JP4761592B2 - 偶発的炉心溶融時に作動する炉心回収装置を内蔵する水型原子炉 - Google Patents

偶発的炉心溶融時に作動する炉心回収装置を内蔵する水型原子炉 Download PDF

Info

Publication number
JP4761592B2
JP4761592B2 JP12092198A JP12092198A JP4761592B2 JP 4761592 B2 JP4761592 B2 JP 4761592B2 JP 12092198 A JP12092198 A JP 12092198A JP 12092198 A JP12092198 A JP 12092198A JP 4761592 B2 JP4761592 B2 JP 4761592B2
Authority
JP
Japan
Prior art keywords
nuclear reactor
water
reactor according
vessel
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12092198A
Other languages
English (en)
Other versions
JPH10319166A (ja
Inventor
イムレ・スザボ
Original Assignee
コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ filed Critical コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ
Publication of JPH10319166A publication Critical patent/JPH10319166A/ja
Application granted granted Critical
Publication of JP4761592B2 publication Critical patent/JP4761592B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/016Core catchers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【0001】
【発明の属する分野】
本発明は、原子炉の容器が、偶発的炉心溶融により炉心から発生する固体または液体の砕片または破片を収集するのを意図し、かつそれらを閉じ込める装置を内蔵する、加圧水型または沸騰水型原子炉に関する。
【0002】
【従来の技術】
加圧水型または沸騰水型原子炉において、その炉心は鋼製容器内に設けられる。前記容器および他の原子炉装置部分は閉じ込めエンクロージャ内に載置され、そのエンクロージャのコンクリートベースは「エプロン」として知られている。閉じ込めエンクロージャ内に設けられる最大の構成部材は、「ケイブ(cave) 」として知られる種々の隔室に分散される。原子炉容器も、「容器ウエル(well)」として知られる隔室に収納される。
【0003】
【発明が解決しようとする課題】
発生の可能性が非常に限定されるにもかからわらず、炉心溶融をもたらす事故は全く排除できない。そのような事故は、予備ベースで設けられるものを含む全ての炉心冷却回路が同時に長時間故障するならば、想像できる。この殆ど発生しそうにもない事故の場合、炉心は数時間で溶融するであろう。溶融は、炉心の最高温度点で先ず生じ、ついで主として下方へ順次広がるであろう。
【0004】
炉心の残留出力を完全に排出する手段は存在しないが、そのような事故により生成される一般に「真皮(corium) 」として知られる溶融物質が時間と共に増加する。核燃料、およびその被覆部を構成する物質(一般にジルコニウムから製造される)は別として、真皮は、原子炉制御棒物質および容器内部構造部材を一般に含む。
【0005】
炉心、およびそれに隣接する容器内の全ての構造部材の完全な溶融という非常に悲観的な仮説において、事故の発生から約2時間後に真皮は、(1300乃至1400 MWeの公称出力の原子炉の場合) 約75トンの鋼、120トンのUO2 および28トンのZrから成るであろう。ただし、Zrの一部は二酸化ジルコニウムZrO2 を形成するために酸化される。制御棒から由来する銀、インジウムやカドミウムのような他の物質、およびグリッドから由来するインコネル(登録商標) なども存在するが、量はより少ないであろう。ついで残留原子炉出力は約40MW th(熱出力)になり、その3/4が溶融物質中に蓄えられたままとなり、酸化物質中に(その約90%が)および金属構成物質中に(その約10%が)均一に分布されるであろう。
【0006】
このような情況において、真皮に関する容器底部の障壁効果は限定さるものと一般にみなされる。
【0007】
容器内の真皮の移動は実際上、多くのパラメータおよび事象に左右され、その幾つかは、燃料被覆材のジルコニウムの酸化のように非常に高エネルギー特性のものであり、一方その他は、真皮と水との相互作用のように非常に激しく、所謂「水蒸気爆発」を生じる恐れがある。そのような爆発の可能性は、小さいとみなされる。
【0008】
被覆材および炉心材の酸化は不完全であろうし、またそれ自体における残りの金属部分は、容器底部に対してかなりの潜在的危険を有し、金属の流れまたは噴流により容器底部を貫通することがある。噴流が無いときでも容器底部上の固体または液体の砕片は「高温点」を生じるであろう。未冷却の容器底部に急速に多くの孔があき、溶融物質が初期の裂け口を通して容器ウエル中に流入し、その裂け口の径は、真皮の流れまたは噴流の作用によりその縁部が溶融するにつれて拡大するであろうと一般にみなされる。容器を破損するこの仕方は、「局部破損」と一般に呼ばれる。
【0009】
一定の条件下で、原子炉容器の底部が真皮物質の抑留に十分に耐えることができるので、真皮物質は、球形のドームおよび前記ドーム上の容器の円筒形本体の多分一部の容積を全く占有するであろうとみなされる。ついで、このようにして容器の底部に抑留される真皮槽内の自然対流が、この槽の上部における高温点に対して生じるであろう。層状化された槽の場合、重い酸化物の槽の表面上に浮き、かつ集束効果の存在をもたらす溶融金属の液体槽内にエネルギー束の集中が生じるであろう。この高温点または集束効果は、その槽の自由レベルの周辺における容器壁の全体周辺部の剥離または変形を生じるであろう。ついで真皮物質が充満された底部は、容器のブロックから分離されるであろう。この第2の容器破損は、「全体破損」として一般に知られている。
【0010】
重大な事故およびそれらの結果を限定する手段に関する知識の現状に留意すると、偶発的炉心溶融に続く水型原子炉炉心の破片の抑留について考案される大部分の装置は、閉じ込めエンクロージャ内の容器の下に載置される。そのような装置は、例示される仕方でGB−A−2236210号およびFR−A−2683375号各明細書に記載されている。
【0011】
真皮物質を容器外に抑留させるようにした最新の装置の開発は、容器内の真皮物質の抑留の可能性が今まで実現不可能とみなされた事実から由来している。しかしながら事故結果の観点から見れば、事故の最初の瞬間から炉心溶融の進行を停止するのがより好都合であろう。
【0012】
真皮物質を容器内に抑留する実現可能性を、低い比出力の水型原子炉および、まして高出力原子炉(900Mwe以上)について依然実証する必要があるが、そのような抑留の実現不可能な特性は現在、より論争の余地があるように思われる。
【0013】
かくして、米国のスリーマイルアイランド2号機原子炉事故の解析により、容器底部に蓄積された真皮物質が、容器底部と真皮物質の下部外皮との間の膨張差により生成された空間への水の流入により冷却されたことが実証されている。
【0014】
極く最近、既存の水型原子炉について実施された調査によれば、容器ウエルの再浸漬に基づいた容器内に真皮物質を抑留するという方策は、調査された原子炉にかなり左右されるが、一定の場合に実現可能であるかもしれないことが判明した。
【0015】
最後に、低い比出力を有する2つの既存の原子炉について実施された調査によれば、この方策は適用できるであろうことが実証された。
【0016】
【課題を解決するための手段】
本発明は、炉心の偶発的溶融による真皮物質を長期的に原子炉容器内に閉じ込めることをできるようにした本来の構造を有する、1500MWeまでの高い比出力の原子炉を含む水型原子炉に関する。
【0017】
本発明は、容器壁を形成する閉じ込めエンクロージャ、容器壁に収納される反応容器、および容器に収納される原子炉炉心から構成される水型原子炉であって、容器の底部内で炉心の下方に載置され、前記底部から冷却空間だけ離され、かつ、カップ状壁と、スリットが設けられ、その壁の底部から上方へ突き出る水循環チューブと、そのチューブにより前記空間が受容体の壁の内部と連通するものであり、およびそのチューブ間に載置されるセル方式構造部材とから構成される炉心捕捉受容体と、通常は冷却水が充満され、閉じ込めエンクロージャ内に載置され、底部に接続した第1の常時閉弁により制御される第1の自然流下パイプにより容器へ接続され、かつ、炉心の上部レベルまで充満できる水容積を有するとともに、貯水されている水が、第1の常時閉弁を開放中に自然流下できるように、第1の自然流下パイプが底部よりも低いレベルで容器に接続されている、少なくとも1槽の第1の貯水槽と、および通常は冷却水が充満され、閉じ込めエンクロージャ内に載置され、かつ第2の常時閉弁により制御される第2の自然流下パイプにより容器壁へ接続される少なくとも1槽の第2の貯水槽とから構成されることを特徴とする原子炉を提供するものである。
【0018】
炉心捕捉受容体が原子炉の設計時点において容器内に設けられるという事実により、容器内に存在する水は前記受容体と容器の底部との間で循環できる。これにより容器底部に多くの孔があけられるというリスクが防止される。第1の貯水槽により、事故の発生時から容器内の水の存在が保証できる。第2の貯水槽は引き続いて、容器の外側からの冷却を保証する。この冷却は、容器内に載置される受容体の中期的または長期的な破損を想定すると、有用であるように思われる。即ち、容器の底部に真皮物質が抑留できるように外部冷却することにより、真皮物質の特定出力が十分に低下するであろうと考えられる。
【0020】
好ましくは受容体壁が、少なくとも1つの耐火材料から製造され、その材料は、溶融炉心に関して化学的に不活性であり、かつ金属覆いで被覆される。
【0021】
耐火材料は、好都合には互いに埋め込まれる隣接する相捕的な縁部を有しかつ並置された少なくとも1層の煉瓦の形態である。これらの煉瓦は、二酸化ジルコニウム系のセラミック材料から製造され、また相互接続され、かつ耐火セメントジョイントにより金属覆いに接続される。
【0022】
1つの変形として、耐火材料は耐火セメントからも製造できる。
【0023】
特定の場合の機構として、受容体は一体方式またはモジュール方式で製造できる。
【0024】
第1の場合の一体方式において、金属覆いは、外部の支承覆い、外部支承覆いに並行な内部覆い、および前記の2つの覆いの上縁部を接続するフランジから構成される。
【0025】
受容体は、モジュール方式の場合に、受容体は幾つかの扇形部から成り、その扇形部のそれぞれにおいて金属覆いは、補強され放射状に広がる2つの縁取り部により横方向に終端する外部支承覆い、および外部支承覆いに並行な内部覆いから成り、かつ前記扇形部は、隣接する扇形部の補強され、放射状に広がる縁取り部に固定され、放射状に広がる補強部と、全ての扇形部の内部覆いと外部支承覆いの上縁部を連結するフランジにより組立られる。
【0026】
1つの変形として、受容体は全体がステンス鋼から製造される。
【0027】
受容体壁の底部から上方へ突き出る水循環チューブは、垂直でありかつその下端部において開放され、一方、上端部は開放または閉止できる。
【0028】
水循環チューブのそれぞれは、保護チューブにより囲まれ、任意選択的には孔が多数あけられ、また外部にフィンが備えられる。かくして環状空間が、各水循環チューブとそれを囲む保護チューブとの間に設けられる。
【0029】
水循環チューブ間で受容体内に載置されるセル方式の構造部材は、重畳した水平グリッドにより、または窓が多数あけられた垂直空洞のシステムにより構成できる。
【0030】
重畳した水平グリッドの場合にグリッドは、水循環チューブが開口部の縁部から離間するように、水循環チューブが通過する開口部を有する。
【0031】
セル方式の構造部材が垂直空洞の網目組織を組み込む場合に、少なくとも1本の水循環チューブが各空洞部に載置される。
【0032】
真皮物質が受容体内に受容されるときに真皮物質の危険リスクを減少するために、中性子吸収材が充填される容器は、好ましくはセル方式の構造部材内に載置される。
【0033】
特定の場合の機構として、受容体は、容器内に懸垂できるか、または容器の底部に載置できる。容器内に懸垂の場合に受容体上部フランジを備え、容器に接続される当接部材上に載置される。容器の底部に載置の場合に受容体は、孔が多数あけられた放射状に広がる補強部を備え、その補強部により受容体は容器の底部内に載置される。
【0034】
本発明の好ましい実施例において環状で、その上面がホッパー形状である収集体が、容器の壁との間に間隙を残しながら、受容体の上縁部の上方に、炉心と受容体との間に所定高さをもって容器内に設置される。収集体は、容器の壁に近い破片の稀な落下および流れを阻止して、破片を受容体の内部へ向けて送るのを意図しており、このようにして、破片が受容体と容器底部との間に設けられる冷却空間を貫通するのが防止される。
【0035】
通常の運転条件下で容器内の水循環にもとづいて捕捉体により生じる乱れを最小にするために、2枚の下方に湾曲する略平行な多数の孔があけられた板は、受容体上の収集体へ、および炉心の下で炉心を支持する構造部材へそれぞれ固定される。
【0036】
好都合には収集体は、適切な突っ張り構造部材により受容体の上縁部上に載置される。
【0037】
本発明の好ましい実施例において第2の貯水槽も、第3の常時閉弁により制御される第3の自然流下パイプにより容器へ接続される。
【0038】
第3のパイプは、炉心の部レベルに近いレベルにおいて容器に接続され、また第2の貯水槽は、第1および第3のパイプが容器に接続されるレベルまで少なくとも、容器および容器ウエルを充満できる水容積を有する。
【0041】
容積が第1の貯水槽のものよりもかなり大きい第2の貯水槽は、第1の貯水槽のレベルよりも低いレベルに設けられ、それにより地震の場合における第2の貯水槽の保護が改善される。
【0042】
冷却水は、少なくとも第1の貯水槽において、水蒸気爆発抑制添加剤で好ましくは処理される。
【0043】
排水手段は好都合には、閉じ込めエンクロージャ内の水蒸気凝縮により生じる冷却水を第1および第2の貯水槽へ再給水のために設けられる。前記凝縮を避けるために、外部常温源と閉じ込めエンクロージャ内に含まれる水蒸気との間に熱交換手段が設けられる。
【0044】
最後に、冷却水冷却手段、好都合には、少なくとも第2の貯水槽に設けられる。
【0045】
【発明の実施の形態】
本発明は、非限定実施例および添付図面に関して以下に詳細に説明される。図1において参照数字10は、加圧水型原子炉の閉じ込めエンクロージャの下部を示す。閉じ込めエンクロージャ10のベースを形成するエプロンは参照数字12で示される。
【0046】
エプロン12の直ぐ上に設けられるエンクロージャの下部において、エンクロージャ10は容器ウエル14を形成し、その壁は内部に封止用外板16が被覆される。
【0047】
容器ウエル14は原子炉容器18を内蔵し、その容器内には、原子炉炉心20および幾つかの内部装置が載置される。図1の理解を容易にするために、前記内部装置の一部だけが図形的に示されている。
【0048】
かくして図1は、炉心を囲む覆い22、その上に炉心20とその覆い22が載置される支持板24、支持板の下で支持板24に固定され、好ましくは下方へ湾曲する、流れ分布用の多数の孔があけられた板26、および容器の内部装置が容器の壁上に載置されるようにした案内と保持のための部材28を示している。通常の運転条件下での原子炉の運転、および事故の場合の原子炉の停止を点検できるもののような、原子炉容器内に通常載置される他の構成装置は図示されない。
【0049】
本発明によれば原子炉容器18は、炉心溶融の場合に炉心20を捕捉する受容体30も内蔵する。具体的には前記受容体30は、真皮物質、すなわち核燃料、その被覆材を構成する物質、原子炉制御棒の物質および容器内部構造部材の物質を一般に含有する溶融物質を回収するようになっている。前記受容体30は、炉心20の下で容器18内に載置される。
【0050】
受容体30の機能は、重大な事故により炉心20の完全な溶融が生じる場合に全ての真皮物質を収集することにある。前記受容体の種々の実施例の詳細を以下に説明する。本質的にここでは、受容体30は、前記受容体の上にある容器に導入される冷却空間33により容器の底部から分離されるカップ状の壁32から本来成ることだけが指摘される。
【0051】
本発明に記載の原子炉は、閉じ込めエンクロージャ10内に載置される少なくとも1槽の第1の貯水槽34からも構成される。この第1の貯水槽34は、通常冷却水が充満される。具体的には貯水槽34の容積(または幾つかの貯水槽が設けられる場合には貯水槽34の合計容積) は、炉心20の上部レベルに略等しいレベルまで容器18を充満できるように計算される。
【0052】
各貯水槽34は、原子炉が通常に運転しているときに通常閉じられる弁38により制御される第1の自然流下パイプ36により容器18へ接続される。
【0053】
具体的には自然流下パイプ36は、貯水槽34の底部を容器18へ接続し、原子炉容器に関して図示されない一次水入口と出口の小管またはソケットのレベルよりも僅かに低いレベルにおいて容器に接続される。貯水槽34の底部は、前記ソケットのレベルよりも高いレベルにある。この結果、貯水槽34内に貯水される水は、弁38が開放されると容器18内に自然流下する。
【0054】
本発明に記載の原子炉は、同様に閉じ込めエンクロージャ10内に載置される少なくとも1槽の第2の貯水槽40からも構成される。第2の貯水槽または複数の貯水槽40は、第1のパイプ36が前記容器18へ導入される少なくともレベルまで、容器18および容器ウエル14を充満するに足る合計水容積を貯水する。この目的のために第2の貯水槽40の底部は、原子炉が通常に運転しているときに通常閉じられる第2の弁44により制御される第2の自然流下パイプ42により容器ウエル14の底部と連通する。各第2の貯水槽40は、原子炉が通常に運転しているときに通常閉じられる第3の弁48により制御される第3の自然流下パイプ46により容器18とも連通する。
【0055】
第3のパイプ46は、貯水槽40に貯水されかつ容器18へ自然流下されやすい水容積が炉心20の略上部レベルまで前記容器18を充満するに足るようなレベルにおいて第2の貯水槽40に接続される。この目的のために第3のパイプ46は、第1のパイプ36と略同一のレベルにおいて容器18へ接続される。
【0056】
今説明した配置により、第2の貯水槽40を第1の貯水槽34のレベルよりも低いレベルに載置できる。第2の貯水槽40に貯水される水容積が第1の貯水槽34に貯水されるものよりもかなり大きい事実から鑑みて、閉じ込めエンクロージャ10内の第2の貯水槽の比較的低いレベルにより、第2の貯水槽が地震の場合により好ましい位置にあることが保証される。第1の貯水槽34に貯水される冷却水は大気温度の水であり、その幾つかの特性(表面張力および粘性など) は、水を容器18へ注入する間に生じる水蒸気または蒸気の爆発を抑制することができる少量の特定の添加剤により改質されている。これらの添加剤は特に、界面活性剤およびポリ酸化エチレンポリマーとすることができる。
【0057】
第2の貯水槽40に貯水される冷却水も好ましくは、大気温度であり、また水蒸気爆発抑制添加剤により処理される。しかしながらこれらの添加剤は、第2の貯水槽40から容器18中へ生じる自然流下注入が、貯水槽34に貯水される冷却水の自然流下に続いて通常なされるので、真皮物質の温度が低下しており、かつ水蒸気爆発の可能性が小さくなっているという事実により、無くすことができる。
【0058】
図1を参照して原子炉の全体説明を完了するために、容器18の上部ドームのレベルに近いレベルにおいて容器ウエル14の壁に開口部50が設けられることが指摘される。これらの開口部50は、閉じ込めエンクロージャ10内に形成される隣接する隔室52を容器ウエル14へ連結する。これらの隔室52は、ポンプおよび蒸気発生器のような原子炉一次回路の図示されない一定の大形構成装置を内部で受容する隔室にできる。開口部50は、事故条件の下で容器ウエル14内で生成されるガスおよび蒸気または水蒸気を排出できるようにして、容器ウエル14内での過大な圧力上昇を防止する。
【0059】
図1の参照数字54および56で図形的に示されるように、排水手段が貯水槽34および40の上に閉じ込めエンクロージャ10で形成される隔室内に設けられるので、エンクロージャ10内の水蒸気の凝縮の結果として生じる液体冷却水を前記貯水槽へ自動的に再供給できる。エンクロージャ10内のこの水蒸気の凝縮を確実にするために熱交換手段58が、エンクロージャに関して図示されない外部の常温源と閉じ込めエンクロージャ10に含まれる水蒸気との間に設けられる。熱交換手段58は、エンクロージャ10から外部の常温源へ好ましい受動的な仕方で熱を伝達する。
【0060】
最後に、具体的には第2の貯水槽40に貯水される冷却水の長期的な冷却を確実にするために、前記貯水槽に貯水される冷却水に浸漬される交換器のような冷却手段60により、エンクロージャからの熱エネルギーを排出できる。
【0061】
図1および2に図示されるように、受容体30は別として、例えばステンレス鋼から製造される環状収集体62が、炉心20と受容体30との間で所定高さをもって容器18内に設置される。具体的には環状収集体62は、前記受容体の壁32の上縁部上に載置されることで、特定の間隙64(数cm)が収集体62と容器18の壁との間に形成される。前記間隙64の寸法決定は、収集体と容器との間の膨張差を考慮してなされる。またそれにより、原子炉が通常に運転されているときに受容体30と容器18の底部との間に設けられる冷却空間33へ通常の水流の一部を取り出すことができる。
【0062】
環状収集体62は、容器18の壁の周辺に生じる破片の稀な落下および流れを阻止して、破片を受容体30の内部へ向けて送るので、破片が受容体底部と容器底部との間に設けられる冷却空間33を貫通するのが防止される。この目的のために収集体62の上面63(図2)は、内側に湾曲するホッパーまたは漏斗のような略形状にされている。
【0063】
下方に湾曲し多数の孔があけられた板66が、環状収集体62の中央に固定されるので、原子炉が通常に運転されているときに通常の水流が強制対流できるように板26と66との間に空間68が設けられる。言い換えれば下部板66は、容器に組み込まれる捕捉手段が設けられない従来の原子炉の容器底部の幾何学的配置を略再構成するのを意図する。下部の多数の孔があけられた板26と同様に多数の孔があけられた板66は、比較的薄くかつステンレス鋼から製造される。
【0064】
図2において図形的に示されるように収集体62は、継ぎ輪、外筒または他のサポートのような突っ張り構造部材70により受容体30の壁32の上縁部上に載置される。
【0065】
受容体壁32はカップ形状である。受容体壁32は、下方に湾曲した底部(半球、楕円または逆円錐のような略形状にされた) により構成され、略円筒形の横部分により上方に延びる。壁32の横部分の高さは、炉心20、炉心サポート板24、および以下で説明する実際の受容体30内の構造部材の物質の100%溶融から生じる真皮物質の自由充満レベルを越えて延びるように計算される。
【0066】
受容体30は、壁32の湾曲した底部を通過し、かつ前記壁の上縁部のレベルよりも僅かに低いレベルまで垂直上方へ延びる、複数の水循環チューブ72から成る。チューブ72は、受容体30の底部と容器18の底部との間の冷却空間33へ、それらチューブの下端部が接続される。それらチューブは、それらの全高にわたり設けられた割れ目またはスリット74によりカップ状壁3内にも接続される。特定の場合の機構として水循環チューブ72は、図2に図示されるように上端部において開放または閉止できる。
【0067】
間隙64および下部板66の多数の孔と連係して水循環チューブ72は、原子炉が通常に運転されているときに、間隙64を通して底部へ向け、ついでチューブ72および板66を通して上端へ向けて少量の水を流すことができる。この水流は、受容体30の底部における堆積を防止するに足るものでなければならない。それは、加圧水型原子炉の容器の内部の上部構造部材内に現在存在するものと同様な仕方で配置されなければならない。
【0068】
図3において図形的に示されるように水循環チューブ72のそれぞれは、保護チューブ102により囲まれるので、これらの2本のチューブ間に環状空間が形成される。水循環チューブ72と同様に保護チューブ102は、孔104が多数あけられる。保護チューブ102は、熱交換を助けるために外部にフィン106を備える。
【0069】
受容体30の説明を完了するために、セル式構造部材が壁32と水循環チューブ72との間に載置されることが指摘される。図2において図形的に示される実施例において前記セル式構造部材が、一定数の重畳された等距離の水平グリッド76aにより構成され、そのグリッドは、比較的大きい間隙でチューブ72の通過を許容する開口部78aを有する。
【0070】
原子炉炉心20の偶発的溶融の場合に、グリッド76によりこの場合に構成されるセル式構造部材は、大量の真皮物質と受容体内に内蔵される全体の水物質との間の直接接触を防止するように障害物の網目組織またはシステムを形成するために、割れ目を有するチューブ72と共に機能する。かくして一定の条件下で、そのような接触があると、受容体を損傷または破壊するに足る高エネルギー水蒸気の爆発を生じるであろう。水循環チューブ72、およびここでグリッドにより構成されるセル式構造部材は、真皮物質流を分岐しかつ比較的小さい量に砕くことにより真皮物質流を分割する。これにより、水蒸気または蒸気の爆発にとって好ましい条件下での真皮物質と水との混合の可能性が減少する。加えて真皮物質と水との相互作用の伝播の可能性が、このようにして形成された障害物のシステム内で減少される。
【0071】
この機能を実質的に満たしかつ実例として挙げると、隣接するチューブ72の軸間の間隔は、重畳されたグリッド76間に必要であるように、略20乃至30cmでなければならない。
【0072】
グリッド76に設けられる開口部78は、その必須の機能を確実にするために広範囲の形状を有することができるのが分かる。かくして開口部のそれぞれは、特定の場合の機構として、円形、三角形、正方形、六角形または八角形などにできる。開口部78のそれぞれは、少なくとも1本のチューブ72により横断される。
【0073】
図3および4に図示される変形において、重畳された水平グリッドにより構成される代わりに、受容体30内でチューブ72と壁32との間に介在するセル式構造部材は、窓78bが多数あけられた垂直チューブにより構成される空洞76bのシステムによっても形成できる。これらの空洞76bは、定型的なシステムを形成するように配置され、かつそれぞれが水循環チューブ72の少なくとも1本を内蔵する。グリッド76aに設けられる開口部78aと同様に、空洞76bの断面は、種々の形状、例えば円形、三角形、正方形、六角形または八角形などを有することができる。
【0074】
グリッド76aまたは空洞76bにより形成されるセル式構造部材は好都合には、中性子吸収材が充填される容器108(図3)を内蔵することも分かる。この構造により、真皮物質が受容体30内に受容されるときに真皮物質の危険リスクを減少できる。
【0075】
図2において特に図示される本発明の好ましい実施例において受容体30の壁32は、真皮物質に関して化学的に不活性の少なくとも1つの耐火材を内蔵し、またその耐火材は、好ましくは容器18の他の内部構造部材のものと同一のステンレス鋼から製造される金属覆いで被覆される。この覆いは、原子炉一次回路の水の腐食作用に対して耐火材を保護する。
【0076】
具体的には耐火材は、好ましくは少なくとも1層の並置された煉瓦80の形態である。これらの煉瓦は、互いに埋め込まれる隣接する相捕的な縁部(例えばU 形状またはアリ継ぎ形状) を有するので、特に受容体を製造する際に所定位置に相対的に煉瓦を保持できる。煉瓦80は、特に二酸化ジルコニウム系のセラミック材料から製造される。この材料は好ましくは、その高い融点、その真皮物質との比較的良好な化学的適合性、およびその産業市場での広い入手性について選択される。煉瓦80は、数十センチメートル(20乃至30cm)の寸法、および数センチメートルの厚さを有する。それらの煉瓦は、異なる形状(正方形、長方形または六角形など)を有することができる。
【0077】
隣接する煉瓦の間、および煉瓦と金属覆いとの間に間隙が設けられ、膨張作用(2500℃の最大温度における) による過大な機械的応力を避けるようになっている。耐火セメントジョイントが前記間隙に充填される。
【0078】
耐火煉瓦の厚さは、熱機械的応力に耐え得るように、すなわち一方では真皮物質の貫通に耐え、また他方では真皮物質と受容体の外部金属覆いを冷却する水との間に存在する温度勾配に耐え得るように決められる。
【0079】
受容体30の壁32の金属覆いは、外部の支承覆い82、外部支承覆い82よりも薄い内部覆い84、および覆い82と84の上縁部を接続するフランジ86から構成される。壁32の金属覆いは、容器18の他の内部構造部材と同一のステンテス鋼から製造される。
【0080】
図2に図形的に示される実施例における受容体30は一体である。この場合に外部支承覆い82は、特に移送および設置作業期間中に組立体の必要な機械的強度を確保できるように寸法が決められる。例えば実例として、その厚さは略3乃至5cmにできる。
【0081】
受容体30が一体で製造されるときに受容体の設置を実施するために、耐火煉瓦80の層は外部覆い82上に載置されて、耐火セメントジョイントの充填ができるようにする。煉瓦80の所定位置への載置は、例えば底部から側壁の上縁部へ実施される。ついで内部覆い84が、耐火煉瓦80の層上に載置され、フランジ86の手段により外部支承覆い82に固定される。
【0082】
チューブ72の通過に対応する箇所において、覆い82と84、および耐火煉瓦80に孔が形成される。横断チューブ88(図3)は、これらの孔に設置され、覆い82と84に溶接される。これに続いて、残りの間隙を封止するように耐火結合材およびセメントの手段により、それらの間隙が充填される。
【0083】
このようにして得られた組立体は、原子炉の現場まで移動でき、かつ容器18内に設置できる移送用受け台に載置される。
【0084】
ついでチューブ72は、横断チューブ88の延長部へ固定され、またグリッド76a または空洞76bにより構成されるセル式構造部材が所定位置へ載置される。このチューブ72とセル式構造部材の作業は、組立体を原子炉の現場まで移送する前にも実施できる。
【0085】
特に図4および5に図示される好ましい実施例によれば受容体30は、その移送および原子炉の現場での組立を容易にするモジュール方式構造を有する。ついで受容体30は、工場で嵌め合わせされた一定数(限定された数)の扇形部90により構成される。
【0086】
扇形部90のそれぞれにおいて受容体30の金属覆いは、上述の方式のように、外部支承覆い82、外部支承覆い82に並行な内部覆い84、および覆い82と84の上縁部を連結するフランジ86から構成される。
【0087】
図4および5に示されるように各扇形部90の外部覆い82は、受容体の内側へ向けて半径方向に突き出る、断面が略T形状の補強された放射状に広がる縁取り部92により横方向に終端する。耐火煉瓦80aは、補強された放射状に広がる縁取り部92と接触し、かつそれと相捕的な形状(図5)を有するようになっているので、一定の扇形部90の煉瓦が外部支承覆い82上で所定位置に横方向に保持される。扇形部90のそれぞれは、受容体30が一体である場合に一体の受容体と実質的に同一の仕方で製造される。このようにして煉瓦80および80aは、先ず外部支承覆い82上の所定位置へ載置され、封止され、ついで内部覆い84により被覆され、またフランジ86が設置される。
【0088】
ついで横断チューブ88(図3)は、覆い82、84および煉瓦80内にそのチューブ用に設けられた孔へ溶接され、ついでチューブ72およびセル式構成部材76aまたは76bがそれぞれの扇形部90内に設置される。
【0089】
ついで扇形部は、隣接する扇形部90の補強され放射状に広がる縁取り部92が固定される放射状に広がる補強部94により原子炉現場上で組立られる。この固定は、特に溶接により実施される。組立を完了するためにリング状フランジ96が、放射状に広がる補強部94の上縁部へ固定される。
【0090】
図2に図示されるように受容体30は、容器18内に懸垂できる。この場合に固定は、受容体構造の1つの機構としてフランジ86または96の手段により実施される。具体的にはフランジは、外部に突き出る部分を有し、その部分は、それの支持のために容器18内に設けられるサポート98上に載置される。
【0091】
図6に図形的に示されるように受容体30は、図4および5に関して上述の仕方で組立られた扇形部により形成される放射状に広がる補強部94により容器18の底部へ載置することもできる。ついで放射状に広がる補強部94には、受容体と容器18の底部との間に設けられる空間33において冷却水を循環できるようにした多数の孔100が設けられる。
【0092】
図示されない構造上の変形において受容体30は、全体がステンレス鋼から製造され、耐火材を含まない。ついで受容体30は、真皮物質の外皮が形成され、受容体の壁を内部的に被覆するという事実の結果として、高温容器のように挙動する。
【0093】
他の図示されない変形において耐火煉瓦80は、受容体の内部覆い84と外部支承覆い82との間の中圧力または高圧力の下で注入される耐火セメントにより置き換えられる。
【0094】
原子炉に付属する安全手段が、入手できないために、または炉心20の再浸漬および冷却を保証するには不十分であるために、炉心を冷却できないことを想定すると、炉心が溶融を開始する。ついで図示されない自律的補助給電システムが炉心溶融検知信号を送信する。この信号は、直ちに弁38および44へ伝達されてそれらの弁の開放を制御する。この開放は、自律的給電システムにより自動的に確実になされる。
【0095】
図7に図示されるように、第1の貯水槽34に貯水される水は、ついで自然流下で容器18へ流入し(エンクロージャの圧力までの一次回路の圧抜き)、また第2の貯水槽40に貯水される水は、パイプ42により容器ウエル14へ流入する。
【0096】
第1の貯水槽34が殆ど空になると、低レベル検知信号が弁48へ伝達され、その自律的開放により、第2の貯水槽40の水が容器へ流入できる(ついで貯水槽40は貯水槽34から引き継ぐ)。貯水槽40の容積は、少なくともパイプ36および46を容器18へ導入する小管またはソケットのレベルまで容器と容器ウエルを充満できるように決められる。
【0097】
底部が一次回路の高温および常温分岐部のレベルよりも高いレベルにある第1の貯水槽34は、かくして自然流下注入システムを形成し、その作用は炉心溶融の初めの段階に限定される。それは、損傷した炉心を再浸漬して、容器底部への真皮物質へ向けての進行を停止できる。この「特有的」な水の能力(水蒸気爆発抑制添加剤を有する)は比較的限定的であるが、前記水を低コストで制御できる。その比較的少量(数百立方メートル)な点を考慮すると、その貯水槽は重大な耐震問題を生じることなく適切な高さに設置できる。
【0098】
第2の貯水槽40は、後の段階で介入して、長期的冷却を実施できる。それは大容量を有し、その目的はエンクロージャの低い部分へ載置することにある(地震を考慮して)。それにより、前記第2の貯水槽に貯水される水の添加剤の必要性を無くすことができる。かくして、第1の貯水槽からの自然流下注入の作用により真皮物質の温度が低下され、また水蒸気爆発の可能性が注入時に非常に低くなることを想定できる。
【0099】
上述の作動説明において、容器ウエルの再浸漬の開始は、容器ウエルの充満に必要な時間を考慮しながら、炉心溶融の開始時に実施されると説明された。かくして容器は、真皮物質が受容体内部に達する前に充満しなければならない。容器18内での冷却は、空間33から、一部が部分的または全体的に破壊されているチューブ72まで水を循環して実施される。始めの段階における水の注入は、破片床の形成を容易にする。真皮物質が蓄積されるにつれて、一定場所において先に蓄積された破片の再溶融が生じることがあり得る。最後の段階において真皮物質槽が受容体内に形成されて、その槽により全体の障害システムが事実上溶融することがあり得る。
【0100】
容器底部の温度を低レベルに維持することにより、外部冷却は、空間33の内壁上での液体水の蓄積に好都合である熱ウエルを構成する。ここでは空間33中への真皮物質流に由来する高温点による破損(受容体30の裂け口)のリスクは、容器底部の平均温度を非常に低レベルに維持することにより最小にされる。受容体30がその作用を無期限に耐えることができないという非常に悲観的な仮説に立つと、真皮物質と容器底部との接触を遅延させることになる。この遅延は、真皮物質を容器内に保持するのに適当な外部冷却を十分に行う(受容体が提供する等しい暫定的な抵抗により与えられる猶予期間中での真皮物質の特定出力の減少による)。
【0101】
図7は、真皮物質110が受容体を貫通する過渡状態を示し、また図8は、受容体30内に形成される真皮物質槽が冷却している最終状態を示す。
【0102】
原子炉炉心20の溶融をもたらす重大事故の場合、本発明により提案される配置により、全ての真皮物質を受容体30内に収集し、かつ特に第1の貯水槽34および第2の貯水槽40による容器18の内部冷却の結果として受容体の壁32の保全性を保存できる。この保全性は、第2の貯水槽40による容器18の外部冷却によっても確保される。
【0103】
受容体30内での真皮物質の受容により、受容体に内蔵されるチューブおよびセル式構造部材の大部分の破壊をもたらすことが分かる。ついで容器内の冷却水の循環が、受容体の回りと下側に設けられる冷却空間33内で本質的に生じる。前記空間への真皮物質流を防止するために、受容体壁の横断チューブ88(図3)の径は、真皮物質をこの場所で凝固するように比較的小さく(数cmに)される。
【0104】
勿論、幾つかの変形は本発明の範囲を逸脱することなく可能である。特に貯水槽34および40から流下して容器18へ送られる冷却水の注入は、原子炉容器またはその上部空間へ、もしくは同時に数箇所へ導入される高温または常温の分岐部において直接実施できる。貯水槽34および40の寸法は、一次回路の高温または常温の分岐部のレベルまで閉じ込めエンクロージャ10の下部隔室の全てを浸漬するように決めることができる。
【0105】
【発明の効果】
以上説明したように、本発明によれば、炉心の偶発的溶融による真皮物質を長期的に原子炉容器内に閉じ込めることができる、
【図面の簡単な説明】
【図1】加圧水型原子炉を図形的に図示する断面図である。
【図2】図1の原子炉容器の下側部分を拡大しかつ詳細に図示する断面図である。
【図3】受容体に備えられる水循環チューブの1本、および中に前記チューブが載置される空洞を拡大して示す垂直断面図である。
【図4】モジュール方式実施変形に記載の受容体の一部を示す分解した透視図である。
【図5】図4の受容体の水平面に沿う断面図である。
【図6】変形に従って捕捉体が原子炉容器の底部に載置される変形を図示する図2と同等な図である。
【図7】炉心溶融を含む重大な事故の場合に2つの連続する瞬間における真皮物質の捕捉を図示する図2と同等な断面図である。
【図8】図7と同様、炉心溶融を含む重大な事故の場合に2つの連続する瞬間における真皮物質の捕捉を図示する図2と同等な断面図である。
【符号の説明】
10 閉じ込めエンクロージャ
12 エプロン
14 容器ウエル
18 原子炉容器
20 原子炉炉心
30 受容体
34 第1貯水槽
40 第2貯水槽
62 収集体
82 外部支承覆い
84 内部覆い
86 フランジ
90 扇形部

Claims (29)

  1. 容器壁を形成する閉じ込めエンクロージャ、容器壁に収納される反応容器、および容器に収納される原子炉炉心から構成される水型原子炉であって、
    器の底部内で炉心の下方に載置され、前記底部から冷却空間だけ離され、かつ、カップ状壁と、スリットが設けられ、その壁の底部から上方へ突き出る水循環チューブと、そのチューブにより前記空間が受容体の壁の内部と連通するものであり、およびそのチューブ間に載置されるセル方式構造部材とから構成される炉心捕捉受容体と、
    通常は冷却水が充満され、閉じ込めエンクロージャ内に載置され、底部に接続した第1の常時閉弁により制御される第1の自然流下パイプにより容器へ接続され、かつ、炉心の上部レベルまで充満できる水容積を有するとともに、貯水されている水が、第1の常時閉弁を開放中に自然流下できるように、第1の自然流下パイプが底部よりも低いレベルで容器に接続されている、少なくとも1槽の第1の貯水槽と、および
    通常は冷却水が充満され、閉じ込めエンクロージャ内に載置され、かつ第2の常時閉弁により制御される第2の自然流下パイプにより容器壁へ接続される少なくとも1槽の第2の貯水槽とから構成されることを特徴とする原子炉。
  2. 受容体が、少なくとも1つの耐火材料から製造され、その材料は、溶融炉心に関して化学的に不活性であり、かつ金属覆いで被覆される請求項1に記載の原子炉。
  3. 耐火材料は、互いに埋め込まれる相捕的な隣接する縁部を有しかつ並置された少なくとも1層の煉瓦の形態である請求項2に記載の原子炉。
  4. 煉瓦は、二酸化ジルコニウム系のセラミック材料から製造され、また相互接続され、かつ耐火セメントジョイントにより金属覆いへ接続される請求項3に記載の原子炉。
  5. 耐火材料は耐火セメントである請求項2に記載の原子炉。
  6. 受容体は単一部材からなり、また金属覆いは、外部の支承覆い、外部支承覆いに並行な内部覆い、および前記の内部覆いと外部支承覆いの上縁部を連結するフランジを有する請求項2に記載の原子炉。
  7. 受容体は幾つかの扇形部から成り、その扇形部のそれぞれにおいて金属覆いは、補強され放射状に広がる2つの縁取り部により横方向に終端する外部支承覆い、および外部支承覆いに並行な内部覆いから成り、かつ前記扇形部は、隣接する扇形部の補強され、放射状に広がる縁取り部に固定され、放射状に広がる補強部と、全ての扇形部の内部覆いと外部支承覆いの上縁部を連結するフランジにより組立られる請求項2に記載の原子炉。
  8. 受容体は全体がステンレス鋼から製造される請求項1に記載の原子炉。
  9. 水循環チューブは、垂直でありかつ両端部において開放する請求項1に記載の原子炉。
  10. 水循環チューブは、垂直でありかつそのチューブの上端部において閉止される請求項1に記載の原子炉。
  11. 水循環チューブのそれぞれは、保護チューブにより囲まれ、それらの間に環状空間を形成するようになっている請求項1に記載の原子炉。
  12. 保護チューブには、孔が多数あけられている請求項11に記載の原子炉。
  13. 保護チューブは、外部にフィンを備えている請求項11に記載の原子炉。
  14. セル方式の構造部材は、水循環チューブが開口部の縁部から離間するように、水循環チューブが通過する開口部を有する重畳した水平グリッドから成る請求項1に記載の原子炉。
  15. セル方式の構造部材は、窓が多数あけられた垂直空洞部のシステムから成り、少なくとも1本の水循環チューブが各空洞部内に載置される請求項1に記載の原子炉。
  16. 中性子吸収材が充填される容器がセル方式の構造部材内に載置される請求項1に記載の原子炉。
  17. 受容体は上部フランジを備え、そのフランジにより受容体は、容器へ接続される当接部材上に載置される請求項1に記載の原子炉。
  18. 受容体は孔が多数あけられた放射状に広がる補強部を備え、その補強部により受容体は容器の底部内に載置される請求項1に記載の原子炉。
  19. 環状で、その上面がホッパー形状である収集体が、容器の壁との間で間隙を設けるように、受容体の上縁部の上方に、炉心と受容体との間に所定高さをもって容器内に設置される請求項1に記載の原子炉。
  20. 下方に湾曲する多孔板が、受容体上方で収集体と対面する請求項19に記載の原子炉。
  21. 収集体は、突っ張り構造部材により受容体の上縁部上に載置される請求項19に記載の原子炉。
  22. 第2の貯水槽が、第3の常時閉弁により制御される第3の自然流下パイプにより容器と接続される請求項1に記載の原子炉。
  23. 第3のパイプは、炉心の部レベルに近いレベルにおいて容器に接続される請求項22に記載の原子炉。
  24. 第2の貯水槽は、少なくとも第1および第3のパイプが容器に接続されるレベルまで容器および容器ウエルを充満できる水容積を有する請求項22に記載の原子炉。
  25. 第2の貯水槽は、第1の貯水槽のレベルよりも低いレベルにある請求項1に記載の原子炉。
  26. 冷却水は、少なくとも第1の貯水槽において、水蒸気爆発抑制添加剤で処理された水である請求項1に記載の原子炉。
  27. 排水手段が、閉じ込めエンクロージャ内での水蒸気凝縮により生成した冷却水を第1および第2の貯水槽へ再給水のために設けられる請求項1に記載の原子炉。
  28. 熱交換手段は、外部常温源と閉じ込めエンクロージャ内に含まれる水蒸気との間に設けられる請求項27に記載の原子炉。
  29. 冷却水冷却手段、少なくとも第2の貯水槽に設けられる請求項1に記載の原子炉。
JP12092198A 1997-05-06 1998-04-30 偶発的炉心溶融時に作動する炉心回収装置を内蔵する水型原子炉 Expired - Fee Related JP4761592B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR97-05571 1997-05-06
FR9705571A FR2763168B1 (fr) 1997-05-06 1997-05-06 Reacteur nucleaire a eau, dont la cuve contient un dispositif de recuperation du coeur apres sa fusion accidentelle

Publications (2)

Publication Number Publication Date
JPH10319166A JPH10319166A (ja) 1998-12-04
JP4761592B2 true JP4761592B2 (ja) 2011-08-31

Family

ID=9506626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12092198A Expired - Fee Related JP4761592B2 (ja) 1997-05-06 1998-04-30 偶発的炉心溶融時に作動する炉心回収装置を内蔵する水型原子炉

Country Status (4)

Country Link
EP (1) EP0907187A1 (ja)
JP (1) JP4761592B2 (ja)
KR (1) KR19980086786A (ja)
FR (1) FR2763168B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11688523B2 (en) * 2018-08-29 2023-06-27 Joint-Stock Company “Atomenergoproekt” System for confining and cooling melt from the core of a water-moderated nuclear reactor

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19846057B4 (de) * 1998-10-07 2004-04-29 Forschungszentrum Jülich GmbH Vorrichtung zum Kühlen und zum Schutz eines Reaktordruckbehälters bei Kernschmelzunfällen
FR2784785B1 (fr) * 1998-10-14 2000-12-01 Commissariat Energie Atomique Reacteur nucleaire a eau equipe d'un receptacle contenant des structures internes deformables
KR100984017B1 (ko) * 2008-12-09 2010-09-28 한국수력원자력 주식회사 노심용융 사고시 원자로 용기를 보호하기 위한 원자로 용기내벽 구조
JP5377064B2 (ja) * 2009-04-30 2013-12-25 株式会社東芝 炉心溶融物保持装置および原子力プラント
KR101034216B1 (ko) * 2009-05-20 2011-05-12 (주)필로소피아 원자로 용기 하부헤드 고열속 모사장치
ES2335338B1 (es) * 2009-06-02 2011-02-02 Domingo Bengo A Saez De Cortazar Sistema de seguridad para centrales nucleares.
JP5306074B2 (ja) * 2009-06-25 2013-10-02 株式会社東芝 原子炉格納容器ドレンサンプ
EP2562764A4 (en) * 2010-03-29 2016-11-09 Toshiba Kk DEVICE FOR STORING A MELTED CORE MATERIAL
JP5710240B2 (ja) * 2010-12-27 2015-04-30 株式会社東芝 炉心溶融物の保持装置
RU2575878C1 (ru) * 2014-12-16 2016-02-20 Акционерное Общество "Атомэнергопроект" Система локализации и охлаждения расплава активной зоны ядерного реактора водоводяного типа
CN108538411B (zh) * 2018-03-08 2021-06-25 中国核电工程有限公司 一种堆坑直接滞留的反应堆堆芯熔融物捕集装置
KR102216695B1 (ko) * 2018-09-03 2021-02-18 한국원자력연구원 노심 용융물 냉각 장치
CN110459333B (zh) * 2019-07-04 2022-01-18 中国核电工程有限公司 一种带有内部冷却管的双层坩埚堆芯熔融物捕集装置
DE102019126049B3 (de) * 2019-09-26 2020-11-19 Framatome Gmbh System zur Stabilisierung einer Kernschmelze in einem Kernkraftwerk
FR3113172B1 (fr) 2020-07-29 2022-07-29 Commissariat Energie Atomique Réacteur et Procédé de sécurité pour réacteur en cas de fusion du cœur
FR3113173B1 (fr) 2020-07-29 2022-07-29 Commissariat Energie Atomique Réacteur et Procédé de sécurité pour réacteur en cas de fusion du cœur

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935063A (en) * 1973-11-28 1976-01-27 The United States Of America As Represented By The United States Energy Research And Development Administration Emergency heat removal system for a nuclear reactor
JPS5222435B2 (ja) * 1974-03-20 1977-06-17
JPS5162296A (en) * 1974-11-29 1976-05-29 Tokyo Shibaura Electric Co Genshirono yojunenryohojisochi
JPS51104189A (ja) * 1975-03-12 1976-09-14 Hitachi Ltd
US3964966A (en) * 1975-08-25 1976-06-22 The United States Of America As Represented By The United States Energy Research And Development Administration Molten core retention assembly
US4116764A (en) * 1976-02-11 1978-09-26 The United States Of America As Represented By The United States Department Of Energy Apparatus for controlling nuclear core debris
JPH02281190A (ja) * 1989-03-27 1990-11-16 General Electric Co <Ge> 原子炉格納構造物の安全冷却系
GB2236210B (en) * 1989-08-30 1993-06-30 Rolls Royce & Ass Core catchers for nuclear reactors
JP2507694B2 (ja) * 1990-09-17 1996-06-12 株式会社日立製作所 原子炉設備
JP3150451B2 (ja) * 1992-10-20 2001-03-26 株式会社日立製作所 原子炉設備
JPH075286A (ja) * 1993-06-14 1995-01-10 Hitachi Ltd 非常用炉心冷却系の補助装置
JPH0843575A (ja) * 1994-07-29 1996-02-16 Toshiba Corp コアキャッチャー
JP3160476B2 (ja) * 1994-09-05 2001-04-25 三菱重工業株式会社 原子炉の炉心デブリ冷却装置
WO1998013832A1 (en) * 1996-09-25 1998-04-02 Il Soon Hwang Gap structure for nuclear reactor vessel
DE19846057B4 (de) * 1998-10-07 2004-04-29 Forschungszentrum Jülich GmbH Vorrichtung zum Kühlen und zum Schutz eines Reaktordruckbehälters bei Kernschmelzunfällen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11688523B2 (en) * 2018-08-29 2023-06-27 Joint-Stock Company “Atomenergoproekt” System for confining and cooling melt from the core of a water-moderated nuclear reactor

Also Published As

Publication number Publication date
JPH10319166A (ja) 1998-12-04
FR2763168A1 (fr) 1998-11-13
EP0907187A1 (fr) 1999-04-07
FR2763168B1 (fr) 1999-11-05
KR19980086786A (ko) 1998-12-05

Similar Documents

Publication Publication Date Title
JP4761592B2 (ja) 偶発的炉心溶融時に作動する炉心回収装置を内蔵する水型原子炉
JP3118489B2 (ja) 原子炉の偶発的メルトダウン後に炉心を回収するための装置を備えた原子炉
EP3236473B1 (en) System for confining and cooling melt from the core of a nuclear reactor
EP3236472B1 (en) System for confining and cooling melt from the core of a water cooled and moderated reactor
EP3236474B1 (en) Confinement and cooling of melt from the core of a nuclear reactor
JP3554001B2 (ja) コリウム防護用アセンブリ
JP3105251B2 (ja) 原子炉設備、その炉心コンテインメントおよび原子炉設備における非常冷却方法
JPS5916675B2 (ja) 原子炉炉心捕捉装置
CN105551539B (zh) 一种反应堆熔融物堆外滞留系统
JPH09500207A (ja) 炉心溶融物の捕集及び冷却装置
RU100327U1 (ru) Устройство локализации расплава
JP2010237070A (ja) 漏えい水収集装置、原子力プラントおよび漏えい監視方法
CN108538411B (zh) 一种堆坑直接滞留的反应堆堆芯熔融物捕集装置
USH91H (en) Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris
EP0928488B1 (en) Gap forming and cooling structure for a nuclear reactor
WO2014209608A1 (en) Containment sump ceramic drain plug
US9911514B2 (en) Nuclear reactor cavity floor passive heat removal system
JP2006308395A (ja) 高速炉および高速炉施設の建設方法
RU100326U1 (ru) Устройство стенки корпуса теплообменника
RU2165108C2 (ru) Система защиты защитной оболочки реакторной установки водо-водяного типа
JP2016090408A (ja) 原子炉格納容器
JP3684028B2 (ja) 原子炉格納容器
RU2163037C1 (ru) Устройство для улавливания расплавленных материалов из ядерного реактора
JP2017040588A (ja) 原子炉設備
JP2019045433A (ja) 原子炉格納容器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071114

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080214

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080314

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090818

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091002

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101116

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101122

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees