JP4761141B2 - Surface-coated cermet cutting throwaway tip that provides excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials - Google Patents
Surface-coated cermet cutting throwaway tip that provides excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials Download PDFInfo
- Publication number
- JP4761141B2 JP4761141B2 JP2006072544A JP2006072544A JP4761141B2 JP 4761141 B2 JP4761141 B2 JP 4761141B2 JP 2006072544 A JP2006072544 A JP 2006072544A JP 2006072544 A JP2006072544 A JP 2006072544A JP 4761141 B2 JP4761141 B2 JP 4761141B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- hard coating
- oxide layer
- coating layer
- constituent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Description
この発明は、特に難削材、すなわちステンレス鋼や高マンガン鋼、さらに軟鋼などの相対的に粘性が高く、かつ軟質の被削材の切削加工を、高い発熱を伴い、この結果前記被削材および切粉の粘着性が一段と増すようになる高速切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ(以下、被覆切削チップという)に関するものである。 This invention is particularly difficult to cut, that is, the cutting of relatively high-viscosity and soft work materials such as stainless steel, high-manganese steel, and soft steel is accompanied by high heat generation. As a result, the work material In addition, the surface-coated cermet cutting throwaway tip (hereinafter referred to as the coated cutting tip) exhibits excellent chipping resistance even when performed under high-speed cutting conditions where the chip adhesion is further increased. It is about.
従来、一般に、例えば図15に概略斜視図に例示される通り、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成され、かつ中心部に工具取り付け用ボルト貫通孔(取り付けがクランプ駒による挟み締めで行われる形式の場合には、前記ボルト貫通孔が存在しない形状となる)を有するサーメット基体(以下、これらを総称してチップ基体という)の切刃稜線部を含むすくい面および逃げ面の全面に、
(1)下部層として、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1種または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(2)上部層として、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有し、さらに、
組成式:(Al1−ZCrZ)2O3、(ただし、原子比で、Z:0.01〜0.1)、
を満足するAlとCrの複合酸化物層(以下、複合酸化物層で示す)、
以上(1)および(2)で構成された硬質被覆層を形成してなる被覆切削チップが知られており、この被覆切削チップが、例えば各種の鋼や鋳鉄などの連続切削や断続切削に、必要に応じて、上記硬質被覆層の上部層を構成する複合酸化物層の表面を切削性能を向上させる目的でウエットブラスト処理を施して、平滑化した状態で用いられることも知られている。
Conventionally, generally, for example, as illustrated in a schematic perspective view in FIG. 15, a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet is used, and the center portion. A cermet base (hereinafter referred to collectively as a chip base) having a tool mounting bolt through hole (in the case where the mounting is performed by clamping with a clamp piece, the bolt through hole does not exist). ) On the entire rake face and flank face including the cutting edge ridge
(1) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, all formed by chemical vapor deposition as the lower layer A Ti compound having a total average layer thickness of 3 to 20 μm, consisting of one or more of a carbon oxide (hereinafter referred to as TiCO) layer, and a carbonitride oxide (hereinafter referred to as TiCNO) layer layer,
(2) As an upper layer, it has an average layer thickness of 1 to 15 μm and an α-type crystal structure in the state of chemical vapor deposition,
Composition formula: (Al 1-Z Cr Z ) 2 O 3, ( provided that an atomic ratio, Z: 0.01 to 0.1),
A composite oxide layer of Al and Cr satisfying the following (hereinafter referred to as a composite oxide layer),
A coated cutting tip formed by forming a hard coating layer composed of the above (1) and (2) is known, and this coated cutting tip is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is also known that the surface of the composite oxide layer constituting the upper layer of the hard coating layer is subjected to a wet blast treatment for the purpose of improving the cutting performance and smoothed as necessary.
また、上記の被覆切削チップにおいて、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。 In the above-mentioned coated cutting tip, the constituent layer of the hard coating layer generally has a granular crystal structure, and the TiCN layer constituting the Ti compound layer as the lower layer is intended to improve the strength of the layer itself. In a normal chemical vapor deposition apparatus, a gas mixture containing organic carbonitrides is used as a reaction gas, and it is formed by chemical vapor deposition at an intermediate temperature range of 700 to 950 ° C. so that it has a vertically grown crystal structure. It is also known to do.
さらに、上記の被覆切削チップの硬質被覆層を構成する複合酸化物層が、格子点にAl、Cr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造、すなわち図1に前記複合酸化物層の単位格子の原子配列が模式図[(a)は斜視図、(b)は横断面1〜9の平面図]で示される結晶構造を有する結晶粒で構成されることも知られている。
近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆切削チップにおいては、これを炭素鋼や低合金鋼などの一般鋼や、ねずみ鋳鉄などの普通鋳鉄などの被削材を通常の条件で切削加工するのに用いた場合には問題はないが、特に被削材が相対的に粘性が高く、かつ軟質のステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工を、高い発熱を伴い、これによって前記被削材による粘着抵抗が一段と増大するようになる高速条件で行なった場合、硬質被覆層が十分な高温強度を具備するものでないために、前記硬質被覆層にチッピング(微少欠け)が発生し易くなり、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and along with this, cutting tends to be faster. In the cutting tip, there is no problem if this is used to cut work materials such as ordinary steel such as carbon steel and low alloy steel and ordinary cast iron such as gray cast iron under normal conditions. In particular, the work material has a relatively high viscosity, and cutting of difficult-to-cut materials such as soft stainless steel, high manganese steel, and even mild steel is accompanied by high heat generation, which further increases the adhesion resistance due to the work material. When performed under high-speed conditions that increase, since the hard coating layer does not have sufficient high-temperature strength, chipping (slight chipping) is likely to occur in the hard coating layer, resulting in a relatively short time. Used in The leads to life at present.
そこで、本発明者等は、上述のような観点から、上記被覆切削チップの硬質被覆層の耐チッピング性向上を図るべく研究を行った結果、
(a−1)上記従来被覆切削チップの硬質被覆層を構成する上部層としての複合酸化物層(以下、従来複合酸化物層という)は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl3:2.3〜4%、CrCl3:0.04〜0.26%、CO2:6〜8%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:6〜10kPa、
の条件(通常条件という)で蒸着形成されるが、これを、
反応ガス組成:容量%で、AlCl3:6〜10%、CrCl3:0.1〜0.65%、CO2:10〜15%、HCl:3〜5%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:3〜5kPa、
の条件、すなわち上記の通常条件に比して、反応ガス組成では、AlCl3、CrCl3、CO2、およびHClの含有割合を相対的に高く、かつ雰囲気圧力を相対的に低くした条件(反応ガス成分高含有調整低圧条件)で、同じく、
組成式:(Al1−ZCrZ)2O3、(ただし、原子比で、Z:0.01〜0.1)、
を満足する複合酸化物層を蒸着形成すると、この結果の反応ガス成分高含有調整低圧条件で形成した複合酸化物層(以下、改質複合酸化物層という)は、高温強度が一段と向上し、上記従来複合酸化物層に比して一段と高温強度が向上したものになること。
Therefore, the present inventors conducted research to improve the chipping resistance of the hard coating layer of the coated cutting tip from the above viewpoint,
(A-1) A composite oxide layer (hereinafter referred to as a conventional composite oxide layer) as an upper layer constituting the hard coating layer of the conventional coated cutting tip is, for example, a normal chemical vapor deposition apparatus.
Reaction gas composition: by volume%, AlCl 3: 2.3~4%, CrCl 3: 0.04~0.26%, CO 2: 6~8%, HCl: 1.5~3%, H 2 S : 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
It is formed by vapor deposition under the conditions (called normal conditions).
Reaction gas composition:% by volume, AlCl 3 : 6 to 10%, CrCl 3 : 0.1 to 0.65%, CO 2 : 10 to 15%, HCl: 3 to 5%, H 2 S: 0.05 ~0.2%, H 2: remainder,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 3 to 5 kPa,
In other words, in the reaction gas composition, the content ratio of AlCl 3 , CrCl 3 , CO 2 , and HCl is relatively high and the atmospheric pressure is relatively low (reaction) Gas component high content adjustment low pressure condition)
Composition formula: (Al 1-Z Cr Z ) 2 O 3, ( provided that an atomic ratio, Z: 0.01 to 0.1),
When the composite oxide layer satisfying the above is formed by vapor deposition, the resultant composite oxide layer formed under the adjusted low pressure condition (hereinafter referred to as the modified composite oxide layer) is further improved in high-temperature strength. Compared to the conventional composite oxide layer, the high-temperature strength is further improved.
(a−2)上記の従来被覆切削チップの硬質被覆層の上部層を構成する従来複合酸化物層と上記(a)の改質複合酸化物層について、
電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角[図2(a)には前記結晶面の傾斜角が0度の場合、同(b)には傾斜角が45度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角]を測定し、この場合前記結晶粒は、上記の通り格子点にAl、Cr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現し、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合(この場合前記の結果から、Σ5、Σ9、Σ15、Σ25、およびΣ27の構成原子共有格子点形態は存在しないことになる)、上記従来複合酸化物層は、図5に例示される通り、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示すのに対して、前記改質複合酸化物層は、図4に例示される通り、Σ3の分布割合が60%以上のきわめて高い構成原子共有格子点分布グラフを示し、この高いΣ3の分布割合は、反応ガスを構成するAlCl3、CrCl3、CO2、およびHClの含有割合、さらに雰囲気反応圧力によって変化すること。
なお、上記の改質複合酸化物層および従来複合酸化物層において、相互に隣接する結晶粒の界面における構成原子共有格子点形態のうちのΣ3、Σ7、およびΣ11の単位形態を模式図で例示すると図3(a)〜(c)に示される通りとなる。
(A-2) About the conventional composite oxide layer constituting the upper layer of the hard coating layer of the conventional coated cutting tip and the modified composite oxide layer of (a) above,
Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams in FIGS. 2A and 2B, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, The tilt angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the polished surface [FIG. 2 (a) shows the tilt angle of the crystal plane. (B) shows the case where the inclination angle is 45 degrees, all the inclination angles of the individual crystal grains including these angles are measured. In this case, the crystal grains Has a crystal structure of a corundum type hexagonal close-packed crystal in which constituent atoms composed of Al, Cr, and oxygen are present at lattice points as described above, and are adjacent to each other based on the measured tilt angle. Each of the constituent atoms forms one constituent atom between the crystal grains. The distribution of lattice points (constituent atom shared lattice points) is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is 2 on the crystal structure of the corundum hexagonal close-packed crystal) Even if the upper limit of N is 28 from the point of distribution frequency, the even number of 4, 8, 14, 24, and 26 does not exist.) , When a constituent atomic shared lattice point distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1 is created (in this case, the constituent atomic shared lattice point forms of Σ5, Σ9, Σ15, Σ25, and Σ27 are As shown in FIG. 5, the conventional composite oxide layer has a relatively low constituent atom shared lattice point distribution graph with a Σ3 distribution ratio of 30% or less, as illustrated in FIG. The modified complex acid Object layer, as illustrated in FIG. 4, the distribution ratio of Σ3 showed extremely high atom sharing lattice point distribution graph of the 60%, the distribution ratio of the high Σ3 is AlCl 3 constituting the reaction gas, CrCl 3. Change depending on the content ratio of CO 2 , HCl, and the atmospheric reaction pressure.
In the above modified composite oxide layer and the conventional composite oxide layer, unit forms of Σ3, Σ7, and Σ11 among constituent atomic shared lattice point forms at the interface between adjacent crystal grains are schematically illustrated. Then, it becomes as shown in FIGS.
(b−1)上記の被覆切削チップにおける硬質被覆層の上部層を構成する改質複合酸化物層および従来複合酸化物層の蒸着表面の平滑性は十分満足するものでなく、また、前記蒸着表面に、ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム微粒(以下、Al2O3微粒で示す)を配合した研磨液を噴射して、研磨すると、前記複合酸化物層は、いずれも準拠規格JIS・B0601−1994に基いた測定(以下の表面粗さは全てかかる準拠規格に基いた測定値を示す)で、Ra:0.3〜0.6μmの表面粗さを示すようになるが、この結果の前記複合酸化物層の平滑化表面が、Ra:0.3〜0.6μm程度の表面粗さでは、硬質被覆層の耐チッピング性向上に顕著な効果は現れないこと。 (B-1) The smoothness of the deposition surface of the modified composite oxide layer and the conventional composite oxide layer constituting the upper layer of the hard coating layer in the above-mentioned coated cutting tip is not fully satisfactory, and the above-mentioned deposition A polishing liquid containing 15 to 60% by mass of aluminum oxide fine particles (hereinafter referred to as Al 2 O 3 fine particles) is sprayed on the surface by wet blasting as a spray abrasive to the total amount with water. When polished, all of the complex oxide layers are measured based on the compliant standard JIS B0601-1994 (the following surface roughness is all measured based on the compliant standard). Although the surface roughness of 3 to 0.6 μm is exhibited, the smoothed surface of the resulting composite oxide layer has a surface roughness of Ra: 0.3 to 0.6 μm. Significant effect appears in improving chipping resistance Ikoto.
(b−2)一方、図13に概略斜視図で例示される通り、硬質被覆層の上部層を構成する複合酸化物層の切刃稜線部を含むすくい面および逃げ面の全面に、
(b−2−1)まず、下側層として、反応ガス組成を、体積%で、
TiCl4:0.2〜10%、
CO2:0.1〜10%、
Ar:5〜60%、
H2:残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:4〜70kPa(30〜525torr)、
とした条件で、0.1〜3μmの平均層厚を有し、かつ、オージェ分光分析装置で測定して、Tiに対する酸素の割合が原子比で1.25〜1.90、即ち、
組成式:TiOW 、
で表わした場合、
W:原子比で1.25〜1.90、
を満足する酸化チタン層を形成し、
(b−2−2)ついで、上記酸化チタン層(下側層)の上に、上側層として、通常の条件、即ち、反応ガス組成を、体積%で、
TiCl4:0.2〜10%、
N2:4〜60%、
H2:残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:4〜90kPa(30〜675torr)、
とした条件で、0.05〜2μmの平均層厚を有するTiN層を形成すると、
(b−2−3)上記TiN層(上側層)形成時に、上記下側層を構成する酸化チタン層の酸素が拡散してきて前記上側層(TiN層)が、窒酸化チタン層で構成されるようになるが、この場合上記上側層(前記窒酸化チタン層)形成後の上記下側層である酸化チタン層は、厚さ方向中央部をオージェ分光分析装置で測定して、酸素の割合がTiに対する原子比で1.2〜1.7、すなわち、
組成式:TiOX 、
で表わした場合、
X:原子比で1.2〜1.7、
を満足する酸化チタン層となり、
(b−2−4)また、上記窒酸化チタン層で構成された上側層は、同じく厚さ方向中央部をオージェ分光分析装置で測定して、拡散酸素の割合が窒素(N)に対する原子比で0.01〜0.4、即ち、
組成式:TiN1-Y(O)Y、
で表わした場合(ただし、(O)は上記下側研磨材層からの拡散酸素を示す)、
Y:原子比で0.01〜0.4、
を満足する窒酸化チタン層となること。
(B-2) On the other hand, as illustrated in the schematic perspective view of FIG. 13, on the entire rake face and flank face including the cutting edge ridge line portion of the composite oxide layer constituting the upper layer of the hard coating layer,
(B-2-1) First, as a lower layer, the reaction gas composition is in volume%,
TiCl 4 : 0.2 to 10%,
CO 2 : 0.1 to 10%,
Ar: 5 to 60%,
H 2 : Remaining
And
Reaction atmosphere temperature: 800-1100 ° C.
Reaction atmosphere pressure: 4 to 70 kPa (30 to 525 torr),
And having an average layer thickness of 0.1 to 3 μm and a ratio of oxygen to Ti of 1.25 to 1.90 as measured by an Auger spectrometer,
Composition formula: TiO W ,
In the case of
W: 1.25 to 1.90 in atomic ratio,
Forming a titanium oxide layer that satisfies
(B-2-2) Next, on the titanium oxide layer (lower layer), as an upper layer, the normal conditions, that is, the reaction gas composition in volume%,
TiCl 4 : 0.2 to 10%,
N 2 : 4-60%,
H 2 : Remaining
And
Reaction atmosphere temperature: 800-1100 ° C.
Reaction atmosphere pressure: 4 to 90 kPa (30 to 675 torr),
When a TiN layer having an average layer thickness of 0.05 to 2 μm is formed under the conditions described above,
(B-2-3) At the time of forming the TiN layer (upper layer), oxygen in the titanium oxide layer constituting the lower layer diffuses and the upper layer (TiN layer) is constituted by a titanium oxynitride layer. However, in this case, the titanium oxide layer, which is the lower layer after the formation of the upper layer (the titanium oxynitride layer), has a ratio of oxygen measured by an Auger spectrometer at the center in the thickness direction. 1.2 to 1.7 atomic ratio to Ti,
Composition formula: TiO x ,
In the case of
X: 1.2 to 1.7 in atomic ratio,
Titanium oxide layer that satisfies
(B-2-4) In addition, the upper layer composed of the titanium oxynitride layer was also measured at the center in the thickness direction with an Auger spectroscopic analyzer, and the ratio of diffused oxygen was the atomic ratio with respect to nitrogen (N). 0.01-0.4, i.e.
Composition formula: TiN 1-Y (O) Y ,
(Where (O) represents diffused oxygen from the lower abrasive layer),
Y: 0.01 to 0.4 in atomic ratio
Titanium nitride oxide layer that satisfies
(b−3)上記窒酸化チタン層(上側層)および酸化チタン層(下側層)を蒸着形成した状態で、
上記(b−1)におけると同じくウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl2O3微粒を配合した研磨液を噴射すると、前記窒酸化チタン層および酸化チタン層は、前記Al2O3微粒によって粉砕微粒化し、窒酸化チタン微粒および酸化チタン微粒となって前記Al2O3微粒の共存下で研磨材として作用し、図14に概略斜視図で例示される通り、硬質被覆層の上部層を構成する複合酸化物層の表面を研磨することになり、この結果研磨後の前記複合酸化物層の表面は、Ra:0.2μm以下の表面粗さにまで平滑化されるようになり、前記複合酸化物層の表面がRa:0.2μm以下の表面粗さに平滑化されると、硬質被覆層の耐チッピング性に顕著な向上効果が現れるようになること。
(B-3) With the titanium nitride oxide layer (upper layer) and the titanium oxide layer (lower layer) deposited and formed,
When a polishing liquid containing 15 to 60% by mass of Al 2 O 3 fine particles as a spraying abrasive in a ratio to the total amount of water is sprayed by wet blasting as in (b-1) above, the nitrogen The titanium oxide layer and the titanium oxide layer were pulverized and atomized by the Al 2 O 3 fine particles, and became titanium nitride oxide fine particles and titanium oxide fine particles, which acted as an abrasive in the presence of the Al 2 O 3 fine particles. As illustrated in the schematic perspective view, the surface of the composite oxide layer constituting the upper layer of the hard coating layer is polished. As a result, the surface of the composite oxide layer after polishing has a surface roughness Ra: 0.2 μm. When the surface of the composite oxide layer is smoothed to a surface roughness of Ra: 0.2 μm or less, the chipping resistance of the hard coating layer is remarkable. The improvement effect comes to appear .
(c−1)一方、上記の硬質被覆層は、化学蒸着装置で、約1000℃前後の反応温度でチップ基体表面に蒸着され、常温に冷却されることにより形成されるが、常温への冷却過程で、前記チップ基体の熱膨張係数に比して前記硬質被覆層の熱膨張係数の方が相対的に大きいので、前記硬質被覆層には引張の応力が残留するようになり、この硬質被覆層中の残留引張応力は高速切削加工ではチッピング発生を促進するように作用すること。 (C-1) On the other hand, the hard coating layer is formed by being deposited on the surface of the chip substrate at a reaction temperature of about 1000 ° C. and cooled to room temperature by a chemical vapor deposition apparatus. In the process, since the thermal expansion coefficient of the hard coating layer is relatively larger than the thermal expansion coefficient of the chip substrate, tensile stress remains in the hard coating layer. Residual tensile stress in the layer acts to promote chipping in high-speed cutting.
(c−2)これに対して、単一基本形状マーク、例えば円形や三角形および四角形、さらにこれらの類似形などの単一基本形状マークを、上記の被覆切削チップのすくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、レーザービームを用いて、例えば図6〜12に前記単一基本形状マークを円形とした場合の実施例が概略斜視図で示される通り、前記単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布し(この場合、図6〜8に例示のものは硬質被覆層の層厚が相対的に薄く、図9,10および図11,12に例示されるに従って層厚が厚くなる場合の分布態様を示す)、かつ前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした条件(この場合の前記単一基本形状マークの露出面の掘下げ深さは前記硬質被覆層の層厚に対応して個々に調整されるが、残留応力の効率的低減を図るには層厚の5〜20%に相当する深さが目安とされる)でレーザービーム照射模様を形成すると、前記硬質被覆層の残留応力が著しく低減するようになり、この硬質被覆層残留応力低減模様の形成によって、特に難削材の高速切削加工に際しての硬質被覆層のチッピング発生が著しく抑制されるようになること。 (C-2) On the other hand, a single basic shape mark, for example, a single basic shape mark such as a circle, a triangle and a quadrangle, or a similar shape thereof, is used for either the rake face or the flank face of the coated cutting tip. As shown in a schematic perspective view of an embodiment in which the single basic shape mark is circular, for example, as shown in FIGS. Either or both of the shape mark and the collective mark of the single basic shape mark are distributed (in this case, the examples shown in FIGS. 6 to 8 have a relatively thin hard coating layer, 10 and FIGS. 11 and 12 show the distribution mode when the layer thickness increases, and the single basic shape mark is exposed to any one of the constituent layers of the hard coating layer. With the digging surface (The depth of the exposed surface of the single basic shape mark in this case is individually adjusted in accordance with the layer thickness of the hard coating layer. When a laser beam irradiation pattern is formed at a depth corresponding to 5 to 20% of the above), the residual stress of the hard coating layer is remarkably reduced, and this hard coating layer residual stress reduction pattern is formed. In particular, the occurrence of chipping of the hard coating layer during high-speed cutting of difficult-to-cut materials is significantly suppressed.
(d)上記の硬質被覆層の上部層を構成する改質複合酸化物層は、複合酸化物層自体が具備する高温硬さおよび耐熱性に加えて、上記従来複合酸化物層に比して一段と高い高温強度を有するものであり、かつ硬質被覆層の上部層である複合酸化物層の表面をRa:0.2μm以下の表面粗さに平滑化すると共に、硬質被覆層残留応力低減模様の形成によって、硬質被覆層の耐チッピング性が著しく向上するようになることから、かかる構成の硬質被覆層を蒸着形成してなる被覆切削チップは、難削材の切削加工を、高熱発生によって粘着抵抗の一段と高いものとなる高速条件で行なっても、硬質被覆層にチッピングの発生なく、長期に亘ってすぐれた切削性能を発揮するようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(D) The modified composite oxide layer constituting the upper layer of the hard coating layer has a high temperature hardness and heat resistance that the composite oxide layer itself has, in addition to the conventional composite oxide layer. The surface of the composite oxide layer, which has a higher high-temperature strength and is the upper layer of the hard coating layer, is smoothed to a surface roughness of Ra: 0.2 μm or less, and the residual stress reduction pattern of the hard coating layer is formed. Since the chipping resistance of the hard coating layer is remarkably improved by the formation, the coated cutting tip formed by vapor-depositing the hard coating layer having such a structure is capable of cutting difficult-to-cut materials by generating high heat. Even under high-speed conditions that are even higher, chipping will not occur in the hard coating layer, and excellent cutting performance will be demonstrated over a long period of time.
The research results shown in (a) to (d) above were obtained.
この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成されたチップ基体の切刃稜線部を含むすくい面および逃げ面の全面に、
(1)下部層として、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(2)上部層として、1〜15μmの平均層厚を有し、かつ、
組成式:(Al1−ZCrZ)2O3、(ただし、原子比で、Z:0.01〜0.1)、
を満足する複合酸化物層、
以上(1)および(2)で構成された硬質被覆層を蒸着形成してなる被覆切削チップにおいて、
(a)上記上部層の複合酸化物層を、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAl、Cr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質複合酸化物層、
で構成し、
(b)上記硬質被覆層の上部層である改質複合酸化物層の全面に、
(b−1)下側層として、0.1〜3μmの平均層厚を有し、かつ、
組成式:TiOX 、
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、
X:原子比で1.2〜1.7、
を満足する酸化チタン層、
(b−2)上側層として、0.05〜2μmの平均層厚を有し、かつ、
組成式:TiN1-Y(O)Y、
で表わした場合(ただし、(O)は上記Ti酸化物層からの拡散酸素を示す)、同じく厚さ方向中央部をオージェ分光分析装置で測定して、
Y:原子比で0.01〜0.4、
を満足する窒酸化チタン層、
以上(b−1)および(b−2)で構成された研磨材層を蒸着形成した状態で、
(b−3)ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl2O3微粒を配合した研磨液を噴射し、
上記の下側層の粉砕化酸化チタン微粒、上側層の粉砕化窒酸化チタン微粒、および噴射研磨材としてのAl2O3微粒の共存下で、上記硬質被覆層の上部層を構成する改質複合酸化物層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分を研磨して、これら研磨面の表面粗さをRa:0.2μm以下とし、
(c)さらに、上記研磨面のすくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布してなると共に、前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした硬質被覆層残留応力低減模様をレーザービーム照射形成してなる、
難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆切削チップに特徴を有するものである。
The present invention has been made based on the above research results, and the entire rake face and flank face including the cutting edge ridge line portion of the chip base composed of the WC-based cemented carbide or TiCN-based cermet,
(1) A Ti compound layer consisting of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer as a lower layer, and having an overall average layer thickness of 3 to 20 μm,
(2) The upper layer has an average layer thickness of 1 to 15 μm, and
Composition formula: (Al 1-Z Cr Z ) 2 O 3, ( provided that an atomic ratio, Z: 0.01 to 0.1),
Complex oxide layer,
In the coated cutting tip formed by vapor-depositing the hard coating layer composed of (1) and (2) above,
(A) The upper complex oxide layer is irradiated with an electron beam on each crystal grain having a hexagonal crystal lattice existing in the measurement range of the surface polished surface using a field emission scanning electron microscope, The inclination angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are crystal planes of the crystal grains, is measured with respect to the normal line of the surface-polished surface. Corundum type hexagonal close-packed crystal structure in which constituent atoms composed of Al, Cr, and oxygen are present, respectively, and based on the measured tilt angle obtained as a result, at the interface between adjacent crystal grains, A distribution of lattice points (constituent atom shared lattice points) in which each constituent atom shares one constituent atom among the crystal grains is calculated, and there are N lattice points that do not share constituent atoms between the constituent atom shared lattice points. (Where N is a corundum hexagonal close-packed crystal) Although it is an even number of 2 or more in terms of the crystal structure, there is no even number of 4, 8, 14, 24, and 26 when the upper limit of N is 28 from the point of distribution frequency) Is represented by ΣN + 1, in the constituent atomic shared lattice distribution graph showing the distribution ratio of each ΣN + 1 in the
Consisting of
(B) on the entire surface of the modified composite oxide layer, which is the upper layer of the hard coating layer,
(B-1) The lower layer has an average layer thickness of 0.1 to 3 μm, and
Composition formula: TiO x ,
, Measure the central part in the thickness direction with an Auger spectrometer,
X: 1.2 to 1.7 in atomic ratio,
Satisfying titanium oxide layer,
(B-2) The upper layer has an average layer thickness of 0.05 to 2 μm, and
Composition formula: TiN 1-Y (O) Y ,
(However, (O) indicates the diffused oxygen from the Ti oxide layer), the central portion in the thickness direction is also measured with an Auger spectrometer,
Y: 0.01 to 0.4 in atomic ratio
Satisfying titanium oxynitride layer,
In a state where the abrasive layer constituted by (b-1) and (b-2) is formed by vapor deposition,
(B-3) In wet blasting, a polishing liquid containing 15 to 60% by mass of Al 2 O 3 fine particles as a spraying abrasive in a proportion of the total amount with water is sprayed.
The modification that constitutes the upper layer of the hard coating layer in the presence of the ground titanium oxide particles in the lower layer, the ground titanium nitride oxide particles in the upper layer, and the Al 2 O 3 particles as the spray abrasive. Polishing the rake face portion and the flank face portion including at least the cutting edge ridge line portion of the composite oxide layer, the surface roughness of these polished surfaces is Ra: 0.2 μm or less,
(C) Furthermore, either one or both of the rake face and the flank face of the polished surface, or the single basic shape mark and the collective mark of the single basic shape mark are distributed over the entire surface of both surfaces. A hard coating layer residual stress reduction pattern is formed by irradiating a laser beam with the single basic shape mark as a dug surface where any one of the constituent layers of the hard coating layer is exposed. ,
It is characterized by a coated cutting tip that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials.
以下に、この発明の被覆切削チップの硬質被覆層および研磨材層、さらにウエットブラストで用いられる研磨液のAl2O3微粒に関して、上記の通りに数値限定した理由を説明する。
(a)硬質被覆層
(a−1)下部層のTi化合物層
Ti化合物層は、自体が高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、チップ基体と上部層である改質複合酸化物層のいずれにも強固に密着し、よって硬質被覆層のチップ基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう高速切削加工では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
The reason why the hard coating layer and the abrasive layer of the coated cutting chip of the present invention and the Al 2 O 3 fine particles of the polishing liquid used in wet blasting are limited numerically as described above will be described below.
(A) Hard coating layer (a-1) Ti compound layer of lower layer The Ti compound layer itself has high temperature strength, and the presence of the Ti compound layer makes the hard coating layer have high temperature strength. And the modified composite oxide layer that is the upper layer firmly adhere to each other, and thus has an effect of improving the adhesion of the hard coating layer to the chip substrate, but when the total average layer thickness is less than 3 μm, If the total average layer thickness exceeds 20 μm, the high-speed cutting with high heat generation is likely to cause thermoplastic deformation, which causes uneven wear. Therefore, the total average layer thickness was determined to be 3 to 20 μm.
(a−2)上部層の改質複合酸化物層
上記の改質複合酸化物層において、これの構成成分であるAlは層の高温硬さおよび耐熱性を向上させ、同Cr成分にはAl成分との共存において、さらに一段と耐熱性を向上させる作用を有するが、Crの含有割合を示すZ値が原子比で0.01未満では前記作用に所望の向上効果を確保することができず、一方同Z値が0.1を越えると高温強度に低下傾向が現れるようになることから、前記Z値を0.01〜0.1と定めた。
また、上記の改質複合酸化物層の構成原子共有格子点分布グラフにおけるΣ3の分布割合は、上記の通り反応ガスを構成するAlCl3、CO2、およびHClの含有割合、さらに雰囲気反応圧力を調整することによって60%以上とすることができるが、この場合Σ3の分布割合が60%未満では、難削材の高速切削加工で、硬質被覆層にチッピングが発生しない、すぐれた高温強度向上効果を確保することができないことから、Σ3の分布割合を60%以上と定めた。このように前記改質複合酸化物層は、上記の通り複合酸化物層自体のもつすぐれた高温硬さと耐熱性に加えて、さらに一段とすぐれた高温強度を有するようになるが、その平均層厚が1μm未満では前記改質複合酸化物層の有する前記の特性を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(A-2) Modified composite oxide layer of the upper layer In the modified composite oxide layer, Al as a constituent component thereof improves the high temperature hardness and heat resistance of the layer, and the Cr component contains Al. In the coexistence with the component, it has the effect of further improving the heat resistance, but if the Z value indicating the Cr content ratio is less than 0.01 by atomic ratio, the desired improvement effect cannot be ensured for the above action, On the other hand, when the Z value exceeds 0.1, the high temperature strength tends to decrease, so the Z value is set to 0.01 to 0.1.
In addition, the distribution ratio of Σ3 in the constituent atomic shared lattice distribution graph of the modified composite oxide layer is as follows: the content ratio of AlCl 3 , CO 2 and HCl constituting the reaction gas, and the atmospheric reaction pressure. It can be adjusted to 60% or more by adjusting, but in this case, if the distribution ratio of Σ3 is less than 60%, excellent high-temperature strength improvement effect that high-speed cutting of difficult-to-cut materials does not cause chipping in the hard coating layer. Therefore, the distribution ratio of Σ3 was determined to be 60% or more. As described above, the modified composite oxide layer has a further excellent high-temperature strength in addition to the excellent high-temperature hardness and heat resistance of the composite oxide layer itself as described above. Is less than 1 μm, the above properties of the modified composite oxide layer cannot be sufficiently provided in the hard coating layer. On the other hand, if the average layer thickness exceeds 15 μm, chipping is likely to occur. The average layer thickness was set to 1 to 15 μm.
(b)研磨材層
上側層を構成する窒酸化チタン層は、上記の通り、まず、酸素の割合をTiに対する原子比で1.25〜1.90(W値)とした酸化チタン層を形成し、ついで、前記酸化チタン層の上に通常の条件でTiN層を蒸着することにより形成されるものであり、したがって前記TiN層形成時における前記酸化チタン層からの酸素の拡散が不可欠となるが、前記酸化チタン層のW値が1.25未満であると、前記TiN層への酸素の拡散反応が急激に低下し、上側層における拡散酸素の割合(Y値)を原子比で0.01以上にすることができず、一方同W値が1.複合酸化物層90を越えると、前記上側層における拡散酸素の割合(Y値)が原子比で0.40を越えて多くなってしまうことから、W値を1.25〜1.90と定めたものであり、この場合上側層形成後の下側層(酸化チタン層)における酸素の割合(X値)は原子比で1.2〜1.7の範囲内の値をとるようになる、言い換えれば上側層形成後の下側層のX値が1.2〜1.7を満足する場合に、前記上側層のY値は0.01〜0.40を満足するものとなる。
また、この場合、下側層のX値および上側層のY値をそれぞれ1.2〜1.7および0.01〜0.40と定めたのは、前記X値およびY値が前記の値をとった場合に、これら研磨材層のウエットブラスト時における粉砕微粒化が好適な状態で行なわれ、すぐれた研磨機能を十分に発揮することが多くの試験結果から得られ、これらの試験結果に基いて定めたものである。したがって、前記X値およびY値がそれぞれ1.2〜1.7および0.01〜0.40の範囲から外れると、前記研磨材層のウエットブラスト時における粉砕微粒化が満足に行なわれず、すぐれた研磨機能を期待することができない。
さらに、上側層および下側層の平均層厚を、それぞれ0.05〜2μmおよび0.1〜3μmとしたのは、その平均層厚が0.05μm未満および0.1μm未満では、ウエットブラスト時における下側層の粉砕化酸化チタン微粒、上側層の粉砕化窒酸化チタン微粒の割合が少な過ぎて、研磨機能を十分に発揮することができず、一方、その平均層厚がそれぞれ2μmおよび3μmを越えても、研磨機能が急激に低下するようになり、いずれの場合も複合酸化物層の表面をRa:0.2μm以下の表面粗さに研磨することができなくなるという理由にもとづくものである。
(B) Abrasive material layer As described above, the titanium oxynitride layer constituting the upper layer first forms a titanium oxide layer in which the oxygen ratio is 1.25 to 1.90 (W value) in terms of atomic ratio to Ti. Then, it is formed by depositing a TiN layer on the titanium oxide layer under normal conditions. Therefore, diffusion of oxygen from the titanium oxide layer during the formation of the TiN layer is indispensable. When the W value of the titanium oxide layer is less than 1.25, the diffusion reaction of oxygen into the TiN layer is drastically reduced, and the ratio of diffused oxygen (Y value) in the upper layer is 0.01 by atomic ratio. While the same W value is 1. If the composite oxide layer 90 is exceeded, the proportion of diffused oxygen (Y value) in the upper layer will increase beyond 0.40 in atomic ratio, so the W value is determined to be 1.25 to 1.90. In this case, the oxygen ratio (X value) in the lower layer (titanium oxide layer) after the upper layer formation takes an atomic ratio in the range of 1.2 to 1.7. In other words, when the X value of the lower layer after forming the upper layer satisfies 1.2 to 1.7, the Y value of the upper layer satisfies 0.01 to 0.40.
In this case, the X value of the lower layer and the Y value of the upper layer are set to 1.2 to 1.7 and 0.01 to 0.40, respectively. It is obtained from many test results that these abrasive layers are pulverized and atomized in a suitable state at the time of wet blasting, and exhibit an excellent polishing function sufficiently. Based on this. Therefore, if the X value and Y value are out of the range of 1.2 to 1.7 and 0.01 to 0.40, respectively, the pulverization and atomization at the time of wet blasting of the abrasive layer is not satisfactorily performed, which is excellent. The polishing function cannot be expected.
Further, the average layer thicknesses of the upper layer and the lower layer were set to 0.05 to 2 μm and 0.1 to 3 μm, respectively, when the average layer thickness was less than 0.05 μm and less than 0.1 μm. The ratio of the pulverized titanium oxide fine particles in the lower layer and the fine pulverized titanium oxynitride fine particles in the upper layer is too small to perform the polishing function sufficiently, while the average layer thickness is 2 μm and 3 μm, respectively. Even if it exceeds the range, the polishing function will rapidly decrease, and in any case, the surface of the composite oxide layer cannot be polished to a surface roughness of Ra: 0.2 μm or less. is there.
(c)研磨液のAl2O3微粒の割合
研磨液のAl2O3微粒には、ウエットブラスト時に研磨材層を構成する下側層の粉砕化酸化チタン微粒および上側層の粉砕化窒酸化チタン微粒と共存した状態で、改質複合酸化物層の表面を研磨する作用があるが、その割合が水との合量に占める割合で15質量%未満でも、また60質量%を越えても研磨機能が急激に低下するようになることから、その割合を15〜60質量%と定めた。
(C) The Al 2 O 3 fine of Al 2 O 3 fine fraction polishing liquid of the polishing liquid, pulverization oxynitride of pulverized titanium oxide fine and the upper layer of the lower layer of the abrasive layer during wet blasting Although it acts to polish the surface of the modified composite oxide layer in the state of coexisting with the titanium fine particles, even if the ratio is less than 15% by mass or more than 60% by mass in the total amount with water Since the polishing function is abruptly lowered, the ratio was determined to be 15 to 60% by mass.
この発明の被覆切削チップは、硬質被覆層の上部層を構成する改質複合酸化物層が、複合酸化物層自体が具備する高温硬さおよび耐熱性に加えて、従来複合酸化物層に比して一段と高い高温強度を有するものであり、さらに硬質被覆層の上部層である改質複合酸化物層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分が、Ra:0.2μm以下の表面粗さに研磨されると共に、前記研磨面のすくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、レーザービーム照射形成された硬質被覆層残留応力低減模様によって、硬質被覆層の耐チッピング性が著しく向上し、特にステンレス鋼や高マンガン鋼、さらに軟鋼などの相対的に粘性が高く、かつ軟質の難削材の切削加工を高速条件で行うのに用いた場合にも、硬質被覆層にチッピングが発生することなく、長期に亘ってすぐれた切削性能を発揮し、使用寿命の一層の延命化を可能とするものである。 In the coated cutting tip of the present invention, the modified composite oxide layer constituting the upper layer of the hard coating layer is different from the conventional composite oxide layer in addition to the high temperature hardness and heat resistance of the composite oxide layer itself. Further, the rake face portion and the flank face portion including at least the cutting edge ridge portion of the modified composite oxide layer, which is the upper layer of the hard coating layer, have a higher high-temperature strength. Ra: 0.2 μm or less The hard coating layer is formed with a residual stress reduction pattern formed by laser beam irradiation over one of the rake face and flank surface of the polished surface, or the entire surface of both surfaces. The chipping resistance of the steel is significantly improved, especially when stainless steel, high manganese steel, and mild steel, etc. are relatively viscous and used to cut soft difficult-to-cut materials under high-speed conditions. Hard Without chipping the covering layer, it exhibits superior cutting performance over a long period of time, and makes it possible to further extend the life of the service life.
つぎに、この発明の被覆切削チップを実施例により具体的に説明する。 Next, the coated cutting tip of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・SNMG150412に規定するスローアウエイチップ形状をもったWC基超硬合金製のチップ基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, chip bases A to F made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · SNMG150412 were produced.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・SNMG150412のチップ形状をもったTiCN基サーメット製のチップ基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Chip bases a to f made of TiCN base cermet having standard / SNMG150412 chip shapes were formed.
ついで、これらのチップ基体A〜Fおよびチップ基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、
(a)まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表6に示される組み合わせおよび目標層厚でTi化合物層を硬質被覆層の下部層として蒸着形成し、ついで、同じく表3に示される条件で改質複合酸化物層(A)〜(F)のうちのいずれかを同じく表6に示される組み合わせおよび目標層厚で硬質被覆層の上部層として蒸着形成し、
(b)ついで、上記硬質被覆層の上部層を構成する改質複合酸化物層の全面に、研磨材層の下側層形成用酸化チタン層[TiOW(1)〜(6)のいずれか]を表4に示される条件で形成した後、上側層形成用窒化チタン層(TiN層)を同じく表4に示される条件で、表7に示される目標層厚で蒸着形成して、同じく表7に示される組成、すなわち厚さ方向中央部をオージェ分光分析装置で測定して、それぞれ表7に示されるX値およびY値の下側層および上側層からなる研磨材層を形成し(図13参照)、
(c)引き続いて、上記の下側層および上側層からなる研磨材層形成の被覆切削チップに、表5に示されるブラスト条件で、かつ表7に示される組み合わせでウエットブラストを施して、工具取り付け孔周辺部に研磨材層を存在させた状態で、前記改質複合酸化物層の切刃稜線部を含むすくい面部分および逃げ面部分を、同じく表7に示される表面粗さに研磨し(図14参照)、
(d)さらに、レーザービーム照射装置を用い、上記表面研磨の硬質被覆層に、
レーザービーム出力:10W、
単一基本形状マークの形状:直径が0.8mmの円形、
硬質被覆層残留応力低減模様:図6〜12に示される実施模様のうちのいずれかを表7に示される組み合わせで適用、
単一基本形状マークの露出面の掘下げ深さ:表7に硬質被覆層の全目標層厚に対する割合で示される深さ、
の条件で硬質被覆層残留応力低減模様を形成することにより本発明被覆切削チップ1〜13をそれぞれ製造した。
Next, each of these chip bases A to F and chip bases a to f is charged into a normal chemical vapor deposition apparatus,
(A) First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically elongated crystal structure described in JP-A-6-8010, and the other conditions are ordinary granularity. The Ti compound layer is deposited as a lower layer of the hard coating layer with the combinations shown in Table 6 and the target layer thickness under the conditions shown in Table 3 below. Under the conditions shown, any one of the modified composite oxide layers (A) to (F) is vapor-deposited as the upper layer of the hard coating layer with the combinations and target layer thicknesses also shown in Table 6.
(B) Next, a titanium oxide layer for forming the lower layer of the abrasive layer [TiO W (1) to (6) is formed on the entire surface of the modified composite oxide layer constituting the upper layer of the hard coating layer. ] Is formed under the conditions shown in Table 4, and an upper layer forming titanium nitride layer (TiN layer) is formed by vapor deposition with the target layer thickness shown in Table 7 under the same conditions shown in Table 4. 7 is measured with an Auger spectroscopic analyzer, and an abrasive layer composed of a lower layer and an upper layer of X value and Y value shown in Table 7 is formed (FIG. 7). 13),
(C) Subsequently, the coated cutting tip for forming the abrasive layer composed of the lower layer and the upper layer is subjected to wet blasting under the blasting conditions shown in Table 5 and in the combinations shown in Table 7, The rake face portion and the flank face portion including the cutting edge ridge line portion of the modified composite oxide layer were polished to the surface roughness shown in Table 7 in the state where the abrasive layer was present around the attachment hole. (See FIG. 14),
(D) Furthermore, using a laser beam irradiation device, the hard coating layer for surface polishing,
Laser beam output: 10W
The shape of a single basic shape mark: a circle with a diameter of 0.8 mm,
Hard coating layer residual stress reduction pattern: any one of the implementation patterns shown in FIGS.
Depth of digging on the exposed surface of a single basic shape mark: the depth shown in Table 7 as a percentage of the total target layer thickness of the hard coating layer,
The
(a)また、比較の目的で、表8に示される通り、本発明被覆切削チップ1〜13のそれぞれの下部層と同じ条件で、Ti化合物層を蒸着形成し、さらに上部層としての従来複合酸化物層を、表3に示される条件で、かつ同じく表8に示される目標層厚で蒸着形成し(図15参照)、
(b)引き続いて、上記研磨材層の形成を行なうことなく、表5に示されるブラスト条件で、かつ表8に示される組み合わせでウエットブラストを施して、前記従来複合酸化物層の切刃稜線部を含むすくい面および逃げ面を、同じく表8に示される表面粗さに研磨し、一方硬質被覆層残留応力低減模様の形成を行なわずに従来被覆切削チップ1〜13をそれぞれ製造した。
(A) For comparison purposes, as shown in Table 8, a Ti compound layer is formed by vapor deposition under the same conditions as the lower layers of the
(B) Subsequently, wet blasting is performed in the combination shown in Table 8 under the blasting conditions shown in Table 5 without forming the abrasive layer, and the cutting edge ridge line of the conventional composite oxide layer The rake face and the flank face including the part were polished to the surface roughness shown in Table 8 on the other hand, while the conventional
ついで、上記の本発明被覆切削チップ1〜13および従来被覆切削チップ1〜13の硬質被覆層の上部層を構成する改質複合酸化物層および従来複合酸化物層のそれぞれについて、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフをそれぞれ作成した。
すなわち、上記構成原子共有格子点分布グラフは、上記の改質複合酸化物層および従来複合酸化物層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を求めることにより作成した。
Next, field emission scanning is performed on each of the modified composite oxide layer and the conventional composite oxide layer constituting the upper layer of the hard coating layer of the present invention coated cutting
That is, the constituent atomic shared lattice point distribution graph is set in a column of a field emission scanning electron microscope in a state where the surface of the modified composite oxide layer and the conventional composite oxide layer is a polished surface, An electron backscatter diffraction image apparatus is formed by irradiating the polishing surface with an electron beam having an acceleration voltage of 15 kV at an incident angle of 70 degrees with an irradiation current of 1 nA on each crystal grain existing within the measurement range of the surface polishing surface. The 30 × 50 μm region is used at a spacing of 0.1 μm / step, and the normal lines of the (0001) plane and (10-10) plane, which are crystal planes of the crystal grains, with respect to the normal line of the surface polished surface A lattice in which each of the constituent atoms shares one constituent atom between the crystal grains at an interface between adjacent crystal grains based on the measured tilt angle obtained by measuring Calculate the distribution of points (constituent atom shared lattice points) The number of lattice points that do not share the constituent atoms between the constituent atomic shared lattice points is N (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal. (When the upper limit is 28, there is no even number of 4, 8, 14, 24, and 26) When the existing configuration atom shared lattice point form is represented by ΣN + 1, the distribution ratio of each ΣN + 1 to the entire ΣN + 1 Created by asking.
この結果得られた各種の改質複合酸化物層および従来複合酸化物層の構成原子共有格子点分布グラフにおいて、ΣN+1全体(上記の結果からΣ3、Σ7、Σ11、Σ13、Σ17、Σ19、Σ21、Σ23、およびΣ29のそれぞれの分布割合の合計)に占めるΣ3の分布割合をそれぞれ表6,8にそれぞれ示した。 In the constituent atomic share lattice point distribution graphs of the various modified composite oxide layers and the conventional composite oxide layers obtained as a result, the entire ΣN + 1 (from the above results, Σ3, Σ7, Σ11, Σ13, Σ17, Σ19, Σ21, Tables 6 and 8 show the distribution ratio of Σ3 in the total distribution ratio of Σ23 and Σ29, respectively.
上記の各種の構成原子共有格子点分布グラフにおいて、表6,8にそれぞれ示される通り、本発明被覆切削チップの改質複合酸化物層は、いずれもΣ3の占める分布割合が60%以上である構成原子共有格子点分布グラフを示すのに対して、従来被覆切削チップの従来複合酸化物層は、いずれもΣ3の分布割合が30%以下の構成原子共有格子点分布グラフを示すものであった。
なお、図4は、本発明被覆切削チップ9の改質複合酸化物層の構成原子共有格子点分布グラフ、図5は、従来被覆切削チップ8の従来複合酸化物層の構成原子共有格子点分布グラフをそれぞれ示すものである。
In each of the above-mentioned various constituent atomic share lattice point distribution graphs, as shown in Tables 6 and 8, each of the modified composite oxide layers of the coated cutting tip of the present invention has a distribution ratio of Σ3 of 60% or more. In contrast to the constituent atom shared lattice point distribution graph, the conventional composite oxide layer of the conventional coated cutting tip shows a constituent atom shared lattice point distribution graph in which the distribution ratio of Σ3 is 30% or less. .
4 is a graph of constituent atomic shared lattice point distribution of the modified composite oxide layer of the coated cutting tip 9 of the present invention, and FIG. 5 is a constituent atomic shared lattice distribution of the conventional composite oxide layer of the conventional coated cutting tip 8. Each graph is shown.
また、この結果得られた本発明被覆切削チップ1〜13および従来被覆切削チップ1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
Moreover, when the thickness of the constituent layer of the hard coating layer of the present invention coated cutting
つぎに、上記の本発明被覆切削チップ1〜13および従来被覆切削チップ1〜13各種の被覆切削チップについて、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SS330の丸棒、
切削速度:440m/min、
切り込み:3.8mm、
送り:0.3mm/rev、
の条件(切削条件Aという)での軟鋼の乾式高速連続切削試験(通常の切削速度は280m/min)、
被削材:JIS・SUS430の長さ方向等間隔4本縦溝入り丸棒、
切削速度:330m/min、
切り込み:2.5mm、
送り:0.2mm/rev、
の条件(切削条件Bという)でのステンレス鋼の乾式高速断続切削試験(通常の切削速度は200m/min)、さらに、
被削材:JIS・SMn443の長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min、
切り込み:3mm、
送り:0.25mm/rev、
の条件(切削条件Cという)での高マンガン鋼の乾式高速断続切削試験(通常の切削速度は180m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅が、一般に切削工具の使用寿命の目安とされている0.3mmに至るまでの切削時間を測定した。この測定結果を表9に示した。
Next, for the above-described
Work material: JIS / SS330 round bar,
Cutting speed: 440 m / min,
Incision: 3.8 mm,
Feed: 0.3mm / rev,
Dry high-speed continuous cutting test (normal cutting speed is 280 m / min) of mild steel under the following conditions (referred to as cutting condition A),
Work material: JIS / SUS430 lengthwise equal 4 round bars with flutes,
Cutting speed: 330 m / min,
Incision: 2.5mm,
Feed: 0.2mm / rev,
In a dry high-speed intermittent cutting test (normal cutting speed is 200 m / min) of stainless steel under the following conditions (referred to as cutting condition B),
Work material: JIS-SMn443 round bar with four equal grooves in the longitudinal direction,
Cutting speed: 300 m / min,
Incision: 3mm,
Feed: 0.25mm / rev,
The dry high-speed intermittent cutting test (normal cutting speed is 180 m / min) of high-manganese steel under the above conditions (referred to as cutting condition C). The cutting time until reaching 0.3 mm, which is regarded as a standard for the service life, was measured. The measurement results are shown in Table 9.
表6〜9に示される結果から、本発明被覆切削チップ1〜13は、いずれも硬質被覆層の上部層が、Σ3の分布割合が60%以上の構成原子共有格子点分布グラフを示す改質複合酸化物層で構成され、前記改質複合酸化物層は自身の具備するすぐれた高温硬さおよび耐熱性に加えて、一段とすぐれた高温強度を有し、さらに前記改質複合酸化物層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分が、Ra:0.2μm以下の表面粗さに研磨されると共に、前記研磨面全体に亘ってレーザービーム照射形成された硬質被覆層残留応力低減模様によって、前記硬質被覆層における残留引張応力が著しく低減されることと相俟って、ステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工を、高熱発生によって粘着抵抗が一段と増大するようになる高速条件で行なっても、硬質被覆層にチッピングの発生なく、長期に亘ってすぐれた切削性能を発揮するのに対して、硬質被覆層の上部層が、Σ3の分布割合が30%以下の構成原子共有格子点分布グラフを示す従来複合酸化物層で構成され、前記従来複合酸化物層の表面粗さが、Ra:0.3〜0.6μmを示し、かつ、硬質被覆層残留応力低減模様の形成がない従来被覆切削チップ1〜13においては、いずれも上記の難削材の高速切削加工では、前記硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 6 to 9, the
上述のように、この発明の被覆切削チップは、各種の低合金鋼や炭素鋼などの一般鋼、さらにねずみ鋳鉄などの普通鋳鉄などの高速切削加工は勿論のこと、特に難削材の高速切削加工に用いた場合にも、すぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cutting tip according to the present invention can be used not only for high-speed cutting such as various low alloy steels and carbon steel, but also for cast iron such as gray cast iron, especially for high-speed cutting of difficult-to-cut materials. Even when used for machining, it exhibits excellent chipping resistance and exhibits excellent cutting performance over a long period of time. It can cope with cost reduction sufficiently.
Claims (1)
(1)下部層として、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(2)上部層として、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有し、さらに、
組成式:(Al1−ZCrZ)2O3、(ただし、原子比で、Z:0.01〜0.1)、
を満足するAlとCrの複合酸化物層、
以上(1)および(2)で構成された硬質被覆層を蒸着形成してなる表面被覆サーメット製切削スローアウエイチップにおいて、
(a)上記上部層の複合酸化物層を、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAl、Cr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質複合酸化物層、
で構成し、
(b)上記硬質被覆層の上部層である改質複合酸化物層の全面に、
(b−1)下側層として、0.1〜3μmの平均層厚を有し、かつ、
組成式:TiOX 、
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、原子比で、
X:1.2〜1.7、
を満足する酸化チタン層、
(b−2)上側層として、0.05〜2μmの平均層厚を有し、かつ、
組成式:TiN1-Y(O)Y、
で表わした場合(ただし、(O)は上記酸化チタン層からの拡散酸素を示す)、同じく厚さ方向中央部をオージェ分光分析装置で測定して、同じく原子比で、
Y:0.01〜0.4、
を満足する窒酸化チタン層、
以上(b−1)および(b−2)で構成された研磨材層を蒸着形成した状態で、
(b−3)ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム微粒を配合した研磨液を噴射し、
上記の下側層の粉砕化酸化チタン微粒、上側層の粉砕化窒酸化チタン微粒、および噴射研磨材としての酸化アルミニウム微粒の共存下で、上記硬質被覆層の上部層を構成する改質複合酸化物層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分を研磨して、これら研磨面の表面粗さを準拠規格JIS・B0601−1994に基いた測定で、Ra:0.2μm以下とし、
(c)さらに、上記改質複合酸化物層研磨面のすくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布してなると共に、前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした硬質被覆層残留応力低減模様をレーザービーム照射形成したこと、
を特徴とする難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ。 On the entire rake face and flank face including the cutting edge ridge line portion of the cermet base composed of tungsten carbide base cemented carbide or titanium carbonitride base cermet,
(1) As a lower layer, it consists of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer, and an overall average of 3 to 20 μm A Ti compound layer having a layer thickness,
(2) As an upper layer, it has an average layer thickness of 1 to 15 μm and an α-type crystal structure in the state of chemical vapor deposition,
Composition formula: (Al 1-Z Cr Z ) 2 O 3, ( provided that an atomic ratio, Z: 0.01 to 0.1),
Al and Cr composite oxide layer satisfying
In the cutting throwaway tip made of surface-coated cermet formed by vapor-depositing the hard coating layer composed of (1) and (2) above,
(A) The upper complex oxide layer is irradiated with an electron beam on each crystal grain having a hexagonal crystal lattice existing in the measurement range of the surface polished surface using a field emission scanning electron microscope, The inclination angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are crystal planes of the crystal grains, is measured with respect to the normal line of the surface-polished surface. Corundum type hexagonal close-packed crystal structure in which constituent atoms composed of Al, Cr, and oxygen are present, respectively, and based on the measured tilt angle obtained as a result, at the interface between adjacent crystal grains, A distribution of lattice points (constituent atom shared lattice points) in which each constituent atom shares one constituent atom among the crystal grains is calculated, and there are N lattice points that do not share constituent atoms between the constituent atom shared lattice points. (Where N is a corundum hexagonal close-packed crystal) Although it is an even number of 2 or more in terms of the crystal structure, there is no even number of 4, 8, 14, 24, and 26 when the upper limit of N is 28 from the point of distribution frequency) Is represented by ΣN + 1, in the constituent atomic shared lattice distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1, the highest peak exists in Σ3, and the distribution ratio of the Σ3 in the entire ΣN + 1 is 60% or more A modified composite oxide layer showing a constituent atomic shared lattice distribution graph,
Consisting of
(B) on the entire surface of the modified composite oxide layer, which is the upper layer of the hard coating layer,
(B-1) The lower layer has an average layer thickness of 0.1 to 3 μm, and
Composition formula: TiO x ,
, The central part in the thickness direction is measured with an Auger spectrometer, and the atomic ratio is
X: 1.2 to 1.7,
Satisfying titanium oxide layer,
(B-2) The upper layer has an average layer thickness of 0.05 to 2 μm, and
Composition formula: TiN 1-Y (O) Y ,
(Where (O) indicates diffused oxygen from the titanium oxide layer), the central portion in the thickness direction is also measured with an Auger spectroscopic analyzer, and the atomic ratio is
Y: 0.01 to 0.4
Satisfying titanium oxynitride layer,
In a state where the abrasive layer constituted by (b-1) and (b-2) is formed by vapor deposition,
(B-3) In wet blasting, as a spraying abrasive, a polishing liquid containing 15 to 60% by mass of aluminum oxide fine particles in a proportion of the total amount with water is sprayed,
Modified composite oxidation constituting the upper layer of the hard coating layer in the coexistence of the ground titanium oxide particles in the lower layer, the ground titanium nitride oxide particles in the upper layer, and the aluminum oxide particles as the spray abrasive The rake face part and the flank face part including at least the cutting edge ridge line part of the physical layer are polished, and the surface roughness of these polished surfaces is measured by Ra based on JIS / B0601-1994, Ra: 0.2 μm or less ,
(C) Further, any one of the rake face and the flank face of the polished surface of the modified composite oxide layer, or any of the single basic shape mark and the collective mark of the single basic shape mark over the entire surface of both surfaces. Or a hard covering layer residual stress reduction pattern in which the single basic shape mark is a dug-down surface in which any one of the constituent layers of the hard coating layer is exposed. That beam irradiation was formed,
Surface-coated cermet cutting throwaway tip that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials characterized by
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006072544A JP4761141B2 (en) | 2006-03-16 | 2006-03-16 | Surface-coated cermet cutting throwaway tip that provides excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006072544A JP4761141B2 (en) | 2006-03-16 | 2006-03-16 | Surface-coated cermet cutting throwaway tip that provides excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007245293A JP2007245293A (en) | 2007-09-27 |
JP4761141B2 true JP4761141B2 (en) | 2011-08-31 |
Family
ID=38590111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006072544A Expired - Fee Related JP4761141B2 (en) | 2006-03-16 | 2006-03-16 | Surface-coated cermet cutting throwaway tip that provides excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4761141B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5853065B2 (en) * | 1975-11-29 | 1983-11-26 | トウシバタンガロイ カブシキガイシヤ | Nisouhifukukoshitsubutsutai |
US5310607A (en) * | 1991-05-16 | 1994-05-10 | Balzers Aktiengesellschaft | Hard coating; a workpiece coated by such hard coating and a method of coating such workpiece by such hard coating |
SE509201C2 (en) * | 1994-07-20 | 1998-12-14 | Sandvik Ab | Aluminum oxide coated tool |
JP3724170B2 (en) * | 1998-02-12 | 2005-12-07 | 住友電気工業株式会社 | Coated cemented carbide cutting tool |
JP4019246B2 (en) * | 2000-09-04 | 2007-12-12 | 三菱マテリアル株式会社 | Surface coated cemented carbide cutting tools with excellent chipping resistance |
-
2006
- 2006-03-16 JP JP2006072544A patent/JP4761141B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007245293A (en) | 2007-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4518260B2 (en) | Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting | |
JP4716252B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP4518259B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP2008023670A (en) | Surface coated cutting tool having hard coating layer achieving excellent chipping resistance in high-speed heavy cutting | |
JP4863053B2 (en) | Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials | |
JP4984513B2 (en) | Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials | |
JP2007160497A (en) | SURFACE COATED CUTTING TOOL MADE OF CERMET HAVING PROPERTY-MODIFIED ALPHA TYPE Al2O3 LAYER OF HARD COATING LAYER HAVING EXCELLENT CRYSTAL GRAIN INTERFACE STRENGTH | |
JP4716250B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting | |
JP4720418B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP4474643B2 (en) | Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting | |
JP4844873B2 (en) | Manufacturing method of cutting throwaway tip made of surface-covered cermet with excellent wear resistance of hard coating layer in high-speed cutting | |
JP5286930B2 (en) | Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting | |
JP4853120B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting | |
JP4761138B2 (en) | Surface-coated cermet cutting throwaway tip that exhibits excellent chipping resistance due to high-speed cutting of hardened steel | |
JP4811787B2 (en) | Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer | |
JP2006341320A (en) | SURFACE COATED CERMET CUTTING TOOL WHOSE THICK FILM alpha-TYPE ALUMINUM OXIDE LAYER EXHIBITS EXCELLENT CHIPPING RESISTANCE | |
JP4753076B2 (en) | Surface-coated cermet cutting throwaway tip that provides excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP4761141B2 (en) | Surface-coated cermet cutting throwaway tip that provides excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP4844872B2 (en) | Method for manufacturing a cutting throwaway tip made of surface-coated cermet that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP4849376B2 (en) | Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials | |
JP4756471B2 (en) | Surface-coated cermet cutting throwaway tip that provides excellent chipping resistance in high-speed heavy cutting of hardened steel | |
JP4756469B2 (en) | Surface-coated cermet cutting throwaway tip that exhibits excellent chipping resistance due to high-speed cutting of hardened steel | |
JP4822119B2 (en) | Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting | |
JP4761140B2 (en) | Surface-coated cermet cutting throwaway tip that exhibits excellent chipping resistance due to high-speed cutting of hardened steel | |
JP4857950B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080321 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110512 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110525 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4761141 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |