JPS60137433A - Adsorbent for urea decomposition - Google Patents

Adsorbent for urea decomposition

Info

Publication number
JPS60137433A
JPS60137433A JP58249469A JP24946983A JPS60137433A JP S60137433 A JPS60137433 A JP S60137433A JP 58249469 A JP58249469 A JP 58249469A JP 24946983 A JP24946983 A JP 24946983A JP S60137433 A JPS60137433 A JP S60137433A
Authority
JP
Japan
Prior art keywords
adsorbent
urea
urease
polysaccharide
aldehyde group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58249469A
Other languages
Japanese (ja)
Other versions
JPS6257381B2 (en
Inventor
Toshimi Shimizu
敏美 清水
Yoshio Tanaka
芳雄 田中
Yoshihiko Yamazaki
嘉彦 山崎
Isao Isa
伊佐 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Japan Carlit Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP58249469A priority Critical patent/JPS60137433A/en
Publication of JPS60137433A publication Critical patent/JPS60137433A/en
Publication of JPS6257381B2 publication Critical patent/JPS6257381B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • External Artificial Organs (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To quicken adsorption velocity by bringing substance contg. urea to which urease is immobilized into contact with polysaccharide contg. an aldehyde group which is obtained by oxidizing polysaccharide having at least two adjacent hydroxy groups in a structural unit. CONSTITUTION:Polysaccharide contg. an aldehyde group which is obtained by oxidizing the hydroxy group of polysaccharide such as starch, cellulose, dextrin, mannan and carboxymethyl derivatives of these compounds to aldehyde group is dispersed in water and is caused to react with enzyme while stirring the mixture at 0-5 deg.C for 10-50hr to immobilize it. As enzyme, urease which has urea as base substance and is decomposed to ammonia is used. After the immobilization, it is dried by freezing and stored in a closed state at 0-5 deg.C.

Description

【発明の詳細な説明】 本発明は、多糖類の酸化物にウレアーゼが固定されてい
る新規な尿素分解吸着剤に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel urea decomposition adsorbent in which urease is immobilized on a polysaccharide oxide.

従来、吸着剤の吸着性能を向上させるために、吸着剤の
性質や形状を改良することが行なわれている。しかし、
これらは吸着剤側からの改善法であり、被吸着物質が同
じである限り、おのずと限界がありその吸着性能を著し
く向上させることは困難である。そこで被吸着物質側に
視点を変えた改良法、すなわち、被吸着前駆物質をさら
に吸着されやすい低分子物質に変換し、それをすぐさま
吸着剤により除去する方法によって飛躍的な吸着効果が
期待できる。この時、被吸着前駆物質を効果的に変換す
るのに酵素反応を利用すればよい。
Conventionally, in order to improve the adsorption performance of an adsorbent, the properties and shape of the adsorbent have been improved. but,
These methods are improvement methods from the adsorbent side, and as long as the substance to be adsorbed is the same, there are naturally limits and it is difficult to significantly improve the adsorption performance. Therefore, a dramatic adsorption effect can be expected by an improved method that changes the viewpoint from the side of the adsorbed substance, that is, a method that converts the adsorbed precursor into a low-molecular substance that is more easily adsorbed, and then immediately removes it with an adsorbent. At this time, an enzymatic reaction may be used to effectively convert the adsorbed precursor.

たとえば人工解毒臓器用吸着剤として尿素除去用吸着剤
が多方面から嘱望されているが、現状では尿素に対して
効果的な吸着剤は見つかっていない。
For example, an adsorbent for removing urea has been desired as an adsorbent for artificial detoxification organs from various fields, but no adsorbent effective for urea has been found at present.

そこで尿素を酵素ウレアーゼを作用してより分子量の小
さいアンモニアに変換し、これをすぐさまアンモニア吸
着剤で吸着させる。一般に酵素を利用しての従来の吸着
システムとしては、酵素を水不溶性の担体に結合させる
か、あるいはマイクロカプセル中に包含させ固定化する
。それらへ被吸着前駆物質を含む溶液と反応させ、反応
生成物を活性炭やイオン交換樹脂などの吸着剤で除去す
る方法がある。しかしながら、この場合に該反応生放物
が吸着剤に吸着されるまでに2次反応を起こし充分な効
果が達成されないことがあること、および装置が複数個
以上必要となり、大型なものとなるなどの欠点があった
Therefore, the enzyme urease is used to convert urea into ammonia, which has a smaller molecular weight, and this is immediately adsorbed using an ammonia adsorbent. In general, conventional adsorption systems using enzymes involve binding the enzyme to a water-insoluble carrier or immobilizing the enzyme by encapsulating it in microcapsules. There is a method in which these are reacted with a solution containing a precursor to be adsorbed, and the reaction product is removed using an adsorbent such as activated carbon or ion exchange resin. However, in this case, a secondary reaction may occur before the reactant is adsorbed by the adsorbent, and a sufficient effect may not be achieved, and more than one device is required, resulting in a large size. There was a drawback.

本発明者等は、これらの問題を解決するために鋭意研究
を重ねた結果、極めて高い吸着効果をもつ尿素分解吸着
剤を完成するに至った。すなわち吸着剤基材として構造
単位中に隣接する少なくとも2個の水酸基をもつ多糖類
の酸化により調製されたアルデヒド基含有多糖類を用い
、これにウレアーゼが固定されている尿素分解吸着剤で
ある。
The inventors of the present invention have conducted extensive research to solve these problems, and as a result have completed a urea decomposition adsorbent that has an extremely high adsorption effect. That is, it is a urea decomposition adsorbent in which urease is immobilized on an aldehyde group-containing polysaccharide prepared by oxidizing a polysaccharide having at least two adjacent hydroxyl groups in the structural unit as an adsorbent base material.

この吸着剤に尿素含有物質を接触させると、草の酵素反
応により尿素はアンモニアに変換され、これは直ちに吸
着剤基材に吸着されろ。酵素反応生成物が直ちに吸着剤
により吸着されることにより従来の欠点であった2次反
応の発生は殆んど完全に阻止され、かつ該酵素反応も促
進される利点を有する。さらに、ウレアーゼが吸着剤基
材に固定されているので、本発明に基づく装置は極めて
コンパクトなものとなる。
When a urea-containing substance is brought into contact with this adsorbent, the urea is converted into ammonia by the enzymatic reaction of the grass, which is immediately adsorbed onto the adsorbent substrate. Since the enzymatic reaction product is immediately adsorbed by the adsorbent, the occurrence of secondary reactions, which is a disadvantage of the conventional method, is almost completely prevented, and the enzymatic reaction is also promoted. Furthermore, since the urease is immobilized on the adsorbent substrate, the device according to the invention is extremely compact.

本発明において用いる吸着剤基材としては、構造単位中
に隣接する少なくとも2個の水酸基をもつ多糖類の酸化
により調製された酸化物である、アルデヒド基含有多糖
類が用いられろ。該1唆化物は多糖類の水酸基をアルデ
ヒド基に酸化させた状態のものであるが、小部分のカル
ボキシル基を含有していても良い。多糖類としては、デ
ンプン、セルロース、デキストリン、マンナンおよびこ
れらのカルボキシメチル誘導体、アミノエチル誘導体、
/エチルアミノ誘導体などがあげられる。酵素としては
尿素を基質としてアンモニアに分解するウレアーゼが用
いられる。これらの多糖類の前記酸化物のアンモニア吸
着速度、吸着容量(モル換算)は尿素に対するそれより
大きいので、ウレアーゼを利用して尿素をアンモニアに
効率的に変換してやれは、尿素濃度は飛躍的に減少し、
かつ酵素反応により生成したアンモニアは濃度の窒素を
有する尿素より早い速度で吸着されることになる。
As the adsorbent base material used in the present invention, an aldehyde group-containing polysaccharide, which is an oxide prepared by oxidation of a polysaccharide having at least two adjacent hydroxyl groups in its structural unit, may be used. The monomer is a polysaccharide in which the hydroxyl group is oxidized to an aldehyde group, but it may contain a small portion of carboxyl group. Examples of polysaccharides include starch, cellulose, dextrin, mannan and their carboxymethyl derivatives, aminoethyl derivatives,
/ ethylamino derivatives, etc. The enzyme used is urease, which decomposes urea into ammonia using urea as a substrate. The ammonia adsorption rate and adsorption capacity (on a molar basis) of the above-mentioned oxides of these polysaccharides are greater than those of urea, so if urea is efficiently converted to ammonia using urease, the urea concentration will be dramatically reduced. death,
In addition, ammonia produced by the enzymatic reaction is adsorbed at a faster rate than urea having a higher concentration of nitrogen.

本発明によれば、アルデヒド基含有多糖類の活性アルデ
ヒド基の一部を利用して酵素を固定化する場合、アルデ
ヒド基含有多糖類を水中に分散させ、0〜5℃で10〜
50時間、望ましくは20〜30時間、酵素と攪拌下反
応させることにより固定化を行なう。又、アルデヒド基
含有多糖類中の他の官能基を利用して酵素の固定化を行
なう場合、例えばカルボキシメチル基の場合には縮合試
薬であるカルボジイミドやランドワード試薬に等を用い
て固定化したり、あるいはカルボン酸の酸アジド誘導体
としたのち、酵素を固定化する等の方法がある。またア
ミノエチル基の場合には、グルタルアルテヒドのような
架橋剤を用いて固定化することもできる。以上のような
方法により酵素を固定化したアルデヒド基含有多糖類は
凍結乾燥により回収し、好ましくは吸着剤として用いる
まで0〜5℃にて密閉保存する。
According to the present invention, when an enzyme is immobilized using a part of the active aldehyde groups of an aldehyde group-containing polysaccharide, the aldehyde group-containing polysaccharide is dispersed in water,
Immobilization is carried out by reacting with the enzyme under stirring for 50 hours, preferably 20 to 30 hours. In addition, when immobilizing enzymes using other functional groups in aldehyde group-containing polysaccharides, for example, in the case of carboxymethyl groups, it may be immobilized using a condensation reagent such as carbodiimide or a Landward reagent. Alternatively, there are methods such as making an acid azide derivative of a carboxylic acid and then immobilizing the enzyme. In the case of an aminoethyl group, it can also be immobilized using a crosslinking agent such as glutaraltehyde. The aldehyde group-containing polysaccharide on which the enzyme has been immobilized by the method described above is recovered by freeze-drying, and preferably stored tightly at 0 to 5°C until used as an adsorbent.

このようにして得られた尿素分解吸着剤は医療用、医薬
用工業材料、工業用原料としであるいは化学実験用材料
として利用することができる。たとえば、ジアルデヒド
デンプンに酵素ウレアーゼを固定化した尿素分解吸着剤
は尿毒症患者、高蒙素血症患者の血液中、体液中の尿毒
素物質の除去及び血中尿素窒素濃度値の減少化のための
治療用吸着剤としであるいは透析患者の透析回数を低減
させたり、尿毒症患者の透析治療導入期を遅延させるた
めの経口投与薬として用いられる。
The urea decomposition adsorbent thus obtained can be used as a medical or pharmaceutical industrial material, an industrial raw material, or as a material for chemical experiments. For example, a urea decomposition adsorbent in which the enzyme urease is immobilized on dialdehyde starch can be used to remove uremic toxins from the blood and body fluids of uremic and hypermonosemic patients and to reduce blood urea nitrogen concentration. It is used as a therapeutic adsorbent for dialysis patients, or as an orally administered drug to reduce the number of dialysis treatments in dialysis patients, or to delay the initiation of dialysis treatment in uremic patients.

次に実施例および参考例により本発明をさらに詳細に説
明する。
Next, the present invention will be explained in more detail with reference to Examples and Reference Examples.

実施例 1゜ ばれいしょデンプンを過ヨウ素酸酸化して得られた/ア
ルデヒドデンプン107を、ウレアーゼ(2300国際
単位/1154を含む水100mJ中に懸濁させ、0〜
5°Cで24時間攪拌した。その後、沈殿物をろ過し、
蒸留水、IM−塩化ナトリウム水溶液、再び蒸留水にて
洗浄し、凍結乾燥によって粉末の尿素分解吸着剤(U−
I)8.11−を得た。窒素分析値からめたU−Iのウ
レアーゼ含量は6.0係であり、U−I 17あたりの
ウレアーゼ活性は18.6国際単位であった。
Example 1゜Aldehyde starch 107 obtained by periodic acid oxidation of potato starch was suspended in 100 mJ of water containing urease (2300 international units/1154) and
Stirred at 5°C for 24 hours. Then filter the precipitate,
The powdered urea decomposition adsorbent (U-
I) 8.11- was obtained. The urease content of U-I determined from the nitrogen analysis value was 6.0, and the urease activity per U-I 17 was 18.6 international units.

得られた尿素分解吸着剤について、尿素除去能を調べた
結果をウレアーゼの非固定物の吸着基材自体と比較して
次表に示す。尿素除去実験は尿素濃度200 ml /
diに調節した透析液(p” 7.2 )中に一定量の
吸着剤を加え24時間インキーベーションした後、尿素
濃度の変化から尿素除去率をめた。
The results of examining the urea removal ability of the obtained urea decomposition adsorbent are shown in the following table in comparison with the adsorption base material itself for non-immobilized urease. In the urea removal experiment, the urea concentration was 200 ml/
A certain amount of adsorbent was added to a dialysate (p" 7.2) adjusted to di and after incubation for 24 hours, the urea removal rate was estimated from the change in urea concentration.

実施例 2 ばれいしょデンプン8ofを水500m1中に分散させ
、20℃で2.3g−のエピクロルヒドリンと0、5.
 N−水酸化すζリウム水浴液50rnlを加え、2時
間攪拌することにより架橋ばれいしょデンプン70%を
得た。この架橋ばれいしょデンプンを過ヨウ素酸酸化し
て得られた架橋ジアルデヒドデンプン305’を実施例
1におけるジアルデヒドデンプンの代わりに用いること
以外実施例1と全く同様な操作でウレアーゼ溶液で処理
して尿素分解吸着剤(U−T)25g−を得た。窒素分
析値からめたU−Nのウレアーゼ含量は4.9係であり
、U−IIlg−あたりのウレアーゼ活性は15.5国
際単位であった。
Example 2 8 of potato starch was dispersed in 500 ml of water and mixed with 2.3 g of epichlorohydrin at 20°C.
50 rnl of N-sulfurium hydroxide water bath solution was added and stirred for 2 hours to obtain 70% crosslinked potato starch. The cross-linked dialdehyde starch 305' obtained by periodic acid oxidation of this cross-linked potato starch was used in place of the dialdehyde starch in Example 1, but the procedure was exactly the same as in Example 1, and the urea was treated with a urease solution. 25 g of decomposed adsorbent (UT) was obtained. The urease content of U-N determined from the nitrogen analysis value was 4.9, and the urease activity per U-IIlg- was 15.5 international units.

得られた尿素分解吸着剤について、実施例1の方法に準
じて尿素除去率を調べた。その結果は次表に示す。
The urea removal rate of the obtained urea decomposition adsorbent was investigated according to the method of Example 1. The results are shown in the table below.

実施例 3 マンナンを過ヨウ素酸酸化して得られたジアルデヒドマ
ンナンll−を実施例1におけるジアルデヒドデンプン
の代わりに用いること以外、実施例1と全く同様な操作
でウレアーゼ溶液とで処理して尿素分解吸着剤(U−I
N)8.3Pを得た。窒素分析値からめたU−[のウレ
アーゼ含量は5.2%であり、U−1[]Jあたりのウ
レアーゼ活性は156国際単位であった。
Example 3 The dialdehyde mannan 11- obtained by oxidizing mannan with periodic acid was used in place of the dialdehyde starch in Example 1, except that it was treated with a urease solution in the same manner as in Example 1. Urea decomposition adsorbent (U-I
N) 8.3P was obtained. The urease content of U-[ determined from the nitrogen analysis value was 5.2%, and the urease activity per U-1[]J was 156 international units.

得られた尿素分解吸着剤について、実施例1の方法に準
じて尿素除去率を調べた。その結果は次表に示す。
The urea removal rate of the obtained urea decomposition adsorbent was investigated according to the method of Example 1. The results are shown in the table below.

実施例 4 カルボキシメチルデキストランを過ヨウ素酸酸化して得
られたジアルデヒドカルボキシメチルデキストラン1g
−を水10m1中に懸濁させ、これに水溶性カルボジイ
ミド15’を加えて2分間撹拌した。次にウレアーゼ(
2300国際単位/y−)6oomgを加え、0.2N
−水酸化ナトl/ラム水溶液により11号を8.5に調
節し、室温で20分間、さらに4℃で5時間ゆっくりと
撹拌した。生成した沈殿はろ過し、005Mの2−アミ
ンエタノールを含むpH3,5、O,1M−炭酸ナトリ
ウム水溶液に再び懸濁させた。4℃で10時間静置させ
たのち沈殿物を0.15.M−塩化ナトリウム水溶液、
0.05M−塩化カルシウム水溶液でよく洗浄し、沈殿
物をろ過したのち、凍結乾燥により尿素分解吸着剤(u
−W)o、s6yを得た。窒素分析値からめたU−Wの
ウレアーゼ含量は4.9%であり、U−■IPあたりの
ウレアーゼ活性は15.2国際単位であった。
Example 4 1 g of dialdehyde carboxymethyl dextran obtained by periodic acid oxidation of carboxymethyl dextran
- was suspended in 10 ml of water, water-soluble carbodiimide 15' was added thereto, and the mixture was stirred for 2 minutes. Next, urease (
Add 2300 international units/y-)6oomg, 0.2N
- No. 11 was adjusted to 8.5 with a sodium hydroxide/rum aqueous solution and slowly stirred at room temperature for 20 minutes and then at 4°C for 5 hours. The generated precipitate was filtered and resuspended in a pH 3.5, O, 1M aqueous sodium carbonate solution containing 0.05M 2-amine ethanol. After standing at 4°C for 10 hours, the precipitate was reduced to 0.15. M-Sodium chloride aqueous solution,
After thoroughly washing with 0.05M calcium chloride aqueous solution and filtering the precipitate, urea decomposition adsorbent (U
-W) o, s6y were obtained. The urease content of U-W was determined from the nitrogen analysis value to be 4.9%, and the urease activity per U-■ IP was 15.2 international units.

得られた尿素分解吸着剤について、実施例1の方法に準
じて尿素除去率を調べた。その結果は次表に示す。
The urea removal rate of the obtained urea decomposition adsorbent was investigated according to the method of Example 1. The results are shown in the table below.

実施例 5゜ ばれいしょデンプンを過ヨウ素酸酸化によって一部がカ
ルボン酸にまで酸化されたアルデヒドデンプンを得た。
Example 5 Potato starch was oxidized with periodic acid to obtain aldehyde starch partially oxidized to carboxylic acid.

このカルボキシル基を含むアルデヒドデンプン5y−を
実施例4においてジアルデヒドカルボキシメチルデキス
トランの代わりに用いること以外は実施例4と全く同様
に処理して尿素分解吸着剤(U−v)3.9Pを得た。
Urea decomposition adsorbent (U-v) 3.9P was obtained in exactly the same manner as in Example 4 except that this aldehyde starch 5y- containing a carboxyl group was used in place of dialdehyde carboxymethyl dextran. Ta.

窒素分析値からめたU−Vのウレアーゼ含量は48係で
あり、U−v17あたりのウレアーゼ活性は149国i
奈単位であった。
The urease content of U-V determined from the nitrogen analysis value is 48%, and the urease activity per U-v17 is 149%.
It was in units of N.

得られた尿素分解吸着剤について、実施例1の方法に準
じて尿素除去率を調べた。その結果は次表に示す。
The urea removal rate of the obtained urea decomposition adsorbent was investigated according to the method of Example 1. The results are shown in the table below.

実施例 6゜ アミノエチルセルロースを過ヨウ素酸酸化して得られた
ジアルデヒドアミンエチルセルロース151−をpl−
17,OIJン酸緩衝液15.yil中に懸濁させ、と
れに50%−グルタルアルデヒド水溶液4 mlを加え
て2時間室温で攪拌した。反応生成物は遠心分離しpH
7,Qのリン酸緩衝液で6回洗浄した。次に得られた粉
末をpl−17,0’Jン酸緩衝液15m1中に再懸濁
させ、これに100 #19のウレアーゼ(2300国
際単位/P)を含む1 mlの水溶液を加えて室温で2
時間攪拌した。最終反応生成物は遠心分離しρl−17
,Qのリン酸緩衝液で3回洗浄した。沈殿物をろ過し、
凍結乾燥することによって尿素分解吸着剤(U 4I)
 0.72 Pを得た。窒素分析値からめたU−Vlの
ウレアーゼ含量は5.4%であり、U−Vllg−あた
りのウレアーゼ活性は173国際単位であった。
Example 6 Dialdehyde amine ethyl cellulose 151- obtained by oxidizing aminoethyl cellulose with periodic acid was pl-
17. OIJ acid buffer 15. yil, 4 ml of 50% glutaraldehyde aqueous solution was added thereto, and the mixture was stirred at room temperature for 2 hours. The reaction product is centrifuged and the pH
Washed 6 times with 7.Q phosphate buffer. The resulting powder was then resuspended in 15 ml of pl-17,0'J acid buffer, to which was added 1 ml of an aqueous solution containing 100 #19 urease (2300 international units/P), and the mixture was kept at room temperature. So 2
Stir for hours. The final reaction product was centrifuged and ρl-17
, Q three times with phosphate buffer. Filter the precipitate,
Urea decomposition adsorbent (U4I) by freeze-drying
0.72 P was obtained. The urease content of U-Vl determined from the nitrogen analysis value was 5.4%, and the urease activity per U-Vllg- was 173 international units.

得られた尿素分解吸着剤について、実施例1の方法に準
じて尿素除去率を調べた。その結果は次表に示す。
The urea removal rate of the obtained urea decomposition adsorbent was investigated according to the method of Example 1. The results are shown in the table below.

なお、比較例における非固定化1〜6は、実施例1〜6
においてウレアーゼを固定化してない吸着基材自体であ
る。また、U−4−U−■を用いた尿素除去実験のいず
れの実施例の場合も、24時間後、残存アンモニアは尿
素溶液中に殆んど検出されなかった。この事は変換され
たアンモニアは全て吸着基材によって除去されているこ
とを示す。
In addition, non-immobilization 1 to 6 in Comparative Examples are Examples 1 to 6.
This is the adsorption substrate itself on which urease is not immobilized. Furthermore, in all of the urea removal experiments using U-4-U-■, almost no residual ammonia was detected in the urea solution after 24 hours. This indicates that all of the converted ammonia is removed by the adsorption substrate.

さらにこの表から明らかなように、この発明の化合物は
ウレアーゼ非固定化物に比較して飛躍的な尿素除去効果
を示す。
Furthermore, as is clear from this table, the compounds of the present invention exhibit a dramatic urea removal effect compared to compounds on which urease is not immobilized.

特許出願人 日本カーリット株式会社 (外2名)Patent applicant Nippon Carlit Co., Ltd. (2 others)

Claims (2)

【特許請求の範囲】[Claims] (1)構造単位中に隣接する少なくとも2個の水酸基を
もつ多糖類の酸化により調整されたアルデヒド基含有多
糖類にウレアーゼが固定されている尿素分解吸着剤。
(1) A urea decomposition adsorbent in which urease is immobilized on an aldehyde group-containing polysaccharide prepared by oxidizing a polysaccharide having at least two adjacent hydroxyl groups in its structural unit.
(2) アルデヒド基含有多糖類がデンプン、セルロー
ス、デキストリン、マンナン、およびこれらのカルボキ
シメチル誘導体、アミノエチル誘導体、ジエチルアミノ
誘導体のアルデヒド基含有物からなる群から選択される
前記特許請求の範囲第1項に記載の尿素分解吸着剤。
(2) The aldehyde group-containing polysaccharide is selected from the group consisting of starch, cellulose, dextrin, mannan, and carboxymethyl derivatives, aminoethyl derivatives, and diethylamino derivatives thereof containing aldehyde groups. The urea decomposition adsorbent described in .
JP58249469A 1983-12-26 1983-12-26 Adsorbent for urea decomposition Granted JPS60137433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58249469A JPS60137433A (en) 1983-12-26 1983-12-26 Adsorbent for urea decomposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58249469A JPS60137433A (en) 1983-12-26 1983-12-26 Adsorbent for urea decomposition

Publications (2)

Publication Number Publication Date
JPS60137433A true JPS60137433A (en) 1985-07-22
JPS6257381B2 JPS6257381B2 (en) 1987-12-01

Family

ID=17193417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58249469A Granted JPS60137433A (en) 1983-12-26 1983-12-26 Adsorbent for urea decomposition

Country Status (1)

Country Link
JP (1) JPS60137433A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6861473B2 (en) 2003-02-28 2005-03-01 Baxter International Inc. Macromolecular ketoaldehydes
JP2008086854A (en) * 2006-09-29 2008-04-17 Kurita Water Ind Ltd Pure water production apparatus
US8497107B2 (en) 2008-09-30 2013-07-30 Fresenius Medical Care Holdings, Inc. Covalently immobilized enzyme and method to make the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130545A (en) * 1981-02-04 1982-08-13 Agency Of Ind Science & Technol Urea adsorbing agent
JPS57150433A (en) * 1981-03-12 1982-09-17 Kuraray Co Ltd Carrier for immobilizing physiologically active material and selective adsorbent, selective electrode and analytical column using said carrier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130545A (en) * 1981-02-04 1982-08-13 Agency Of Ind Science & Technol Urea adsorbing agent
JPS57150433A (en) * 1981-03-12 1982-09-17 Kuraray Co Ltd Carrier for immobilizing physiologically active material and selective adsorbent, selective electrode and analytical column using said carrier

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6861473B2 (en) 2003-02-28 2005-03-01 Baxter International Inc. Macromolecular ketoaldehydes
US7544737B2 (en) 2003-02-28 2009-06-09 Baxter International Inc. Macromolecular ketoaldehydes
JP2008086854A (en) * 2006-09-29 2008-04-17 Kurita Water Ind Ltd Pure water production apparatus
US8497107B2 (en) 2008-09-30 2013-07-30 Fresenius Medical Care Holdings, Inc. Covalently immobilized enzyme and method to make the same
US9187744B2 (en) 2008-09-30 2015-11-17 Fresenius Medical Care Holdings, Inc. Covalently immobilized enzyme and method to make the same

Also Published As

Publication number Publication date
JPS6257381B2 (en) 1987-12-01

Similar Documents

Publication Publication Date Title
RU2064429C1 (en) Carbon sorbent and method for its production
JPS59225064A (en) Carrier for immobilizing physiologically active substance
JPS61272202A (en) Production of material for affinity chromatography
Lévy et al. Coating alginate beads with cross-linked biopolymers: a novel method based on a transacylation reaction
KR940005581B1 (en) Method for immobilization of enzyme and immobilized enzymes
JPH0716409B2 (en) Method of immobilizing enzyme
US3853708A (en) Coupling biologically active substances to oxirane-containing polymers
Chen et al. Preparation and characterization of urease immobilized onto porous chitosan beads for urea hydrolysis
JPS60137433A (en) Adsorbent for urea decomposition
Iyengar et al. Urease bound to chitin with glutaraldehyde
CA1060366A (en) Immobilized glycoenzymes
Lilly [4] Enzymes immobilized to cellulose
US4289853A (en) High loading of immobilized enzymes on activated carbon supports
JP4606524B2 (en) Polylysine, polylysine production method, polylysine composition, and pharmaceutical production method for removing endotoxin
JPH022587B2 (en)
JP2824902B2 (en) Method for producing enzyme-immobilizing carrier
JPS6130620B2 (en)
RU2792785C1 (en) Method for obtaining composite preparation of bromelain and sodium alginate in the form of a dense solution
JPH02311500A (en) Production of immobilized low molecular protein a
SU735594A1 (en) Method of preparing immobilized serratia marcescens endonuclease
JPS60137290A (en) Immobilization of enzyme
RU2137835C1 (en) Method of preparing water-soluble immobilized enzyme preparation
SU1090715A1 (en) Process for preparing immobilized urease
JPH072903A (en) Acetylated iron-chitosan complex, and its production and use
JPH0612992B2 (en) Method for producing immobilized protease