ところで、図14の(A)及び(B)に模式的に示すように、或る面状光源ユニット142の光源143から出射された光の一部は、光源143に対面した隔壁141の第1の側面141Aから入射し、隔壁141の内部を通過し、第1の側面141Aに対向する第2の側面141Bから出射され、隣接する面状光源ユニット142に侵入する。尚、図14の(B)は、図14の(A)に示した隔壁141の頂面141Cの近傍を拡大した図である。また、隔壁141の第1の側面141Aから入射し、隔壁141の内部を通過し、隔壁141の頂面141Cに衝突した光線(図14の(A)及び(B)において点線で示す)は、通常、隔壁141の頂面141Cにおいて全反射され、隔壁141の内部に戻る。ここで、拡散板161の「A」及び「B」にて示した領域には、面状光源ユニット142の光源143から出射された光線が衝突するが、拡散板161の「C」にて示した領域には、面状光源ユニット142の光源143から出射された光線が衝突しない。従って、一種の隔壁141の影が生じ、拡散板161の領域「C」の輝度が低下し、拡散板161に輝度ムラが生じてしまう。この輝度ムラは、透明な材料から隔壁141を作製しても生じる。そして、拡散板161に輝度ムラが生じると、即ち、隣接する面状光源ユニット間に輝度ムラが生じると、画像表示の品質が低下してしまう。また、光源143を、赤色を発光する発光ダイオード、緑色を発光する発光ダイオード、青色を発光する発光ダイオードから構成した場合、隔壁141の近傍において、面状光源ユニット142の発光色に色ムラが生じてしまう。隔壁141の高さを低くすれば、隣接する面状光源ユニット間の輝度ムラは減少するが、面状光源ユニット自体の発光効率の低下を招くし、或る面状光源ユニット142の光源輝度が他の面状光源ユニット142の光源輝度に与える影響が大きくなる。尚、図14の(A)中、参照番号152Aは、面状光源装置を構成する筐体の底面を示す。
隔壁141の断面形状を底面を下とした三角形とした場合でも、隔壁141の内部を透過した光は、隔壁141において屈折され、一層広い拡散板161の範囲を照射するようになり、領域「C」はより拡がることになり、輝度ムラの低減には繋がらない。
従って、本発明の目的は、隣接する面状光源ユニット間に輝度ムラが生じ難い構造を有する面状光源装置を提供することにある。
上記の目的を達成するための本発明の面状光源装置は、2次元マトリクス状に配列された画素から構成された表示領域を有する透過型の液晶表示装置を背面から照明する面状光源装置であって、
液晶表示装置の表示領域をP×Q個の仮想の表示領域ユニットに分割したと想定したときの該P×Q個の表示領域ユニットに対応したP×Q個の面状光源ユニットから成り、
面状光源ユニットに備えられた光源は、個別に制御され、
面状光源ユニットと面状光源ユニットとの間は、面状光源ユニットに備えられた光源から出射された光を反射する隔壁で仕切られており、
光源は、隔壁の近傍に配置されていることを特徴とする。
本発明の面状光源装置において、光源は隔壁と接している形態とすることができる。
上述の好ましい形態を含む本発明の面状光源装置において、隔壁の側面には、面状光源ユニットに備えられた光源から出射された光を拡散反射する光拡散反射層が設けられていることが好ましい。ここで、隔壁表面に光拡散反射機能を付与するための光拡散反射層として、例えば、サンドブラスト法に基づき隔壁表面に形成された凹凸層、接着剤や接着シートを用いて隔壁表面に貼り付けられた凹凸を有するフィルム(光拡散フィルム)、隔壁表面に拡散材を塗布することにより形成された凹凸層を挙げることができる。また、隔壁表面に光拡散反射層が設けられていれば、隔壁そのものは透明でも不透明でもかまわない。
上述した好ましい形態、構成を含む本発明の面状光源装置にあっては、面状光源ユニットの平面形状は矩形であり、
(ケースA)各面状光源ユニットを構成する光源は1つの発光素子ユニットから構成されており、この発光素子ユニットは面状光源ユニットの一隅の近傍に配置されている構成
(ケースB)各面状光源ユニットを構成する光源は2つの発光素子ユニットから構成されており、これらの発光素子ユニットは面状光源ユニットの対向する二隅のそれぞれの近傍に配置されている構成
(ケースC)各面状光源ユニットを構成する光源は4つの発光素子ユニットから構成されており、これらの発光素子ユニットは面状光源ユニットの四隅のそれぞれの近傍に配置されている構成
(ケースD)各面状光源ユニットを構成する光源は1つの発光素子ユニットから構成されており、この発光素子ユニットは面状光源ユニットの一辺の近傍(例えば、一辺の中央部の近傍)に配置されている構成
(ケースE)各面状光源ユニットを構成する光源は2つの発光素子ユニットから構成されており、これらの発光素子ユニットは面状光源ユニットの対向する二辺のそれぞれの近傍(例えば、各辺の中央部の近傍)に配置されている構成
(ケースF)各面状光源ユニットを構成する光源は4つの発光素子ユニットから構成されており、これらの発光素子ユニットは面状光源ユニットの四辺のそれぞれの近傍(例えば、各辺の中央部の近傍)に配置されている構成
とすることができるし、あるいは又、これらの各ケースの適切な組合せとすることができるが、中でも、(ケースC)とすることが好ましい。
更には、以上に説明した好ましい構成、形態を含む本発明の面状光源装置にあっては、限定するものではないが、光源(例えば、発光素子ユニット)は、1又は複数の発光素子から構成されており、光源(発光素子)からの光の放射強度分布はランバート分布を有することが望ましい。
本発明の面状光源装置において、光源は隔壁の近傍に配置されているが、ここで、「近傍」とは、限定するものではないが、光源の中心(あるいは、上述した発光素子ユニットの中心)と隔壁の側面とを結ぶ最短距離が、光源の最大径を越えないことを意味する。また、隔壁の頂面と、後述する拡散板との間には隙間が存在するが、後述する面状光源装置を構成する筐体の底面から隔壁の頂面までの隔壁の高さをH1、筐体の底面から拡散板までの距離をH0としたとき、限定するものではないが、1/6≦H1/H0≦1/2を満足することが望ましい。
本発明の面状光源装置において、1つの面状光源ユニットは、4つの隔壁によって囲まれ、あるいは又、3つの隔壁と筐体の1つの側面によって囲まれ、あるいは又、2つの隔壁と筐体の2つの側面によって囲まれている。
本発明の面状光源装置において、隔壁を構成する材料として、具体的には、アクリル系樹脂、ポリカーボネート樹脂、ABS樹脂といった、面状光源ユニットに備えられた光源から出射された光に対して不透明な材料を挙げることができる。
本発明の面状光源装置において、面状光源装置における面状光源ユニットに備えられた発光素子ユニット(光源)を構成する発光素子として、発光ダイオード(LED)を挙げることができるし、あるいは又、エレクトロルミネッセンス(EL)装置を挙げることもできる。発光素子を発光ダイオードから構成する場合、例えば波長640nmの赤色を発光する赤色発光ダイオード、例えば波長530nmの緑色を発光する緑色発光ダイオード、及び、例えば波長450nmの青色を発光する青色発光ダイオードを組として構成して白色光を得ることができる。より具体的には、例えば、(1つの赤色発光ダイオード,1つの緑色発光ダイオード,1つの青色発光ダイオード)、(1つの赤色発光ダイオード,2つの緑色発光ダイオード,1つの青色発光ダイオード)、(2つの赤色発光ダイオード,2つの緑色発光ダイオード,1つの青色発光ダイオード)等の組合せから成る発光素子ユニットから、光源を構成することが好ましい。あるいは又、白色発光ダイオード(例えば、紫外又は青色発光ダイオードと蛍光体粒子とを組み合わせて白色を発光する発光ダイオード)の発光によって白色光を得ることもできる。赤色、緑色、青色以外の第4番目の色、第5番目の色・・・を発光する発光ダイオードを更に備えていてもよい。発光ダイオードの光出射部に、例えば、砲弾型やドーム型のキャップを取り付けたり、砲弾型やドーム型の領域を有する光学部品を発光ダイオードの光出射部の近傍に取り付けることによって、発光ダイオードからの光の放射強度分布をランバート分布とすることができる。尚、このような構成にすることで、併せて、面状光源装置全体の製造コストの低減を図ることもできる。光源を発光素子ユニットあるいは発光ダイオードから構成する場合、光源が隔壁と接しているとは、発光素子ユニット、あるいは、発光ダイオードのモジュールが、隔壁と接していることを意味する。
発光ダイオードは、所謂フェイスアップ構造を有していてもよいし、フリップチップ構造を有していてもよい。即ち、発光ダイオードは、基板、及び、基板上に形成された発光層から構成されており、発光層から光が外部に出射される構造としてもよいし、発光層からの光が基板を通過して外部に出射される構造としてもよい。より具体的には、発光ダイオード(LED)は、例えば、基板上に形成された第1導電型(例えばn型)を有する化合物半導体層から成る第1クラッド層、第1クラッド層上に形成された活性層、活性層上に形成された第2導電型(例えばp型)を有する化合物半導体層から成る第2クラッド層の積層構造を有し、第1クラッド層に電気的に接続された第1電極、及び、第2クラッド層に電気的に接続された第2電極を備えている。発光ダイオードを構成する層は、発光波長に依存して、周知の化合物半導体材料から構成すればよい。
ここで、画素あるいは副画素の光透過率(開口率とも呼ばれる)Lt、画素あるいは副画素に対応する表示領域の部分の輝度(表示輝度)y、及び、面状光源ユニットの輝度(光源輝度)Yを、以下のとおり、定義する。
Y1・・・・光源輝度の、例えば最高輝度であり、以下、光源輝度・第1規定値と呼ぶ場合がある。
Lt1・・・表示領域ユニットにおける画素あるいは副画素の光透過率(開口率)の、例えば最大値であり、以下、光透過率・第1規定値と呼ぶ場合がある。
Lt2・・・表示領域ユニットを構成する全ての画素を駆動するために駆動回路に入力される駆動信号の値の内の最大値である表示領域ユニット内・駆動信号最大値xU-maxに等しい値を有する駆動信号に相当する制御信号が画素あるいは副画素に供給されたと想定したときの画素あるいは副画素の光透過率(開口率)であり、以下、光透過率・第2規定値と呼ぶ場合がある。尚、0≦Lt2≦Lt1
y2・・・・光源輝度が光源輝度・第1規定値Y1であり、画素あるいは副画素の光透過率(開口率)が光透過率・第2規定値Lt2であると仮定したときに得られる表示輝度であり、以下、表示輝度・第2規定値と呼ぶ場合がある。
Y2・・・・表示領域ユニット内・駆動信号最大値xU-maxに等しい値を有する駆動信号に相当する制御信号が画素あるいは副画素に供給されたと想定し、しかも、このときの画素あるいは副画素の光透過率(開口率)が光透過率・第1規定値Lt1に補正されたと仮定したとき、画素あるいは副画素の輝度を表示輝度・第2規定値(y2)とするための面状光源ユニットの光源輝度。但し、光源輝度Y2には、各面状光源ユニットの光源輝度が他の面状光源ユニットの光源輝度に与える影響を考慮した補正が施される場合がある。
本発明の面状光源装置の駆動時、表示領域ユニット内・駆動信号最大値xU-maxに等しい値を有する駆動信号に相当する制御信号が画素に供給されたと想定したときの画素の輝度(光透過率・第1規定値Lt1における表示輝度・第2規定値y2)が得られるように、表示領域ユニットに対応する面状光源ユニットを構成する光源の輝度を駆動回路によって制御するが、具体的には、例えば、画素あるいは副画素の光透過率(開口率)を、例えば光透過率・第1規定値Lt1としたときに表示輝度y2が得られるように、光源輝度Y2を制御すればよい(例えば、減少させればよい)。即ち、例えば、以下の式(1)を満足するように、画像表示フレーム毎に面状光源ユニットの光源輝度Y2を制御すればよい。尚、Y2≦Y1の関係にある。
Y2・Lt1=Y1・Lt2 (1)
液晶表示装置及び面状光源装置を駆動するための駆動回路は、例えば、発光ダイオード(LED)駆動回路、演算回路、記憶装置(メモリ)等から構成されたバックライト制御ユニット及び面状光源ユニット駆動回路、並びに、タイミングコントローラ等の周知の回路から構成された液晶表示装置駆動回路を備えている。表示領域の部分の輝度(表示輝度)及び面状光源ユニットの輝度(光源輝度)の制御は、1画像表示フレーム毎に行われる。尚、駆動回路に電気信号として1秒間に送られる画像情報の数(毎秒画像)がフレーム周波数(フレームレート)であり、フレーム周波数の逆数がフレーム時間(単位:秒)である。
面状光源装置は、更には、拡散板、拡散シート、プリズムシート、偏光変換シートといった光学機能シート群や、反射シートを備えている構成とすることができる。光学機能シート群は、離間配置された各種シートから構成されていてもよいし、積層され一体として構成されていてもよい。光拡散板や光学機能シート群は、面状光源装置と液晶表示装置との間に配置される。
透過型の液晶表示装置は、例えば、透明第1電極を備えたフロント・パネル、透明第2電極を備えたリア・パネル、及び、フロント・パネルとリア・パネルとの間に配された液晶材料から成る。
フロント・パネルは、より具体的には、例えば、ガラス基板やシリコン基板から成る第1の基板と、第1の基板の内面に設けられた透明第1電極(共通電極とも呼ばれ、例えば、ITOから成る)と、第1の基板の外面に設けられた偏光フィルムとから構成されている。更には、透過型のカラー液晶表示装置においては、第1の基板の内面に、アクリル樹脂やエポキシ樹脂から成るオーバーコート層によって被覆されたカラーフィルターが設けられている。カラーフィルターの配置パターンとして、デルタ配列、ストライプ配列、ダイアゴナル配列、レクタングル配列を挙げることができる。そして、フロント・パネルは、更に、オーバーコート層上に透明第1電極が形成された構成を有している。尚、透明第1電極上には配向膜が形成されている。一方、リア・パネルは、より具体的には、例えば、ガラス基板やシリコン基板から成る第2の基板と、第2の基板の内面に形成されたスイッチング素子と、スイッチング素子によって導通/非導通が制御される透明第2電極(画素電極とも呼ばれ、例えば、ITOから成る)と、第2の基板の外面に設けられた偏光フィルムとから構成されている。透明第2電極を含む全面には配向膜が形成されている。これらの透過型のカラー液晶表示装置を含む液晶表示装置を構成する各種の部材や液晶材料は、周知の部材、材料から構成することができる。スイッチング素子として、単結晶シリコン半導体基板に形成されたMOS型FETや薄膜トランジスタ(TFT)といった3端子素子や、MIM素子、バリスタ素子、ダイオード等の2端子素子を例示することができる。
透明第1電極と透明第2電極の重複領域であって液晶セルを含む領域が、1画素(ピクセル)あるいは1副画素(サブピクセル)に該当する。そして、透過型のカラー液晶表示装置においては、各画素(ピクセル)を構成する赤色発光副画素(副画素[R]と呼ぶ場合がある)は、係る領域と赤色を透過するカラーフィルターとの組合せから構成され、緑色発光副画素(副画素[G]と呼ぶ場合がある)は、係る領域と緑色を透過するカラーフィルターとの組合せから構成され、青色発光副画素(副画素[B]と呼ぶ場合がある)は、係る領域と青色を透過するカラーフィルターとの組合せから構成されている。副画素[R]、副画素[G]及び副画素[B]の配置パターンは、上述したカラーフィルターの配置パターンと一致する。尚、画素は、副画素[R]、副画素[G]、及び、副画素[B]の3種の副画素[R,G,B]を1組として構成される構成に限定されず、例えば、これらの3種の副画素[R,G,B]に更に1種類あるいは複数種類の副画素を加えた1組(例えば、輝度向上のために白色光を発光する副画素を加えた1組、色再現範囲を拡大するために補色を発光する副画素を加えた1組、色再現範囲を拡大するためにイエローを発光する副画素を加えた1組、色再現範囲を拡大するためにイエロー及びシアンを発光する副画素を加えた1組)から構成することもできる。
2次元マトリクス状に配列された画素(ピクセル)の数M0×N0を(M0,N0)で表記したとき、(M0,N0)の値として、具体的には、VGA(640,480)、S−VGA(800,600)、XGA(1024,768)、APRC(1152,900)、S−XGA(1280,1024)、U−XGA(1600,1200)、HD−TV(1920,1080)、Q−XGA(2048,1536)の他、(1920,1035)、(720,480)、(1280,960)等、画像表示用解像度の幾つかを例示することができるが、これらの値に限定するものではない。また、(M0,N0)の値と(P,Q)の値との関係として、限定するものではないが、以下の表1に例示することができる。1つの表示領域ユニットを構成する画素の数として、20×20乃至320×240、好ましくは、50×50乃至200×200を例示することができる。表示領域ユニットにおける画素の数は、一定であってもよいし、異なっていてもよい。
本発明の分割駆動タイプの面状光源装置にあっては、面状光源ユニットと面状光源ユニットとの間は、面状光源ユニットに備えられた光源から出射された光を(拡散)反射する隔壁で仕切られており、光源は隔壁の近傍に配置されている。それ故、光源から出射された光の一部は、面状光源ユニットから、直接、出射される。また、光源は隔壁の近傍に配置されているので、光源から出射された光の残りの大部分は、近傍の隔壁の部分によって反射され、面状光源ユニットから出射される。従って、この光源から隣接する面状光源ユニットに向かう光の光量を低減させることができ、面状光源ユニット自体の発光効率の低下を招くことがなく、或る面状光源ユニットの光源輝度が他の面状光源ユニットの光源輝度に与える影響を小さくすることができ、隣接する面状光源ユニット間における輝度ムラ、色ムラが生じ難い。そして、以上の結果として、高い画像表示品質を達成することができる。
更には、本発明の面状光源装置において、表示領域ユニット内・駆動信号最大値xU-maxに等しい値を有する駆動信号に相当する制御信号が画素に供給されたと想定したときの画素の輝度(光透過率・第1規定値Lt1における表示輝度・第2規定値y2)が得られるように、表示領域ユニットに対応する面状光源ユニットを構成する光源の輝度を駆動回路によって制御すれば、面状光源装置の消費電力の低減を図ることができるばかりか、白レベルの増加や黒レベルの低下を図り、高いコントラスト比(液晶表示装置の画面表面における、外光反射等を含まない、全黒表示部と全白表示部の輝度比)を得ることができ、所望の表示領域の明るさを強調することが可能となるので、画像表示の品質の向上を図ることができる。
以下、図面を参照して、実施例に基づき本発明の面状光源装置を説明するが、それに先立ち、各実施例においての使用に適した透過型の液晶表示装置(具体的には、透過型のカラー液晶表示装置や面状光源装置の概要を、図6、図7、図8の(A)及び(B)、図9を参照して、説明する。
図6に概念図を示すように、透過型のカラー液晶表示装置10は、第1の方向に沿ってM0個、第2の方向に沿ってN0個の、合計M0×N0個の画素が2次元マトリクス状に配列された表示領域11を備えている。ここで、表示領域11を、P×Q個の仮想の表示領域ユニット12に分割したと想定する。各表示領域ユニット12は複数の画素から構成されている。具体的には、例えば、画像表示用解像度としてHD−TV規格を満たすものであり、2次元マトリクス状に配列された画素(ピクセル)の数M0×N0を(M0,N0)で表記したとき、例えば、(1920,1080)である。また、2次元マトリクス状に配列された画素から構成された表示領域11(図6において、一点鎖線で示す)がP×Q個の仮想の表示領域ユニット12(境界を点線で示す)に分割されている。(P,Q)の値は、例えば、(19,12)である。但し、図面の簡素化のため、図6における表示領域ユニット12(及び、後述する面状光源ユニット42)の数は、この値と異なる。各表示領域ユニット12は複数(M×N)の画素から構成されており、1つの表示領域ユニット12を構成する画素の数は、例えば、約1万である。各画素は、それぞれが異なる色を発光する複数の副画素を1組として構成されている。より具体的には、各画素は、赤色発光副画素(副画素[R])、緑色発光副画素(副画素[G])、及び、青色発光副画素(副画素[B])の3種の副画素(サブピクセル)から構成されている。この透過型のカラー液晶表示装置10は、線順次駆動される。より具体的には、カラー液晶表示装置10は、マトリクス状に交差する走査電極(第1の方向に沿って延びている)とデータ電極(第2の方向に沿って延びている)とを有し、走査電極に走査信号を入力して走査電極を選択、走査し、データ電極に入力されたデータ信号(制御信号に基づく信号である)に基づき画像を表示させ、1画面を構成する。
カラー液晶表示装置10は、図9に模式的な一部断面図を示すように、透明第1電極24を備えたフロント・パネル20、透明第2電極34を備えたリア・パネル30、及び、フロント・パネル20とリア・パネル30との間に配された液晶材料13から成る。
フロント・パネル20は、例えば、ガラス基板から成る第1の基板21と、第1の基板21の外面に設けられた偏光フィルム26とから構成されている。第1の基板21の内面には、アクリル樹脂やエポキシ樹脂から成るオーバーコート層23によって被覆されたカラーフィルター22が設けられ、オーバーコート層23上には、透明第1電極(共通電極とも呼ばれ、例えば、ITOから成る)24が形成され、透明第1電極24上には配向膜25が形成されている。一方、リア・パネル30は、より具体的には、例えば、ガラス基板から成る第2の基板31と、第2の基板31の内面に形成されたスイッチング素子(具体的には、薄膜トランジスタ、TFT)32と、スイッチング素子32によって導通/非導通が制御される透明第2電極(画素電極とも呼ばれ、例えば、ITOから成る)34と、第2の基板31の外面に設けられた偏光フィルム36とから構成されている。透明第2電極34を含む全面には配向膜35が形成されている。フロント・パネル20とリア・パネル30とは、それらの外周部で封止材(図示せず)を介して接合されている。尚、スイッチング素子32は、TFTに限定されず、例えば、MIM素子から構成することもできる。また、図面における参照番号37は、スイッチング素子32とスイッチング素子32との間に設けられた絶縁層である。
これらの透過型のカラー液晶表示装置を構成する各種の部材や、液晶材料は、周知の部材、材料から構成することができるので、詳細な説明は省略する。
直下型の面状光源装置(バックライト)40は、P×Q個の仮想の表示領域ユニット12に対応したP×Q個の面状光源ユニット42から成り、各面状光源ユニット42は、面状光源ユニット42に対応する表示領域ユニット12を背面から照明する。面状光源ユニット42に備えられた光源は、個別に制御される。尚、カラー液晶表示装置10の下方に面状光源装置40が位置しているが、図6においては、カラー液晶表示装置10と面状光源装置40とを別々に表示した。面状光源装置40における発光ダイオード等の配置、配列状態を図8の(A)に模式的に示し、カラー液晶表示装置10及び面状光源装置40から成る液晶表示装置組立体の模式的な一部断面図を図8の(B)に示す。光源は、パルス幅変調(PWM)制御方式に基づき駆動される発光ダイオード44の集合体である発光素子ユニット43から成る。
各面状光源ユニット42に備えられた光源は、上述したように、発光素子ユニット43から構成されている。また、発光素子ユニット43は、少なくとも1つの赤色を発光する赤色発光素子(具体的には、赤色発光ダイオード44R)、少なくとも1つの緑色を発光する緑色発光素子(具体的には、緑色発光ダイオード44G)、及び、少なくとも1つの青色を発光する青色発光素子(具体的には、青色発光ダイオード44B)から構成されている。各発光ダイオード44R,44G,44Bは、パルス幅変調(PWM)制御方式に基づき駆動される。尚、赤色発光ダイオード44Rは、赤色(例えば、波長640nm)を発光し、緑色発光ダイオード44Gは、緑色(例えば、波長530nm)を発光し、青色発光ダイオードは、青色(例えば、波長450nm)を発光する。
また、面状光源ユニット42の平面形状は矩形、より具体的には、正方形である。
図8の(B)に液晶表示装置組立体の模式的な一部断面図を示すように、面状光源装置40は、外側フレーム53と内側フレーム54とを備えた筐体51から構成されている。そして、透過型のカラー液晶表示装置10の端部は、外側フレーム53と内側フレーム54とによって、スペーサ55A,55Bを介して挟み込まれるように保持されている。また、外側フレーム53と内側フレーム54との間には、ガイド部材56が配置されており、外側フレーム53と内側フレーム54とによって挟み込まれたカラー液晶表示装置10がずれない構造となっている。筐体51の内部であって上部には、拡散板61が、スペーサ55C、ブラケット部材57を介して、内側フレーム54に取り付けられている。また、拡散板61の上には、拡散シート62、プリズムシート63、偏光変換シート64といった光学機能シート群が積層されている。
筐体51の内部であって下部には、反射シート65が備えられている。ここで、この反射シート65は、その反射面が拡散板61と対向するように配置され、筐体51の底面52Aに図示しない取付け用部材を介して取り付けられている。反射シート65は、例えば、シート基材上に、銀反射膜、低屈折率膜、高屈折率膜を順に積層された構造を有する銀増反射膜から構成することができる。反射シート65は、複数の発光ダイオード44から出射された光や、筐体51の側面52B、あるいは、図8の(A)に示す隔壁41によって反射された光を反射する。こうして、赤色を発光する複数の赤色発光ダイオード44R、緑色を発光する複数の緑色発光ダイオード44G、及び、青色を発光する複数の青色発光ダイオード44Bから出射された赤色光、緑色光及び青色光が混色され、色純度の高い白色光を照明光として得ることができる。この照明光は、拡散板61、拡散シート62、プリズムシート63、偏光変換シート64といった光学機能シート群を通過し、カラー液晶表示装置10を背面から照射する。
筐体51の底面52A近傍には、光センサーであるフォトダイオード45R,45G,45Bが配置されている。尚、フォトダイオード45Rは、赤色光の光強度を測定するために赤色フィルターが取り付けられたフォトダイオードであり、フォトダイオード45Gは、緑色光の光強度を測定するために緑色フィルターが取り付けられたフォトダイオードであり、フォトダイオード45Bは、青色光の光強度を測定するために青色フィルターが取り付けられたフォトダイオードである。ここで、1個の面状光源ユニット42に1組の光センサー(フォトダイオード45R,45G,45B)が配置されている。光センサーであるフォトダイオード45R,45G,45Bによって、発光ダイオード44R,44G,44Bの輝度及び色度が測定される。
面状光源装置40を構成する面状光源ユニット42と面状光源ユニット42とは、面状光源ユニット42に備えられた光源(発光素子ユニット43)から出射された光を反射する隔壁41で仕切られている。1つの面状光源ユニット42は、4つの隔壁41によって囲まれ、あるいは又、3つの隔壁41と筐体51の1つの側面52Bによって囲まれ、あるいは又、2つの隔壁41と筐体51の2つの側面52Bによって囲まれている。隔壁41は、筐体51の底面52Aに図示しない取付け用部材を介して取り付けられている。隔壁41は、具体的には、ポリカーボネート樹脂から作製されており、隔壁表面に光拡散反射層(図示せず)が形成されている。光拡散反射層は、ほぼ完全拡散反射面を有する光拡散フィルムを、接着シートを用いて隔壁表面に貼り付けることにより凸凹面を形成しているが、これに限定されず、接着剤や接着シートを用いて隔壁表面に貼り付けられた銀増反射シートや光反射フィルム、メッキ法、蒸着法、スパッタリング法等によって隔壁表面に形成された金属層や合金層とすることもできる。
図6及び図7に示すように、外部(ディスプレイ回路)からの駆動信号に基づき面状光源装置40及びカラー液晶表示装置10を駆動するための駆動回路は、パルス幅変調制御方式に基づき、面状光源装置40を構成する、直列接続された複数の赤色発光ダイオード44R、直列接続された複数の緑色発光ダイオード44G、及び、直列接続された複数の青色発光ダイオード44Bのオン/オフ制御を行うバックライト制御ユニット70及び面状光源ユニット駆動回路80、並びに、液晶表示装置駆動回路90から構成されている。バックライト制御ユニット70は、演算回路71及び記憶装置(メモリ)72から構成されている。一方、面状光源ユニット駆動回路80は、演算回路81、記憶装置(メモリ)82、LED駆動回路83、フォトダイオード制御回路84、FETから成るスイッチング素子85R,85G,85B、発光ダイオード駆動電源(定電流源)86から構成されている。バックライト制御ユニット70及び面状光源ユニット駆動回路80を構成するこれらの回路等は、周知の回路等とすることができる。一方、カラー液晶表示装置10を駆動するための液晶表示装置駆動回路90は、タイミングコントローラ91といった周知の回路から構成されている。カラー液晶表示装置10には、液晶セルを構成するTFTから成るスイッチング素子32を駆動するための、ゲート・ドライバ、ソース・ドライバ等(これらは図示せず)が備えられている。或る画像表示フレームにおける発光ダイオード44R,44G,44Bの発光状態は、フォトダイオード45R,45G,45Bによって測定され、フォトダイオード45R,45G,45Bからの出力はフォトダイオード制御回路84に入力され、フォトダイオード制御回路84、演算回路81において、発光ダイオード44R,44G,44Bの例えば輝度及び色度としてのデータ(信号)とされ、係るデータがLED駆動回路83に送られ、次の画像表示フレームにおける発光ダイオード44R,44G,44Bの発光状態が制御されるといったフィードバック機構が形成される。また、発光ダイオード44R,44G,44Bの下流には電流検出用の抵抗体rR,rG,rBが、発光ダイオード44R,44G,44Bと直列に挿入されており、抵抗体rR,rG,rBを流れる電流が電圧に変換され、抵抗体rR,rG,rBにおける電圧降下が所定の値となるように、LED駆動回路83の制御下、発光ダイオード駆動電源86の動作が制御される。ここで、図7には、発光ダイオード駆動電源(定電流源)86を1つで描写しているが、実際には、発光ダイオード44R,44G,44Bのそれぞれを駆動するための発光ダイオード駆動電源86が配されている。
2次元マトリクス状に配列された画素から構成された表示領域11がP×Q個の表示領域ユニットに分割されているが、この状態を、「行」及び「列」で表現すると、Q行×P列の表示領域ユニットに分割されていると云える。また、表示領域ユニット12は複数(M×N)の画素から構成されているが、この状態を、「行」及び「列」で表現すると、N行×M列の画素から構成されていると云える。尚、2次元マトリクス状に配列され、第q行、第p列[但し、q=1,2,・・・,Qであり、p=1,2,・・・,Pである]に位置する表示領域ユニット、面状光源ユニットを、それぞれ、表示領域ユニット12(q,p)、面状光源ユニット42(q,p)と表記し、表示領域ユニット12(q,p)あるいは面状光源ユニット42(q,p)に関連する要素、項目に、添字「(q,p)」あるいは「-(q,p)」を付する場合がある。ここで、赤色発光副画素(副画素[R])、緑色発光副画素(副画素[G])、及び、青色発光副画素(副画素[B])を一括して纏めて『副画素[R,G,B]』と呼ぶ場合があるし、副画素[R,G,B]の動作の制御(具体的には、例えば、光透過率(開口率)の制御)のために副画素[R,G,B]に入力される赤色発光制御信号、緑色発光制御信号、及び、青色発光制御信号を一括して纏めて『制御信号[R,G,B]』と呼ぶ場合があるし、表示領域ユニットを構成する副画素[R,G,B]を駆動するために駆動回路に外部から入力される赤色発光副画素駆動信号、緑色発光副画素駆動信号、及び、青色発光副画素駆動信号を一括して纏めて『駆動信号[R,G,B]』と呼ぶ場合がある。
各画素は、副画素[R](赤色発光サブピクセル)、副画素[G](緑色発光サブピクセル)、及び、副画素[B](青色発光サブピクセル)の3種の副画素(サブピクセル)を1組として構成されているが、以下の実施例の説明においては、副画素[R,G,B]のそれぞれの輝度の制御(階調制御)を8ビット制御とし、0〜255の28段階にて行うとする。従って、各表示領域ユニット12を構成する各画素における副画素[R,G,B]のそれぞれを駆動するために液晶表示装置駆動回路90に入力される駆動信号[R,G,B]の値xR,xG,xBのそれぞれは、28段階の値をとる。また、各面状光源ユニットを構成する赤色発光ダイオード44R、緑色発光ダイオード44G及び青色発光ダイオード44Bのそれぞれの発光時間を制御するためのパルス幅変調出力信号の値SR,SG,SBも、0〜255の28段階の値をとる。但し、これに限定するものではなく、例えば、10ビット制御とし、0〜1023の210段階にて行うこともでき、この場合には、8ビットの数値での表現を、例えば4倍すればよい。
画素のそれぞれに、画素のそれぞれの光透過率Ltを制御する制御信号が駆動回路から供給される。具体的には、副画素[R,G,B]のそれぞれに、副画素[R,G,B]のそれぞれの光透過率Ltを制御する制御信号[R,G,B]が液晶表示装置駆動回路90から供給される。即ち、液晶表示装置駆動回路90においては、入力された駆動信号[R,G,B]から制御信号[R,G,B]が生成され、この制御信号[R,G,B]が副画素[R,G,B]に供給(出力)される。尚、面状光源ユニット42の輝度である光源輝度Y2を1画像表示フレーム毎に変化させるので、制御信号[R,G,B]は、基本的に、駆動信号[R,G,B]の値を2.2乗した値に対して、光源輝度Y2の変化に基づく補正(補償)を行った値を有する。そして、液晶表示装置駆動回路90を構成するタイミングコントローラ91から、カラー液晶表示装置10のゲート・ドライバ及びソース・ドライバに、制御信号[R,G,B]が周知の方法で送出され、制御信号[R,G,B]に基づき各副画素を構成するスイッチング素子32が駆動され、液晶セルを構成する透明第1電極24及び透明第2電極34に所望の電圧が印加されることで、各副画素の光透過率(開口率)Ltが制御される。ここで、制御信号[R,G,B]の値が大きいほど、副画素[R,G,B]の光透過率(開口率)Ltが高くなり、副画素[R,G,B]に対応する表示領域の部分の輝度(表示輝度y)の値が高くなる。即ち、副画素[R,G,B]を通過する光によって構成される画像(通常、一種、点状である)は明るい。
表示輝度y及び光源輝度Y2の制御は、カラー液晶表示装置10の画像表示における1画像表示フレーム毎、表示領域ユニット毎、面状光源ユニット毎に行われる。また、1画像表示フレーム内におけるカラー液晶表示装置10の動作と面状光源装置40の動作とは同期させられる。尚、駆動回路に電気信号として1秒間に送られる画像情報の数(毎秒画像)がフレーム周波数(フレームレート)であり、フレーム周波数の逆数がフレーム時間(単位:秒)である。
実施例1は、本発明の面状光源装置40に関する。即ち、実施例1の面状光源装置40は、上述したとおり、2次元マトリクス状に配列された画素から構成された表示領域11を有する透過型のカラー液晶表示装置10を背面から照明する面状光源装置である。そして、図1の(A)及び(B)に模式的に配置、配列を図示するように、光源を構成する発光素子ユニット43は、隔壁41の近傍、より具体的には、隔壁41に接して配置されている。ここで、実施例1においては、上述したとおり、面状光源ユニット42(q,p)の平面形状は矩形であり、1つの面状光源ユニット42(q,p)を構成する光源は4つの発光素子ユニット43から構成されており、各発光素子ユニット43は、面状光源ユニット42(q,p)の四隅のそれぞれの近傍に配置されている。
ここで、各発光素子ユニット43は、1つの赤色発光素子44R、2つの緑色発光素子44G、及び、1つの青色発光素子44Bから構成されている。そして、これらの4つの発光素子44R,44G,44Bは、仮想の矩形の四隅に配置されており、面状光源ユニット42(q,p)の中心を原点とした座標系を想定したとき、仮想の矩形の四隅の内の最も原点に近い隅、及び、仮想の矩形の四隅の内の最も原点に遠い隅に、緑色発光素子44Gが配置されており、残りの二隅のそれぞれに、赤色発光素子44R及び青色発光素子44Bが配置されている。また、面状光源ユニット42(q,p)の四辺における赤色発光素子44R、緑色発光素子44G及び青色発光素子44Bの並び順は、面状光源ユニット42(q,p)の中心に対して時計回りに面状光源ユニット42(q,p)の四辺を回ったとき、全ての辺において、緑色発光素子44G、青色発光素子44B、赤色発光素子44R、緑色発光素子44Gの順序で配置されている。尚、仮想の矩形の辺は、面状光源ユニットの辺と平行である。また、1つの面状光源ユニット42(q,p)において、4つの発光素子ユニット43を構成するそれぞれの赤色発光素子44Rは4回回転対称に配置されており、4つの発光素子ユニット43を構成するそれぞれの緑色発光素子44Gは4回回転対称に配置されており、4つの発光素子ユニット43を構成するそれぞれの青色発光素子44Bは4回回転対称に配置されている。
そして、光源を構成する発光素子ユニット43における発光素子44からの光の放射強度分布は、ランバート分布を有する。従って、図1の(A)に模式的に点線及び破線で示すように、1つの発光素子ユニット43に関して、その上方においては、面状光源ユニット42(q,p)の輝度は高く(図1の(A)では、輝度分布の等高線を模式的に点線で示す)、一方、遠い部分においては、面状光源ユニット42(q,p)の輝度は低い(図1の(A)では、輝度分布の等高線を模式的に破線で示す)。然るに、1つの発光素子ユニット43の遠い部分(図1の(A)では、符号「A」で示す)においては、4つの発光素子ユニット43からの光強度が重なり合っている。従って、図1の(A)、(B)に示す発光素子ユニット43の配置により、面状光源ユニット42(q,p)の輝度分布の均一性を達成することができる。
以下、実施例1における液晶表示装置組立体の駆動方法を、図6及び図7、並びに、図5の流れ図を参照して説明する。
[ステップ−100]
スキャンコンバータ等の周知のディスプレイ回路から送出された1画像表示フレーム分の駆動信号[R,G,B]及びクロック信号CLKは、バックライト制御ユニット70及び液晶表示装置駆動回路90に入力される(図6参照)。尚、駆動信号[R,G,B]は、例えば撮像管への入力光量をy’としたとき、撮像管からの出力信号であり、例えば放送局等から出力され、画素の光透過率Ltを制御するために液晶表示装置駆動回路90にも入力される駆動信号であり、入力光量y’の0.45乗の関数で表すことができる。そして、バックライト制御ユニット70に入力された1画像表示フレーム分の駆動信号[R,G,B]の値xR,xG,xBは、バックライト制御ユニット70を構成する記憶装置(メモリ)72に、一旦、記憶される。また、液晶表示装置駆動回路90に入力された1画像表示フレーム分の駆動信号[R,G,B]の値xR,xG,xBも、液晶表示装置駆動回路90を構成する記憶装置(図示せず)に、一旦、記憶される。
[ステップ−110]
次いで、バックライト制御ユニット70を構成する演算回路71においては、記憶装置72に記憶された駆動信号[R,G,B]の値を読み出し、第(p,q)番目[但し、先ず、p=1,q=1]の表示領域ユニット12(q,p)において、この第(p,q)番目の表示領域ユニット12(q,p)を構成する全ての画素における副画素[R,G,B](q,p)を駆動するための駆動信号[R,G,B](q,p)の値xR-(q,p),xG-(q,p),xB-(q,p)の内の最大値である表示領域ユニット内・駆動信号最大値xU-max(q,p)を、演算回路71において求める。そして、表示領域ユニット内・駆動信号最大値xU-max(q,p)を、記憶装置72に記憶する。このステップを、m=1,2,・・・,M、n=1,2,・・・,Nの全てに対して、即ち、M×N個の画素に対して、実行する。
例えば、xR-(q,p)が「110」に相当する値であり、xG-(q,p)が「150」に相当する値であり、xB-(q,p)が「50」に相当する値である場合、xU-max(q,p)は「150」に相当する値である。
この操作を、(p,q)=(1,1)から(P,Q)まで繰り返し、全ての表示領域ユニット12(q,p)における表示領域ユニット内・駆動信号最大値xU-max(q,p)を、記憶装置72に記憶する。
[ステップ−120]
そして、表示領域ユニット内・駆動信号最大値xU-max(q,p)に等しい値を有する駆動信号[R,G,B](q,p)に相当する制御信号[R,G,B](q,p)が副画素[R,G,B](q,p)に供給されたと想定したときの輝度(光透過率・第1規定値Lt1における表示輝度・第2規定値y2-(q,p))が面状光源ユニット42(q,p)によって得られるように、表示領域ユニット12(q,p)に対応する面状光源ユニット42(q,p)の光源輝度Y2-(q,p)を、面状光源ユニット駆動回路80(q,p)の制御下、増減する。具体的には、以下の式(1)を満足するように、1画像表示フレーム毎、1面状光源ユニット毎に光源輝度Y2を制御すればよい。より具体的には、光源輝度制御関数g(xnol-max)である式(2)に基づき発光素子ユニット43の輝度を制御し、且つ、式(1)を満足するように光源輝度Y2を制御すればよい。このような制御の概念図を、図10の(A)及び(B)に示す。但し、後述するように、他の面状光源ユニット42の影響に基づいた補正を、光源輝度Y2に対して、必要に応じて施す。尚、光源輝度Y2の制御に関するこれらの関係、即ち、表示領域ユニット内・駆動信号最大値xU-max、この最大値xU-maxに等しい値を有する駆動信号に相当する制御信号の値、このような制御信号が画素(副画素)に供給されたと想定したときの表示輝度・第2規定値y2、このときの各副画素の光透過率(開口率)[光透過率・第2規定値Lt2]、各副画素の光透過率(開口率)を光透過率・第1規定値Lt1としたときに表示輝度・第2規定値y2が得られるような面状光源ユニットにおける輝度制御パラメータの関係等を、予め求めておき、記憶装置72等に記憶しておけばよい。
Y2・Lt1=Y1・Lt2 (1)
g(xnol-max)=a1・(xnol-max)2.2+a0 (2)
ここで、画素(あるいは、画素を構成する副画素[R,G,B]のそれぞれ)を駆動するために液晶表示装置駆動回路90に入力される駆動信号(駆動信号[R,G,B])の最大値をxmaxとしたとき、
xnol-max≡xU-max/xmax
であり、a1,a0は定数であり、
a1+a0=1
0<a0<1,0<a1<1
で表すことができる。例えば、
a1=0.99
a0=0.01
とすればよい。また、駆動信号[R,G,B]の値xR,xG,xBのそれぞれは、28段階の値をとるので、xmaxの値は「255」に相当する値である。
ところで、面状光源装置40にあっては、例えば、(p,q)=(1,1)の面状光源ユニット42(1,1)の輝度制御を想定した場合、他のP×Q個の面状光源ユニット42からの影響を考慮する必要がある場合がある。このような面状光源ユニット42が他の面状光源ユニット42から受ける影響は、各面状光源ユニット42の発光プロファイルによって予め判明しているので、逆算によって差分を計算でき、その結果、補正が可能である。演算の基本形を以下に説明する。
式(1)及び式(2)の要請に基づくP×Q個の面状光源ユニット42に要求される輝度(光源輝度Y2)を行列[LPxQ]で表す。また、或る面状光源ユニットのみを駆動し、他の面状光源ユニットは駆動していないときに得られる或る面状光源ユニットの輝度を、P×Q個の面状光源ユニット42に対して予め求めておく。係る輝度を行列[L’PxQ]で表す。更には、補正係数を行列[αPxQ]で表す。すると、これらの行列の関係は、以下の式(3−1)で表すことができる。補正係数の行列[αPxQ]は、予め求めておくことができる。
[LPxQ]=[L’PxQ]・[αPxQ] (3−1)
よって、式(3−1)から行列[L’PxQ]を求めればよい。行列[L’PxQ]は、逆行列の演算から求めることができる。即ち、
[L’PxQ]=[LPxQ]・[αPxQ]-1 (3−2)
を計算すればよい。そして、行列[L’PxQ]で表された輝度が得られるように、各面状光源ユニット42(q,p)に備えられた光源(発光素子ユニット43)を制御すればよく、具体的には、係る操作、処理は、記憶装置(メモリ)82に記憶された情報(データテーブル)を用いて行えばよい。尚、発光素子ユニット43の制御にあっては、行列[L’PxQ]の値は負の値を取れないので、演算結果は正の領域にとどめる必要があることは云うまでもない。従って、式(3−2)の解は厳密解ではなく、近似解となる場合がある。
このように、バックライト制御ユニット70を構成する演算回路71において得られた式(1)及び式(2)の値に基づき得られた行列[LPxQ]、補正係数の行列[αPxQ]に基づき、上述したとおり、面状光源ユニットを単独で駆動したと想定したときの輝度の行列[L’PxQ]を求め、更には、記憶装置72に記憶された変換テーブルに基づき、0〜255の範囲内の対応する整数(パルス幅変調出力信号の値)に変換する。こうして、バックライト制御ユニット70を構成する演算回路71において、面状光源ユニット42(q,p)における赤色発光ダイオード44Rの発光時間を制御するためのパルス幅変調出力信号の値SR-(q,p)、緑色発光ダイオード44Gの発光時間を制御するためのパルス幅変調出力信号の値SG-(q,p)、青色発光ダイオード44Bの発光時間を制御するためのパルス幅変調出力信号の値SB-(q,p)を得ることができる。
[ステップ−130]
次に、バックライト制御ユニット70を構成する演算回路71において得られたパルス幅変調出力信号の値SR-(q,p),SG-(q,p),SB-(q,p)は、面状光源ユニット42(q,p)に対応して設けられた面状光源ユニット駆動回路80(q,p)の記憶装置82に送出され、記憶装置82において記憶される。また、クロック信号CLKも面状光源ユニット駆動回路80(q,p)に送出される(図7参照)。
[ステップ−140]
そして、パルス幅変調出力信号の値SR-(q,p),SG-(q,p),SB-(q,p)に基づき、面状光源ユニット42(q,p)を構成する赤色発光ダイオード44Rのオン時間tR-ON及びオフ時間tR-OFF、緑色発光ダイオード44Gのオン時間tG-ON及びオフ時間tG-OFF、青色発光ダイオード44Bのオン時間tB-ON及びオフ時間tB-OFFを演算回路81は決定する。尚、
tR-ON+tR-OFF=tG-ON+tG-OFF=tB-ON+tB-OFF=一定値tConst
である。また、発光ダイオードのパルス幅変調に基づく駆動におけるデューティ比は、
tON/(tON+tOFF)=tON/tConst
で表すことができる。
そして、面状光源ユニット42(q,p)を構成する赤色発光ダイオード44R,緑色発光ダイオード44G、青色発光ダイオード44Bのオン時間tR-ON-(q,p),tG-ON-(q,p),tB-ON-(q,p)に相当する信号が、LED駆動回路83に送られ、このLED駆動回路83から、オン時間tR-ON-(q,p),tG-ON-(q,p),tB-ON-(q,p)に相当する信号の値に基づき、スイッチング素子85R(q,p),85G(q,p),85B(q,p)が、オン時間tR-ON-(q,p),tG-ON-(q,p),tB-ON-(q,p)だけオン状態となり、発光ダイオード駆動電源86からのLED駆動電流が、各発光ダイオード44R,44G,44Bに流される。その結果、各発光ダイオード44R,44G,44Bは、1画像表示フレームにおいて、オン時間tR-ON-(q,p),tG-ON-(q,p),tB-ON-(q,p)だけ発光する。こうして、各表示領域ユニット12(q,p)を、所定の照度において照明する。
こうして得られた状態を、図11の(A)及び(B)に実線で示すが、図11の(A)は、副画素を駆動するために液晶表示装置駆動回路90に入力される駆動信号の値を2.2乗した値(x’≡x2.2)とデューティ比(=tON/tConst)との関係を模式的に示す図であり、図11の(B)は、副画素の光透過率Ltを制御するための制御信号の値Xと表示輝度yとの関係を模式的に示す図である。
[ステップ−150]
一方、液晶表示装置駆動回路90に入力された駆動信号[R,G,B](q,p)の値xR-(q,p),xG-(q,p),xB-(q,p)はタイミングコントローラ91へ送られ、タイミングコントローラ91にあっては、入力された駆動信号[R,G,B](q,p)に相当する制御信号[R,G,B](q,p)を、副画素[R,G,B](q,p)に供給(出力)する。液晶表示装置駆動回路90のタイミングコントローラ91において生成され、液晶表示装置駆動回路90から副画素[R,G,B](q,p)に供給される制御信号[R,G,B](q,p)の値XR-(q,p),XG-(q,p),XB-(q,p)と、駆動信号[R,G,B](q,p)の値xR-(q,p),xG-(q,p),xB-(q,p)とは、以下の式(4−1)、式(4−2)、式(4−3)の関係にある。但し、b1_R,b0_R,b1_G,b0_G,b1_B,b0_Bは定数である。また、面状光源ユニット42(q,p)の光源輝度Y2-(q,p)を画像表示フレーム毎に変化させるので、制御信号[R,G,B](q,p)は、基本的に、駆動信号[R,G,B](q,p)の値を2.2乗した値に対して、光源輝度Y2-(q,p)の変化に基づく補正(補償)を行った値を有する。即ち、実施例1にあっては、1画像表示フレーム毎に光源輝度Y2-(q,p)が変化するので、光源輝度Y2-(q,p)(≦Y1)において表示輝度・第2規定値y2-(q,p)が得られるように制御信号[R,G,B](q,p)の値XR-(q,p),XG-(q,p),XB-(q,p)を決定、補正(補償)して、画素あるいは副画素の光透過率(開口率)Ltを制御している。ここで、式(4−1)、式(4−2)、式(4−3)の関数fR,fG,fBは、係る補正(補償)を行うための予め求められた関数である。
XR-(q,p)=fR(b1_R・xR-(q,p) 2.2+b0_R) (4−1)
XG-(q,p)=fG(b1_G・xG-(q,p) 2.2+b0_G) (4−2)
XB-(q,p)=fB(b1_B・xB-(q,p) 2.2+b0_B) (4−3)
こうして、1画像表示フレームにおける画像表示動作が完了する。
図1の(A)及び(B)に示した実施例1の発光素子ユニット43の配置、配列の変形例を、図2の(A)、(B)、図3の(A)、図3の(B)、図4の(A)及び図4の(B)に示す。
図2の(A)、(B)に示した例にあっては、各発光素子ユニット43は、1つの赤色発光素子(赤色発光ダイオード44R)、1つの緑色発光素子(緑色発光ダイオード44G)、及び、1つの青色発光素子(青色発光ダイオード44B)から構成されている。そして、これらの3つの発光素子44R,44B,44Gのそれぞれは、仮想の「L」の字の縦棒の先端部分、横棒の先端部分、及び、縦棒と横棒の交わる部分に配置されている。尚、仮想の「L」の字の縦棒及び横棒は、面状光源ユニットの辺と平行であり、仮想の「L」の字の縦棒と横棒の交わる部分は、面状光源ユニットの隅に近接している。しかも、面状光源ユニット42(q,p)の四辺における赤色発光素子44R、緑色発光素子44G及び青色発光素子44Bの並び順は、面状光源ユニット42(q,p)の中心に対して時計回りに面状光源ユニット42(q,p)の四辺を回ったとき、全ての辺において、緑色発光素子44G、青色発光素子44B、赤色発光素子44R、緑色発光素子44Gの順序で配置されている。また、1つの面状光源ユニット42(q,p)において、4つの発光素子ユニット43を構成するそれぞれの赤色発光素子44Rは4回回転対称に配置されており、4つの発光素子ユニット43を構成するそれぞれの緑色発光素子44Gは4回回転対称に配置されており、4つの発光素子ユニット43を構成するそれぞれの青色発光素子44Bは4回回転対称に配置されている。
また、図3の(A)にあっては、1つの面状光源ユニット42に1つの光源(発光素子ユニット43)が備えられており、この光源(発光素子ユニット43)は、面状光源ユニット42の四隅の1つの近傍に配置されている(より具体的には、隔壁41と接している)。更には、図3の(B)にあっては、1つの面状光源ユニット42に2つの光源(発光素子ユニット43)が備えられており、これらの光源(発光素子ユニット43)は、面状光源ユニット42の四隅の対角線上に位置する2つ隅の近傍に配置されている(より具体的には、隔壁41と接している)。
また、図4の(A)にあっては、1つの面状光源ユニット42に4つの光源(発光素子ユニット43)が備えられており、これらの光源(発光素子ユニット43)は、面状光源ユニット42の四辺の近傍に配置されている(より具体的には、隔壁41の四辺のそれぞれの中央部と接している)。更には、図4の(B)にあっては、1つの面状光源ユニット42に2つの光源(発光素子ユニット43)が備えられており、これらの光源(発光素子ユニット43)は、面状光源ユニット42の二辺の近傍に配置されている(より具体的には、隔壁41の対向する二辺のそれぞれの中央部と接している)。
以上、本発明を好ましい実施例に基づき説明したが、本発明はこの実施例に限定されるものではない。実施例において説明した透過型のカラー液晶表示装置や面状光源装置、面状光源ユニット、液晶表示装置組立体、駆動回路の構成、構造は例示であるし、これらを構成する部材、材料等も例示であり、適宜、変更することができる。発光ダイオードの温度を温度センサーで監視し、その結果を、面状光源ユニット駆動回路80にフィードバックすることで、面状光源ユニット42の輝度補償(補正)や温度制御を行ってもよい。実施例においては、液晶表示装置の表示領域をP×Q個の仮想の表示領域ユニットに分割したと想定して説明を行ったが、場合によっては、透過型の液晶表示装置は、P×Q個の実際の表示領域ユニットに分割された構造を有していてもよい。
10・・・カラー液晶表示装置、11・・・表示領域、12・・・表示領域ユニット、13・・・液晶材料、20・・・フロント・パネル、21・・・第1の基板、22・・・カラーフィルター、23・・・オーバーコート層、24・・・透明第1電極、25・・・配向膜、26・・・偏光フィルム、30・・・リア・パネル、31・・・第2の基板、32・・・スイッチング素子、34・・・透明第2電極、35・・・配向膜、36・・・偏光フィルム、37・・・絶縁層、40・・・面状光源装置、41・・・隔壁、42・・・面状光源ユニット、43・・・発光素子ユニット、44,44R,44G,44B・・・発光ダイオード、45,45R,45G,45B・・・フォトダイオード(光センサー)、51・・・筐体、52A・・・筐体の底面、52B・・・筐体の側面、53・・・外側フレーム、54・・・内側フレーム、55A,55B・・・スペーサ、56・・・ガイド部材、57・・・ブラケット部材、61・・・拡散板、62・・・拡散シート、63・・・プリズムシート、64・・・偏光変換シート、65・・・反射シート、70・・・バックライト制御ユニット、71・・・演算回路、72・・・記憶装置(メモリ)、80・・・面状光源ユニット駆動回路、81・・・演算回路、82・・・記憶装置(メモリ)、83・・・LED駆動回路、84・・・フォトダイオード制御回路、85R,85G,85B・・・スイッチング素子、86・・・発光ダイオード駆動電源、90・・・液晶表示装置駆動回路、91・・・タイミングコントローラ