場合には増加し、抵抗性部材が第1の接触位置と第2の接触位置との間の温度の下降を受ける場合には減少する。
【0016】
本発明の別の局面は、抵抗性ゴム材料を含む抵抗性部材から可変抵抗を提供する方法に関する。上記方法は、第1の導体を第1の接触面積にわたる第1の位置で抵抗性部材と電気的に結合する工程と、第2の導体を第2の接触面積にわたる第2の位置で抵抗性部材と電気的に結合する工程とを包含する。第1の位置、第2の位置、第1の接触面積および第2の接触面積のうち少なくとも1つを変化させ、第1の導体と第2の導体との間の抵抗の変化を生成する。第1の導体と第2の導体との間の抵抗は、直列の抵抗成分と並列パスの抵抗成分とを含む。直列の抵抗成分は、第1の位置と第2の位置との間の距離が大きくなるにつれて増加し、第1の位置と第2の位置との間の距離が小さくなるにつれて減少する。並列パスの抵抗成分は、選択された第1および第2の位置と選択された第1および第2の接触面積とに基づいて所望の特性に予め設定される。
【0017】
(特定の実施形態の説明)
本発明の可変抵抗デバイスは、抵抗性ゴム材料からなる成分を含む。具体例は、内部に埋めこまれたカーボンまたはカーボン状材料を有する低デュロメータゴムである。有利には、抵抗性ゴムは、実質的に均一または一様な抵抗率を有する。抵抗性ゴムは、一般には、形成プロセスにおいて長時間ゴムに混合されたかなり微細な抵抗性粒子を用いて形成される。抵抗性ゴム材料の抵抗特性は、一般的に、材料の平方ブロックまたはシート当たりの抵抗の点から測定される。その平方の対向エッジにわたって測定された抵抗性ゴム材料の平方ブロックまたはシートの抵抗は、平方のサイズによることなく一定である。この特性は、直列抵抗成分と並列抵抗成分とが相殺する性質から生じる。直列抵抗成分と並列抵抗成分とは、平方の材料の実効抵抗を構成する。例えば、それぞれ、対向エッジにわたって1Ωの抵抗を有する抵抗性ゴム材料の2つの平方ブロックは直列に接続される場合、その実効抵抗は長さが2倍になることに起因して2Ωになる。第1の2つの平方ブロックの側部に沿って2つのさらなる平方ブロックを結合し、大きな平方を形成すると、その実効抵抗は逆数の和の逆数である。逆数の和は、1/2Ω 1+1/2Ω 1=1Ω 1である。したがって、4つの小さな平方からなる大きな平方に対する実効抵抗は1Ωであり、これは、小さな平方の各々の抵抗と同じである。抵抗性ゴム材料の直列の抵抗成分すなわち直列パス抵抗成分および並列の抵抗成分すなわち並列パス抵抗成分の使用を以下により詳細に説明する。
【0018】
使用される抵抗性ゴム材料の平方当たりの抵抗は、一般的に、平方当たり約10〜100Ωの範囲内にある。ある用途において、可変抵抗デバイスは約50,000オーム(Ω)未満の中程度の抵抗を有する。ジョイスティックまたは他のポインティングデバイスに関する特定の用途において、抵抗の範囲は一般的には約1,000と25,000オームとの間である。有利には、抵抗性ゴム材料は、任意の所望な形状に形成され得、材料に対して広範な範囲の抵抗率が、ゴム材料に埋めこまれた抵抗性粒子の量を変化させることによって得られ得る。
【0019】
抵抗性ゴム材料からなる可変抵抗デバイスの抵抗応答は、3つのカテゴリーの特性、すなわち材料特性と、電気的特性と、機械的特性とに起因し得る。
【0020】
(A.材料特性)
抵抗性ゴム材料の抵抗は、抵抗性ゴム材料が引張りを受けた場合に増加し、抵抗性ゴム材料が圧縮または圧力を受けた場合に減少する。抵抗性ゴム材料の変形は、抵抗性ゴム材料ほど変形可能でない材料より可変的になる。抵抗性ゴム材料の抵抗は、温度の上昇とともに増加し、温度の減少とともに減少する。
【0021】
(B.電気的特性)
抵抗性ゴム成分の実効抵抗は、一般的に、直列パス抵抗成分および並列パス抵抗成分の組み合わせである。直列パス抵抗成分すなわち直列抵抗成分は、直列に接続された個別のレジスタの数が増加する場合に実効抵抗が増加するように、2つの接触位置の間における距離の増加にともなって2つの接触位置間の直列抵抗成分が増加する、直列のレジスタに類似する。並列パス抵抗成分は、並列に接続された個別のレジスタの数が増加する場合(これは、並列パスの量の増加を表す)に実効抵抗が減少するように、並列パスの量がジオメトリ変動または接触変動における変化に起因して2つの接触位置の間で増加する場合、並列パス抵抗成分が減少する、並列のレジスタに類似する。
【0022】
直列抵抗特性および並列パス抵抗特性を示すために、可変抵抗デバイスの特定の実施例を本明細書において説明する。ある実施例において、直列抵抗は動作の第1モードである。他の実施例において、並列パス抵抗特性が支配的である。
【0023】
(1.直列パス抵抗)
直列抵抗モードで主に動作する可変抵抗デバイスを提供する1つの態様は、接触位置の間における距離の変化に対して少なくとも実質的に一定なあるレベルで並列パス抵抗成分を保持することである。並列パス成分は、ジオメトリ変動および接触変動の変化とともに変動する。例えば、並列パス抵抗成分は、接触位置が移動する場合、接触位置間の並列パスの量は実質的に変化せずにとどまるように、可変抵抗デバイス、接触位置および接触面積のジオメトリが選択されるとき、実質的に一定に保持される。
【0024】
実施例は、図1A〜図1Cに示される電位差計10である。抵抗性ゴムトランスデューサ12は、導体または導電性基板14に近接してほぼ平行に配置される。抵抗性ゴムトランスデューサ12は、端部支持部16a,16bによって2つの端部で支持され、通常、導体14から短い距離の間隔をあける。ローラ機構またはホイール機構18は、図1A〜図1Cに図示されるように、トランスデューサ12に力を付与し、トランスデューサ12の2つの端部の間の異なる位置で導体14と接触するように設けられる。この実施形態において、第1の端部支持部16aに近接する抵抗性ゴムトランスデューサ12の一方の端部は接地され、第2の端部支持部16bに近接する他方の端部は印加電圧Vで電圧を加える。ローラ機構18が異なる位置で導体14に接触するようにトランスデューサ12を歪めるので、トランスデューサ12の長さに沿ってとられる電圧測定値は、接触位置が印加電圧Vの端部に近づくにつれて、増加する。また、接触位置dで読み取られた抵抗Rは、トランスデューサ12の2つの端部間で変動する。これを図1Dのプロットに図示する。
【0025】
図2は、トランスデューサ12および導体14がほぼ一定の幅を有し、ローラ機構18が配置され、それにより、トランスデューサ12と導体14との間の接触面積が異なる接触位置でほぼ一定にとどまることを示す。接触面積は、好ましくは、トランスデューサ12の全体の幅にわたって広がる。接触面積は、接触位置でトランスデューサ12の断面の周囲の実質部(ほぼ半分)にあたる。抵抗性ゴムトランスデューサ12は実質的に均一な断面を有し、抵抗性ゴムは好ましくは実質的に均一な抵抗特性を有する。電圧Vを実質的に断面全体にわたってトランスデューサ12の端部に印加する。これは、導電性キャップまたは導電性端部支持部16bで端部全体をキャップし、導電性端部支持部16bを通った電圧を印加することによって実行され得る。トランスデューサ12の他端は、また、好ましくは、断面全体にわたって接地される(例えば、端部を接地導電性端部支持部16aでキャップすることによって)。この端部は、代替的には、トランスデューサの2つの端部の間の電圧差を生成する電圧Vとは異なる別の電圧で加えられ得る。特定の実施形態において、抵抗性ゴムトランスデューサ12はその幅および長さよりも十分短い厚さを有し(例えば、その幅は、厚さの少なくとも約5倍である)、それにより、トランスデューサ12は、示されるこの実施形態において、平坦でまっすぐな薄いストリップである。
【0026】
電流は、トランスデューサ12の印加電圧端部からトランスデューサ12の接地された端部まで、トランスデューサ12の長さに沿って伸びる並列パスを介して流れる。可変抵抗デバイス10に対して、抵抗性ゴムトランスデューサ12と導体14との間の接触面積は実質的に一定であり、並列パスの量は、接触位置がトランスデューサの長さにわたって動く場合、実質的に変化せずにとどまる。結果として、並列パス抵抗成分は実質的に一定に保たれ、それにより、接触位置の変化に起因するデバイス10の実効抵抗の変化は、直列抵抗成分の変化に実質的に等しい。直列抵抗成分は、一般的に、抵抗性ゴム材料(図1D参照)の均一ジオメトリおよび一様な抵抗特性に起因して、接触位置の変位に対して実質的に線形の形態で変化する。図3は、図1〜図2の電位差計10の模式的表現である。
【0027】
主に直列抵抗の原理で動作する別の可変抵抗デバイス20を、また、図4に示す。デバイス20は、断面において実質的に均一なほぼ長手方向の抵抗性ゴム部材22を含む。例えば、部材22は、図2の抵抗性ゴムトランスデューサ12にほぼ同一であり得る。抵抗性ゴム部材22の一端は第1の導体24に、好ましくは、実質的にその断面全体にわたって結合される。第2の導体26は、第1の導体24に対して可変距離を規定するように、長さに沿って抵抗性ゴム部材22に可動接触する。この実施形態において、可動導体26は、抵抗性ゴム部材22の表面に回転接触する湾曲表面を有するローラを含む。可動導体26と抵抗性ゴム部材との間の接触面積は実質的に一定であり、好ましくは、部材22の幅全体にわたって広がる。これは、接触位置で部材22の断面の周囲の実質部(ほぼ半分)にあたる。このように、第1の導体24と第2の導体26との間の並列パスの量は、第1の導体24に対して第2の導体26が移動する間、実質的に変化しない。可変抵抗デバイス20の実効抵抗は、直列抵抗特性を示し、第1の導体24と第2の導体26との間の可変距離が増加するか、または、減少する場合に、それぞれ増加するか、または、減少する。抵抗性ゴム材料の抵抗特性が実質的に均一である場合、実効抵抗は、第1の導体24と第2の導体26との間の距離の変化に対して、図1Dに示されるのと同様の態様で、実質的に線形に変化する。
【0028】
図5Aおよび図5Bに示されるような可変抵抗デバイス30の別の実施例は、タンデム型の2つの導体32、34を使用する。抵抗表面またはフットプリント36と接触するために設けられた2つの導体32、34の導体表面は、可変距離によってお互いに間隔をあけられる。示される実施形態において、導体32、34は実質的に均一な幅を有する長手方向の部材であり、それらの間の距離は、導体32、34の各々の一端から他端まで増加する。抵抗性フットプリント36は、第1の接触面積上の第1の導体32の第1の導体表面および第2の接触面積上の第2の導体34の第2の導体表面に可動接触する。図5Aは、位置36、36bに対するフットプリント36の動きを示す。第1の接触面積および第2の接触面積のそれぞれは、フットプリント36を位置36a、36bに移動する間、実質的に一定にとどまる。示される実施形態において、抵抗フットプリント36は面積において実質的に一定であり、円形形状である。図5Bは円形抵抗性フットプリント36を提供する抵抗性ゴム部材38の実施形態を示す。この抵抗性ゴム部材38は、スティックまたはジョイスティック40によって操作され、導体32、34と回転接触する湾曲抵抗表面を含む。示される実施形態において、導体32、34は基板42上に配置され、抵抗性ゴム部材38は基板42に弾力的に支持される。抵抗性ゴム部材38を基板42の方に下に押し出すように力をジョイスティック40に付与する場合、導体32、34と接触する抵抗性フットプリント36を形成する。その力が導体32、34の方向にシフトする場合、フットプリント36は位置36a、36bに移動する。力を取り除く場合、弾力的な抵抗性ゴム部材38は、導体32、34上の図5Bに示される残りの位置にまで戻るように構成される。抵抗性ゴム部材38は、好ましくは、抵抗性フットプリントの面積の平方根より実質的に小さい厚さを有する。例えば、厚さは、抵抗性フットプリントの面積の平方根の約1/5より小さくてもよい。
【0029】
抵抗性フットプリント36は、フットプリント36上の平均距離によって規定される2つの導体表面にわたってブリッジする。その距離は一般的にフットプリント内で可変であるので、平均距離の使用が必要である。可変抵抗デバイス30のジオメトリ、接触位置、導体32と導体34との間のほぼ一定の接触面積、抵抗ゴム部材38のフットプリント36が与えられる場合、2つの導体32、34の間の並列パスの量は実質的に変化しない。結果として、実効抵抗の変化は、デバイス30の直列抵抗成分の変化によって実質的に支配され、これは、抵抗性フットプリント36と接触する2つの導体32、34の導体表面の一部の間における平均距離の増加または減少にともなってそれぞれ増加または減少する。平均距離は、導体32、34に対して抵抗性フットプリント36の変位で実質的に線形に変化し(例えば、図5Aにおいて導体32、34の一部についてd1からd2まで)、抵抗性ゴム材料の抵抗特性は実質的に一定である場合、実効抵抗は、また、フットプリント36の変位に実質的に線形に変化する。あるいは、特定の非線形抵抗曲線は、導体32と導体34との間の平均距離における特定の変動(例えば、対数変動)を規定するように、導体32、34を配置することによって、生じ得る。
【0030】
(2.並列パス抵抗)
デバイスの実効抵抗は、直列抵抗成分が実質的に一定に保たれる場合の並列パス抵抗の振る舞いを示す。図6および図7は、主に並列パス抵抗モードで動作する可変抵抗デバイスの実施例を示す。
【0031】
図6Aにおいて、可変抵抗デバイス50は、サイズにおいて実質的に一定なギャップ55によってお互いに間隔があいた対の導体52、54を含む。示される実施形態における導体52、54の導体表面は、ギャップ55を規定する直線のエッジを有し、ほぼ平面で矩形である。ギャップを規定するエッジは、他の実施形態における非線形の形状を有し得る。抵抗性フットプリント56は、導体52、54の間のギャップにわたってブリッジし、フットプリント56a、56bにサイズを変更する。示される実施形態において、抵抗性フットプリント56は円状であり、サイズがフットプリント56a、56bにまで大きくなるようなほぼ対称な態様で導体52、54に可動に接触する。代替のフットプリント形状および非対称接触が他の実施形他において使用され得る。可動接触は、図5に示される抵抗部材38に同様な抵抗性ゴム部材によって、フットプリント56の動きを操作するためのジョイスティック40で生じ得る。フットプリント56の面積における変化は、抵抗性ゴム部材38の変形を増やすことによって生じ得る。例えば、ジョイスティック40を抵抗性ゴム部材38に対して下方に押す大きな力は、抵抗性ゴム部材38のより大きな変形およびそれによる大きなフットプリントサイズを生成する。
【0032】
抵抗性フットプリント56によってブリッジされる導体52と導体54との間のギャップ55は実質的に一定であるので、全体の抵抗の直列抵抗成分は実質的に一定である。したがって、可変抵抗デバイス50の実効抵抗は並列パス抵抗成分によって指示される。並列パスの量は、56から56a、56bまでの抵抗性フットプリントと導体52、54との間の接触面積における増加にともない増加する。並列パス抵抗成分は、接触面積の増加によって生成された並列パスの増加にともなって減少する。それにより、デバイス50の実効抵抗は、フットプリント56からフットプリント56a、56bまでの接触面積の増加にともなって減少する。示される実施形態において、抵抗性フットプリント56と導体52、54との間の接触面積は、フットプリント56からフットプリント56a、56bまでの可動接触の方向に連続的に増加する。そのような構成において、導体52と導体54との間の並列パス抵抗成分は可動接触の方向において減少する。接触面積の変化は、可変抵抗デバイス50に対する特定の抵抗応答(例えば、フットプリント56a、56bの方向にフットプリント56の変位に対して線形の形態で減少する抵抗)を提供するように選択され得る。
【0033】
図6Aは移動抵抗性フットプリント56を示すが、同様な可変抵抗デバイス50’は、図6Bに図示されるように、フットプリント56a、56bにサイズを変更する固定フットプリント56についての同様な特性を示す。さらに、図6Aは、円形形状を保持するフットプリント56を示すが、代替の実施形態におけるフットプリント56はサイズに加えて形状(例えば、円形から楕円に)を変化してもよい。
【0034】
図7において、可変抵抗デバイス60は、抵抗性フットプリント66で接触するための非均一形状導体を有する対の導体62、64を含む。導体表面は、図6Aに示されるのと同様な態様で実質的に一定なギャップ65によって間隔をあけられる。抵抗性フットプリント66は円状であり、この実施形態において三角形である導体表面で可動接触する。抵抗性フットプリント66が導体表面上をフットプリント66aに動く場合に、抵抗性フットプリント66は実質的に一定のサイズを保持する。このデバイス60は、三角形の導体表面および実質的に一定なフットプリントサイズを除いて、図6のデバイス50と同様である。図6Aのデバイス50におけるように、このデバイス60における一定のギャップ65は、実質的に一定な直列抵抗成分を生じる。抵抗性フットプリント66が導体62、64に対してフットプリント66aに移動する場合、フットプリント66と導体62、64との間の接触面積は三角形の導体表面の形状に起因して増加し、それにより、並列パスの量を増加し、並列パス抵抗成分を減らす。接触面積は、フットプリントのサイズの変動に起因して、図6Aのデバイス50のサイズを変化させるが、接触面積は、導体表面の形状の変動に起因して、図7のデバイス60のサイズを変化させる。図6Aのデバイス50と比較して、図7に示される可変抵抗デバイス60は、並列パス抵抗モードにおいて同様に動作する代替の実施形態を生成するために、ジオメトリ、接触位置、接触面積を選択する別の態様を表す。
【0035】
可変抵抗デバイスが主に並列パス抵抗モードで動作することを保証するための別の態様は、並列パス抵抗成分が直列抵抗成分より実質的に大きいように、ジオメトリ要因および接触変動を操作することである。このように、実効抵抗の変化は、並列パス抵抗成分の変化に少なくとも実質的に等しい。
【0036】
並列パス抵抗成分が優勢な可変抵抗デバイスの実施例は、図8に示されるジョイスティック70である。可変抵抗ジョイスティック70は、導電性基板72と、導電性基板72の表面と回転接触する湾曲抵抗表面75を有する抵抗性ゴムトランスデューサ74と、導電性基板72に対してトランスデューサ74を動かすためにトランスデューサ74に結合されたスティック76とを含む。導電性スプリング78は、導電性基板72の中心面積の開口部を通って伸び、トランスデューサ74の中心接触部79を導電性基板72に対して固定されたピボット面積77に弾力的に結合する。スプリング78は、導電性基板72と電気的に絶縁される。示される実施形態において、導電性スプリング78を通って抵抗性ゴムトランスデューサ74の中心部に電圧を印加する。特定の実施形態において、抵抗性ゴムトランスデューサ74は薄い厚さを有し、その厚さは、抵抗表面75の表面面積の平方根より実質的に薄い。
【0037】
動作において、ユーザは、導電性基板72に対してトランスデューサ74を回転させるための力をスティック76に付与するが、スプリング78はピボット面積77に対して回転する。抵抗表面75が導電性基板72の表面と可動に接触する。図9A〜図9Cは、電圧が印加された接触部79から異なる距離でトランスデューサ74の抵抗表面75上にいくつかの可動接触位置またはフットプリント80a、80b、80cを示す。電流は、導電性スプリング78からトランスデューサ74の中心接触部79に、電圧が読み出される接触位置(80a、80b、80c)での導電性基板72に対して、トランスデューサ74の抵抗性ゴム材料を通って流れる。電流は、トランスデューサ74の抵抗性ゴム材料を通って通過するので、接触部79での電圧源から導電性基板72での接触位置までで電圧降下がある。
【0038】
図9A〜9Cは、接触部79と可動接触位置80a〜80cとの間の抵抗性表面75上にある並列パス82a〜82cを模式的に示す。図9A〜9Cは、抵抗性ゴムトランスデューサ74の本体を通る並列パスではなくて、抵抗性表面75上の並列パス82a〜82cのみを示す。図9A〜9Cは、接触部79と可動接触位置80a〜80cとの間にあるトランスデューサ74の本体を通る並列パスの量を表す。接触位置80a〜80cの接触面積のサイズは、好ましくは、実質的に一定である。接触面積の形状もまた、典型的には、ほぼ一定である。
【0039】
図9Aにおいて、印加電圧のための接触部79および接触位置80aの両方が、抵抗性表面75の外側のエッジから離れて、抵抗性表面75の中心面積にほぼ配置される。この構成において、接触部79および接触位置80aの両方が、抵抗性ゴム材料によって囲まれている。電流は、接触部79を囲むトランスデューサ74の抵抗性ゴム材料内への複数の方向で、並列パス82aのアレイの接触部79から接触位置80aへと流れ、また接触位置80aを囲む異なる方向からも流れる。逆に、接触部79と接触位置80aとの間の直列の抵抗成分(それらの間の距離によって規定される)は、支配的な並列パスの抵抗成分よりもはるかに小さい。電流がそこを通って流れる抵抗性ゴム材料の量を制限する接触部79と接触位置80aとの間の短い距離に起因して、並列パス82aの量は比較的少ない。
【0040】
図9Bにおいて、接触位置80bは、接触部79からさらに離れて移動してしるが、まだ抵抗性表面75の外側のエッジからは離れており、抵抗性表面75の中心面積にほぼ留まった状態である。接触位置80bは接触部79からさらに離れて位置しているので、さらに多くの抵抗性ゴム性材料が存在し、従って電流が図9Aよりも多く流れるために多くの量の並列パス82bが存在する。並列パスが増えるにつれて、並列パスの抵抗成分は減少する。接触部79と接触位置80bとの間の距離が大きくなるほど、直列の抵抗成分の増加を招くが、直列の抵抗の増加を補償するよりも多くの並列パス量の存在に起因して、並列パスの成分に比べて依然として小さな成分である。従って、実効抵抗は、接触位置80bが固定の中心接触部79からさらに離れるように移動するにつれて減少する。
【0041】
最終的には、接触部79と接触位置との間の距離が増加するにつれて、並列パスのさらなる生成は減少する。図9Cに示す実施形態において、このことは、接触位置80cが抵抗性表面75のエッジに近づくと生じる。図9Cでは、接触位置80cは、図9Aおよび9Bと同じだけの抵抗性ゴム材料によってもはや囲まれることはない。並列パス82cに利用可能な抵抗性ゴム材料は、幾何学的因子によって制限される。一方、直列の抵抗成分は、距離の増加の結果、増加しつづける。
【0042】
図10は、中心接触部79からのフットプリントの距離Dの関数として、実効抵抗Rのプロットを示す。実効抵抗Rは、最初、並列パス抵抗特性を示し、接触位置が図9Aの接触位置80aから図9Bの接触位置80bへと移動するにつれて減少する。図10の抵抗曲線の一部は、実質的に線形である。このことは、中心接触部79と接触位置80bとの間の距離が、抵抗性表面75の半径に関して規格化された約2.5〜6.5の間の中間距離範囲にある場合に生じる。接触位置80cが図9Cに示される抵抗性表面75のエッジに近づく場合に、直列の抵抗成分が、並列パスの抵抗成分を上回り、支配的な成分となると、クロスオーバが生じる。このクロスオーバは、図10では、フットプリントの距離が抵抗性表面75のエッジ付近の約7.5〜8.5まで増加することに伴う実効抵抗の増加として見られる。クロスオーバ現象は、抵抗性表面75のエッジに向かう接触位置80cの移動によって達成されるスイッチのような特定のアプリケーションで用いられ得る。
【0043】
図8において、抵抗性ゴムトランスデューサ74が回転し、可動接触する導電性基板72の表面は、2つの軸の方向性の移動を提供するように、2つ以上のセグメント(典型的には4つ)に分割されると仮定される。図11Aおよび11Bは、可変抵抗デバイス70の抵抗特性を変更するために用いられ得る別の導電性パターンのセグメントを示す。図11Aは、基板上に連続する導電性パターン86を示し、一方図11Bは、個々の導電性トレースから作製される導電性パターン88を示す。どちらの場合も、抵抗性表面75のフットプリントと接触する導電性材料の量は、接触位置が中心接触部79からさらに離れるように移動するにつれて増加する。従って、抵抗性フットプリントおよび導電性パターン86、88との間の実効接触面積のサイズは、中心接触部79からのフットプリントの距離が増加するにつれて(フットプリントのサイズがほぼ一定であっても)増加する。そのため、並列パス量の増加は、フットプリントの距離の増加に対して増大する。その結果、実効抵抗は、抵抗性フットプリントが抵抗性表面75のエッジに達するまで、よりはっきりした並列パス特性を示す。図11Aおよび11Bの実施形態は、実効接触面積を変化させるさらなる因子を導入して、可変抵抗デバイス70の実効抵抗特性を操作する。
【0044】
上述のように、直列パスの抵抗成分は、抵抗性フットプリントの接触位置80cが図9Cおよび10に示されるように抵抗性表面75のエッジに近づくにつれて支配的となる。この特性を利用する可変抵抗デバイス90の別の実施形態を図12の分解図に示す。デバイス90は、示される実施形態において矩形である抵抗性ゴム部材92の薄いシートを含む。1つのコーナー94は、印加電圧Vによって活性化され、一方別のコーナ96は接地されている。あるいは、第2のコーナー96は、異なる電圧によって活性化され、抵抗性ゴム部材92にわたって差を有する電圧を作り出す。導電性シート98は、抵抗性ゴムシート92にほぼ平行、かつその抵抗性ゴムシート92上に空間を隔てて配置される。力が、ペン99等を介して加えられ、抵抗性ゴムシート92および導電性シート98を種々の接触位置で接触させる。この可変抵抗デバイス90では、直列の抵抗成分が支配的である。この理由の一部としては、並列パスの形成が、コーナー94、96を囲む抵抗性材料の不足によって制限されるためである。導電性シート98との接触が、抵抗性ゴムシート92の中心面積でなされる場合でさえ、電圧がコーナー94に印加されるため、並列パスの量は制限されたままである。逆に、図8に示されるようにデバイス70の中心接触部79に電圧が印加されると、電流は、中心接触部79を囲む抵抗性ゴム材料へと複数の方向で流れることができる。
【0045】
上述の例は、直列の抵抗成分および並列パスの抵抗成分を操作して、特定の所望の特性を有する実効抵抗を生成するための幾何学的形状および接触変化を制御する方法のうちのいくつかを示す。
【0046】
(C.機械的特性)
可変抵抗デバイスを設計する際に考慮すべき別の因子は、抵抗性ゴム部材および導体の機械的特徴の選択である。この因子は、例えば、構成要素の形状およびそれらの構造上の位置を含み、これら形状および位置が互いにどのように相互作用し、電気的接触をするかを示す。
【0047】
電位差計を形成するために抵抗性ゴムストリップ12の使用を図1〜2に示す。導電性バー32、34の使用を図5Aおよび5Bに示す。抵抗性ゴムの平坦なシートを図12に示す。図12の構成では、典型的には、2つのコーナーが電圧電位によって活性化され、残り2つのコーナーが接地されている。電圧は、導電性シート98と抵抗性ゴムシート92との間の接触を介して読み出され、当該分野で公知の方法を用いてX−Yデカルト座標系上の接触位置を決定するために処理される。このタイプの可変抵抗デバイス90は、例えば、マウスポインタまたは他のコントロールインターフェースツールとして適用可能である。
【0048】
湾曲したシートの形態の抵抗性ゴム部材を図5Bおよび8に示す。図5Bおよび8の例は、ジョイスティックまたはジョイスティック状の構造を示すが、この構成は、圧力センサのような他の用途にも用いられ得る。例えば、可変圧力によって湾曲した抵抗性ゴムシートに加わる力が発生し得、湾曲した抵抗性ゴムシートおよび導電性基板との間の接触面積は、加えられる圧力のレベルに比例し得る。このように、抵抗の変化は、抵抗測定を用いて加えられた圧力を計算することができるので圧力の変化に関連し得る。
【0049】
別の機械的形状はロッドである。図4において、導電性ロッド26の例を示す。ロッドは、ほぼ矩形のフットプリントを生成する。ロッドの構成を抵抗性ゴム部材にも用いて、矩形の抵抗性フットプリントを生成することができる。例としては、図7のデバイス60と同様の図13に示される可変抵抗デバイス100がある。デバイス100は、同様のギャップ105だけ空間を隔てて配置された同様の一対の導体102、104を有する。違いは、図7では円形フットプリント66、66aであるのに対して、抵抗性フットプリント106、106aが矩形であるという点である。フットプリント106の形状の変化は、異なった抵抗応答を生じるが、実効抵抗はやはり、図7のデバイス60と同様に並列パスの抵抗成分によって支配されている。
【0050】
フットプリントのさらに別の機械的形状は、三角形があり、これは円錐またはくさびによって作り出され得る。図14において、可変抵抗デバイス110は、図6のデバイス50と同様であり、ギャップ115だけ空間を隔てて配置された一対の導体112、114を含む。サイズが変化する円形抵抗性フットプリント56の代わりに、デバイス110は、ギャップ115の方向に導体112、114と可動接触を為す三角抵抗性フットプリント116を用いる。その結果、抵抗性フットプリント116と導体112、114との間の接触面積は、フットプリント116のサイズが一定である場合でさえ、フットプリント116の移動方向に増加し、図6に示されるのと同様の効果を生じる。この実施形態において、接触面積の実質的に線形の増加に起因して、抵抗応答もまた実質的に線形である。
【0051】
図15の可変抵抗デバイス120では、三角抵抗性フットプリント126がギャップ125の方向に導体122、124と可動接触をする場合に、三角抵抗性フットプリント126の形状を変更して、対数的な抵抗応答を生じる。抵抗Rの変化は、ギャップ125の方向の抵抗性フットプリント126の変位Dの対数に比例する。抵抗Rの変化対抵抗性フットプリント126の変位Dのプロットを図16に示す。
【0052】
図17の可変抵抗性デバイス130に示すように、矩形導電性部材14をほぼ三角形の導電性部材14’と置き換えた場合、対数抵抗応答がまた図1〜2の実施形態を用いて生成され得る。導体16aが接地される一方で、導体16bが電圧Vによって活性化される。図18は、電圧Vが印加された場合の、抵抗R対導体16bに隣接するトランスデューサ12の端部から測定された、抵抗性ゴムトランスデューサ12と導電性部材14’との間の接触位置の距離のプロットを示す。
【0053】
上述の例によって示されるように、種々の異なる幾何学的形状および用途を有する可変抵抗デバイスの設計を容易にする複数の方法で、抵抗性ゴム材料を形成し、変形し得る。さらに、抵抗性ゴム材料から作製されるデバイスは、しばしばより信頼性がある場合がある。例えば、図1〜2に示される電位差計10は、従来のデバイスの接触面積と比較して、比較的に大きな接触面積を有する抵抗性ゴムトランスデューサ12を提供する。摩耗の問題は低減する。大きな接触面積はまた、塵粒の存在のような不純物に対して従来のデバイスに比べてそれほどセンシティブでない電位差計10を提供する。
【0054】
上述の装置の構成およびその方法は、本発明の原理の単なる適用例に過ぎず、上述の特許請求の範囲に規定される本発明の意図および範囲から逸脱することなく、多くの他の実施形態および変更例が為され得ることを理解されたい。例えば、別の形状および構造上の接続を利用して、種々の異なる抵抗特性を有する可変抵抗デバイスを生成することができる。幾何学的因子および接触変化を様々な方法で操作して、特定の抵抗応答を生成することができる。
【図面の簡単な説明】
【図1A】 図1Aは、本発明の実施形態による実効直列抵抗特性を示す可変抵抗デバイスの正面図である。
【図1B】 図1Bは、本発明の実施形態による実効直列抵抗特性を示す可変抵抗デバイスの正面図である。
【図1C】 図1Cは、本発明の実施形態による実効直列抵抗特性を示す可変抵抗デバイスの正面図である。
【図1D】 図1Dは、図1A〜1Cの可変抵抗デバイスの接触位置の関数とした実効抵抗のプロットである。
【図2】 図2は、図1〜2の可変抵抗デバイスの斜視図である。
【図3】 図3は、図1A〜1Cの可変抵抗デバイスの回路図である。
【図4】 図4は、本発明の別の実施形態による実効直列抵抗特性を示す可変抵抗デバイスの正面図である。
【図5A】 図5Aは、本発明の別の実施形態による実効直列抵抗特性を示す可変抵抗デバイスの平面図である。
【図5B】 図5Bは、図5Aの可変抵抗デバイスの正面図である。
【図6A】 図6Aは、本発明の実施形態による実効並列パス抵抗特性を示す可変抵抗デバイスの模式図である。
【図6B】 図6Bは、本発明の別の実施形態による実効並列パス抵抗特性を示す可変抵抗デバイスの模式図である。
【図7】 図7は、本発明の別の実施形態による実効並列パス抵抗特性を示す可変抵抗デバイスの模式図である。
【図8】 図8は、本発明の別の実施形態による実効並列パス抵抗特性を示す可変抵抗デバイスの部分的断面図である。
【図9A】 図9Aは、図8の可変抵抗デバイスの異なる接触位置の並列パスを示す模式図である。
【図9B】 図9Bは、図8の可変抵抗デバイスの異なる接触位置の並列パスを示す模式図である。
【図9C】 図9Cは、図8の可変抵抗デバイスの異なる接触位置の並列パスを示す模式図である。
【図10】 図10は、図8の可変抵抗デバイスの接触位置間の距離の関数とした実行抵抗のプロットである。
【図11A】 図11Aは、本発明の別の実施形態による図8の可変抵抗デバイスにおける基板のセグメントの導電性トレースパターンの模式図である。
【図11B】 図11Bは、本発明の別の実施形態による図8の可変抵抗デバイスにおける基板のセグメントの別の導電性トレースパターンの模式図である。
【図12】 図12は、本発明の別の実施形態による実効直列抵抗特性を示す可変抵抗デバイスの分解斜視図である。
【図13】 図13は、本発明の別の実施形態による矩形抵抗性フットプリントを有する、実効並列パス抵抗特性を示す可変抵抗デバイスの模式図である。
【図14】 図14は、本発明の別の実施形態による三角形抵抗性フットプリントを有する、実効並列パス抵抗特性を示す可変抵抗デバイスの模式図である。
【図15】 図15は、本発明の別の実施形態による対数抵抗性フットプリントを有する、実効並列パス抵抗特性を示す可変抵抗デバイスの模式図である。
【図16】 図16は、図15の可変抵抗デバイスのための抵抗性フットプリントの変位の関数とした実効抵抗のプロットである。
【図17】 図17は、本発明の別の実施形態による対数導体フットプリントを有する、実効直列抵抗特性を示す可変抵抗デバイスの分解斜視図である。
【図18】 図18は、図17の可変抵抗デバイスのための抵抗性ゴムトランスデューサと導体フットプリントとの間の接触位置の関数とした実効抵抗のプロットである。

Claims (19)

  1. エラストマー性の抵抗性ゴム材料を含む抵抗性部材と、
    第1の接触面積にわたり第1の接触位置で前記抵抗性部材と電気的に結合するように構成された導電性スプリングと、
    第2の接触面積にわたり可動な第2の接触位置で前記抵抗性部材と電気的に結合するように構成された第2の導体であって、前記第2の導体は、前記第2の導体と前記抵抗性部材との間の前記第2の接触位置を変更するように前記抵抗性部材に対して可動であり、前記第1の接触位置と前記可動な第2の接触位置とは可変距離で互いに離れている、第2の導体と
    を備えた可変抵抗デバイスであって、
    前記抵抗性部材は抵抗性表面を含み、前記第2の導体は第2の導体表面を含み、前記抵抗性表面は、前記抵抗性表面と前記第2の導体表面との間に接触を提供するように凸状表面を備え、前記第1の接触位置は前記抵抗性表面の中心に固定されており、
    前記第2の接触位置と前記第1の接触位置との相対距離の変更は、前記第1の接触位置と前記第2の接触位置との間の抵抗の変化をもたらす、可変抵抗デバイス。
  2. 前記抵抗性表面は、
    前記第1の接触位置で前記導電性スプリングと接触し、前記第2の接触位置で前記第2の導体と接触する前記抵抗性表面の外部境界を含み、
    前記第1の接触位置および前記第2の接触位置は、前記外部境界内に配置されており、かつ前記抵抗性表面の前記外部境界から離れて配置されている、請求項1に記載の可変抵抗デバイス。
  3. 前記第1の接触位置は前記抵抗性表面に対して固定されている、請求項2に記載の可変抵抗デバイス。
  4. 前記第2の接触位置は、前記抵抗性表面上で前記第1の接触位置に対して可動である、請求項3に記載の可変抵抗デバイス。
  5. 前記抵抗性表面は、凸状表面を備えている、請求項1に記載の可変抵抗デバイス。
  6. 前記第1の接触位置での前記導電性スプリングと前記第2の接触位置での前記第2の導体との間で測定された前記抵抗性部材の抵抗は、前記第1の接触位置と前記第2の接触位置との間の距離の増加とともに減少する並列パスの抵抗成分を有する、請求項5に記載の可変抵抗デバイス。
  7. 前記並列パスの抵抗成分は、前記抵抗性表面の少なくとも一部の上にある前記第1の接触位置と前記第2の接触位置との間の距離の増加とともに実質的に線形な態様で減少する、請求項6に記載の可変抵抗デバイス。
  8. 前記第1の接触位置における前記第1の接触面積が一定であり、前記第2の接触位置における前記第2の接触面積が一定である、請求項5に記載の可変抵抗デバイス。
  9. 前記第2の導体表面は導電性部分と非導電性部分とを含み、前記第2の導体表面の中心から前記第2の導体表面の外縁までの距離の増加に比例して、前記導電性部分は増加し、前記非導電性部分は減少する、請求項5に記載の可変抵抗デバイス。
  10. 前記第1の接触位置からの距離の増加に比例して、前記導電性部分は徐々に増加し、前記非導電性部分は徐々に減少する、請求項9に記載の可変抵抗デバイス。
  11. 前記第2の導体表面は平坦な表面を備えている、請求項1に記載の可変抵抗デバイス。
  12. 前記第2の導体表面は、外部境界および内部境界を有して環状であり、前記第2の導体表面の前記内部境界は、前記抵抗性表面上の前記第1の接触位置から離されている、請求項5に記載の可変抵抗デバイス。
  13. 前記抵抗性部材は、前記第1の接触位置で前記導電性スプリングにより弾性的に支持される、請求項1に記載の可変抵抗デバイス。
  14. 前記導電性スプリングは電圧で活性化される、請求項1に記載の可変抵抗デバイス。
  15. 前記抵抗性表面は、外部境界と、前記抵抗性表面の表面積の平方根よりも小さい厚さとを有している、請求項1に記載の可変抵抗デバイス。
  16. 記第2の接触位置は、前記抵抗性表面上で可動であり、前記第1の接触位置での前記導電性スプリングと前記第2の接触位置での前記第2の導体との間の抵抗は、前記第1の接触位置と前記第2の接触位置との間の距離の増加とともに増加する、請求項15に記載の可変抵抗デバイス。
  17. 前記第1の接触位置における前記第1の接触面積が一定であり、前記第2の接触位置における前記第2の接触面積が一定である、請求項16に記載の可変抵抗デバイス。
  18. 前記第1の接触位置での前記導電性スプリングと前記第2の接触位置での前記第2の導体との間の抵抗は、前記抵抗性部材が前記第1の接触位置と前記第2の接触位置との間の圧力を受ける場合に減少する、請求項1に記載の可変抵抗デバイス。
  19. 前記第1の接触位置での前記導電性スプリングと前記第2の接触位置での前記第2の導体との間の抵抗は、前記抵抗性部材が前記第1の接触位置と前記第2の接触位置との間の温度の上昇を受ける場合に増加し、前記抵抗性部材が前記第1の接触位置と前記第2の接触位置との間の温度の下降を受ける場合に減少する、請求項1に記載の可変抵抗デバイス。
JP2000620640A 1999-05-25 2000-05-11 可変抵抗デバイスおよび方法 Expired - Fee Related JP4762419B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/318,183 US6404323B1 (en) 1999-05-25 1999-05-25 Variable resistance devices and methods
US09/318,183 1999-05-25
PCT/US2000/013032 WO2000072333A1 (en) 1999-05-25 2000-05-11 Variable resistance devices and methods

Publications (3)

Publication Number Publication Date
JP2003500849A JP2003500849A (ja) 2003-01-07
JP2003500849A5 JP2003500849A5 (ja) 2007-07-26
JP4762419B2 true JP4762419B2 (ja) 2011-08-31

Family

ID=23237034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000620640A Expired - Fee Related JP4762419B2 (ja) 1999-05-25 2000-05-11 可変抵抗デバイスおよび方法

Country Status (5)

Country Link
US (1) US6404323B1 (ja)
EP (1) EP1196928A4 (ja)
JP (1) JP4762419B2 (ja)
TW (1) TW476074B (ja)
WO (1) WO2000072333A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7820161B1 (en) 1999-05-07 2010-10-26 Biogen Idec, Inc. Treatment of autoimmune diseases
US7190251B2 (en) * 1999-05-25 2007-03-13 Varatouch Technology Incorporated Variable resistance devices and methods
US6438638B1 (en) 2000-07-06 2002-08-20 Onspec Electronic, Inc. Flashtoaster for reading several types of flash-memory cards with or without a PC
US7295443B2 (en) 2000-07-06 2007-11-13 Onspec Electronic, Inc. Smartconnect universal flash media card adapters
US6903724B2 (en) * 2000-12-08 2005-06-07 Motorola, Inc. Handheld communications devices with joysticks and switch contact layouts therefor
US6909354B2 (en) * 2001-02-08 2005-06-21 Interlink Electronics, Inc. Electronic pressure sensitive transducer apparatus and method for manufacturing same
JP2003036768A (ja) * 2001-07-23 2003-02-07 Matsushita Electric Ind Co Ltd 多方向入力装置及びこれを用いた電子機器
US6892443B2 (en) * 2002-11-25 2005-05-17 Vishay Intertechnology Method of manufacturing a resistor
US7050045B2 (en) * 2003-01-07 2006-05-23 Interlink Electronics, Inc. Miniature highly manufacturable mouse pointing device
US7474772B2 (en) * 2003-06-25 2009-01-06 Atrua Technologies, Inc. System and method for a miniature user input device
WO2005079413A2 (en) * 2004-02-12 2005-09-01 Atrua Technologies, Inc. System and method of emulating mouse operations using finger image sensors
US20070061126A1 (en) * 2005-09-01 2007-03-15 Anthony Russo System for and method of emulating electronic input devices
US7684953B2 (en) * 2006-02-10 2010-03-23 Authentec, Inc. Systems using variable resistance zones and stops for generating inputs to an electronic device
US7573464B2 (en) * 2006-07-20 2009-08-11 Interlink Electronics, Inc. Shape adaptable resistive touchpad
US9235274B1 (en) 2006-07-25 2016-01-12 Apple Inc. Low-profile or ultra-thin navigation pointing or haptic feedback device
WO2010023870A1 (ja) 2008-08-25 2010-03-04 信越ポリマー株式会社 入力装置およびその入力装置を用いた電子機器
US8421890B2 (en) 2010-01-15 2013-04-16 Picofield Technologies, Inc. Electronic imager using an impedance sensor grid array and method of making
US8866347B2 (en) 2010-01-15 2014-10-21 Idex Asa Biometric image sensing
US8791792B2 (en) 2010-01-15 2014-07-29 Idex Asa Electronic imager using an impedance sensor grid array mounted on or about a switch and method of making
US8274358B2 (en) 2010-06-18 2012-09-25 Shin-Etsu Polymer Co., Ltd. Multidirectional input member and electrical device having same
EP2958053A1 (en) 2012-04-10 2015-12-23 Idex Asa Biometric sensing
US10528155B2 (en) 2014-02-13 2020-01-07 Microsoft Technology Licensing, Llc Low-profile pointing stick
US10627918B2 (en) * 2014-02-13 2020-04-21 Microsoft Technology Licensing, Llc Low-profile pointing stick

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614386A (en) * 1979-07-16 1981-02-12 Fujitsu Ltd Coordinate input device
JPS57137090U (ja) * 1981-02-19 1982-08-26
JPS6138904U (ja) * 1984-04-24 1986-03-11 日本電気株式会社 スライドゴム接点ボリユウム
JPS6177522U (ja) * 1984-10-29 1986-05-24
JPS61118825A (ja) * 1984-11-15 1986-06-06 Matsushita Electric Ind Co Ltd 座標入力装置
JPH0162627U (ja) * 1987-10-15 1989-04-21
US4833440A (en) * 1987-01-16 1989-05-23 Eaton Corporation Conductive elastomers in potentiometers & rheostats
JPH03126002U (ja) * 1990-03-07 1991-12-19
JPH0536507A (ja) * 1991-07-25 1993-02-12 Yokohama Rubber Co Ltd:The 可変抵抗器
JPH09120337A (ja) * 1995-06-29 1997-05-06 Dean Devolpi Iポイントジョイスティック位置決め装置
JPH09204264A (ja) * 1996-01-29 1997-08-05 Hosiden Corp ポインティングデバイス
JPH09305296A (ja) * 1996-05-17 1997-11-28 Fujitsu Takamizawa Component Kk 座標入力装置
WO1999017180A1 (en) * 1997-09-29 1999-04-08 Varatouch Technology Incorporated Pointing device with integrated switch
JPH11232027A (ja) * 1997-12-11 1999-08-27 Fujitsu Takamisawa Component Ltd 角度検出型座標検出装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1684461A (en) * 1922-12-01 1928-09-18 Dubilier Condenser Corp Electrical device
US1660161A (en) * 1923-11-02 1928-02-21 Edmund H Hansen Light-dimmer rheostat
US3610887A (en) * 1970-01-21 1971-10-05 Roper Corp Control arrangement for heating unit in an electric range or the like
US4152304A (en) 1975-02-06 1979-05-01 Universal Oil Products Company Pressure-sensitive flexible resistors
US3997863A (en) * 1975-04-03 1976-12-14 Norlin Music, Inc. Helically wound pitch-determining element for electronic musical instrument
GB1561189A (en) 1976-12-24 1980-02-13 Yokohama Rubber Co Ltd Pressure responsive electrically conductive elastomeric composition
US4257305A (en) * 1977-12-23 1981-03-24 Arp Instruments, Inc. Pressure sensitive controller for electronic musical instruments
DE3039256A1 (de) 1980-10-17 1982-04-29 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Widerstandswertveraenderliches schaltorgan
US4438158A (en) * 1980-12-29 1984-03-20 General Electric Company Method for fabrication of electrical resistor
US4479392A (en) 1983-01-03 1984-10-30 Illinois Tool Works Inc. Force transducer
US4604509A (en) 1985-02-01 1986-08-05 Honeywell Inc. Elastomeric push button return element for providing enhanced tactile feedback
DE3674086D1 (de) 1985-07-03 1990-10-18 Mitsuboshi Belting Ltd Druckempfindlicher leitfaehiger gummiwerkstoff.
US4775765A (en) 1985-11-28 1988-10-04 Hitachi, Ltd. Coordinate input apparatus
US4745301A (en) 1985-12-13 1988-05-17 Advanced Micro-Matrix, Inc. Pressure sensitive electro-conductive materials
JPS63174401U (ja) * 1987-02-25 1988-11-11
DE3809770A1 (de) 1988-03-23 1989-10-05 Preh Elektro Feinmechanik Tastschalter
JPH0256903A (ja) 1988-08-23 1990-02-26 Fine Rubber Kenkyusho:Kk 可変抵抗装置
GB2224400B (en) 1988-09-14 1992-07-08 Gates Rubber Co Electrical sensing element
US5231386A (en) 1990-07-24 1993-07-27 Home Row, Inc. Keyswitch-integrated pointing assembly
US5457368A (en) * 1993-03-09 1995-10-10 University Of Utah Research Foundation Mechanical/electrical displacement transducer
US4933660A (en) 1989-10-27 1990-06-12 Elographics, Inc. Touch sensor with touch pressure capability
US5060527A (en) 1990-02-14 1991-10-29 Burgess Lester E Tactile sensing transducer
DE4011636A1 (de) 1990-04-11 1991-10-24 Nokia Unterhaltungselektronik Drucksensitiver tastschalter
US5541622A (en) * 1990-07-24 1996-07-30 Incontrol Solutions, Inc. Miniature isometric joystick
JP3141046B2 (ja) 1992-04-28 2001-03-05 鬼怒川ゴム工業株式会社 感圧スイッチ
DE4228297A1 (de) * 1992-08-26 1994-03-03 Siemens Ag Veränderbarer Hochstromwiderstand, insbes. zur Anwendung als Schutzelement in der Leistungsschalttechnik, und Schaltung unter Verwendung des Hochstromwiderstandes
US5376913A (en) 1993-07-12 1994-12-27 Motorola, Inc. Variable resistor utilizing an elastomeric actuator
AU7727694A (en) * 1993-09-13 1995-04-03 David J. Asher Joystick with membrane sensor
US5614881A (en) * 1995-08-11 1997-03-25 General Electric Company Current limiting device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614386A (en) * 1979-07-16 1981-02-12 Fujitsu Ltd Coordinate input device
JPS57137090U (ja) * 1981-02-19 1982-08-26
JPS6138904U (ja) * 1984-04-24 1986-03-11 日本電気株式会社 スライドゴム接点ボリユウム
JPS6177522U (ja) * 1984-10-29 1986-05-24
JPS61118825A (ja) * 1984-11-15 1986-06-06 Matsushita Electric Ind Co Ltd 座標入力装置
US4833440A (en) * 1987-01-16 1989-05-23 Eaton Corporation Conductive elastomers in potentiometers & rheostats
JPH0162627U (ja) * 1987-10-15 1989-04-21
JPH03126002U (ja) * 1990-03-07 1991-12-19
JPH0536507A (ja) * 1991-07-25 1993-02-12 Yokohama Rubber Co Ltd:The 可変抵抗器
JPH09120337A (ja) * 1995-06-29 1997-05-06 Dean Devolpi Iポイントジョイスティック位置決め装置
JPH09204264A (ja) * 1996-01-29 1997-08-05 Hosiden Corp ポインティングデバイス
JPH09305296A (ja) * 1996-05-17 1997-11-28 Fujitsu Takamizawa Component Kk 座標入力装置
WO1999017180A1 (en) * 1997-09-29 1999-04-08 Varatouch Technology Incorporated Pointing device with integrated switch
JPH11232027A (ja) * 1997-12-11 1999-08-27 Fujitsu Takamisawa Component Ltd 角度検出型座標検出装置

Also Published As

Publication number Publication date
TW476074B (en) 2002-02-11
EP1196928A4 (en) 2008-04-02
JP2003500849A (ja) 2003-01-07
WO2000072333A1 (en) 2000-11-30
EP1196928A1 (en) 2002-04-17
US6404323B1 (en) 2002-06-11

Similar Documents

Publication Publication Date Title
JP4762419B2 (ja) 可変抵抗デバイスおよび方法
US7391296B2 (en) Resilient material potentiometer
US5302936A (en) Conductive particulate force transducer
US7248142B2 (en) Thin deflectable resistor
US7684953B2 (en) Systems using variable resistance zones and stops for generating inputs to an electronic device
US4123741A (en) Resistance element for variable resistors
US5041701A (en) Edge linearization device for a contact input system
JP4034504B2 (ja) 検出装置
WO2018116821A1 (ja) 感圧センサー
WO2016060832A1 (en) System and method for spiral contact force sensors
US4283704A (en) Variable resistor
JP2008256399A (ja) 感圧抵抗素子
JPS60123002A (ja) 電気ポテンシヨメータ
JP2002141210A (ja) 抵抗体及びそれを用いた可変抵抗器
US3900817A (en) Spherical potentiometer with ball contact means
US3921118A (en) Variable resistor assembly
JP6780743B2 (ja) タッチパネル
US9235274B1 (en) Low-profile or ultra-thin navigation pointing or haptic feedback device
CA1245070A (en) Miniature electro-mechanical transducer for measuring loads and displacement
JPH06274265A (ja) 面状の入力装置
CN110928440B (zh) 触摸面板
US3320571A (en) Resistive attenuator
JPS6278803A (ja) ポテンシヨメ−タ
JP5415336B2 (ja) 入力部材およびそれを備える電子機器
GB2119517A (en) Measurement of the mass flow of a fluid

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees