JP4760648B2 - Pure water production equipment - Google Patents

Pure water production equipment Download PDF

Info

Publication number
JP4760648B2
JP4760648B2 JP2006267691A JP2006267691A JP4760648B2 JP 4760648 B2 JP4760648 B2 JP 4760648B2 JP 2006267691 A JP2006267691 A JP 2006267691A JP 2006267691 A JP2006267691 A JP 2006267691A JP 4760648 B2 JP4760648 B2 JP 4760648B2
Authority
JP
Japan
Prior art keywords
urea
pure water
nitrogen compound
adsorbent
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006267691A
Other languages
Japanese (ja)
Other versions
JP2008086854A (en
Inventor
宏之 池田
孝博 川勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006267691A priority Critical patent/JP4760648B2/en
Publication of JP2008086854A publication Critical patent/JP2008086854A/en
Application granted granted Critical
Publication of JP4760648B2 publication Critical patent/JP4760648B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は純水製造装置に係り、特に尿素、チオ尿素、スルホニル尿素、アリル尿素、グアニシン、アセチルチオ尿素、フェニル尿素などの尿素様窒素化合物含有水を被処理水(原水)とする純水製造装置に関する。   The present invention relates to an apparatus for producing pure water, and more particularly, an apparatus for producing pure water using urea-containing nitrogen compound-containing water such as urea, thiourea, sulfonylurea, allylurea, guanidine, acetylthiourea, and phenylurea as treated water (raw water). About.

I.半導体製造工場、液晶製造工場、製薬工業、食品工業、電力工業等の各種の産業又は民生用ないし研究施設等において使用される純水の製造において、原水(被処理水)に含まれるTOC成分をオゾン、過酸化水素、過硫酸、次亜塩素酸等の酸化剤や紫外線酸化装置を用いてイオン状の有機酸に酸化分解し、後段のイオン交換樹脂に吸着させて除去する方法(特開平11−99395)や、生物処理により生物代謝を利用して分解除去する方法(特開平7−313994)、尿素分解酵素を用いて尿素分解をして除去する方法(特開昭63−20316)などが行われている。
II.尿素の吸着剤として、酸化セルロース、ヒドラジド基を有する重合体にホルムアルデヒド又はグリオキザールを反応させてなる物質、カルボキシル基とイミダゾール基を有する物質などが公知である(特開平2−221224,特開昭51−69489,特開昭63−59353)。
特開平7−313994 特開平11−99395 特開昭63−20316 特開平2−221224 特開昭51−69489 特開昭63−59353
I. In the manufacture of pure water used in various industries such as semiconductor manufacturing factory, liquid crystal manufacturing factory, pharmaceutical industry, food industry, electric power industry, etc. or consumer use or research facilities, etc., the TOC component contained in raw water (treated water) A method of oxidizing and decomposing to an ionic organic acid using an oxidizing agent such as ozone, hydrogen peroxide, persulfuric acid or hypochlorous acid, or an ultraviolet oxidizer, and adsorbing and removing it to an ion exchange resin in the latter stage (Japanese Patent Laid-Open No. 11) -99395), a method of decomposing and removing using biological metabolism by biological treatment (Japanese Patent Laid-Open No. 7-313994), a method of decomposing and removing urea using a urea-degrading enzyme (Japanese Patent Laid-Open No. 63-20316), etc. Has been done.
II. Known urea adsorbents include oxidized cellulose, a substance obtained by reacting a polymer having a hydrazide group with formaldehyde or glyoxal, and a substance having a carboxyl group and an imidazole group (JP-A-2-221224, JP-A-51-21). -69489, JP 63-59353).
JP-A-7-313994 JP-A-11-99395 JP 63-20316 JP-A-2-221224 JP 51-69489 JP-A-63-59353

i) 純水製造装置に用いられている酸化装置、分解装置、生物処理装置などの装置は非常に大型であると共に、非常に高価であり、また広い設置面積を必要とする。 i) The devices such as an oxidizer, a decomposer, and a biological treatment device used in a pure water production device are very large, very expensive, and require a large installation area.

例えば、紫外線酸化装置においては、尿素様窒素化合物は難分解性物質のため、紫外線ランプの本数を多く必要とし、装置が非常に大型化し、高価となってしまう。   For example, in an ultraviolet oxidation apparatus, urea-like nitrogen compounds are hardly decomposable substances, so that a large number of ultraviolet lamps are required, and the apparatus becomes very large and expensive.

また、オゾン酸化装置の場合、難分解物質の酸化に時間を要し、装置が大型化すると共に、酸化に必要なオゾン発生装置も大きくなり、設備が高価となっていた。
ii) 上記特許文献4〜6に記載の尿素除去は、腎臓疾患患者の人工透析を対象とするものであり、被処理水中の尿素濃度は100mg/dl程度と高濃度であり、純水製造装置の様な希薄な溶液からの尿素除去を対象とはしていない。
iii) 本発明は、上記従来技術の問題点を解決し、比較的簡易な設備で希薄尿素様窒素化合物濃度の被処理水中から尿素様窒素化合物を十分に除去することができる手段を備えた純水製造装置を提供することを目的とする。
Further, in the case of an ozone oxidation apparatus, it takes time to oxidize hardly decomposed substances, the apparatus becomes large, and the ozone generation apparatus necessary for oxidation becomes large, and the equipment is expensive.
ii) Urea removal described in Patent Documents 4 to 6 is intended for artificial dialysis of kidney disease patients, and the urea concentration in the water to be treated is as high as about 100 mg / dl. It is not intended to remove urea from dilute solutions such as
iii) The present invention solves the above-mentioned problems of the prior art, and is provided with a pure unit equipped with a means capable of sufficiently removing urea-like nitrogen compounds from the treated water having a dilute urea-like nitrogen compound concentration with relatively simple equipment. An object is to provide a water production apparatus.

本発明の純水製造装置は、被処理水に紫外線を照射する紫外線酸化装置を有する純水製造装置において、被処理水は尿素様窒素化合物を含有しており、該紫外線酸化装置の前段又は後段に尿素様窒素化合物を吸着する尿素様窒素化合物吸着剤を有した尿素様窒素化合物吸着手段が設けられている純水製造装置であって、前記尿素様窒素化合物は、尿素、チオ尿素、スルホニル尿素、アリル尿素、グアニシン、アセチルチオ尿素、フェニル尿素のいずれかであり、前記吸着剤は酸化セルロースよりなることを特徴とするものである。 The pure water production apparatus of the present invention is a pure water production apparatus having an ultraviolet oxidation device that irradiates ultraviolet rays to the water to be treated. The water to be treated contains a urea-like nitrogen compound, and the front or rear stage of the ultraviolet oxidation device. Is a pure water production apparatus provided with a urea-like nitrogen compound adsorbing means having a urea-like nitrogen compound adsorbent for adsorbing a urea-like nitrogen compound , wherein the urea-like nitrogen compound is urea, thiourea, sulfonylurea , Allylurea, guanidine, acetylthiourea, and phenylurea, and the adsorbent is made of oxidized cellulose .

なお、尿素様窒素化合物としては、尿素、チオ尿素、スルホニル尿素、アリル尿素、グアニシン、アセチルチオ尿素、フェニル尿素が例示される。 As the urea-like nitrogen compounds, urea, thiourea, sulfonylurea, allyl urea, Guanishin acetylthio urea, phenyl urea and the like.

かかる本発明の純水製造装置によると、被処理水中の尿素様窒素化合物が吸着剤によって効率よく除去される。この純水製造装置は、尿素様窒素化合物を吸着除去するものであり、尿素様窒素化合物除去設備の構成が簡易であり、設備コストも低い。   According to the pure water production apparatus of the present invention, urea-like nitrogen compounds in the water to be treated are efficiently removed by the adsorbent. This pure water production apparatus adsorbs and removes the urea-like nitrogen compound, the configuration of the urea-like nitrogen compound removal equipment is simple, and the equipment cost is low.

尿素様窒素化合物吸着手段を紫外線酸化装置の前段に配置した場合には、紫外線酸化装置に流入する尿素様窒素化合物濃度が低下し、紫外線酸化装置の負荷が低減される。   In the case where the urea-like nitrogen compound adsorbing means is arranged at the front stage of the ultraviolet oxidation device, the concentration of the urea-like nitrogen compound flowing into the ultraviolet oxidation device is lowered, and the load on the ultraviolet oxidation device is reduced.

尿素様窒素化合物吸着手段を紫外線酸化装置の後段に配置した場合には、紫外線酸化装置で除去しきれなかった尿素様窒素化合物を尿素様窒素化合物吸着手段で吸着除去することができる。   When the urea-like nitrogen compound adsorbing means is arranged at the rear stage of the ultraviolet oxidation apparatus, urea-like nitrogen compounds that could not be removed by the ultraviolet oxidation apparatus can be adsorbed and removed by the urea-like nitrogen compound adsorption means.

尿素様窒素化合物吸着手段をユースポイントへの純水供給配管の末端に設置した場合には、尿素様窒素化合物除去処理が必要な水だけを尿素様窒素化合物吸着除去処理することになり、尿素様窒素化合物吸着手段の負荷が低減される。   When the urea-like nitrogen compound adsorption means is installed at the end of the pure water supply pipe to the point of use, only the water that needs urea-like nitrogen compound removal treatment will be urea-like nitrogen compound adsorption removal treatment, The load on the nitrogen compound adsorption means is reduced.

尿素様窒素化合物吸着剤を繊維状、粒状又はプリーツ膜状などの濾材形状とすることにより、尿素様窒素化合物の吸着除去作用と共に、微粒子の濾過による除去作用も奏される。   By making the urea-like nitrogen compound adsorbent into a filter medium shape such as a fiber, granule or pleated membrane, the urea-like nitrogen compound is adsorbed and removed, and fine particles are removed by filtration.

以下、図面を参照して実施の形態について説明する。   Hereinafter, embodiments will be described with reference to the drawings.

本発明の純水製造装置は、尿素様窒素化合物吸着剤を有した尿素様窒素化合物吸着手段と、紫外線酸化装置とを備えており、好ましくは第1図〜第3図のように前処理装置1、逆浸透膜処理装置(RO装置)2、尿素様窒素化合物吸着装置3、紫外線酸化装置4、イオン交換装置又は電気脱イオン装置などよりなる脱イオン装置5、限外濾過膜装置(UF装置)などよりなる微粒子除去装置6を備えている。   The pure water production apparatus of the present invention comprises a urea-like nitrogen compound adsorbing means having a urea-like nitrogen compound adsorbent and an ultraviolet oxidation device, and preferably a pretreatment device as shown in FIGS. DESCRIPTION OF SYMBOLS 1, Reverse osmosis membrane processing apparatus (RO apparatus) 2, Urea-like nitrogen compound adsorption apparatus 3, UV oxidation apparatus 4, Deionization apparatus 5 which consists of an ion exchange apparatus or an electrodeionization apparatus, An ultrafiltration membrane apparatus (UF apparatus) ) Or the like.

第1図の純水製造装置では、原水は、前処理装置1で処理された後、RO処理され、尿素様窒素化合物が吸着除去された後、紫外線酸化処理され、TOC成分が酸化されてイオン化する。このイオン化した分解物が脱イオン装置5で除去される。脱イオン装置5からの流出水中に含まれる微小なイオン交換樹脂片などの微粒子はUF膜などを備えた微粒子除去装置6で除去される。   In the pure water production apparatus of FIG. 1, the raw water is treated with the pretreatment device 1 and then subjected to RO treatment, the urea-like nitrogen compound is adsorbed and removed, and then subjected to ultraviolet oxidation treatment, and the TOC component is oxidized and ionized. To do. This ionized decomposition product is removed by the deionizer 5. Fine particles such as minute ion exchange resin pieces contained in the effluent water from the deionizer 5 are removed by a fine particle remover 6 having a UF membrane or the like.

第2図では、尿素様窒素化合物吸着装置3が紫外線酸化装置4の後段側に配置されており、ここで尿素様窒素化合物の吸着除去が行われる他は第1図と同様の処理が行われる。   In FIG. 2, the urea-like nitrogen compound adsorbing device 3 is arranged on the rear stage side of the ultraviolet oxidation device 4, and the same process as in FIG. 1 is performed except that the urea-like nitrogen compound is adsorbed and removed here. .

第3図では、尿素様窒素化合物吸着装置3がUF膜装置6の後段側に配置されており、ここで尿素様窒素化合物の吸着除去が行われる他は第1図と同様の処理が行われる。   In FIG. 3, the urea-like nitrogen compound adsorbing device 3 is arranged on the rear stage side of the UF membrane device 6, and the same process as in FIG. 1 is performed except that the urea-like nitrogen compound is adsorbed and removed here. .

尿素様窒素化合物吸着装置3としては、酸化セルロースよりなる吸着剤を備えたものが用いられる。酸化セルロースとしては重合度が500〜800程度のリンターセルロースを酸化したものが好適であるが、これに限定されない The urea-like nitrogen compound adsorption device 3, those with oxidation cellulose scan by Li Cheng adsorbent is used. Oxidized cellulose is preferably obtained by oxidizing lintercellulose having a degree of polymerization of about 500 to 800, but is not limited thereto .

これらの吸着剤は、繊維状、粒状又はプリーツ膜状などの濾材形態とされるのが好ましい。繊維としては、直径1nm〜100μm、長さ0.1〜100mm程度のものが好適である。粒子としては平均粒径が0.1〜0.9mm程度のものが好適である。粒子形状は、球状、ペレット状、粉末状、破砕状など任意である。プリーツ膜状としては、膜厚200〜800μmのものが好適である。   These adsorbents are preferably in the form of filter media such as fibrous, granular or pleated membranes. As the fiber, fibers having a diameter of about 1 nm to 100 μm and a length of about 0.1 to 100 mm are suitable. As the particles, those having an average particle diameter of about 0.1 to 0.9 mm are suitable. The particle shape is arbitrary such as a spherical shape, a pellet shape, a powder shape, and a crushed shape. As the pleated film shape, a film thickness of 200 to 800 μm is suitable.

吸着装置3としては、このような濾材形状の吸着剤を充填した充填床を有する吸着塔が好適である。   As the adsorption device 3, an adsorption tower having a packed bed filled with such a filter medium-shaped adsorbent is suitable.

この吸着装置3は、第1図のように紫外線酸化装置4の前段に設けられてもよく、第2図のように紫外線酸化装置4の後段に設けられてもよく、また第3図のように、ユースポイントへの純水送水配管の末端に設けられてもよい。   The adsorbing device 3 may be provided before the ultraviolet oxidizer 4 as shown in FIG. 1, may be provided after the ultraviolet oxidizer 4 as shown in FIG. 2, and as shown in FIG. In addition, it may be provided at the end of the pure water supply pipe to the use point.

吸着装置3を紫外線酸化装置4の前段に設けた場合には、紫外線酸化装置4への流入水中の尿素様窒素化合物濃度が低下するので、紫外線酸化装置4の負荷が軽減され、紫外線酸化装置4が構成の簡易なもので足りるようになる。   When the adsorption device 3 is provided in front of the ultraviolet oxidizer 4, the concentration of urea-like nitrogen compounds in the inflow water to the ultraviolet oxidizer 4 is reduced, so that the load on the ultraviolet oxidizer 4 is reduced and the ultraviolet oxidizer 4 is reduced. However, a simple configuration is sufficient.

吸着装置3を紫外線酸化装置4の後段に設けた場合には、紫外線酸化装置で処理しきれなかった尿素様窒素化合物のポリッシングの役割を果たし、特に送水配管の末端に設けた場合には、吸着処理すべき水量が少なくて済み、吸着剤量を少なくすることができる。   When the adsorption device 3 is provided downstream of the ultraviolet oxidation device 4, it plays a role of polishing urea-like nitrogen compounds that could not be processed by the ultraviolet oxidation device, and in particular, when it is provided at the end of the water supply pipe, the adsorption device The amount of water to be processed is small, and the amount of adsorbent can be reduced.

即ち、特に半導体製造などの純水製造設備では、超純水を循環させ、使用場所で必要な量だけを供給する系統となっていることが多い。また使用場所での水質の要求はさまざまであり、有機物除去を必要とする系、有機物質除去を必要としない系、微粒子除去を必要とする系、微粒子除去を必要としない系と分かれていることが多い。   That is, in particular, in pure water manufacturing facilities such as semiconductor manufacturing, ultrapure water is often circulated to supply only a necessary amount at the place of use. In addition, the water quality requirements at the place of use vary, and it is divided into systems that require organic substance removal, systems that do not require organic substance removal, systems that require fine particle removal, and systems that do not require fine particle removal. There are many.

そこで、高度な有機物除去を要する系だけに尿素様窒素化合物吸着装置を設置することで、尿素様窒素化合物吸着装置の設置面積、コストを低減することが可能となる。   Therefore, the installation area and cost of the urea-like nitrogen compound adsorbing device can be reduced by installing the urea-like nitrogen compound adsorbing device only in a system that requires advanced organic matter removal.

なお、前処理装置1としては、UF膜装置又は精密濾過膜装置の膜濾過装置が好適であるが、これらの膜濾過装置の前段に生物処理装置が設置されてもよい。   As the pretreatment device 1, a membrane filtration device such as a UF membrane device or a microfiltration membrane device is suitable. However, a biological treatment device may be installed in front of these membrane filtration devices.

また、処理される原水としては、市水、井水、工水、回収水などが挙げられる。   Examples of raw water to be treated include city water, well water, industrial water, and recovered water.

RO装置2としては、RO装置を直列に2段設置した2段RO処理装置が好適である。   As the RO apparatus 2, a two-stage RO processing apparatus in which the RO apparatuses are installed in two stages in series is suitable.

紫外線酸化装置4としては、低圧紫外線酸化装置などが好適である。   As the ultraviolet oxidizer 4, a low-pressure ultraviolet oxidizer or the like is suitable.

脱イオン装置5としては、上記の通り、電気脱イオン装置やイオン交換装置が好適である。   As the deionization device 5, as described above, an electrodeionization device and an ion exchange device are suitable.

以下、実施例、比較例及び参考例について説明する。   Hereinafter, examples, comparative examples, and reference examples will be described.

なお、これらの例で用いた吸着剤や機器、分析法は次の通りである。
活性炭:栗田工業(株)製「クリコールKW10−30」
尿素様窒素化合物吸着剤(酸化セルロース):ジョンソンエンドジョンソン(株)製
「アブソーバブルヘモスタット」(平均直径2μm、平均長さ5mm)
ノボラック型フェノール樹脂吸着剤:群栄化学工業(株)製PSM−4326
(平均粒径0.3mm)
イオン交換樹脂カラム:栗田工業(株)製「デミエースDY−07」
イオン交換樹脂:栗田工業(株)製「KR−UM2」
UV酸化装置:日本フォトサイエンス(株)製「KUS−1改」(UV酸化分解ランプ
1本の特注品)
TOC計:Sievers社製PPT
尿素分析法:ジアセチル法
In addition, the adsorbent, equipment, and analysis method used in these examples are as follows.
Activated carbon: “Crycol KW10-30” manufactured by Kurita Kogyo Co., Ltd.
Urea-like nitrogen compound adsorbent (oxidized cellulose): manufactured by Johnson & Johnson Co., Ltd.
"Absorbable hemostat" (average diameter 2μm, average length 5mm)
Novolac type phenolic resin adsorbent: PSM-4326 manufactured by Gunei Chemical Industry Co., Ltd.
(Average particle size 0.3mm)
Ion exchange resin column: “Demiace DY-07” manufactured by Kurita Kogyo Co., Ltd.
Ion exchange resin: “KR-UM2” manufactured by Kurita Kogyo Co., Ltd.
UV oxidizer: “KUS-1 Kai” (UV oxidative decomposition lamp) manufactured by Nippon Photo Science Co., Ltd.
(1 special order product)
TOC meter: PPT made by Sievers
Urea analysis method: Diacetyl method

[参考例1,2,3]
第5図に示すように、原水タンク10内の原水を吸着塔11、イオン交換塔13の順に通水し、原水タンク10に戻す閉鎖循環ラインを採用した。
[Reference Examples 1, 2, 3]
As shown in FIG. 5, a closed circulation line was adopted in which the raw water in the raw water tank 10 was passed through the adsorption tower 11 and the ion exchange tower 13 in this order and returned to the raw water tank 10.

吸着塔11内の吸着剤は活性炭(参考例1)、酸化セルロース(同2)、フェノール樹脂(同3)とした。   The adsorbent in the adsorption tower 11 was activated carbon (Reference Example 1), oxidized cellulose (2), and phenol resin (3).

原水として超純水に特級試薬である尿素を0.5mg/L添加した原水を使用し、処理前及び処理後のTOC濃度と尿素濃度及び抵抗率を測定した。   Raw water obtained by adding 0.5 mg / L of urea as a special grade reagent to ultrapure water was used as raw water, and the TOC concentration, urea concentration and resistivity before and after treatment were measured.

なお、通水量は1L/hrとし、吸着塔11の通水SVは10hr−1とした。結果を表1に示す。 The water flow rate was 1 L / hr, and the water flow SV of the adsorption tower 11 was 10 hr −1 . The results are shown in Table 1.

表1の通り、吸着剤として酸化セルロース又はフェノール樹脂を使用した場合、活性炭を使用した場合に比べ、TOC、尿素の除去性能が優れている。尿素の除去能力は酸化セルロースが特に優れている。   As shown in Table 1, when oxidized cellulose or phenol resin is used as the adsorbent, the removal performance of TOC and urea is superior to that when activated carbon is used. Oxidized cellulose is particularly excellent in urea removal ability.

Figure 0004760648
Figure 0004760648

[比較例1,2、実施例1]
吸着塔11とイオン交換塔13の間にUV酸化装置12を設けることにより第4図のラインを構成した。その他は参考例1と同一条件として通水を行い、結果を表2に示した。
[Comparative Examples 1 and 2 and Example 1]
The line shown in FIG. 4 was constructed by providing a UV oxidation apparatus 12 between the adsorption tower 11 and the ion exchange tower 13. The other conditions were the same as in Reference Example 1, and water was passed through. The results are shown in Table 2.

[比較例3,4、実施例
原水の通水速度を2L/hrとした他は比較例1,2、実施例1と同一条件にて通水を行った。結果を表3に示す。
[Comparative Examples 3 and 4 and Example 2 ]
Water flow rate except that a 2L / hr to the comparative example of the raw water 1, 2, was passing water in Example 1 and the same conditions. The results are shown in Table 3.

なお、吸着剤については比較例1,は活性炭とし、実施例1,は酸化セルロースとし、比較例2,4はフェノール樹脂とした。 For the adsorbent, Comparative Examples 1 and 3 were activated carbon, Examples 1 and 2 were oxidized cellulose, and Comparative Examples 2 and 4 were phenol resins.

Figure 0004760648
Figure 0004760648

Figure 0004760648
Figure 0004760648

表2,3の様に、流量を倍の2L/hrに増加させても酸化セルロースを使用した実施例1,では処理水中のTOC、尿素の増加は認められなかった。一方活性炭を使用した比較例1,では流量を増加させるとTOC、尿素の増加が確認された。 As shown in Tables 2 and 3, in Examples 1 and 2 using oxidized cellulose, no increase in TOC and urea was observed even when the flow rate was increased to 2 L / hr. On the other hand, in Comparative Examples 1 and 3 using activated carbon, an increase in TOC and urea was confirmed when the flow rate was increased.

このように流量を倍にしても、TOC、尿素の除去効率は変わらなかったことにより、UV酸化装置の負荷を上げても除去性能は変わらないことが言える。即ち、尿素吸着剤をUV酸化装置の前に前置することでUV酸化装置の負荷が減っており、TOC酸化装置の性能能力を落としても処理水のTOC、尿素濃度に影響がないと言える。すなわち、尿素吸着手段をUV酸化装置の前段に設置することにより、UV酸化装置として性能の低いものを選択できるので、全体のコストを下げることができる。   Thus, even if the flow rate is doubled, the removal efficiency of TOC and urea did not change, so it can be said that the removal performance does not change even if the load of the UV oxidation apparatus is increased. That is, by placing the urea adsorbent in front of the UV oxidizer, the load on the UV oxidizer is reduced, and even if the performance capability of the TOC oxidizer is reduced, the TOC and urea concentration of the treated water are not affected. . That is, by installing the urea adsorption means in front of the UV oxidizer, it is possible to select a UV oxidizer having a low performance, thereby reducing the overall cost.

[参考例4]
JIS Z 8901試験用粉体2の白色アルミナNo2を上記原水に1mg/L分散させたアルミナ分散原水を作成した。このアルミナ分散原水を孔径0.45μmのMFフィルターに水頭圧0.1MPaで1L/hrの流量にて通水したところ、50Lで通水できなくなった。なお、この処理水の水質を表4に示す。
[Reference Example 4]
Alumina-dispersed raw water was prepared by dispersing 1 mg / L of white alumina No. 2 of JIS Z 8901 Test Powder 2 in the raw water. This alumina-dispersed raw water was passed through an MF filter having a pore diameter of 0.45 μm at a head pressure of 0.1 MPa at a flow rate of 1 L / hr. The quality of this treated water is shown in Table 4.

[参考例5]
酸化セルロースの不織布を直径30mmのカラムに150mm高さに充填した。この充填カラムを参考例4と同じMFフィルターの前段に配置し、充填カラムからMFフィルターに直列に参考例4と同一のアルミナ分散原水を同一条件で通水したところ、MFフィルターに400Lまで通水することができた。このときの処理水の水質を表4に示す。
[Reference Example 5]
A non-woven fabric of oxidized cellulose was packed in a column having a diameter of 30 mm to a height of 150 mm. When this packed column is placed in front of the same MF filter as in Reference Example 4 and the same alumina dispersion raw water as in Reference Example 4 is passed in series from the packed column to the MF filter under the same conditions, water flows up to 400 L through the MF filter. We were able to. Table 4 shows the quality of the treated water at this time.

Figure 0004760648
Figure 0004760648

この参考例4,5の通り、酸化セルロース不織布は尿素様窒素化合物吸着剤としてだけでなく、微粒子除去も可能となる。このように、フィルターの機能とTOC除去機能を兼ね備えた酸化セルロース不織布を尿素様窒素化合物吸着剤として用いることにより、吸着装置の後段側の装置の設置面積の低減、コストの低減、交換などのメンテナンスの簡易化が期待できる。   As in Reference Examples 4 and 5, the oxidized cellulose non-woven fabric can remove not only the urea-like nitrogen compound adsorbent but also the fine particles. As described above, by using the oxidized cellulose nonwoven fabric having both the filter function and the TOC removal function as the urea-like nitrogen compound adsorbent, the installation area of the apparatus on the rear side of the adsorption apparatus is reduced, the cost is reduced, and maintenance such as replacement is performed. Simplification can be expected.

実施例の純水製造装置の系統図である。It is a systematic diagram of the pure water manufacturing apparatus of an Example. 別の実施例の純水製造装置の系統図である。It is a systematic diagram of the pure water manufacturing apparatus of another Example. 別の実施例の純水製造装置の系統図である。It is a systematic diagram of the pure water manufacturing apparatus of another Example. 参考例の純水製造装置の系統図である。It is a systematic diagram of the pure water manufacturing apparatus of a reference example. 別の参考例の純水製造装置の系統図である。It is a systematic diagram of the pure water manufacturing apparatus of another reference example.

1 前処理装置
2 逆浸透膜処理装置
3 尿素様窒素化合物吸着装置
4 紫外線酸化装置
5 脱イオン装置
6 微粒子除去装置
DESCRIPTION OF SYMBOLS 1 Pre-processing apparatus 2 Reverse osmosis membrane processing apparatus 3 Urea-like nitrogen compound adsorption apparatus 4 Ultraviolet oxidation apparatus 5 Deionization apparatus 6 Fine particle removal apparatus

Claims (4)

被処理水に紫外線を照射する紫外線酸化装置を有する純水製造装置において、
被処理水は尿素様窒素化合物を含有しており、
該紫外線酸化装置の前段又は後段に尿素様窒素化合物を吸着する尿素様窒素化合物吸着剤を有した尿素様窒素化合物吸着手段が設けられている純水製造装置であって、
前記尿素様窒素化合物は、尿素、チオ尿素、スルホニル尿素、アリル尿素、グアニシン、アセチルチオ尿素、フェニル尿素のいずれかであり、前記吸着剤は酸化セルロースよりなることを特徴とする純水製造装置。
In a pure water production apparatus having an ultraviolet oxidation device that irradiates ultraviolet rays to water to be treated,
The treated water contains urea-like nitrogen compounds,
A pure water production apparatus provided with a urea-like nitrogen compound adsorbing means having a urea-like nitrogen compound adsorbent adsorbing a urea-like nitrogen compound before or after the ultraviolet oxidation apparatus ,
The urea-like nitrogen compound is any one of urea, thiourea, sulfonylurea, allylurea, guanidine, acetylthiourea, and phenylurea, and the adsorbent is made of oxidized cellulose .
請求項1において、前記吸着手段がユースポイントへの純水供給配管の末端に設置されていることを特徴とする純水製造装置。   2. The pure water production apparatus according to claim 1, wherein the adsorption means is installed at a terminal of a pure water supply pipe to a use point. 請求項1又は2において、前記吸着剤が濾材形状となっていることを特徴とする純水製造装置。   3. The pure water production apparatus according to claim 1, wherein the adsorbent has a filter medium shape. 請求項3において、前記吸着剤は繊維状、粒状又はプリーツ膜状であることを特徴とする純水製造装置。   4. The apparatus for producing pure water according to claim 3, wherein the adsorbent is in the form of fibers, granules, or pleats.
JP2006267691A 2006-09-29 2006-09-29 Pure water production equipment Expired - Fee Related JP4760648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006267691A JP4760648B2 (en) 2006-09-29 2006-09-29 Pure water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006267691A JP4760648B2 (en) 2006-09-29 2006-09-29 Pure water production equipment

Publications (2)

Publication Number Publication Date
JP2008086854A JP2008086854A (en) 2008-04-17
JP4760648B2 true JP4760648B2 (en) 2011-08-31

Family

ID=39371572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006267691A Expired - Fee Related JP4760648B2 (en) 2006-09-29 2006-09-29 Pure water production equipment

Country Status (1)

Country Link
JP (1) JP4760648B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5233146B2 (en) * 2007-03-30 2013-07-10 栗田工業株式会社 ORGANIC UREA COMPOUND ADSORBENT, ORGANIC UREA COMPOUND ADSORBING DEVICE, AND ORGANIC UREA COMPOUND TREATMENT METHOD
JP2010156683A (en) * 2008-12-04 2010-07-15 Sumco Corp Method for measuring silica concentration

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137433A (en) * 1983-12-26 1985-07-22 Agency Of Ind Science & Technol Adsorbent for urea decomposition
JPS61171506A (en) * 1985-01-25 1986-08-02 Shokubai Kasei Kogyo Kk Decompositional adsorbent of urea dissolved in liquid
JP3216256B2 (en) * 1992-09-08 2001-10-09 栗田工業株式会社 Ultrapure water production equipment
JP3919259B2 (en) * 1995-07-24 2007-05-23 オルガノ株式会社 Ultrapure water production equipment

Also Published As

Publication number Publication date
JP2008086854A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
TWI408107B (en) Extra-pure water production equipment and operating method thereof
JP6304259B2 (en) Ultrapure water production equipment
KR100687361B1 (en) Apparatus for producing water containing dissolved ozone
JPH0490885A (en) Apparatus and method for making pure water
KR102287709B1 (en) Ultrapure Water Manufacturing System
JP3698093B2 (en) Water treatment method and water treatment apparatus
JP2006320847A (en) Organic arsenic-containing water treatment method, and its apparatus
WO2016136650A1 (en) Removal device of fine particles in water and ultrapure water production/supply system
JP2023145713A (en) System and method for removing persistent organic compounds from water
JP4552327B2 (en) Ultrapure water production equipment
JP4760648B2 (en) Pure water production equipment
JPH10216721A (en) Ultrapure water producing device
WO2019188965A1 (en) Ultrapure water production system and ultrapure water production method
JP5842347B2 (en) Subsystem for ultrapure water production
JP5061410B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP6716992B2 (en) Wet cleaning device and wet cleaning method
CN101362618B (en) Combined technology for treating nitrosamines pollutants in water
JP2005246126A (en) Device and method for manufacturing pure water or ultra pure water
JP4826864B2 (en) Ultrapure water production equipment
JP2006239617A (en) Water treatment method and water treatment apparatus
JP2008246439A (en) Adsorbent for organic urea based compound, adsorption device for organic urea based compound, and treatment method for organic urea based compound
JP3992996B2 (en) Wastewater treatment method and apparatus
JP2003010849A (en) Secondary pure water making apparatus
JP3727156B2 (en) Desalination equipment
WO2019188964A1 (en) Ultrapure water production system and ultrapure water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees