JP4844872B2 - Method for manufacturing a cutting throwaway tip made of surface-coated cermet that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials - Google Patents

Method for manufacturing a cutting throwaway tip made of surface-coated cermet that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials Download PDF

Info

Publication number
JP4844872B2
JP4844872B2 JP2006085001A JP2006085001A JP4844872B2 JP 4844872 B2 JP4844872 B2 JP 4844872B2 JP 2006085001 A JP2006085001 A JP 2006085001A JP 2006085001 A JP2006085001 A JP 2006085001A JP 4844872 B2 JP4844872 B2 JP 4844872B2
Authority
JP
Japan
Prior art keywords
layer
hard coating
composite oxide
cutting
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006085001A
Other languages
Japanese (ja)
Other versions
JP2007260786A (en
Inventor
惠滋 中村
晃 長田
尚志 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006085001A priority Critical patent/JP4844872B2/en
Publication of JP2007260786A publication Critical patent/JP2007260786A/en
Application granted granted Critical
Publication of JP4844872B2 publication Critical patent/JP4844872B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

この発明は、特に難削材、すなわちステンレス鋼や高マンガン鋼、さらに軟鋼などの相対的に粘性が高く、かつ軟質の被削材の切削加工を、高い発熱を伴い、この結果前記被削材および切粉の粘着性が一段と増すようになる高速切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ(以下、被覆切削チップという)の製造方法に関するものである。 This invention is particularly difficult to cut, that is, the cutting of relatively high-viscosity and soft work materials such as stainless steel, high-manganese steel, and soft steel is accompanied by high heat generation. As a result, the work material In addition, the surface-coated cermet cutting throwaway tip (hereinafter referred to as the coated cutting tip) exhibits excellent chipping resistance even when performed under high-speed cutting conditions where the chip adhesion is further increased. It is related with the manufacturing method .

従来、一般に、例えば図13に概略斜視図に例示される通り、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成され、かつ中心部に工具取り付け用ボルト貫通孔(取り付けがクランプ駒による挟み締めで行われる形式の場合には、前記ボルト貫通孔が存在しない形状となる)を有するサーメット基体(以下、これらを総称してチップ基体という)の切刃稜線部を含むすくい面および逃げ面の全面に、
a−1)下部層として、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
a−2)上部層として、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有し、さらに、
組成式:(Al1−ZCr、(ただし、原子比で、Z:0.01〜0.1)、
を満足するAlとCrの複合酸化物層(以下、単に複合酸化物層という)、
以上(a−1)および(a−2)で構成された硬質被覆層を蒸着形成してなる被覆切削チップが知られており、この被覆切削チップが、例えば各種の鋼や鋳鉄などの連続切削や断続切削に、必要に応じて、上記硬質被覆層の上部層を構成する複合酸化物層の表面を切削性能を向上させる目的でウエットブラスト処理を施して、平滑化した状態で用いられることも知られている。
Conventionally, generally, for example, as illustrated in a schematic perspective view in FIG. 13, a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet is used, and the center portion. A cermet base (hereinafter referred to collectively as a chip base) having a tool mounting bolt through hole (in the case where the mounting is performed by clamping with a clamp piece, the bolt through hole does not exist). ) On the entire rake face and flank face including the cutting edge ridge
(A -1 ) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN), all formed by chemical vapor deposition as the lower layer ) Layer, carbon oxide (hereinafter referred to as TiCO) layer, and carbonitride oxide (hereinafter referred to as TiCNO) layer, and has an overall average layer thickness of 3 to 20 μm. Ti compound layer,
(A -2 ) As an upper layer, it has an average layer thickness of 1 to 15 μm, and an α-type crystal structure in the state of chemical vapor deposition,
Composition formula: (Al 1-Z Cr Z ) 2 O 3, ( provided that an atomic ratio, Z: 0.01 to 0.1),
A composite oxide layer of Al and Cr satisfying the following (hereinafter simply referred to as a composite oxide layer),
A coated cutting tip formed by vapor-depositing a hard coating layer composed of ( a-1 ) and ( a-2 ) is known, and this coated cutting tip is, for example, continuous cutting of various types of steel and cast iron. In addition, the surface of the composite oxide layer that constitutes the upper layer of the hard coating layer may be subjected to a wet blast treatment for the purpose of improving the cutting performance and smoothed as necessary. Are known.

また、一般に、上記の被覆切削チップにおいて、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開昭52−66508号公報 特開平6−8010号公報
In general, in the above-mentioned coated cutting tip, the constituent layer of the hard coating layer generally has a granular crystal structure, and further, the TiCN layer constituting the Ti compound layer as the lower layer is improved in strength of the layer itself. For the purpose of the above, it is formed by chemical vapor deposition at a medium temperature range of 700 to 950 ° C. using a mixed gas containing organic carbonitride as a reaction gas in a normal chemical vapor deposition apparatus, and has a vertically grown crystal structure It is also known to do so.
JP 52-66508 A Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆切削チップにおいては、これを炭素鋼や低合金鋼などの一般鋼や、ねずみ鋳鉄などの普通鋳鉄などの被削材を通常の条件で切削加工するのに用いた場合には問題はないが、特に被削材が相対的に粘性が高く、かつ軟質のステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工を、高い発熱を伴い、これによって前記被削材による粘着抵抗が一段と増大するようになる高速条件で行なった場合、硬質被覆層が十分な高温強度を具備するものでないために、前記硬質被覆層にチッピング(微少欠け)が発生し易くなり、この結果比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and along with this, cutting tends to be faster. In the cutting tip, there is no problem if this is used to cut work materials such as ordinary steel such as carbon steel and low alloy steel and ordinary cast iron such as gray cast iron under normal conditions. In particular, the work material has a relatively high viscosity, and cutting of difficult-to-cut materials such as soft stainless steel, high manganese steel, and even mild steel is accompanied by high heat generation, which further increases the adhesion resistance due to the work material. When performed under high-speed conditions that increase, since the hard coating layer does not have sufficient high-temperature strength, chipping (slight chipping) is likely to occur in the hard coating layer, resulting in a relatively short time. Used in The leads to life at present.

そこで、本発明者等は、上述のような観点から、上記被覆切削チップの硬質被覆層の耐チッピング性向上を図るべく研究を行った結果、
(a−1)上記従来被覆切削チップの硬質被覆層を構成する上部層としての複合酸化物層(以下、従来複合酸化物層という)は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl:2.3〜4%、CrCl:0.04〜0.26%、CO:6〜8%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:6〜10kPa、
の条件(以下、通常条件という)で蒸着形成されるが、前記従来複合酸化物層の形成に先立って、
反応ガス組成:容量%で、AlCl:2.3〜4%、CrCl:0.04〜0.26%、CO:6〜8%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:6〜10kPa、
の条件で、下部層であるTi化合物層の表面に、
組成式:(Al1−ZCr、(ただし、原子比で、Z:0.01〜0.1)、
を満足するAlとCrの複合酸化物核(以下、単に複合酸化物核という)を形成し、この場合前記複合酸化物核は20〜200nm(0.02〜0.2μm)の平均層厚を有する複合酸化物核薄膜であるのが望ましく、引き続いて、加熱雰囲気を圧力:3〜13kPaの水素雰囲気に変え、かつ加熱雰囲気温度を1100〜1200℃に昇温した条件で前記複合酸化物核薄膜に加熱処理を施した状態で、硬質被覆層の上部層として、上記の通常条件と同じ条件、すなわち、
反応ガス組成:容量%で、AlCl:2.3〜4%、CrCl:0.04〜0.26%、CO:6〜8%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:6〜10kPa、
の条件で、
同じく組成式:(Al1−ZCr、(ただし、原子比で、Z:0.01〜0.1)、
を満足する複合酸化物層を形成すると、この結果の前記複合酸化物核薄膜上に蒸着形成された複合酸化物層(以下、改質複合酸化物層という)は、化学蒸着した状態でα型の結晶構造を有し、かつ上記従来複合酸化物層に比して一段と高温強度が向上し、硬質被覆層の耐チッピング性向上効果を発揮するようになること。
Therefore, the present inventors conducted research to improve the chipping resistance of the hard coating layer of the coated cutting tip from the above viewpoint,
(A-1) A composite oxide layer (hereinafter referred to as a conventional composite oxide layer) as an upper layer constituting the hard coating layer of the conventional coated cutting tip is, for example, a normal chemical vapor deposition apparatus.
Reaction gas composition: by volume%, AlCl 3: 2.3~4%, CrCl 3: 0.04~0.26%, CO 2: 6~8%, HCl: 1.5~3%, H 2 S : 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
(Hereinafter referred to as normal conditions), but prior to the formation of the conventional composite oxide layer,
Reaction gas composition: by volume%, AlCl 3: 2.3~4%, CrCl 3: 0.04~0.26%, CO 2: 6~8%, HCl: 1.5~3%, H 2 S : 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
On the surface of the Ti compound layer as the lower layer under the conditions
Composition formula: (Al 1-Z Cr Z ) 2 O 3, ( provided that an atomic ratio, Z: 0.01 to 0.1),
A composite oxide nucleus of Al and Cr that satisfies the following conditions (hereinafter simply referred to as a composite oxide nucleus) is formed. In this case, the composite oxide nucleus has an average layer thickness of 20 to 200 nm (0.02 to 0.2 μm). The composite oxide core thin film is desirable, and subsequently, the mixed oxide core thin film is heated under a condition that the heating atmosphere is changed to a hydrogen atmosphere at a pressure of 3 to 13 kPa and the heating atmosphere temperature is increased to 1100 to 1200 ° C. As the upper layer of the hard coating layer with the heat treatment applied to the same conditions as the above normal conditions, that is,
Reaction gas composition: by volume%, AlCl 3: 2.3~4%, CrCl 3: 0.04~0.26%, CO 2: 6~8%, HCl: 1.5~3%, H 2 S : 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
In the condition of
Also the composition formula: (Al 1-Z Cr Z ) 2 O 3, ( provided that an atomic ratio, Z: 0.01 to 0.1),
When the composite oxide layer satisfying the above is formed, the resulting composite oxide layer deposited on the composite oxide core thin film (hereinafter referred to as a modified composite oxide layer) is α-type in the state of chemical vapor deposition. In addition, the high-temperature strength is further improved as compared with the conventional composite oxide layer, and the effect of improving the chipping resistance of the hard coating layer is exhibited.

(a−2)改質複合酸化物層は、上記の従来複合酸化物層と同じコランダム型六方最密晶の結晶構造、すなわち格子点にAl、Cr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有する結晶粒で構成されること。 (A-2) The modified complex oxide layer has the same crystal structure of the corundum hexagonal close-packed crystal as the above-described conventional complex oxide layer, that is, constituent atoms composed of Al, Cr, and oxygen exist at lattice points. Consist of crystal grains having a corundum type hexagonal close-packed crystal structure.

(a−3)上記の従来被覆切削チップの硬質被覆層の上部層を構成する従来複合酸化物層と上記(a−1)の改質複合酸化物層について、
電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で示される通り、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来複合酸化物層は、図3に例示される通り、(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記改質複合酸化物層は、図2に例示される通り、0〜10度の範囲内にシャープな最高ピークが現れる傾斜角度数分布グラフを示すこと。
(A-3) About the conventional composite oxide layer constituting the upper layer of the hard coating layer of the conventional coated cutting tip and the modified composite oxide layer of (a-1),
Using a field emission scanning electron microscope, as shown in the schematic explanatory diagrams in FIGS. 1A and 1B, an electron beam is individually applied to each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface. Irradiation is performed to measure the inclination angle formed by the normal line of the (0001) plane that is the crystal plane of the crystal grain with respect to the normal line of the surface-polished surface. When the measured inclination angle within the range is divided for each pitch of 0.25 degrees and the inclination angle number distribution graph is formed by counting the frequencies existing in each division, the conventional composite oxide layer is As illustrated in FIG. 3, the distribution of measured inclination angles on the (0001) plane shows an unbiased inclination angle number distribution graph in the range of 0 to 45 degrees, whereas the modified composite oxide layer has As shown in FIG. 2, a sharp peak appears in the range of 0 to 10 degrees. To exhibit an oblique angle frequency distribution graph.

(a−4)上記改質複合酸化物層の形成に際して、層中のCr含有割合および加熱処理複合酸化物核薄膜の平均層厚を、上記の通りそれぞれ1〜10原子%および20〜200nmとすることによって、傾斜角度数分布グラフでの上記シャープな最高ピークが傾斜角区分の0〜10度の範囲内に現れると共に、前記0〜10度の範囲内に存在する度数の合計(この度数合計と前記最高ピークの高さは比例関係にある)が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すようになり、したがって、層中のCr含有割合および加熱処理複合酸化物核薄膜の平均層厚のいずれかでも上記の範囲から外れると、傾斜角度数分布グラフで0〜10度の範囲内の傾斜角度数の割合が45%未満になってしまい、所望の高温強度向上効果が得られなくなること。 (A-4) When forming the modified composite oxide layer, the Cr content ratio in the layer and the average layer thickness of the heat-treated composite oxide core thin film were 1 to 10 atomic% and 20 to 200 nm, respectively, as described above. By doing this, the above sharp maximum peak in the inclination angle frequency distribution graph appears within the range of 0 to 10 degrees of the inclination angle section, and the total of the frequencies existing within the range of 0 to 10 degrees (this frequency total) And the height of the highest peak are proportional to each other), but the inclination angle number distribution graph occupies a ratio of 45% or more of the entire frequency in the inclination angle number distribution graph, and accordingly, the Cr content ratio in the layer If any of the average layer thicknesses of the heat-treated composite oxide core thin film deviates from the above range, the ratio of the tilt angle number in the range of 0 to 10 degrees in the tilt angle number distribution graph is less than 45%. There will be impossible to obtain desired high-temperature strength enhancing effect.

(b−1)上記の被覆切削チップにおける硬質被覆層の上部層を構成する改質複合酸化物層および従来複合酸化物層の蒸着表面の平滑性は十分満足するものでなく、また、前記蒸着表面に、ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム微粒(以下、Al23微粒で示す)を配合した研磨液を噴射して、研磨すると、前記両複合酸化物層は、いずれも準拠規格JIS・B0601−1994に基いた測定(以下の表面粗さは全てかかる準拠規格に基いた測定値を示す)で、Ra:0.3〜0.6μmの表面粗さを示すようになるが、この結果の前記複合酸化物層の平滑化表面が、Ra:0.3〜0.6μm程度の表面粗さでは、硬質被覆層の耐チッピング性向上に顕著な効果は現れないこと。 (B-1) The smoothness of the deposition surface of the modified composite oxide layer and the conventional composite oxide layer constituting the upper layer of the hard coating layer in the above-mentioned coated cutting tip is not fully satisfactory, and the above-mentioned deposition A polishing liquid containing 15 to 60% by mass of aluminum oxide fine particles (hereinafter referred to as Al 2 O 3 fine particles) is sprayed on the surface by wet blasting as a spray abrasive to the total amount with water. When polished, both of the composite oxide layers are measured based on the compliant standard JIS B0601-1994 (the following surface roughness is all measured based on the compliant standard), and Ra: 0 When the smoothed surface of the composite oxide layer as a result has a surface roughness of Ra: 0.3 to 0.6 μm, a hard coating layer is obtained. Has a significant effect on improving chipping resistance. Never.

(b−2)一方、図11に概略斜視図で例示される通り、硬質被覆層の上部層を構成する改質複合酸化物層の切刃稜線部を含むすくい面および逃げ面の全面に、
(b−2−1)まず、下側層として、反応ガス組成を、体積%で、
TiCl4:0.2〜10%、
CO2:0.1〜10%、
Ar:5〜60%、
2:残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:4〜70kPa(30〜525torr)、
とした条件で、0.1〜3μmの平均層厚を有し、かつ、オージェ分光分析装置で測定して、Tiに対する酸素の割合が原子比で1.25〜1.90、即ち、
組成式:TiOW
で表わした場合、
W:原子比で1.25〜1.90、
を満足する酸化チタン層を形成し、
(b−2−2)ついで、上記酸化チタン層(下側層)の上に、上側層として、通常の条件、即ち、反応ガス組成を、体積%で、
TiCl4:0.2〜10%、
2:4〜60%、
2:残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:4〜90kPa(30〜675torr)、
とした条件で、0.05〜2μmの平均層厚を有するTiN層を形成すると、
(b−2−3)上記TiN層(上側層)形成時に、上記下側層を構成する酸化チタン層の酸素が拡散してきて前記上側層(TiN層)が、窒酸化チタン層で構成されるようになるが、この場合上記上側層(前記窒酸化チタン層)形成後の上記下側層である酸化チタン層は、厚さ方向中央部をオージェ分光分析装置で測定して、酸素の割合がTiに対する原子比で1.2〜1.7、すなわち、
組成式:TiOX
で表わした場合、
X:原子比で1.2〜1.7、
を満足する酸化チタン層となり、
(b−2−4)また、上記窒酸化チタン層で構成された上側層は、同じく厚さ方向中央部をオージェ分光分析装置で測定して、拡散酸素の割合が窒素(N)に対する原子比で0.01〜0.4、即ち、
組成式:TiN1-Y(O)Y
で表わした場合(ただし、(O)は上側層の蒸着形成時における上記下側層である酸化チタン層からの拡散酸素を示す)、
Y:原子比で0.01〜0.4、
を満足する窒酸化チタン層となること。
(B-2) On the other hand, as illustrated in a schematic perspective view in FIG. 11, on the entire rake face and flank face including the cutting edge ridge line portion of the modified composite oxide layer constituting the upper layer of the hard coating layer,
(B-2-1) First, as a lower layer, the reaction gas composition is in volume%,
TiCl 4 : 0.2 to 10%,
CO 2 : 0.1 to 10%,
Ar: 5 to 60%,
H 2 : Remaining
And
Reaction atmosphere temperature: 800-1100 ° C.
Reaction atmosphere pressure: 4 to 70 kPa (30 to 525 torr),
And having an average layer thickness of 0.1 to 3 μm and a ratio of oxygen to Ti of 1.25 to 1.90 as measured by an Auger spectrometer,
Composition formula: TiO W ,
In the case of
W: 1.25 to 1.90 in atomic ratio,
Forming a titanium oxide layer that satisfies
(B-2-2) Next, on the titanium oxide layer (lower layer), as an upper layer, the normal conditions, that is, the reaction gas composition in volume%,
TiCl 4 : 0.2 to 10%,
N 2 : 4-60%,
H 2 : Remaining
And
Reaction atmosphere temperature: 800-1100 ° C.
Reaction atmosphere pressure: 4 to 90 kPa (30 to 675 torr),
When a TiN layer having an average layer thickness of 0.05 to 2 μm is formed under the conditions described above,
(B-2-3) At the time of forming the TiN layer (upper layer), oxygen in the titanium oxide layer constituting the lower layer diffuses and the upper layer (TiN layer) is constituted by a titanium oxynitride layer. However, in this case, the titanium oxide layer, which is the lower layer after the formation of the upper layer (the titanium oxynitride layer), has a ratio of oxygen measured by an Auger spectrometer at the center in the thickness direction. 1.2 to 1.7 atomic ratio to Ti,
Composition formula: TiO x ,
In the case of
X: 1.2 to 1.7 in atomic ratio,
Titanium oxide layer that satisfies
(B-2-4) In addition, the upper layer composed of the titanium oxynitride layer was also measured at the center in the thickness direction with an Auger spectroscopic analyzer, and the ratio of diffused oxygen was the atomic ratio with respect to nitrogen (N). 0.01-0.4, i.e.
Composition formula: TiN 1-Y (O) Y ,
(Where, (O) represents diffused oxygen from the titanium oxide layer as the lower layer when the upper layer is deposited ),
Y: 0.01 to 0.4 in atomic ratio
Titanium nitride oxide layer that satisfies

(b−3)上記窒酸化チタン層(上側層)および酸化チタン層(下側層)を蒸着形成した状態で、
上記(b−1)におけると同じくウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl23微粒を配合した研磨液を噴射すると、前記窒酸化チタン層および酸化チタン層は、前記Al23微粒によって粉砕微粒化し、窒酸化チタン微粒および酸化チタン微粒となって前記Al23微粒の共存下で研磨材として作用し、図12に概略斜視図で例示される通り、硬質被覆層の上部層を構成する改質複合酸化物層の表面を研磨することになり、この結果研磨後の前記改質複合酸化物層の表面は、Ra:0.2μm以下の表面粗さにまで平滑化されるようになり、前記改質複合酸化物層の表面がRa:0.2μm以下の表面粗さに平滑化されると、硬質被覆層の耐チッピング性に顕著な向上効果が現れるようになること。
(B-3) With the titanium nitride oxide layer (upper layer) and the titanium oxide layer (lower layer) deposited and formed,
When a polishing liquid containing 15 to 60% by mass of Al 2 O 3 fine particles as a spraying abrasive in a ratio to the total amount of water is sprayed by wet blasting as in (b-1) above, the nitrogen The titanium oxide layer and the titanium oxide layer are pulverized and pulverized by the Al 2 O 3 fine particles, become titanium oxynitride fine particles and titanium oxide fine particles, and act as an abrasive in the presence of the Al 2 O 3 fine particles. As illustrated in the schematic perspective view, the surface of the modified composite oxide layer constituting the upper layer of the hard coating layer is polished, and as a result, the surface of the modified composite oxide layer after polishing is Ra. When the surface of the modified composite oxide layer is smoothed to a surface roughness of Ra: 0.2 μm or less, the surface of the hard coating layer is smoothed to a surface roughness of 0.2 μm or less. A significant improvement in chipping resistance appears To become.

(c−1)一方、上記の硬質被覆層は、化学蒸着装置で、約1000℃前後の反応温度でチップ基体表面に蒸着され、常温に冷却されることにより形成されるが、常温への冷却過程で、前記チップ基体の熱膨張係数に比して前記硬質被覆層の熱膨張係数の方が相対的に大きいので、前記硬質被覆層には引張の応力が残留するようになり、この硬質被覆層中の残留引張応力は高速切削加工ではチッピング発生を促進するように作用すること。 (C-1) On the other hand, the hard coating layer is formed by being deposited on the surface of the chip substrate at a reaction temperature of about 1000 ° C. and cooled to room temperature by a chemical vapor deposition apparatus. In the process, since the thermal expansion coefficient of the hard coating layer is relatively larger than the thermal expansion coefficient of the chip substrate, tensile stress remains in the hard coating layer. Residual tensile stress in the layer acts to promote chipping in high-speed cutting.

(c−2)これに対して、単一基本形状マーク、例えば円形や三角形および四角形、さらにこれらの類似形などの単一基本形状マークを、上記の被覆切削チップのすくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、レーザービームを用いて、例えば図4〜10に前記単一基本形状マークを円形とした場合の実施例が概略斜視図で示される通り、前記単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布し(この場合、図4〜6に例示のものは硬質被覆層の層厚が相対的に薄く、図7,8および図9,10に例示されるに従って層厚が厚くなる場合の分布態様を示す)、かつ前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした条件(この場合の前記単一基本形状マークの露出面の掘下げ深さは前記硬質被覆層の層厚に対応して個々に調整されるが、残留応力の効率的低減を図るには層厚の5〜20%に相当する深さが目安とされる)でレーザービーム照射模様を形成すると、前記硬質被覆層の残留応力が著しく低減するようになり、この硬質被覆層残留応力低減模様の形成によって、特に難削材の高速切削加工に際しての硬質被覆層のチッピング発生が著しく抑制されるようになること。 (C-2) On the other hand, a single basic shape mark, for example, a single basic shape mark such as a circle, a triangle and a quadrangle, or a similar shape thereof, is used for either the rake face or the flank face of the coated cutting tip. As shown in a schematic perspective view of an embodiment in which the single basic shape mark is circular, for example, in FIGS. 4 to 10 using a laser beam over the entire surface of both surfaces, the single basic Either or both of the shape mark and the collective mark of the single basic shape mark are distributed (in this case, the examples shown in FIGS. 4 to 6 have a relatively thin hard coating layer, 8 and FIGS. 9 and 10 show the distribution mode when the layer thickness increases, and the single basic shape mark is exposed to any one of the constituent layers of the hard coating layer. Digging surface (In this case, the depth of the exposed surface of the single basic shape mark is individually adjusted in accordance with the layer thickness of the hard coating layer. When a laser beam irradiation pattern is formed at a depth corresponding to 5 to 20%), the residual stress of the hard coating layer is remarkably reduced. By the formation of the hard coating layer residual stress reduction pattern, In particular, the occurrence of chipping of the hard coating layer during high-speed cutting of difficult-to-cut materials is significantly suppressed.

(d)上記の硬質被覆層の上部層を構成する改質複合酸化物層は、複合酸化物層自体が具備する高温硬さおよび耐熱性に加えて、上記従来複合酸化物層に比して一段と高い高温強度を有するものであり、かつ硬質被覆層の上部層である改質複合酸化物層の表面をRa:0.2μm以下の表面粗さに平滑化すると共に、硬質被覆層残留応力低減模様の形成によって、硬質被覆層の耐チッピング性が著しく向上するようになることから、かかる構成の硬質被覆層を蒸着形成してなる被覆切削チップは、難削材の切削加工を、高熱発生によって粘着抵抗の一段と高いものとなる高速条件で行なっても、硬質被覆層にチッピングの発生なく、長期に亘ってすぐれた切削性能を発揮するようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(D) The modified composite oxide layer constituting the upper layer of the hard coating layer has a high temperature hardness and heat resistance that the composite oxide layer itself has, in addition to the conventional composite oxide layer. The surface of the modified composite oxide layer, which has higher high-temperature strength and is the upper layer of the hard coating layer, is smoothed to a surface roughness of Ra: 0.2 μm or less, and the residual stress of the hard coating layer is reduced. Since the chipping resistance of the hard coating layer is remarkably improved by the formation of the pattern, the coated cutting tip formed by vapor-depositing the hard coating layer having such a structure is capable of cutting difficult-to-cut materials by generating high heat. Even under high-speed conditions where the adhesion resistance is even higher, chipping does not occur in the hard coating layer, and excellent cutting performance will be exhibited over a long period of time.
The research results shown in (a) to (d) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
(1)WC基超硬合金またはTiCN基サーメットで構成されたチップ基体の切刃稜線部を含むすくい面および逃げ面の全面に表面に、
a−1)下部層として、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
a−2)上部層として、1〜15μmの平均層厚を有し、さらに、
組成式:(Al1−ZCr、(ただし、原子比で、Z:0.01〜0.1)、
を満足すると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示す改質複合酸化物層、
以上(a−1)および(a−2)で構成された硬質被覆層を化学蒸着形成し、
(2)ついで、上記硬質被覆層の上部層である改質複合酸化物層の全面に、
(b−1)下側層として、0.1〜3μmの平均層厚を有し、かつ、
組成式:TiOX
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、
X:原子比で1.2〜1.7、
を満足する酸化チタン層、
(b−2)上側層として、0.05〜2μmの平均層厚を有し、かつ、
組成式:TiN1-Y(O)Y
で表わした場合(ただし、(O)は上側層の蒸着形成時における上記下側層であるTi酸化物層からの拡散酸素を示す)、同じく厚さ方向中央部をオージェ分光分析装置で測定して、
Y:原子比で0.01〜0.4、
を満足する窒酸化チタン層、
以上(b−1)および(b−2)で構成された研磨材層を化学蒸着形成した状態で、
)ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl23微粒を配合した研磨液を噴射し、
上記の研磨材層が噴射研磨材であるAl 2 3 微粒の噴射により粉砕微粒化してなる粉砕化酸化チタン微粒よび粉砕化窒酸化チタン微粒と、噴射研磨材としてのAl23微粒の共存下で、上記硬質被覆層の上部層を構成する改質複合酸化物層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分を研磨して、これら研磨面の表面粗さをRa:0.2μm以下とし、
)さらに、上記改質複合酸化物層研磨面のすくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布してなると共に、前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした硬質被覆層残留応力低減模様をレーザービーム照射形成してなる、
硬質被覆層が高速切削ですぐれた耐摩耗性を発揮する被覆切削チップの製造方法に特徴を有するものである。
This invention was made based on the above research results,
(1) On the entire surface of the rake face and the flank face including the cutting edge ridge line portion of the chip base composed of the WC base cemented carbide or TiCN base cermet,
(A -1 ) As a lower layer, a Ti compound layer composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer, and having an overall average layer thickness of 3 to 20 μm ,
(A -2 ) As an upper layer, it has an average layer thickness of 1 to 15 μm, and
Composition formula: (Al 1-Z Cr Z ) 2 O 3, ( provided that an atomic ratio, Z: 0.01 to 0.1),
And using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the normal to the surface polished surface is Then, the inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured, and the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles is 0.25 degrees. In the inclination angle number distribution graph formed by dividing each pitch and the frequency existing in each section, the highest peak exists in the inclination angle section within the range of 0 to 10 degrees, and the 0 to 10 degrees. A modified composite oxide layer showing a tilt angle number distribution graph in which the total number of frequencies existing in the range of 45% or more of the total frequency in the tilt angle number distribution graph,
The hard coating layer composed of ( a-1 ) and ( a-2 ) is formed by chemical vapor deposition,
(2) Next , on the entire surface of the modified composite oxide layer, which is the upper layer of the hard coating layer,
(B-1) The lower layer has an average layer thickness of 0.1 to 3 μm, and
Composition formula: TiO x ,
, Measure the central part in the thickness direction with an Auger spectrometer,
X: 1.2 to 1.7 in atomic ratio,
Satisfying titanium oxide layer,
(B-2) The upper layer has an average layer thickness of 0.05 to 2 μm, and
Composition formula: TiN 1-Y (O) Y ,
(However, (O) indicates the diffused oxygen from the Ti oxide layer, which is the lower layer when the upper layer is deposited ), and the central portion in the thickness direction is also measured with an Auger spectrometer. And
Y: 0.01 to 0.4 in atomic ratio
Satisfying titanium oxynitride layer,
In the state where the abrasive layer composed of (b-1) and (b-2) is formed by chemical vapor deposition,
( 3 ) In wet blasting, as a spraying abrasive, a polishing liquid containing 15 to 60% by mass of Al 2 O 3 fine particles in a proportion of the total amount with water is sprayed,
Abrasive layer and the Al 2 O 3 by atomization of injection formed by grinding atomized pulverized titanium oxide fine pre pulverization oxynitride titanium particulate is injected abrasive above, coexistence of Al 2 O 3 fine as injection abrasive The rake face portion and the flank face portion including at least the cutting edge ridge line portion of the modified composite oxide layer constituting the upper layer of the hard coating layer are polished, and the surface roughness of these polished surfaces is set to Ra: 0. .2 μm or less,
( 4 ) Further, any one of the rake face and flank face of the polished surface of the modified composite oxide layer , or any of the single basic shape mark and the collective mark of the single basic shape mark over the entire surface of both surfaces. Or a hard covering layer residual stress reduction pattern in which the single basic shape mark is a dug-down surface in which any one of the constituent layers of the hard coating layer is exposed. Formed by beam irradiation,
The hard coating layer is characterized by a method of manufacturing a coated cutting tip that exhibits excellent wear resistance in high-speed cutting.

以下に、この発明の被覆切削チップの製造方法において、硬質被覆層、研磨材層、さらにウエットブラストで用いられる研磨液のAl23微粒に関して、上記の通りに数値限定した理由を説明する。
)硬質被覆層
(a−1)下部層のTi化合物層
Ti化合物層は、自体が高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、チップ基体と上部層である改質複合酸化物層のいずれにも強固に密着し、よって硬質被覆層のチップ基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう高速切削加工では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
The reason why the hard coating layer, the abrasive material layer , and the Al 2 O 3 fine particles of the polishing liquid used in the wet blasting in the manufacturing method of the coated cutting chip of the present invention are numerically limited as described above will be described below.
( 1 ) Hard coating layer (a-1) Ti compound layer of lower layer The Ti compound layer itself has high-temperature strength, and the presence of the Ti compound layer makes the hard coating layer have high-temperature strength. And the modified composite oxide layer that is the upper layer firmly adhere to each other, and thus has an effect of improving the adhesion of the hard coating layer to the chip substrate, but when the total average layer thickness is less than 3 μm, If the total average layer thickness exceeds 20 μm, the high-speed cutting with high heat generation is likely to cause thermoplastic deformation, which causes uneven wear. Therefore, the total average layer thickness was determined to be 3 to 20 μm.

(a−2)上部層の改質複合酸化物層
上記の改質複合酸化物層において、これの構成成分であるAlは層の高温硬さおよび耐熱性を向上させ、同Cr成分には、上記の通り加熱処理複合酸化物核薄膜中のCr成分との共存において、傾斜角度数分布グラフの0〜10度の範囲内に存在する度数の分布割合を高め、これを45%以上のきわめて高い分布割合にして、層の高温強度を向上させる作用を有するが、この場合Crの含有割合を示すZ値が原子比で0.01未満では前記作用に所望の向上効果を確保することができず、一方同Z値が0.1を越えると傾斜角度数分布グラフの0〜10度の範囲内に存在する度数の分布割合が45%未満となってしまい、所望の高温強度の確保が困難になることから、前記Z値を0.01〜0.1と定めた。
また、上記の通り加熱処理複合酸化物核薄膜の平均層厚も改質複合酸化物層の傾斜角度数分布グラフの0〜10度の範囲内に存在する度数の分布割合に影響を及ぼし、その平均層厚が20nm未満では傾斜角度数分布グラフの0〜10度の範囲内に存在する度数の分布割合を45%以上にすることができず、この結果所望のすぐれた高温強度が得られず、一方その平均層厚が200nmを越えても0〜10度の範囲内に存在する度数の分布割合は45%未満となってしまうことから、その平均層厚を20〜200nmとするのが望ましい。
さらに、上記改質複合酸化物層は、上記の通り複合酸化物層自体のもつすぐれた高温硬さと耐熱性に加えて、さらに一段とすぐれた高温強度を有するが、その平均層厚が1μm未満では前記改質複合酸化物層の有する前記の特性を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を1〜15μmと定めた。
(A-2) Modified composite oxide layer of the upper layer In the modified composite oxide layer, Al as a constituent component thereof improves the high-temperature hardness and heat resistance of the layer, As described above, in the coexistence with the Cr component in the heat-treated composite oxide core thin film, the frequency distribution ratio existing in the range of 0 to 10 degrees in the inclination angle frequency distribution graph is increased, and this is extremely high at 45% or more. The distribution ratio has the effect of improving the high-temperature strength of the layer. In this case, if the Z value indicating the Cr content ratio is less than 0.01 by atomic ratio, the desired improvement effect cannot be ensured for the above-described action. On the other hand, if the Z value exceeds 0.1, the distribution ratio of the frequencies existing within the range of 0 to 10 degrees in the inclination angle frequency distribution graph becomes less than 45%, making it difficult to ensure the desired high-temperature strength. Therefore, the Z value is determined to be 0.01 to 0.1 It was.
In addition, as described above, the average layer thickness of the heat-treated composite oxide core thin film also affects the frequency distribution ratio existing in the range of 0 to 10 degrees in the gradient angle distribution graph of the modified composite oxide layer. If the average layer thickness is less than 20 nm, the distribution ratio of the frequencies existing within the range of 0 to 10 degrees in the inclination angle distribution graph cannot be made 45% or more, and as a result, the desired excellent high-temperature strength cannot be obtained. On the other hand, even if the average layer thickness exceeds 200 nm, the distribution ratio of the frequencies existing in the range of 0 to 10 degrees is less than 45%. Therefore, the average layer thickness is preferably 20 to 200 nm. .
Further, the modified composite oxide layer has excellent high temperature strength and heat resistance in addition to the excellent high temperature hardness and heat resistance of the composite oxide layer itself as described above, but the average layer thickness is less than 1 μm. If the above properties of the modified composite oxide layer are not sufficiently provided in the hard coating layer, on the other hand, if the average layer thickness exceeds 15 μm, thermoplastic deformation that causes uneven wear tends to occur. Since the wear is accelerated, the average layer thickness is determined to be 1 to 15 μm.

(b)研磨材層
上側層を構成する窒酸化チタン層は、上記の通り、まず、酸素の割合をTiに対する原子比で1.25〜1.90(W値)とした酸化チタン層を形成し、ついで、前記酸化チタン層の上に通常の条件でTiN層を蒸着することにより形成されるものであり、したがって前記TiN層形成時における前記酸化チタン層からの酸素の拡散が不可欠となるが、前記酸化チタン層のW値が1.25未満であると、前記TiN層への酸素の拡散反応が急激に低下し、上側層における拡散酸素の割合(Y値)を原子比で0.01以上にすることができず、一方同W値が1.90を越えると、前記上側層における拡散酸素の割合(Y値)が原子比で0.40を越えて多くなってしまうことから、W値を1.25〜1.90と定めたものであり、この場合上側層形成後の下側層(酸化チタン層)における酸素の割合(X値)は原子比で1.2〜1.7の範囲内の値をとるようになる、言い換えれば上側層形成後の下側層のX値が1.2〜1.7を満足する場合に、前記上側層のY値は0.01〜0.40を満足するものとなる。
また、この場合、下側層のX値および上側層のY値をそれぞれ1.2〜1.7および0.01〜0.40と定めたのは、前記X値およびY値が前記の値をとった場合に、これら研磨材層のウエットブラスト時における粉砕微粒化が好適な状態で行なわれ、すぐれた研磨機能を十分に発揮することが多くの試験結果から得られ、これらの試験結果に基いて定めたものである。したがって、前記X値およびY値がそれぞれ1.2〜1.7および0.01〜0.40の範囲から外れると、前記研磨材層のウエットブラスト時における粉砕微粒化が満足に行なわれず、すぐれた研磨機能を期待することができない。
さらに、上側層および下側層の平均層厚を、それぞれ0.05〜2μmおよび0.1〜3μmとしたのは、その平均層厚が0.05μm未満および0.1μm未満では、ウエットブラスト時における下側層の粉砕化酸化チタン微粒、上側層の粉砕化窒酸化チタン微粒の割合が少な過ぎて、研磨機能を十分に発揮することができず、一方、その平均層厚がそれぞれ2μmおよび3μmを越えても、研磨機能が急激に低下するようになり、いずれの場合も複合酸化物層の表面をRa:0.2μm以下の表面粗さに研磨することができなくなるという理由にもとづくものである。
(B) Abrasive material layer As described above, the titanium oxynitride layer constituting the upper layer first forms a titanium oxide layer in which the oxygen ratio is 1.25 to 1.90 (W value) in terms of atomic ratio to Ti. Then, it is formed by depositing a TiN layer on the titanium oxide layer under normal conditions. Therefore, diffusion of oxygen from the titanium oxide layer during the formation of the TiN layer is indispensable. When the W value of the titanium oxide layer is less than 1.25, the diffusion reaction of oxygen into the TiN layer is drastically reduced, and the ratio of diffused oxygen (Y value) in the upper layer is 0.01 by atomic ratio. On the other hand, if the same W value exceeds 1.90, the ratio of diffused oxygen (Y value) in the upper layer will increase beyond 0.40 in terms of atomic ratio. The value is defined as 1.25 to 1.90 In this case, the oxygen ratio (X value) in the lower layer (titanium oxide layer) after forming the upper layer takes a value in the range of 1.2 to 1.7 in terms of atomic ratio, in other words, the upper layer. When the X value of the lower layer after formation satisfies 1.2 to 1.7, the Y value of the upper layer satisfies 0.01 to 0.40.
In this case, the X value of the lower layer and the Y value of the upper layer are set to 1.2 to 1.7 and 0.01 to 0.40, respectively. It is obtained from many test results that these abrasive layers are pulverized and atomized in a suitable state at the time of wet blasting, and exhibit an excellent polishing function sufficiently. Based on this. Therefore, if the X value and Y value are out of the range of 1.2 to 1.7 and 0.01 to 0.40, respectively, the pulverization and atomization at the time of wet blasting of the abrasive layer is not satisfactorily performed, which is excellent. The polishing function cannot be expected.
Further, the average layer thicknesses of the upper layer and the lower layer were set to 0.05 to 2 μm and 0.1 to 3 μm, respectively, when the average layer thickness was less than 0.05 μm and less than 0.1 μm. The ratio of the pulverized titanium oxide fine particles in the lower layer and the fine pulverized titanium oxynitride fine particles in the upper layer is too small to perform the polishing function sufficiently, while the average layer thickness is 2 μm and 3 μm, respectively. Even if it exceeds the range, the polishing function will rapidly decrease, and in any case, the surface of the composite oxide layer cannot be polished to a surface roughness of Ra: 0.2 μm or less. is there.

(c)研磨液のAl23微粒の割合
研磨液のAl23微粒には、ウエットブラスト時に研磨材層を構成する下側層の粉砕化酸化チタン微粒および上側層の粉砕化窒酸化チタン微粒と共存した状態で、改質複合酸化物層の表面を研磨する作用があるが、その割合が水との合量に占める割合で15質量%未満でも、また60質量%を越えても研磨機能が急激に低下するようになることから、その割合を15〜60質量%と定めた。
(C) The Al 2 O 3 fine of Al 2 O 3 fine fraction polishing liquid of the polishing liquid, pulverization oxynitride of pulverized titanium oxide fine and the upper layer of the lower layer of the abrasive layer during wet blasting Although it acts to polish the surface of the modified composite oxide layer in the state of coexisting with the titanium fine particles, even if the ratio is less than 15% by mass or more than 60% by mass in the total amount with water Since the polishing function is abruptly lowered, the ratio was determined to be 15 to 60% by mass.

この発明の方法で製造された被覆切削チップは、硬質被覆層の上部層を構成する改質複合酸化物層が、複合酸化物層自体が具備する高温硬さおよび耐熱性に加えて、従来複合酸化物層に比して一段と高い高温強度を有するものであり、さらに硬質被覆層の上部層である改質複合酸化物層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分が、Ra:0.2μm以下の表面粗さに研磨されると共に、前記研磨面のすくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、レーザービーム照射形成された硬質被覆層残留応力低減模様によって、硬質被覆層の耐チッピング性が著しく向上し、特にステンレス鋼や高マンガン鋼、さらに軟鋼などの相対的に粘性が高く、かつ軟質の難削材の切削加工を高速条件で行うのに用いた場合にも、硬質被覆層にチッピングが発生することなく、長期に亘ってすぐれた切削性能を発揮し、使用寿命の一層の延命化を可能とするものである。 In the coated cutting tip manufactured by the method of the present invention, the modified composite oxide layer constituting the upper layer of the hard coating layer has a conventional composite oxide in addition to the high temperature hardness and heat resistance of the composite oxide layer itself. The rake face portion and the flank face portion including at least the cutting edge ridge line portion of the modified composite oxide layer, which has a higher high-temperature strength than the oxide layer, and is an upper layer of the hard coating layer, are represented by Ra. : Hard coating layer residual stress reduction pattern formed by laser beam irradiation over the entire surface of either the rake face or the flank face or both of the polished face while being polished to a surface roughness of 0.2 μm or less Can significantly improve the chipping resistance of hard coatings, especially for high-viscosity cutting of soft, difficult-to-cut materials with relatively high viscosity such as stainless steel, high manganese steel, and mild steel. Case as well, without chipping in the hard coating layer, exhibits superior cutting performance over a long period of time, and makes it possible to further life extension of service life.

つぎに、この発明の被覆切削チップの製造方法を実施例により具体的に説明する。 Next, the method for producing a coated cutting tip according to the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120412に規定するスローアウエイチップ形状をもったWC基超硬合金製のチップ基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, chip bases A to F made of WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG12041 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製のチップ基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. TiCN base cermet chip bases a to f having a standard / CNMG12041 chip shape were formed.

ついで、これらのチップ基体A〜Fおよびチップ基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、
(a)まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表8に示される組み合わせおよび目標層厚でTi化合物層を硬質被覆層の下部層として蒸着形成し、ついで、表4に示される条件で、表8に示される組み合わせおよび目標層厚で複合酸化物核薄膜[表4,8では核薄膜で示す](a)〜(h)を蒸着形成した後、前記複合酸化物核薄膜に圧力:8kPaの水素雰囲気中、1150℃に10〜60分の範囲内の所定時間保持の条件で加熱処理を施し、この状態で、同じく表4に示される条件で、表8に組み合わせおよび目標層厚で改質複合酸化物層[表4,8では改質層で示す](A)〜(H)を硬質被覆層の上部層として蒸着形成し、
(b)ついで、上記硬質被覆層の上部層を構成する改質複合酸化物層の全面に、研磨材層の下側層である酸化チタン層[TiO(1)〜(6)のいずれか]を表6に示される条件で形成した後、上側層である窒化チタン層(TiN層)を同じく表6に示される条件で、表9に示される目標層厚で蒸着形成して、同じく表9に示される組成、すなわち厚さ方向中央部をオージェ分光分析装置で測定して、それぞれ表9に示されるX値およびY値の下側層および上側層からなる研磨材層を形成し(図11参照)、
(c)引き続いて、上記の下側層および上側層からなる研磨材層形成の被覆切削チップに、表7に示されるブラスト条件で、かつ表9に示される組み合わせでウエットブラストを施して、工具取り付け孔周辺部に研磨材層を存在させた状態で、前記改質複合酸化物層の切刃稜線部を含むすくい面部分および逃げ面部分を、同じく表7に示される表面粗さに研磨し(図12参照)、
(d)さらに、レーザービーム照射装置を用い、上記改質複合酸化物層表面研磨の硬質被覆層に、
レーザービーム出力:10W、
単一基本形状マークの形状:直径が0.8mmの円形、
硬質被覆層残留応力低減模様:図4〜10に示される実施模様のうちのいずれかを表9に示される組み合わせで適用、
単一基本形状マークの露出面の掘下げ深さ:表9に硬質被覆層の全目標層厚に対する割合で示される深さ、
の条件で硬質被覆層残留応力低減模様を形成することにより本発明被覆切削チップ1〜13をそれぞれ製造した。
Next, each of these chip bases A to F and chip bases a to f is charged into a normal chemical vapor deposition apparatus,
(A) First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically elongated crystal structure described in JP-A-6-8010, and the other conditions are ordinary granularity. The Ti compound layer is deposited as a lower layer of the hard coating layer with the combinations and target layer thicknesses shown in Table 8 under the conditions shown in Table 4). After the composite oxide core thin film [shown as a core thin film in Tables 4 and 8] (a) to (h) is formed by vapor deposition with the combinations and target layer thicknesses shown in Table 8, the composite oxide core thin film is formed. Pressure: in a hydrogen atmosphere of 8 kPa, heat treatment was performed at 1150 ° C. under the condition of holding for a predetermined time within a range of 10 to 60 minutes, and in this state, combinations and targets shown in Table 8 under the same conditions as shown in Table 4 Modified composite oxide layer by layer thickness [Table 4, In shown in the reforming layer] The (A) ~ (H) is deposited formed as an upper layer of the hard coating layer,
(B) Next, a titanium oxide layer [TiO W (1) to (6), which is a lower layer of the abrasive layer, is formed on the entire surface of the modified composite oxide layer constituting the upper layer of the hard coating layer. ] Is formed under the conditions shown in Table 6, and a titanium nitride layer (TiN layer), which is the upper layer, is vapor-deposited with the target layer thickness shown in Table 9 under the conditions shown in Table 6 as well. 9 is measured by an Auger spectroscopic analyzer to form an abrasive layer composed of a lower layer and an upper layer of the X value and the Y value shown in Table 9 (FIG. 9). 11),
(C) Subsequently, the coated cutting tip for forming the abrasive layer composed of the lower layer and the upper layer is subjected to wet blasting under the blasting conditions shown in Table 7 and in the combinations shown in Table 9, The rake face portion and the flank face portion including the cutting edge ridge line portion of the modified composite oxide layer were polished to the surface roughness shown in Table 7 in the state where the abrasive layer was present around the attachment hole. (See FIG. 12),
(D) Furthermore, using a laser beam irradiation apparatus, the hard coating layer for polishing the modified composite oxide layer surface,
Laser beam output: 10W
The shape of a single basic shape mark: a circle with a diameter of 0.8 mm,
Hard coating layer residual stress reduction pattern: any one of the implementation patterns shown in FIGS. 4 to 10 is applied in the combination shown in Table 9.
Depth of digging on the exposed surface of a single basic shape mark: the depth shown in Table 9 as a percentage of the total target layer thickness of the hard coating layer,
The coated cutting chips 1 to 13 of the present invention were manufactured by forming a hard coating layer residual stress reduction pattern under the conditions described above.

(a)また、比較の目的で、表10に示される通り、本発明被覆切削チップ1〜13のそれぞれの下部層と同じ条件で、Ti化合物層を蒸着形成し、さらに表5に示される条件で、表10に示される組み合わせおよび目標層厚で、上部層としての従来複合酸化物層[表5,10では従来層で示す]を蒸着形成し(図13参照)、
(b)引き続いて、上記研磨材層の形成を行なうことなく、表7に示されるブラスト条件で、かつ表10に示される組み合わせでウエットブラストを施して、前記従来複合酸化物層の切刃稜線部を含むすくい面および逃げ面を、同じく表10に示される表面粗さに研磨し、一方硬質被覆層残留応力低減模様の形成を行なわずに従来被覆切削チップ1〜13をそれぞれ製造した。
(A) For comparison purposes, as shown in Table 10, the Ti compound layer was formed by vapor deposition under the same conditions as the lower layers of the coated cutting chips 1 to 13 of the present invention, and further the conditions shown in Table 5 Then, a conventional composite oxide layer [shown as a conventional layer in Tables 5 and 10] as an upper layer is formed by vapor deposition with the combinations and target layer thicknesses shown in Table 10 (see FIG. 13).
(B) Subsequently, the cutting edge ridge line of the conventional composite oxide layer is formed by performing wet blasting under the blasting conditions shown in Table 7 and the combinations shown in Table 10 without forming the abrasive layer. The rake face and the flank face including the portion were polished to the same surface roughness as shown in Table 10, while the conventional coated cutting chips 1 to 13 were produced without forming the hard coating layer residual stress reducing pattern.

ついで、上記の本発明被覆切削チップ1〜13および従来被覆切削チップ1〜13の硬質被覆層の上部層を構成する改質複合酸化物層および従来複合酸化物層のそれぞれについて、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の改質複合酸化物層および従来複合酸化物層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Next, field emission scanning is performed on each of the modified composite oxide layer and the conventional composite oxide layer constituting the upper layer of the hard coating layer of the present invention coated cutting chips 1 to 13 and the conventional coated cutting chips 1 to 13. An inclination angle number distribution graph was created using an electron microscope.
That is, the inclination angle number distribution graph is set in a lens barrel of a field emission scanning electron microscope in a state where the surfaces of the modified composite oxide layer and the conventional composite oxide layer are polished surfaces. Electron backscattering is performed by individually irradiating a crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface-polished surface with an electron beam of 15 kV and an acceleration voltage of 15 kV on the surface with an irradiation current of 1 nA. Using a diffraction image apparatus, a 30 × 50 μm region at an interval of 0.1 μm / step is inclined with respect to the normal of the surface polished surface and the normal of the (0001) plane that is the crystal plane of the crystal grain An angle is measured, and based on this measurement result, among the measured inclination angles, a measurement inclination angle within a range of 0 to 45 degrees is divided for each pitch of 0.25 degrees and exists in each division. Created by counting the frequencies.

この結果得られた各種の改質複合酸化物層および従来複合酸化物層の傾斜角度数分布グラフにおいて、(0001)面が最高ピークを示す傾斜角区分、並びに0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合をそれぞれ表8,10にそれぞれ示した。   In the gradient angle distribution graphs of the various modified complex oxide layers and the conventional complex oxide layers obtained as a result, the gradient angle segment in which the (0001) plane shows the highest peak, and the gradient within the range of 0 to 10 degrees. Tables 8 and 10 show the ratios of the number of tilt angles existing in the angle section to the number of tilt angles in the entire tilt angle distribution graph, respectively.

上記の各種の傾斜角度数分布グラフにおいて、表8,10にそれぞれ示される通り、本発明被覆切削チップの改質複合酸化物層は、いずれも(0001)面の測定傾斜角の分布が0〜10度の範囲内の傾斜角区分に最高ピークが現れ、かつ0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合が45%以上である傾斜角度数分布グラフを示すのに対して、従来被覆切削チップの従来複合酸化物層は、いずれも(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在せず、0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合も30%以下である傾斜角度数分布グラフを示すものであった。
なお、図2は、本発明被覆切削チップ4の改質複合酸化物層の傾斜角度数分布グラフ、図3は、従来被覆切削チップ4の従来複合酸化物層の傾斜角度数分布グラフをそれぞれ示すものである。
In the various inclination angle distribution graphs described above, as shown in Tables 8 and 10, each of the modified composite oxide layers of the coated cutting tip of the present invention has a measured inclination angle distribution of (0001) plane of 0 to 0. An inclination angle number distribution graph in which the highest peak appears in the inclination angle section within the range of 10 degrees and the ratio of the inclination angle numbers existing in the inclination angle section within the range of 0 to 10 degrees is 45% or more is shown. On the other hand, in the conventional composite oxide layer of the conventional coated cutting tip, the distribution of the measured inclination angle on the (0001) plane is unbiased within the range of 0 to 45 degrees, and the highest peak does not exist. The inclination angle number distribution graph in which the ratio of the inclination angle number existing in the inclination angle section within the range of 10 degrees is 30% or less was also shown.
FIG. 2 is a graph showing the inclination angle distribution of the modified composite oxide layer of the coated cutting tip 4 of the present invention, and FIG. 3 is a graph showing the inclination angle distribution of the conventional composite oxide layer of the conventional coated cutting tip 4. Is.

さらに、上記の本発明被覆切削チップ1〜13および従来被覆切削チップ1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者ではいずれも目標組成と実質的に同じ組成を有するTi化合物層と改質複合酸化物層からなることが確認された。一方後者でも、いずれも同じく目標組成と実質的に同じ組成を有するTi化合物層と従来複合酸化物層からなることが確認された。また、これらの被覆切削チップの硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Further, for the above-described coated cutting chips 1 to 13 of the present invention and the conventional coated cutting chips 1 to 13, the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analysis device (layer When the longitudinal section was observed), it was confirmed that the former consisted of a Ti compound layer and a modified composite oxide layer having substantially the same composition as the target composition. On the other hand, it was confirmed that both of the latter consisted of a Ti compound layer having the same composition as the target composition and a conventional composite oxide layer. Moreover, when the thickness of the constituent layer of the hard coating layer of these coated cutting tips was measured using a scanning electron microscope (same longitudinal section measurement), the average layer thickness (which is substantially the same as the target layer thickness) Average value of 5-point measurement) was shown.

つぎに、上記の本発明被覆切削チップ1〜13および従来被覆切削チップ1〜13の各種の被覆切削チップについて、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SS400の丸棒、
切削速度:390m/min、
切り込み:2.5mm、
送り:0.3mm/rev、
の条件(切削条件Aという)での軟鋼の乾式高速連続切削試験(通常の切削速度は280m/min)、
被削材:JIS・SUS405の長さ方向等間隔4本縦溝入り丸棒、
切削速度:320m/min、
切り込み:1.5mm、
送り:0.25mm/rev、
の条件(切削条件Bという)でのステンレス鋼の乾式高速断続切削試験(通常の切削速度は170m/min)、さらに、
被削材:JIS・SCMnH1の長さ方向等間隔4本縦溝入り丸棒、
切削速度:240m/min、
切り込み:2mm、
送り:0.2mm/rev、
の条件(切削条件Cという)での高マンガン鋼の乾式高速断続切削試験(通常の切削速度は120m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅が、一般に切削工具の使用寿命の目安とされている0.3mmに至るまでの切削時間を測定した。この測定結果を表11に示した。
Next, for the various coated cutting chips of the present invention coated cutting chips 1 to 13 and the conventional coated cutting chips 1 to 13 described above, all of them are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SS400 round bar,
Cutting speed: 390 m / min,
Incision: 2.5mm,
Feed: 0.3mm / rev,
Dry high-speed continuous cutting test (normal cutting speed is 280 m / min) of mild steel under the following conditions (referred to as cutting condition A),
Work material: JIS / SUS405 lengthwise equidistant four round grooved round bars,
Cutting speed: 320 m / min,
Incision: 1.5mm,
Feed: 0.25mm / rev,
In a dry high-speed intermittent cutting test (normal cutting speed is 170 m / min) of stainless steel under the conditions (referred to as cutting condition B),
Work material: JIS · SCMnH1 lengthwise equidistant four round grooved round bars,
Cutting speed: 240 m / min,
Cutting depth: 2mm,
Feed: 0.2mm / rev,
The dry high-speed intermittent cutting test (normal cutting speed is 120 m / min) of high-manganese steel under the above conditions (referred to as cutting condition C). The cutting time until reaching 0.3 mm, which is regarded as a standard for the service life, was measured. The measurement results are shown in Table 11.

Figure 0004844872
Figure 0004844872

Figure 0004844872
Figure 0004844872

Figure 0004844872
Figure 0004844872

Figure 0004844872
Figure 0004844872

Figure 0004844872
Figure 0004844872

Figure 0004844872
Figure 0004844872

Figure 0004844872
Figure 0004844872

Figure 0004844872
Figure 0004844872

Figure 0004844872
Figure 0004844872

Figure 0004844872
Figure 0004844872

Figure 0004844872
Figure 0004844872

表8〜11に示される結果から、この発明の方法で製造された本発明被覆切削チップ1〜13は、いずれも硬質被覆層の上部層が、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示す改質複合酸化物層で構成され、前記改質複合酸化物層は自身の具備するすぐれた高温硬さおよび耐熱性に加えて、一段とすぐれた高温強度を有し、さらに前記改質複合酸化物層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分が、Ra:0.2μm以下の表面粗さに研磨されると共に、前記研磨面全体に亘ってレーザービーム照射形成された硬質被覆層残留応力低減模様によって、前記硬質被覆層における残留引張応力が著しく低減されることと相俟って、ステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工を、高熱発生によって粘着抵抗が一段と増大するようになる高速条件で行なっても、硬質被覆層にチッピングの発生なく、長期に亘ってすぐれた切削性能を発揮するのに対して、硬質被覆層の上部層が、前記0〜10度の範囲内に存在する度数の分布割合が30%以下の傾斜角度数分布グラフを示す従来複合酸化物層で構成され、前記従来複合酸化物層の表面粗さが、Ra:0.3〜0.6μmを示し、かつ、硬質被覆層残留応力低減模様の形成がない従来被覆切削チップ1〜13においては、いずれも上記の難削材の高速切削加工では、前記硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 8 to 11, the coated cutting tips 1 to 13 of the present invention manufactured by the method of the present invention have the upper layer of the hard coating layer divided into the inclination angle sections within the range of 0 to 10 degrees. A modified composite oxidation showing a slope angle distribution graph in which the highest peak is present and the sum of the frequencies within the range of 0 to 10 degrees occupies 45% or more of the whole frequency in the slope angle distribution graph In addition to the excellent high temperature hardness and heat resistance of the modified composite oxide layer, the modified composite oxide layer has a further superior high temperature strength, and at least a cut of the modified composite oxide layer. The hard coating layer residual stress reducing pattern in which the rake face portion and the flank portion including the edge line portion are polished to a surface roughness of Ra: 0.2 μm or less, and the entire polished surface is irradiated with a laser beam. By Combined with the significant reduction in residual tensile stress in the hard coating layer, the cutting resistance of difficult-to-cut materials such as stainless steel, high manganese steel, and mild steel will be further increased by high heat generation. Even when performed under high speed conditions, the hard coating layer exhibits excellent cutting performance over a long period without occurrence of chipping, whereas the upper layer of the hard coating layer is within the range of 0 to 10 degrees. It is composed of a conventional composite oxide layer showing an inclination angle distribution graph in which the frequency distribution ratio is 30% or less, and the surface roughness of the conventional composite oxide layer is Ra: 0.3 to 0.6 μm. In the conventional coated cutting chips 1 to 13 in which the hard coating layer residual stress reduction pattern is not formed, chipping occurs in the hard coating layer in the above-described high-speed cutting of the difficult-to-cut material, which is relatively short. Useful life in time It is clear that lead to.

上述のように、この発明の方法で製造された被覆切削チップは、各種の低合金鋼や炭素鋼などの一般鋼、さらにねずみ鋳鉄などの普通鋳鉄などの高速切削加工は勿論のこと、特に難削材の高速切削加工に用いた場合にも、すぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cutting tip manufactured by the method of the present invention is not only difficult to perform high-speed cutting such as various low alloy steels and general steels such as carbon steel, and ordinary cast iron such as gray cast iron. Even when used for high-speed cutting of cutting materials, it exhibits excellent chipping resistance and exhibits excellent cutting performance over a long period of time. It can cope with energy saving and cost reduction sufficiently satisfactorily.

硬質被覆層を構成する複合酸化物層における結晶粒の(0001)面の傾斜角の測定範囲を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement range of the inclination angle of the (0001) plane of the crystal grain in the complex oxide layer which comprises a hard coating layer. 本発明被覆切削チップ4の硬質被覆層を構成する改質複合酸化物層の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the modified complex oxide layer constituting the hard coating layer of the present invention coated cutting tip 4. 従来被覆切削チップ4の硬質被覆層を構成する従来複合酸化物層の傾斜角度数分布グラフである。4 is a graph showing the distribution of the number of inclination angles of a conventional composite oxide layer constituting a hard coating layer of a conventional coated cutting tip 4. この発明の方法で製造された本発明被覆切削チップにおけるレーザービーム照射形成した硬質被覆層残留応力低減模様の実施例を示す概略斜視図である。It is a schematic perspective view which shows the Example of the hard coating layer residual stress reduction pattern formed by laser beam irradiation in this invention cutting chip manufactured by the method of this invention . この発明の方法で製造された本発明被覆切削チップにおけるレーザービーム照射形成した硬質被覆層残留応力低減模様の図4以外の実施例を示す概略斜視図である。It is a schematic perspective view which shows Examples other than FIG. 4 of the hard coating layer residual stress reduction pattern formed by laser beam irradiation in this invention cutting chip manufactured by the method of this invention . この発明の方法で製造された本発明被覆切削チップにおけるレーザービーム照射形成した硬質被覆層残留応力低減模様の図4,5以外の実施例を示す概略斜視図である。It is a schematic perspective view which shows Examples other than FIG.4, 5 of the hard coating layer residual stress reduction pattern formed by laser beam irradiation in this invention cutting chip manufactured by the method of this invention . この発明の方法で製造された本発明被覆切削チップにおけるレーザービーム照射形成した硬質被覆層残留応力低減模様の図4〜6以外の実施例を示す概略斜視図である。It is a schematic perspective view which shows Examples other than FIGS. 4-6 of the hard coating layer residual stress reduction pattern formed by laser beam irradiation in this invention cutting chip manufactured by the method of this invention . この発明の方法で製造された本発明被覆切削チップにおけるレーザービーム照射形成した硬質被覆層残留応力低減模様の図4〜7以外の実施例を示す概略斜視図である。It is a schematic perspective view which shows Examples other than FIGS. 4-7 of the hard coating layer residual stress reduction pattern formed by laser beam irradiation in this invention cutting chip manufactured by the method of this invention . この発明の方法で製造された本発明被覆切削チップにおけるレーザービーム照射形成した硬質被覆層残留応力低減模様の図4〜8以外の実施例を示す概略斜視図である。It is a schematic perspective view which shows Examples other than FIGS. 4-8 of the hard coating layer residual stress reduction pattern formed by laser beam irradiation in this invention cutting chip manufactured by the method of this invention . この発明の方法で製造された本発明被覆切削チップにおけるレーザービーム照射形成した硬質被覆層残留応力低減模様の図4〜9以外の実施例を示す概略斜視図である。It is a schematic perspective view which shows Examples other than FIGS. 4-9 of the hard coating layer residual stress reduction pattern formed by laser beam irradiation in this invention cutting chip manufactured by the method of this invention . この発明の方法における研磨材層蒸着形成後の被覆切削チップを前記研磨材層の一部を切り欠いて示した概略斜視図である。It is the schematic perspective view which cut and showed a part of said abrasive | polishing material layer for the covering cutting chip after the abrasive | polishing material layer vapor deposition formation in the method of this invention . この発明の方法におけるウエットブラスト後の被覆切削チップを硬質被覆層の一部を切り欠いて示した概略斜視図である。It is the schematic perspective view which showed the coated cutting chip after the wet blasting in the method of this invention by notching a part of hard coating layer . 従来被覆切削チップを硬質被覆層の一部を切り欠いて示した概略斜視図である。It is the general | schematic perspective view which notched and showed a part of hard coating layer the conventional coated cutting chip .

Claims (1)

)炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成されたサーメット基体の切刃稜線部を含むすくい面および逃げ面の全面に、
a−1)下部層として、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
a−2)上部層として、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有し、さらに、
組成式:(Al1−ZCr、(ただし、原子比で、Z:0.01〜0.1)、
を満足すると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すAlとCrの改質複合酸化物層、
以上(a−1)および(a−2)で構成された硬質被覆層を化学蒸着形成し、
ついで、上記硬質被覆層の上部層である改質複合酸化物層の全面に、
b−1)下側層として、0.1〜3μmの平均層厚を有し、かつ、
組成式:TiOX
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、原子比で、
X:1.2〜1.7、
を満足する酸化チタン層、
(b−2)上側層として、0.05〜2μmの平均層厚を有し、かつ、
組成式:TiN1-Y(O)Y
で表わした場合(ただし、(O)は上側層の蒸着形成時における上記下側層である酸化チタン層からの拡散酸素を示す)、同じく厚さ方向中央部をオージェ分光分析装置で測定して、同じく原子比で、
Y:0.01〜0.4、
を満足する窒酸化チタン層、
以上(b−1)および(b−2)で構成された研磨材層を化学蒸着形成した状態で、
)ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム微粒を配合した研磨液を噴射し、
上記の研磨材層が噴射研磨材である酸化アルミニウム微粒の噴射により粉砕微粒化してなる粉砕化酸化チタン微粒および粉砕化窒酸化チタン微粒と、噴射研磨材としての酸化アルミニウム微粒の共存下で、上記硬質被覆層の上部層を構成する改質複合酸化物層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分を研磨して、これら研磨面の表面粗さを準拠規格JIS・B0601−1994に基いた測定で、Ra:0.2μm以下とし、
)さらに、上記改質複合酸化物層研磨面のすくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布してなると共に、前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした硬質被覆層残留応力低減模様をレーザービーム照射形成すること、
を特徴とする難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップの製造方法
( 1 ) On the entire rake face and flank face including the cutting edge ridge line portion of the cermet base composed of tungsten carbide base cemented carbide or titanium carbonitride base cermet,
(A -1 ) As a lower layer, it is composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer, and 3 to 20 μm. A Ti compound layer having an overall average layer thickness,
(A -2 ) As an upper layer, it has an average layer thickness of 1 to 15 μm, and an α-type crystal structure in the state of chemical vapor deposition,
Composition formula: (Al 1-Z Cr Z ) 2 O 3, ( provided that an atomic ratio, Z: 0.01 to 0.1),
And using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the normal to the surface polished surface is Then, the inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured, and the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles is 0.25 degrees. In the inclination angle number distribution graph formed by dividing each pitch and the frequency existing in each section, the highest peak exists in the inclination angle section within the range of 0 to 10 degrees, and the 0 to 10 degrees. A modified composite oxide layer of Al and Cr showing a tilt angle number distribution graph in which the total number of frequencies existing in the range occupies a ratio of 45% or more of the whole frequency in the tilt angle frequency distribution graph,
The hard coating layer composed of ( a-1 ) and ( a-2 ) is formed by chemical vapor deposition,
( 2 ) Next , on the entire surface of the modified composite oxide layer, which is the upper layer of the hard coating layer,
( B-1 ) The lower layer has an average layer thickness of 0.1 to 3 μm, and
Composition formula: TiO x ,
, The central part in the thickness direction is measured with an Auger spectrometer, and the atomic ratio is
X: 1.2 to 1.7,
Satisfying titanium oxide layer,
(B-2) The upper layer has an average layer thickness of 0.05 to 2 μm, and
Composition formula: TiN 1-Y (O) Y ,
(However, (O) indicates the diffused oxygen from the titanium oxide layer, which is the lower layer when the upper layer is formed by vapor deposition ). Similarly, the central portion in the thickness direction is measured with an Auger spectrometer. , Also in atomic ratio,
Y: 0.01 to 0.4
Satisfying titanium oxynitride layer,
In the state where the abrasive layer composed of (b-1) and (b-2) is formed by chemical vapor deposition,
( 3 ) In wet blasting, a polishing liquid containing 15 to 60% by mass of aluminum oxide fine particles in a proportion of the total amount with water is sprayed as a spray abrasive.
In the coexistence of pulverized titanium oxide fine particles and pulverized titanium oxynitride fine particles obtained by pulverizing and atomizing the above-mentioned abrasive layer by spraying aluminum oxide fine particles that are spray abrasives, and the aluminum oxide fine particles as spray abrasives, The rake face portion and the flank face portion including at least the cutting edge ridge line portion of the modified composite oxide layer constituting the upper layer of the hard coating layer are polished, and the surface roughness of these polished surfaces is determined according to JIS / B0601-1994. Ra: 0.2 μm or less in the measurement based on
( 4 ) Further, any one of the rake face and flank face of the polished surface of the modified composite oxide layer, or any of the single basic shape mark and the collective mark of the single basic shape mark over the entire surface of both surfaces. Or a hard covering layer residual stress reduction pattern in which the single basic shape mark is a dug-down surface in which any one of the constituent layers of the hard coating layer is exposed. Forming beam irradiation,
A method for producing a surface-coated cermet cutting throwaway tip that exhibits excellent chipping resistance in a high-speed cutting of difficult-to-cut materials characterized by
JP2006085001A 2006-03-27 2006-03-27 Method for manufacturing a cutting throwaway tip made of surface-coated cermet that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials Expired - Fee Related JP4844872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085001A JP4844872B2 (en) 2006-03-27 2006-03-27 Method for manufacturing a cutting throwaway tip made of surface-coated cermet that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085001A JP4844872B2 (en) 2006-03-27 2006-03-27 Method for manufacturing a cutting throwaway tip made of surface-coated cermet that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials

Publications (2)

Publication Number Publication Date
JP2007260786A JP2007260786A (en) 2007-10-11
JP4844872B2 true JP4844872B2 (en) 2011-12-28

Family

ID=38634289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085001A Expired - Fee Related JP4844872B2 (en) 2006-03-27 2006-03-27 Method for manufacturing a cutting throwaway tip made of surface-coated cermet that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials

Country Status (1)

Country Link
JP (1) JP4844872B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052767A1 (en) * 2009-10-30 2011-05-05 三菱マテリアル株式会社 Surface coated cutting tool with excellent chip resistance

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2821295B2 (en) * 1991-10-30 1998-11-05 東芝タンガロイ株式会社 Tool components with excellent fracture resistance
SE509201C2 (en) * 1994-07-20 1998-12-14 Sandvik Ab Aluminum oxide coated tool
WO2002004156A1 (en) * 2000-07-12 2002-01-17 Sumitomo Electric Industries, Ltd. Coated cutting tool
JP4569746B2 (en) * 2003-12-22 2010-10-27 三菱マテリアル株式会社 Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer

Also Published As

Publication number Publication date
JP2007260786A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2006231433A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP4863053B2 (en) Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5023839B2 (en) Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP4984513B2 (en) Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials
JP2007160497A (en) SURFACE COATED CUTTING TOOL MADE OF CERMET HAVING PROPERTY-MODIFIED ALPHA TYPE Al2O3 LAYER OF HARD COATING LAYER HAVING EXCELLENT CRYSTAL GRAIN INTERFACE STRENGTH
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP4844873B2 (en) Manufacturing method of cutting throwaway tip made of surface-covered cermet with excellent wear resistance of hard coating layer in high-speed cutting
JP2006326730A (en) CUTTING TOOL OF SURFACE-COATED CERMET WITH THICK FILM alpha-TYPE ALUMINUM OXIDE LAYER ACHIEVING EXCELLENT CHIPPING RESISTANCE
JP5029099B2 (en) Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP2006334710A (en) Surface coated cermet cutting tool whose hard coating layer exhibits high chipping resistance in high-speed heavy cutting operation
JP4761138B2 (en) Surface-coated cermet cutting throwaway tip that exhibits excellent chipping resistance due to high-speed cutting of hardened steel
JP4844872B2 (en) Method for manufacturing a cutting throwaway tip made of surface-coated cermet that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4849376B2 (en) Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials
JP4753076B2 (en) Surface-coated cermet cutting throwaway tip that provides excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2009056562A (en) Surface-coated cutting tool
JP4756471B2 (en) Surface-coated cermet cutting throwaway tip that provides excellent chipping resistance in high-speed heavy cutting of hardened steel
JP4761141B2 (en) Surface-coated cermet cutting throwaway tip that provides excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4761140B2 (en) Surface-coated cermet cutting throwaway tip that exhibits excellent chipping resistance due to high-speed cutting of hardened steel
JP4857759B2 (en) Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4756469B2 (en) Surface-coated cermet cutting throwaway tip that exhibits excellent chipping resistance due to high-speed cutting of hardened steel
JP4788358B2 (en) Method for producing a surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in difficult-to-cut materials
JP4816904B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4844872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees