JP4744066B2 - Indefinite refractory - Google Patents

Indefinite refractory Download PDF

Info

Publication number
JP4744066B2
JP4744066B2 JP2003177113A JP2003177113A JP4744066B2 JP 4744066 B2 JP4744066 B2 JP 4744066B2 JP 2003177113 A JP2003177113 A JP 2003177113A JP 2003177113 A JP2003177113 A JP 2003177113A JP 4744066 B2 JP4744066 B2 JP 4744066B2
Authority
JP
Japan
Prior art keywords
mass
alumina
refractory
magnesia
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003177113A
Other languages
Japanese (ja)
Other versions
JP2005008496A (en
Inventor
潔 後藤
徳雄 多喜
孝之 犬塚
彰一 糸瀬
利弘 礒部
敬 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Nippon Steel Corp
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Krosaki Harima Corp filed Critical Nippon Steel Corp
Priority to JP2003177113A priority Critical patent/JP4744066B2/en
Publication of JP2005008496A publication Critical patent/JP2005008496A/en
Application granted granted Critical
Publication of JP4744066B2 publication Critical patent/JP4744066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流し込み施工用などの不定形耐火物に関するものである。
【0002】
【従来の技術】
溶鋼取鍋、タンデッシュ、真空脱ガス炉等の溶鋼容器あるいは溶鋼処理装置の耐火物として使用する流し込み施工用耐火物(以下「流し込み材」と称する。)が広く使用されている。
しかし、近年の溶鋼容器および溶鋼処理装置の使用条件は、溶鋼温度の上昇・滞湯時間の延長・ガス吹き込み撹拌等によって苛酷化の一途をたどり、例えばアルミナ−マグネシア質などの高耐用性のものといえどもその寿命は決して十分なものではなく、さらに耐用性に優れた流し込み材が強く求められている。
【0003】
その改善策として、特許文献1には、結合剤に乳酸アルミニウムを添加したアルミナ−マグネシア質流し込み材が提案されている。ここでは結合剤に乳酸アルミニウムを使用し、CaO源であるアルミナセメントおよびSiO2 源のシリカを除くことで、耐溶損性の改善と焼結抑制による耐熱スポーリング性向上の効果を得ている。
また特許文献2にも、湿式吹付け施工用材質として結合剤に乳酸アルミニウムを添加し、CaO源であるアルミナセメントを除いたアルミナ−マグネシア質流し込み材が提案されている。
【0004】
また、特許文献3には、アルミナセメントを含有しない不定形耐火物の強度低下を抑制するための方策として珪酸ナトリウム、硼珪酸ナトリウム、珪酸カリウムを添加したものが記載されている。
さらに、特許文献4にはジルコン含有マグネシア骨材を主成分とし、りん酸塩ガラス、ほう珪酸ガラスを添加して中低温度域で強度を発現する不定形耐火物が記載されている。
【0005】
【特許文献1】
特開平11−130550号公報
【特許文献2】
特開平10−194853号公報
【特許文献3】
特開平5−213675号公報
【特許文献4】
特開平6−144939号公報
【0006】
【発明が解決しようとする課題】
アルミナセメントは流し込み材に強度を付与するための代表的な結合材の一つである。しかしこれに含有されるCaOは流し込み材の耐食性を損なう原因ともなっている。そこで特許文献1や特許文献2に記載されているようなアルミなセメントを含有しない流し込み材が提案されてきた。しかしアルミナセメントを含有しない流し込み材に共通する問題点は、1000℃前後の中低温度で焼成した後の強度(中低温域の強度と称する)が低いことである。これを解決する手段として珪酸ナトリウム、硼珪酸ナトリウム、珪酸カリウムの添加が特許文献3に記載されている。しかしこれらの手段でも充分な効果が得られない。
【0007】
他方、塩基性の流し込み材においては特許文献4に見られるような、りん酸塩ガラス、ほう珪酸ガラスを添加して中低温度域で強度を発現する不定形耐火物が提案されている。添加されたガラスは1000℃付近で液化しマグネシアを結合させ強度を発現させるが、1400℃以上の熱間強度を著しく低下させるという重大な問題を抱えている。
【0008】
本発明の目的は、アルミナセメントを含有しない高耐食性流し込み材の熱間強度を損なうことなく中低温域の強度を高めた高耐用性不定形耐火物を提供することにある。
【0009】
【課題を解決するための手段】
前述の目的を達成すべく様々な工夫を積み重ね、本発明を得た。すなわち、Pが0.1〜3質量%、CaOが0.5質量%以下、SiOが0.05〜5質量%、乳酸とグリコール酸の合量が0.005〜1質量%、残部がAl、MgO及びその他不可避な成分からなるアルミナ−マグネシア質、アルミナ−スピネル質、又は、アルミナ−マグネシア−スピネル質の不定形耐火物であって、アルミナセメントを配合しないことにより、前記CaOを0.5質量%以下とし、
且つ、前記P成分が、P含有粉末を添加して供給されたものであり、このP含有粉末にはさらにNaO成分、B成分のいずれか一方または両方が含有されており、P含有粉末における含有量として、Pが10〜70質量%、NaOが10〜30質量%、Bが5〜60質量%、PとNaOとBの合計が50質量%以上であり、
且つ、耐火骨材組成100質量%に占める割合で、平均粒径1.5μm以下のアルミナ超微粉を3〜15質量%と、ヨード吸収量20ヨードmg/g以上で且つ平均粒径1μm以下の軽焼マグネシア微粉を0.01〜3質量%含有することを特徴とする不定形耐火物である。
さらに、流し込み材として、解こう剤、耐火粗大粒子、硬化調整剤、金属短繊維、有機繊維、セラミックファイバー、炭素繊維、クロム鉱、発泡剤が添加されていてもよい。
【0010】
【発明の実施の形態】
本発明はアルミナセメントを含有しない流し込み材にP25 を含有する微粉あるいは粒子(これらをまとめて粉末と称する)を配合することで中低温域の強度を発現させる。なおこの手法は流し込み材の熱間強度を低下させることがないばかりか、むしろ増加させ、耐食性も高める。
【0011】
本明細書では、Al23 、MgOのように化学式で表記したものは化学成分を表し、化学分析によって定量できる。一方、アルミナ、マグネシアのようにカタカナで表記したものは鉱物等、耐火原料となる物質、すなわち、一つの相として存在しているものを表す。言い替えれば、物質とは、化学的な操作なしに取り出すことができるような不可避的不純物を含有する可能性のある現実の耐火原料となる状態のものである。たとえばアルミナは鉱物名コランダム、マグネシアは鉱物名ペリクレスである。化学式で表記したものは化学分析によって同定、定量でき、カタカナで表記したものはたとえばX線回折などの方法で同定、定量できる。
【0012】
本発明の耐火物の主成分となる物質はアルミナ(コランダム)、スピネル、マグネシア(ペリクレス)である。すなわち主な化学成分はAl23 または/およびMgOである。これら主成分からなる耐火物は融点が高くスラグや溶鉄に対する耐食性が高いので、これらの性質を害するCaO成分を含有するアルミナセメントは配合しない。なおCaO成分はアルミナセメントとして配合しなくても、主成分物質中に不純物として0.5質量%以下は含有される。しかしこのCaO成分は主成分物質中に化合あるいは固溶してしっかりと取り込まれているので害をなさない。このため耐火物全体に0.5質量%以下含まれるCaOについては許容する。
【0013】
25 成分は合量で0.1〜3質量%添加する。この成分はアルミナ、スピネル、マグネシアなどの主成分物質の焼結を促進し、中低温域での強度を発現させる働きをする。0.1質量%未満では狙い通りの強度が発現せず、3質量%を超えて添加すると耐食性が低下するので、この範囲に限定する。なお下限値は好ましくは0.3、さらに好ましくは0.5質量%である。ところで不定形耐火物には通常は解こう剤が使われるため、主にこれに由来するP25 成分が0.05質量%程度含有されることが多いが、これは本発明で意図する中低温域の強度発現には寄与しない。
【0014】
25 成分は、この成分を含有する粉末として添加する。その粉末にはNa2 Oおよび/又はB23 成分が含有されていてもよい。これら3成分の合計含有量は50質量%以上であることが望ましい。これ以下では他成分による希釈効果で強度が発現し難い。P25 含有量10〜70質量%、Na2 O含有量10〜30質量%、B23 含有量5〜60質量%程度のものが使いやすい。なお結晶質ではなくガラス化していてもよい。
【0015】
本発明の耐火物は、P25 成分を含有するにもかかわらず熱間強度が高い。これは後述の実施例における本発明実施例D01と比較例D13を比較すれば明らかであり、先行技術(たとえば特許文献4に記載の発明)との差異が際立つ点である。この原因は以下のように推測される。すなわち、P25 はCaOと共存すると融点が低下しやすいが、Al23 とではそのような傾向は弱いので、CaOをほとんど含有しない本発明の耐火物は熱間強度が低下せず、むしろP25 成分による焼結促進効果で熱間強度が高まる。
【0016】
SiO2 は揮発シリカや硅石などのシリカ系原料に由来する。これら、特に揮発シリカは不定形耐火物施工体の養生乾燥中におけるマグネシアの水和抑制、高温における適度のクリープ性の付与、適量であれば耐食性向上などを担わせる目的で添加される。耐火物中におけるSiO2 成分の量は0.05質量%未満ではマグネシアが水和する、クリープ性不足から耐火物が破壊するなどの問題が生じ、また5質量%を超えると耐食性が悪化するなどの問題が生じるので、0.05〜5質量%の範囲に限定する。
【0017】
アルミナとマグネシアの両方を含有する場合は使用中の受熱で両者が反応してスピネルが生じ、その際に耐火物が膨張するため、これにより不定形耐火物施工体が破壊する場合がある。これを防止するためにはSiO2 は0.5質量%以上必要である。上限値は耐食性の低下から同じく5質量%でよい。
【0018】
乳酸とグリコール酸は合量が0.005〜1質量%である。これは後述の乳酸アルミニウム、グリコール酸乳酸アルミニウム、グリコール酸アルミニウム等の添加量0.01〜2質量%に対応する量である。乳酸アルミニウム、グリコール酸乳酸アルミニウム、グリコール酸アルミニウムは主成分物質の結合剤(バインダー)として作用し、アルミナセメントに替わって不定形耐火物施工体に養生および乾燥後の強度を付与し、さらに養生乾燥時に微細亀裂を発生させて通気性を付与するとともに耐火物自身の熱膨張を吸収することで耐スポール性を向上させ、また適度のクリープ性を与える。
【0019】
乳酸アルミニウム、グリコール酸乳酸アルミニウム、グリコール酸アルミニウムは、乳酸、グリコール酸、アルミニウムイオン(酸化物として表現すれば酸化アルミニウム)からなるので、乳酸あるいはグリコール酸の量は乳酸アルミニウム、グリコール酸乳酸アルミニウム、グリコール酸アルミニウムの添加量よりも少なくなる。乳酸とグリコール酸の合量は0.005質量%より少ないと(すなわち乳酸アルミニウム、グリコール酸乳酸アルミニウム、グリコール酸乳酸アルミニウムの合量が0.01質量%未満であると)養生後の強度が不足すると共に微細亀裂発生の効果がなく、これに伴う効果も得られない。また1質量%を超えると(すなわち乳酸アルミニウム、グリコール酸乳酸アルミニウム、グリコール酸アルミニウムの合量が2質量%超であると)養生収縮による亀裂が生じて耐火物の耐食性が低下する。
【0020】
耐火物中の乳酸とグリコール酸の量を管理すると、後述の乳酸アルミニウム、グリコール酸乳酸アルミニウム、グリコール酸アルミニウム等の添加割合を管理する以上に正確に耐火物の性能を管理把握することができる。これは市販の乳酸アルミニウム、グリコール酸乳酸アルミニウム、グリコール酸アルミニウムには希釈剤や増量剤などが含まれており乳酸アルミニウム等の成分量が一定でないためである。
【0021】
耐火物中の乳酸とグリコール酸の量を測定する方法として、本発明では以下の方法によった。すなわち、環境庁告示第46号の土壌等の溶出試験方法に則り、2mm以下の試料とpH5.8〜6.3に調整した純水を質量容積比10%(試料50gと純水500ml)の割合で混合し、常温、常圧で振とう機(振とう幅4〜5cm、毎分200回)を用いて6時間連続振とうする。この溶液を30分間静置した後、毎分約3000回転で遠心分離した後の上澄液を孔徑0.45μmのメンブランフィルターでろ過した液を測定溶液とした。これをキャピラリーゾーン電気泳動法、あるいは高速液体クロマトグラフ法で測定した。キャピラリーゾーン電気泳動法ではフューズドシリカのキャピラリーを用い、試料注入は落差法で行った。検出はオンカラム法による紫外吸収によった。高速液体クロマトグラフ法では内径3〜4mmの通常のカラムを用い、流量0.5〜2ミリリットル/分程度の流量で、紫外吸光光度を測定した。検出感度はキャピラリー電気泳動法が優る。両者の結果の差は20%以内だった。
【0022】
不可避な成分とは、酸化鉄、MnO、TiO、Na O、V 、Cなどの安定核種を有する元素または酸化物等の化合物であるが、いずれも耐食性などに悪影響を与えるので、望ましくは5質量%以下とする。
【0023】
本発明の耐火物においては、主成分物質であるアルミナ、スピネル、マグネシア、シリカを適宜配合し、さらに以下のような点に留意した配合とすることで、特に優れた特性を得ることができる。すなわち、平均粒径1.5μm以下のアルミナ超微粉を3〜15質量%と、乳酸アルミニウム、グリコール酸乳酸アルミニウム、グリコール酸アルミニウムのうちの一種あるいは二種以上を合量で0.01〜2質量%と、ヨード吸着量20ヨードmg/g以上で且つ平均粒径1μm以下の軽焼マグネシア微粉を0.01〜3質量%含有する。この意図するところは、養生後の強度はアルミナ超微粉と、乳酸アルミニウム、グリコール酸乳酸アルミニウム、グリコール酸アルミニウムにより確保し、養生時の亀裂発生は軽焼マグネシア微粉により抑制することにある。
【0024】
アルミナ超微粉はその凝集力により施工体に強度を付与する。また組織を緻密化するので耐食性や耐スラグ浸潤性を向上させる。平均粒径を1.5μm以下とするのは、施工体組織のマトリックス部の充填性を高めることで、粒子間の余分な空隙をなくし、後述の乳酸アルミニウム、グリコール酸乳酸アルミニウム、グリコール酸アルミニウムのゲル化に伴う収縮亀裂を防止する本発明の効果をより確実なものとするためである。
【0025】
アルミナ超微粉の量は、耐火骨材組成100質量%に占める割合で、3〜15質量%とし、平均粒径は1.5μm以下とする。アルミナ超微粉の割合が3質量%未満では施工体の収縮亀裂防止効果に劣り、15質量%を超えると燒結が過度に進行するためか耐スポーリング性が低下する。
【0026】
アルミナ超微粉は、市販品から入手しやすいという点で仮焼アルミナの使用が好ましい。仮焼アルミナは種々の粒度のものが知られている。本発明では平均粒径1.5μm以下のアルミナ超微粉を3〜15質量%使用していれば、他の粒径のアルミナ超微粉を組み合わせてもよい。また、平均粒径1.5μm以下の範囲で、粒径が異なるアルミナ超微粉を複数組み合わせてもよい。
【0027】
乳酸アルミニウム、グリコール酸乳酸アルミニウム、グリコール酸アルミニウムは、施工水との反応によるゲル化で養生中の流し込み材を硬化させる結合剤としての役割を果たし、またそのゲル化に伴う膨張収縮で施工体組織に微細亀裂を形成させる。この微細亀裂は、施工体の乾燥・加熱時に組織内に残存することで通気性の付与や膨張吸収、熱応力緩和に有効な働きをすることは既に述べた通りである。
【0028】
乳酸アルミニウム、グリコール酸乳酸アルミニウム、グリコール酸アルミニウムは粉末として添加して他の原料と共に混練しても、また予め水で解いてから添加してもよい。
乳酸アルミニウムは、狭義の乳酸アルミニウムを含め、たとえば、特開平9−194264号公報に記載されているような、塩基性乳酸アルミニウム、クエン酸乳酸アルミニウムなどを含む。たとえば塩基性乳酸アルミニウムは水溶性アルミニウムと炭酸または炭酸塩等と乳酸を反応させて製造される。乳酸アルミニウムとしてはAl23 /乳酸がモル比で0.3〜2のものが好ましいが、これに限定されるものではない。
【0029】
グリコール酸乳酸アルミニウムは、広義の乳酸アルミニウムに含まれる。たとえば乳酸アルミニウム塩に有機酸であるグリコール酸を混合溶液とし、これを乾燥させることで得られる。Al23 /(乳酸+グリコール酸)がモル比で0.3〜2のものが好ましいが、これに限定されるものではない。
【0030】
グリコール酸アルミニウムはAl23 /グリコール酸がモル比で0.3〜2のものが好ましいが、これに限定されるものではない。
更に、軽焼マグネシアを添加することにより、目的とする容積安定性および耐食性の効果を得ることができる。その理由は以下のとおりと考えられる。乳酸アルミニウム、グリコール酸乳酸アルミニウム、グリコール酸アルミニウムのゲル化反応による微細亀裂は、前記したように種々の効力を発揮するが、同時に養生収縮による亀裂が生じる。この養生収縮の亀裂は、前記ゲル化反応による微細亀裂に比べて亀裂幅がはるかに大きく、耐食性低下の原因となる。これに対し、軽焼マグネシアを組み合わせることで、混練時に軽焼マグネシアから溶出したMgにゲル化した乳酸アルミニウム、グリコール酸乳酸アルミニウム、グリコール酸アルミニウムが吸着し、乳酸アルミニウム、グリコール酸乳酸アルミニウム、グリコール酸アルミニウム単独使用に見られた急激なゲル化反応が抑制されることで、養生時の収縮亀裂が防止される。
【0031】
また、軽焼マグネシアと乳酸アルミニウム、グリコール酸乳酸アルミニウム、グリコール酸アルミニウムとの反応で養生時にマグネシアとアルミナが既に結合した養生形態にあり、これらが比較的低温域でスピネル化する。ここで生成されるスピネルは粒径がきわめて微細である。このことが、前記養生時の収縮亀裂の防止とも相俟って耐食性および容積安定性の向上に大きく貢献する。
【0032】
本発明によるこれらの効果は、軽焼マグネシアの中でもヨード吸着量20ヨードmg/g以上、さらに好ましくは30〜200ヨードmg/gで、かつ平均粒径1μm以下、さらに好ましくは0.5μm以下の軽焼マグネシア微粉を使用することでより効果的に発揮される。軽焼マグネシア微粉のヨード吸着量が20ヨードmg/g未満では乳酸アルミニウム、グリコール酸乳酸アルミニウム、グリコール酸アルミニウムとの反応に劣るためか、養生時の収縮亀裂の防止に効果がない。また、軽焼マグネシア微粉のこのヨード吸着量が200ヨードmg/gを超えると水和反応しやすくなって耐火物組織の耐消化性が低下する傾向にあり好ましくない。平均粒径が1μmを超えるとヨード吸着量が20ヨードmg/g以上であっても乳酸アルミニウム、グリコール酸乳酸アルミニウム、グリコール酸アルミニウムとの反応が遅いためか同様に養生時の収縮亀裂の防止効果がない。軽焼マグネシア微粉はヨード吸着量、平均粒径のいずれかがこの範囲から外れても本発明が目指す効果は得られない。
【0033】
ここでのヨード吸着量の測定はマグネシア微粉の表面性状の測定法であるJIS−K6338に準じて行うことができる。平均粒径の測定はレーザー回析法で行うことができる。また、後述するアルミナ超微粉の粒径測定もレーザー回析法で測定できる。
【0034】
軽焼マグネシア微粉の量は、耐火骨材組成100質量%に占める割合で0.01質量%未満では養生収縮を防止する効果がない。3質量%を超えると流し込み材が高年度となって混練しにくくなり、さらに施工時の流動性の低下で緻密な施工体が得られ難い。
【0035】
軽焼マグネシア微粉は、水酸化マグネシウムを比較的低温域で焼成処理して得られるもので、製造過程における粒径調整、焼成温度等の操作でヨード吸着量が異なる。ヨード吸着量、粒度について種々の品質が市販されており、本発明で使用する軽焼マグネシア微粉もこの市販品から求めることができる。また、本発明で限定したヨード吸着量および粒度の軽焼マグネシア微粉を本発明で限定した範囲の量で使用しておれば、他のヨード吸着量および粒度の軽焼マグネシア微粉を組み合わせて使用してもよい。
【0036】
以下に本発明の耐火物に使用する原料について説明する。
アルミナ原料は耐食性と容積安定性とを兼ね備えた耐火原料である。電融品、焼結品を問わない。微粉部分での使用は微粉として入手しやすい仮焼アルミナでもよい。Al23 純度は95質量%以上のものが好ましい。
【0037】
スピネル原料は電融あるいは焼結のスピネル、スピネル質の鉱滓などが利用できる。Al23 とMgO以外の不純物は80質量%未満であることが望ましい。化学量論組成から外れたものでも使用できる。
【0038】
マグネシア原料は、焼結品、電融品のいずれでもよい。MgO純度は90質量%以上、さらに好ましくは95質量%である。
【0039】
本発明で使用するマグネシア原料の一部または全部を、化学分析値でMgO含有量35質量%以上の炭酸マグネシウムとしてもよい。炭酸マグネシウムは、天然のマグネサイト、合成炭酸マグネシウム、炭酸水酸化マグネシウム(塩基性炭酸マグネシウム)等が使用でき、MgO含有量は35質量%以上、粒径は1mm以下が望ましい。
【0040】
炭酸マグネシウムは600℃付近からの分解(MgCO3 →MgO+CO2 )によって施工体組織中に微細空隙を生成する。そしてこの微細空隙は、耐火物の膨張を吸収緩和することに加え、施工体使用時における表層部の過焼結を防止し、構造的スポーリングに対しても優れた効果を発揮する。炭酸マグネシウムの割合は耐食性の面から、マグネシア原料全体の70質量%以下、あるいは耐火骨材全体に占める割合で10質量%以下がより好ましい。
【0041】
本発明の主要な構成物質であるアルミナ、スピネル、マグネシア各原料の粒度は、流し込み材施工時の流動性あるいは施工体の充填性等を考慮し粗粒、中粒、微粒に適宜調整する。
【0042】
シリカ系原料としては揮発シリカや硅石などが使用できる。揮発シリカはアルミナ−マグネシア質不定形耐火物や塩基性不定形耐火物に添加され、スピネル生成時の膨張応力緩和やマグネシアの水和抑制などに有効である。揮発シリカは、例えばシリコンまたは珪素合金製造の際の副産物として得られ、シリカフラワーまたはマイクロシリカ等の商品名で市販されている。平均粒径1μmの超微粒子である。その配合割合は耐火骨材全体に占める割合で3質量%以下とするのが望ましい。3質量%を超えると低融点物質を生成が多くなり耐食性を低下させる。
最も好ましい範囲は0.05〜1.5質量%である。
【0043】
25 を含有する粉末は電融法、焼結法などにより製造したものが使用できる。前述のようにP25 を含み、さらにこれとNa2 Oおよび/又はB23 の合量が50質量%以上のものを使用する。粒径は100μm以下とすることが望ましい。
【0044】
その他、流し込み材の添加物として知られている解こう剤、耐火粗大粒子、硬化調整剤、金属短繊維(例えばステンレス鋼ファイバー)、有機繊維、セラミックファイバー、炭素繊維、クロム鉱、発泡剤等を添加してもよい。
【0045】
特に解こう剤の添加は施工時の流動性付与として必要である。具体例としては、例えばトリポリリン酸ソーダ、ヘキサメタリン酸ソーダ、ウルトラポリリン酸ソーダ、酸性ヘキサメタリン酸ソーダ、ホウ酸ソーダ、クエン酸ソーダ、カルボキシル基含有ポリエーテル系分散剤、酒石酸ソーダ、ポリアクリル酸ソーダ、スルホン酸ソーダ等がある。その添加割合は、耐火骨材100質量%に対する外掛けで0.01〜0.5質量%が好ましい。
硬化調整剤として、ほう酸、炭酸リチウム等を添加しても良い。添加量は通常0.5質量%以下である。
【0046】
耐火粗大粒子は、耐火物組織内に発生した亀裂の発達を寸断することで剥離損傷防止の効果がある。具体例としてはアルミナ質、スピネル質、ムライト質、マグネシア質等である。またアルミナ質あるいはスピネル質を主材としたれんが屑、耐火物使用後品等でもよい。耐火粗大粒子の粒径は、耐火骨材の最大粒径との兼ね合いもあるが、10〜50mmが好ましい。また、その割合は耐火骨材100質量%に対する外掛けで35質量%以下が好ましく、さらに好ましくは5〜30質量%である。35質量%を超えると粒度構成のバランスの悪さから施工体の強度に劣り、耐食性の低下を招く。
【0047】
耐火物中の各成分は、ガラスビード試料を用いた蛍光X線法により定量分析できる。また炭素は加熱酸化させてガスとして分析する方法が一般的である。
【0048】
本発明の耐火物は流し込み材に適用できるのはもちろん、乾式あるいは湿式の吹き付け材、プラスチック耐火物、パッチング材、スタンプ材、ラミング材、スリング材、コーティング材、モルタルなどとしても使用できる。必要に応じて結合剤や添加物の量や種類を調節する。施工方法はそれぞれの種類の耐火物に従い、常法通りでよい。
【0049】
流し込み材の場合は、以上の配合組成物全体に外掛けで4〜8質量%程度施工水を添加し、中子等の型枠を使用して流し込み施工される。また、流し込み時には振動の付与で充填率を向上させるとよい。
【0050】
【実施例】
以下に流し込み材で行った本発明の実施例とその比較例を示す。各例は表1及び表2に示す配合組成物全体に施工水分を外掛けで6.5質量%添加・混練し、型枠に流し込み施工し、養生後、110℃24時間で乾燥後して試験片を得た。表中のCaO量は各配合物の質量にCaO濃度を掛けてCaO量として換算した数値である。
【0051】
なお、各例におけるアルミナ超微粉は、昭和電工(株)製の仮焼アルミナを使用した。揮発シリカはエルケム(株)製のシリカフラワーを使用した。また、乳酸アルミニウムとグリコール酸乳酸アルミニウムは多木化学(株)製である。P25 含有粉末はそれぞれ質量%でP25 を60%、Na2 Oを20%含有したもので、粒径100μm以下のものを使用した。
【0052】
試験方法は以下のとおりである。
耐食性;質量比で鋼片:転炉スラグ(FeO含有量;20質量%)=50:50を侵食剤とし、1700℃×5時間の回転侵食試験を行い、溶損寸法を測定した。比較例A11の場合を100として基準化した溶損指数で表示。値が小さいほど耐食性が高く良好である。
【0053】
耐スラグ浸透性;前記の条件で回転侵食試験を行った後、スラグ浸透寸法を測定した。比較例A11の場合を100として基準化したスラグ浸透指数で表示した。値が少ないほどスラグ浸透が軽微で良好である。
【0054】
スポーリング;質量比で鋼片:転炉スラグ(FeO含有量;20質量%)=50:50を侵食剤とし、回転侵食試験装置を用いて1700℃×30分加熱後、30分空冷し、これを6回くり返し、亀裂発生の状況を観察した。◎は亀裂なし、〇は微亀裂(目視で確認できるヘアー・クラック程度の幅のもの)、△は小亀裂(幅が概ね0.3mm以下の亀裂)、×は大亀裂(幅が概ね0.3mm超の亀裂)が発生していたことを示す。
【0055】
常温曲げ試験は以下の要領で測定した。すなわち、試料は40×40×160mmの金枠に流し込んで作成し、乾燥後に大気雰囲気下1000℃で3時間焼成してから三点曲げ試験に供した。条件はスパン100mm、クロスヘッドスピード0.5mm/minとした。
【0056】
熱間曲げ試験には乾燥後の試料を用い、アルゴン雰囲気中で加熱し1400℃で15分以上保持した後、三点曲げ法によりスパン100mm、クロスヘッドスピード0.5mm/minで測定した。
【0057】
表1は本発明の実施例(A01〜C01)と参考例(D01)、表2は比較例を示す。比較しやすいようにアルミナ−マグネシア質はA、アルミナ−スピネル質はB、アルミナ−スピネル−マグネシア質はC、マグネシア−スピネル質はDで始まる符合とし、次が0のものは本発明の実施例及び参考例(D01)、1のものは比較例とした。
【0058】
アルミナ−マグネシア質の場合、比較例のA11はアルミナセメントを含有しCaOが多いため溶損指数が大きく1400℃における熱間曲げ強度が低い。アルミナセメントを配合しない比較例のA12は、耐食性は良好だが1000℃焼成後の常温曲げ強度が低い。これらに対して本発明のA01は、耐食性、1000℃焼成後の常温曲げ強度、熱間強度とも高く、さらにスポーリングも起こり難く良好である。P25 含有粉末の添加量を変更したA02とA03でも優れた性質が発揮されることがわかる。
【0059】
アルミナ−スピネル質の場合でも傾向は同じである。すなわち比較例のB11はアルミナセメントを含有しCaOが多いため溶損指数が大きい。アルミナセメントを配合しない比較例のB12は1000℃焼成後の常温曲げ強度が低い。これらに対して本発明のB01は耐食性、1000℃焼成後の常温曲げ強度とも高く、さらにスポーリングも起こり難く良好である。
【0060】
アルミナ−スピネル−マグネシア質の場合でも傾向は同じである。すなわち比較例のC11はアルミナセメントを含有しCaOが多いため溶損指数が大きく、熱間曲げ強度は低い。アルミナセメントを配合しない比較例のC12は1000℃焼成後の常温曲げ強度が低い。これらに対して本発明のC01は耐食性、1000℃焼成後の常温曲げ強度、熱間曲げ強度が高く、さらにスポーリングも起こり難く良好である。
【0061】
マグネシア−スピネル質の場合、アルミナセメントを含有しCaOの多い比較例のD11は熱間曲げ強度が低くスポールを起こしやすい。アルミナセメントを含有しない比較例のD12は1000℃焼成後の常温曲げ強度が低い。P含有粉末とアルミナセメントを配合したD13は1000℃焼成後の常温曲げ強度は高いが熱間曲げ強度は低すぎて測定不能だった。またスポーリングも起こしやすかった。なお参考例のD01は、表1に示すようにスラグ浸透性が大きく、またスポーリング性が本発明実施例より劣った。
【0062】
【表1】

Figure 0004744066
【0063】
【表2】
Figure 0004744066
【0064】
【発明の効果】
以上の説明のように、本発明により高耐食性で高強度の不定形耐火物を得ることができる。これにより各種窯炉の耐火物ライニングの寿命を延長し、耐火物コストと鉄鋼などの製造コストを引き下げることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an irregular refractory for casting construction or the like.
[0002]
[Prior art]
A refractory for casting construction (hereinafter referred to as “a casting material”) used as a refractory for a molten steel container such as a ladle, a tundish, a vacuum degassing furnace, or a molten steel processing apparatus is widely used.
However, the use conditions of molten steel containers and molten steel processing equipment in recent years have continued to become severe due to rising molten steel temperature, extension of molten metal time, gas blowing stirring, etc., for example, high durability such as alumina-magnesia However, the service life is never sufficient, and there is a strong demand for a casting material with excellent durability.
[0003]
As an improvement measure, Patent Document 1 proposes an alumina-magnesia casting material in which aluminum lactate is added to a binder. Here, aluminum lactate is used as the binder, and the alumina cement and SiO that are CaO sources.2 By removing the source silica, the effect of improving the resistance to melting loss and improving the heat spalling resistance by suppressing the sintering is obtained.
Patent Document 2 also proposes an alumina-magnesia casting material obtained by adding aluminum lactate to a binder as a material for wet spraying construction and excluding alumina cement as a CaO source.
[0004]
Further, Patent Document 3 describes one in which sodium silicate, sodium borosilicate, or potassium silicate is added as a measure for suppressing the strength reduction of the amorphous refractory containing no alumina cement.
Furthermore, Patent Document 4 describes an amorphous refractory material mainly composed of a zircon-containing magnesia aggregate and exhibiting strength in a medium to low temperature range by adding phosphate glass and borosilicate glass.
[0005]
[Patent Document 1]
JP-A-11-130550
[Patent Document 2]
Japanese Patent Laid-Open No. 10-194853
[Patent Document 3]
JP-A-5-213675
[Patent Document 4]
JP-A-6-144939
[0006]
[Problems to be solved by the invention]
Alumina cement is one of the typical binders for imparting strength to the casting material. However, CaO contained therein is a cause of impairing the corrosion resistance of the casting material. Therefore, casting materials which do not contain aluminum cement as described in Patent Document 1 and Patent Document 2 have been proposed. However, a common problem with casting materials that do not contain alumina cement is that the strength after firing at a medium to low temperature around 1000 ° C. (referred to as the strength in the medium to low temperature range) is low. Patent Document 3 describes the addition of sodium silicate, sodium borosilicate, and potassium silicate as means for solving this problem. However, sufficient effects cannot be obtained even with these means.
[0007]
On the other hand, as for the basic casting material, an amorphous refractory material that exhibits strength in a medium to low temperature range by adding phosphate glass and borosilicate glass as proposed in Patent Document 4 has been proposed. The added glass liquefies around 1000 ° C. and bonds magnesia to develop strength, but has a serious problem that the hot strength at 1400 ° C. or higher is remarkably lowered.
[0008]
An object of the present invention is to provide a highly durable amorphous refractory having an enhanced strength in the medium and low temperature range without impairing the hot strength of the highly corrosion-resistant cast material containing no alumina cement.
[0009]
[Means for Solving the Problems]
  Various inventions were accumulated to achieve the above-mentioned object, and the present invention was obtained. That is, P2O50.1-3 mass%, CaO 0.5 mass% or less, SiO20.05 to 5% by mass, the total amount of lactic acid and glycolic acid is 0.005 to 1% by mass, and the balance is Al.2O3Amorphous refractory of alumina-magnesia, alumina-spinel, or alumina-magnesia-spinel composed of MgO and other inevitable components,By not blending alumina cement, the CaO is 0.5 mass% or less,
and,P2O5Ingredient is P2O5It is supplied by adding the contained powder.2O5The contained powder further contains Na2O component, B2O3Contains either or both of the ingredients, P2O5As content in the contained powder, P2O510 to 70% by mass, Na210-30% by mass of O, B2O35-60 mass%, P2O5And Na2O and B2O3Is 50% by mass or more,
  And, in a proportion of 100% by mass of the refractory aggregate composition, 3 to 15% by mass of alumina ultrafine powder having an average particle size of 1.5 μm or less, an iodine absorption of 20 iodine mg / g or more and an average particle size of 1 μm or less It is an amorphous refractory characterized by containing 0.01 to 3 mass% of light-burned magnesia fine powder.
  Furthermore, a peptizer, refractory coarse particles, a curing modifier, short metal fibers, organic fibers, ceramic fibers, carbon fibers, chromium ore, and a foaming agent may be added as a casting material.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention uses P as a casting material containing no alumina cement.2 OFive Mixing fine powder or particles (collectively referred to as “powder”) containing, the strength in the mid-low temperature range is expressed. This method does not decrease the hot strength of the casting material, but rather increases the corrosion resistance.
[0011]
In this specification, Al2 OThree , MgO and the like represented by chemical formulas represent chemical components and can be quantified by chemical analysis. On the other hand, what is written in katakana such as alumina and magnesia represents a substance that becomes a refractory raw material such as a mineral, that is, exists as one phase. In other words, the substance is in a state that becomes an actual refractory raw material that may contain inevitable impurities that can be taken out without chemical manipulation. For example, alumina has the mineral name Corundum, and magnesia has the mineral name Pericles. Those represented by chemical formulas can be identified and quantified by chemical analysis, and those represented by katakana can be identified and quantified by a method such as X-ray diffraction.
[0012]
Substances which are the main components of the refractory of the present invention are alumina (corundum), spinel, and magnesia (pericles). That is, the main chemical component is Al2 OThree Or / and MgO. Since the refractory composed of these main components has a high melting point and high corrosion resistance against slag and molten iron, alumina cement containing a CaO component that impairs these properties is not blended. In addition, even if it does not mix | blend a CaO component as an alumina cement, 0.5 mass% or less is contained as an impurity in a main component substance. However, this CaO component does not cause harm because it is compounded or dissolved in the main component material and is firmly taken in. For this reason, CaO contained by 0.5 mass% or less in the whole refractory is allowed.
[0013]
P2 OFive Components are added in a total amount of 0.1 to 3% by mass. This component promotes the sintering of main component materials such as alumina, spinel, and magnesia, and functions to develop strength in the mid-low temperature range. If it is less than 0.1% by mass, the intended strength is not exhibited, and if it is added in excess of 3% by mass, the corrosion resistance is reduced. The lower limit is preferably 0.3, and more preferably 0.5% by mass. By the way, peptizers are usually used for amorphous refractories.2 OFive In many cases, the component is contained in an amount of about 0.05% by mass, but this does not contribute to the strength development in the medium to low temperature range intended in the present invention.
[0014]
P2 OFive The component is added as a powder containing this component. The powder contains Na2 O and / or B2 OThree Ingredients may be contained. The total content of these three components is desirably 50% by mass or more. Below this, strength is difficult to develop due to dilution effect by other components. P2 OFive Content 10-70 mass%, Na2 O content 10-30% by mass, B2 OThree A material having a content of about 5 to 60% by mass is easy to use. It may be vitrified instead of crystalline.
[0015]
The refractory of the present invention is P2 OFive Despite containing ingredients, hot strength is high. This is clear when the present invention example D01 and the comparative example D13 in the examples described later are compared, and the difference from the prior art (for example, the invention described in Patent Document 4) is conspicuous. The cause is presumed as follows. That is, P2 OFive Coexists with CaO, the melting point tends to decrease.2 OThree Since such a tendency is weak, the refractory of the present invention containing almost no CaO does not decrease the hot strength, but rather P2 OFive The hot strength increases due to the sintering-promoting effect of the components.
[0016]
SiO2 Is derived from silica-based raw materials such as volatile silica and meteorite. In particular, volatile silica is added for the purpose of suppressing magnesia hydration during curing and drying of the amorphous refractory construction body, imparting appropriate creep properties at high temperatures, and improving corrosion resistance if appropriate. SiO in refractories2 If the amount of the component is less than 0.05% by mass, magnesia hydrates, and problems such as destruction of the refractory due to insufficient creep properties occur, and if it exceeds 5% by mass, corrosion resistance deteriorates. It limits to the range of 0.05-5 mass%.
[0017]
When both alumina and magnesia are contained, they react with each other during heat reception during use to produce spinel, and the refractory expands at that time, which may destroy the irregular refractory construction body. To prevent this, SiO2 Is required to be 0.5 mass% or more. The upper limit may be 5% by mass in the same manner due to the decrease in corrosion resistance.
[0018]
The total amount of lactic acid and glycolic acid is 0.005 to 1% by mass. This is an amount corresponding to the added amount of 0.01 to 2% by mass of aluminum lactate, aluminum glycolate, aluminum glycolate and the like described later. Aluminum lactate, aluminum glycolate, and aluminum glycolate act as binders (binders) of the main component, give alumina refractory construction body a strength after curing and drying instead of alumina cement, and curing drying Occasionally, microcracks are generated to provide air permeability and absorb the thermal expansion of the refractory itself, thereby improving the spall resistance and providing an appropriate creep property.
[0019]
Aluminum lactate, aluminum glycolate, and aluminum glycolate are composed of lactic acid, glycolic acid, and aluminum ions (or aluminum oxide in terms of oxides), so the amount of lactic acid or glycolic acid is aluminum lactate, aluminum glycolate, glycol glycol Less than the amount of aluminum oxide added. If the total amount of lactic acid and glycolic acid is less than 0.005% by mass (that is, the total amount of aluminum lactate, aluminum glycolate and aluminum lactate is less than 0.01% by mass), the strength after curing is insufficient. At the same time, there is no effect of generating microcracks, and the accompanying effect is not obtained. Moreover, when it exceeds 1 mass% (that is, when the total amount of aluminum lactate, aluminum glycol glycolate, and aluminum glycolate exceeds 2 mass%), cracks due to curing shrinkage occur, and the corrosion resistance of the refractory decreases.
[0020]
If the amount of lactic acid and glycolic acid in the refractory is managed, the performance of the refractory can be managed and grasped more accurately than the addition ratio of aluminum lactate, aluminum glycolate, aluminum glycolate and the like to be described later. This is because commercially available aluminum lactate, aluminum lactate glycolate, and aluminum glycolate contain diluents and extenders, and the amount of components such as aluminum lactate is not constant.
[0021]
In the present invention, the following method was used as a method for measuring the amounts of lactic acid and glycolic acid in the refractory. That is, in accordance with the dissolution test method for soil etc. of Environment Agency Notification No. 46, a sample of 2 mm or less and a pure water adjusted to pH 5.8 to 6.3 is 10% by mass / volume ratio (50 g of sample and 500 ml of pure water). Mix at a ratio and shake continuously for 6 hours at room temperature and normal pressure using a shaker (shaking width 4-5 cm, 200 times per minute). This solution was allowed to stand for 30 minutes, and then the supernatant obtained by centrifuging at about 3000 revolutions per minute was filtered through a membrane filter having a pore size of 0.45 μm to obtain a measurement solution. This was measured by capillary zone electrophoresis or high performance liquid chromatography. In capillary zone electrophoresis, fused silica capillaries were used, and sample injection was performed by the drop method. Detection was based on ultraviolet absorption by the on-column method. In the high performance liquid chromatograph method, a normal column having an inner diameter of 3 to 4 mm was used, and the ultraviolet absorbance was measured at a flow rate of about 0.5 to 2 ml / min. The detection sensitivity is superior to capillary electrophoresis. The difference between the two results was within 20%.
[0022]
  Inevitable ingredients are iron oxide, MnO, TiO2, Na2 O, V 2O5, C and other elements having stable nuclides, or compounds such as oxides, both of which adversely affect the corrosion resistance and the like, and are desirably 5% by mass or less.
[0023]
In the refractory of the present invention, particularly excellent characteristics can be obtained by appropriately blending alumina, spinel, magnesia, and silica, which are main component substances, and further blending in consideration of the following points. That is, 3 to 15% by mass of alumina ultrafine powder having an average particle size of 1.5 μm or less, and 0.01 to 2 mass in total of one or more of aluminum lactate, aluminum glycolate, and aluminum glycolate. %, And a light-burned magnesia fine powder having an iodine adsorption amount of 20 iodine mg / g or more and an average particle diameter of 1 μm or less is contained in an amount of 0.01 to 3 mass%. The intention is that the strength after curing is ensured by ultrafine alumina powder, aluminum lactate, aluminum glycolate, and aluminum glycolate, and cracking during curing is suppressed by lightly burned magnesia fine powder.
[0024]
The alumina ultrafine powder imparts strength to the construction body due to its cohesive force. In addition, since the structure is densified, corrosion resistance and slag infiltration resistance are improved. The average particle size of 1.5 μm or less is to increase the filling property of the matrix part of the construction body structure, thereby eliminating the extra space between the particles, and the aluminum lactate, aluminum glycolate, and aluminum glycolate described later. It is for making the effect of this invention which prevents the shrinkage crack accompanying gelling more reliable.
[0025]
  The amount of the ultrafine alumina powder is 3 to 15% by mass with respect to 100% by mass of the refractory aggregate composition, and the average particle size is 1.5 μm or less. If the proportion of the ultrafine alumina powder is less than 3% by mass, the effect of preventing the shrinkage crack of the construction body is inferior.To doOr spalling resistance decreases.
[0026]
The use of calcined alumina is preferable because the ultrafine alumina powder is easily available from commercial products. The calcined alumina is known in various particle sizes. In the present invention, as long as 3 to 15% by mass of alumina ultrafine powder having an average particle diameter of 1.5 μm or less is used, alumina ultrafine powder having other particle diameters may be combined. Moreover, you may combine multiple alumina ultrafine powder from which a particle size differs in the range of an average particle size of 1.5 micrometers or less.
[0027]
Aluminum lactate, aluminum glycolate, and aluminum glycolate function as a binder that hardens the cast material during curing by gelation by reaction with construction water, and the structure of the construction body is expanded and contracted by the gelation. To form fine cracks. As described above, the microcracks remain in the structure when the construction body is dried and heated, and thus effectively work to impart air permeability, absorb expansion, and reduce thermal stress.
[0028]
Aluminum lactate, aluminum glycolate, or aluminum glycolate may be added as a powder and kneaded with other raw materials, or may be added after previously defrosting with water.
Aluminum lactate includes, for example, aluminum lactate in a narrow sense, and includes basic aluminum lactate, aluminum citrate lactate, and the like as described in JP-A-9-194264, for example. For example, basic aluminum lactate is produced by reacting water-soluble aluminum with carbonate or carbonate and lactic acid. Al for aluminum lactate2 OThree / Lactic acid having a molar ratio of 0.3 to 2 is preferable, but is not limited thereto.
[0029]
Aluminum glycolate is included in a broad sense of aluminum lactate. For example, it can be obtained by making glycolic acid, which is an organic acid, into an aluminum lactate salt and drying it. Al2 OThree Although / (lactic acid + glycolic acid) is preferably 0.3 to 2 in terms of molar ratio, it is not limited thereto.
[0030]
Aluminum glycolate is Al2 OThree / Glycolic acid preferably has a molar ratio of 0.3 to 2, but is not limited thereto.
Furthermore, by adding light-burned magnesia, the intended effects of volume stability and corrosion resistance can be obtained. The reason is considered as follows. Although the fine crack by the gelatinization reaction of aluminum lactate, aluminum glycolate, or aluminum glycolate exhibits various effects as described above, cracks due to curing shrinkage occur at the same time. This crack due to curing shrinkage has a much larger crack width than the fine crack caused by the gelation reaction, and causes a decrease in corrosion resistance. On the other hand, by combining light-burned magnesia, gelled aluminum lactate, glycolate aluminum lactate, and aluminum glycolate are adsorbed to Mg eluted from the light burnt magnesia during kneading, and aluminum lactate, aluminum glycolate, lactate, glycolic acid By suppressing the rapid gelation reaction observed when aluminum is used alone, shrinkage cracks during curing are prevented.
[0031]
Moreover, it is in the curing form in which magnesia and alumina are already bonded at the time of curing by reaction of light-burned magnesia with aluminum lactate, aluminum glycolate, and aluminum glycolate, and these are spineled at a relatively low temperature range. The spinel produced here has a very fine particle size. This contributes greatly to the improvement of corrosion resistance and volume stability in combination with the prevention of shrinkage cracks during curing.
[0032]
These effects according to the present invention are such that, among light-burned magnesia, the iodine adsorption amount is 20 iodine mg / g or more, more preferably 30 to 200 iodine mg / g, and the average particle size is 1 μm or less, more preferably 0.5 μm or less. It is more effectively demonstrated by using light-burned magnesia fine powder. If the lightly adsorbed magnesia fine powder has an iodine adsorption amount of less than 20 iodomg / g, the reaction with aluminum lactate, aluminum glycolate, or aluminum glycolate is inferior, or there is no effect in preventing shrinkage cracks during curing. Further, if the iodine adsorption amount of the light-burned magnesia fine powder exceeds 200 iodine mg / g, the hydration reaction tends to occur and the digestion resistance of the refractory structure tends to be lowered, which is not preferable. If the average particle size exceeds 1 μm, even if the iodine adsorption amount is 20 iodomg / g or more, the reaction with aluminum lactate, glycolic acid aluminum lactate, or aluminum glycolate is slow, or the effect of preventing shrinkage cracking during curing There is no. Even if either the iodine adsorption amount or the average particle diameter is out of this range, the effect aimed by the present invention cannot be obtained.
[0033]
The measurement of the iodine adsorption amount here can be performed according to JIS-K6338 which is a method for measuring the surface properties of magnesia fine powder. The average particle size can be measured by a laser diffraction method. Moreover, the particle size measurement of the alumina ultrafine powder mentioned later can also be measured by the laser diffraction method.
[0034]
If the amount of lightly burned magnesia fine powder is less than 0.01% by mass in the proportion of 100% by mass of the refractory aggregate composition, there is no effect of preventing curing shrinkage. If it exceeds 3% by mass, the cast material becomes difficult to knead due to a high fiscal year, and it is difficult to obtain a dense construction body due to a decrease in fluidity during construction.
[0035]
The light-burned magnesia fine powder is obtained by baking magnesium hydroxide at a relatively low temperature range, and the amount of iodine adsorption varies depending on operations such as particle size adjustment and baking temperature in the production process. Various qualities are commercially available in terms of iodine adsorption amount and particle size, and the light-burned magnesia fine powder used in the present invention can also be obtained from this commercially available product. In addition, if the light-adsorbed magnesia fine powder with the iodine adsorption amount and particle size limited in the present invention is used in an amount within the range limited in the present invention, the light-adsorbed magnesia fine powder with other iodine adsorption amount and particle size is used in combination. May be.
[0036]
The raw material used for the refractory of the present invention will be described below.
The alumina raw material is a refractory raw material having both corrosion resistance and volume stability. It does not matter whether it is an electromelted product or a sintered product. For use in the fine powder portion, calcined alumina that is easily available as fine powder may be used. Al2 OThree The purity is preferably 95% by mass or more.
[0037]
As the spinel raw material, electrofused or sintered spinel, spinel-type iron ore can be used. Al2 OThree Impurities other than MgO are preferably less than 80% by mass. Those outside the stoichiometric composition can also be used.
[0038]
The magnesia raw material may be either a sintered product or an electromelted product. The MgO purity is 90% by mass or more, more preferably 95% by mass.
[0039]
A part or all of the magnesia raw material used in the present invention may be magnesium carbonate having a chemical analysis value of MgO content of 35% by mass or more. As the magnesium carbonate, natural magnesite, synthetic magnesium carbonate, magnesium carbonate hydroxide (basic magnesium carbonate) or the like can be used, and the MgO content is preferably 35% by mass or more and the particle size is preferably 1 mm or less.
[0040]
Magnesium carbonate decomposes from around 600 ° C (MgCOThree → MgO + CO2 ) To generate fine voids in the construction body structure. In addition to absorbing and mitigating the expansion of the refractory, the fine voids prevent oversintering of the surface layer during use of the construction body and exhibit an excellent effect on structural spalling. From the viewpoint of corrosion resistance, the proportion of magnesium carbonate is more preferably 70% by mass or less of the entire magnesia raw material, or 10% by mass or less as a proportion of the entire refractory aggregate.
[0041]
The particle size of each of the alumina, spinel, and magnesia raw materials, which are main constituents of the present invention, is appropriately adjusted to coarse particles, medium particles, and fine particles in consideration of fluidity at the time of casting material construction or filling of the construction body.
[0042]
Volatile silica, meteorite, etc. can be used as the silica-based raw material. Volatile silica is added to alumina-magnesia amorphous refractories and basic amorphous refractories, and is effective for relaxation of expansion stress during spinel formation and suppression of magnesia hydration. Volatile silica is obtained, for example, as a by-product in the production of silicon or silicon alloys, and is marketed under a trade name such as silica flour or microsilica. Ultrafine particles with an average particle size of 1 μm. The blending ratio is preferably 3% by mass or less based on the entire refractory aggregate. When it exceeds 3 mass%, a low melting point substance will be produced | generated more and corrosion resistance will fall.
The most preferred range is 0.05 to 1.5 mass%.
[0043]
P2 OFive As the powder containing, those produced by an electrofusion method, a sintering method or the like can be used. P as before2 OFive In addition, this and Na2 O and / or B2 OThree A total amount of 50% by mass or more is used. The particle size is desirably 100 μm or less.
[0044]
In addition, peptizers, refractory coarse particles, hardening modifiers, short metal fibers (for example, stainless steel fibers), organic fibers, ceramic fibers, carbon fibers, chromium ores, foaming agents, etc., known as additives for casting materials It may be added.
[0045]
In particular, the addition of peptizer is necessary to impart fluidity during construction. Specific examples include sodium tripolyphosphate, sodium hexametaphosphate, ultrapolyphosphate soda, acid hexametaphosphate soda, sodium borate, sodium citrate, carboxyl group-containing polyether dispersant, sodium tartrate, sodium polyacrylate, sulfone. There is acid soda. The addition ratio is preferably 0.01 to 0.5% by mass with respect to 100% by mass of the refractory aggregate.
You may add a boric acid, lithium carbonate, etc. as a hardening regulator. The addition amount is usually 0.5% by mass or less.
[0046]
The coarse refractory particles have an effect of preventing peeling damage by cutting off the development of cracks generated in the refractory structure. Specific examples are alumina, spinel, mullite, magnesia and the like. Further, brick scraps mainly composed of alumina or spinel, and products after using refractories may be used. The particle size of the refractory coarse particles is preferably 10 to 50 mm, although there is a balance with the maximum particle size of the refractory aggregate. In addition, the ratio is preferably 35% by mass or less, more preferably 5 to 30% by mass, based on 100% by mass of the refractory aggregate. If it exceeds 35% by mass, the strength of the construction body is inferior due to the poor balance of the particle size constitution, and the corrosion resistance is reduced.
[0047]
Each component in the refractory can be quantitatively analyzed by a fluorescent X-ray method using a glass bead sample. In general, carbon is oxidized by heating and analyzed as a gas.
[0048]
The refractory material of the present invention can be used as a casting material, and can also be used as a dry or wet spray material, plastic refractory material, patching material, stamp material, ramming material, sling material, coating material, mortar and the like. Adjust the amount and type of binders and additives as needed. The construction method may be as usual according to each type of refractory.
[0049]
In the case of a casting material, about 4 to 8% by mass of construction water is added to the entire blended composition as described above, and casting is performed using a mold such as a core. Moreover, it is good to improve a filling rate by giving a vibration at the time of pouring.
[0050]
【Example】
Examples of the present invention carried out with the casting material and comparative examples thereof are shown below. In each example, 6.5% by mass of working moisture was added to the entire composition shown in Tables 1 and 2 and kneaded, poured into a mold, applied, cured, and dried at 110 ° C. for 24 hours. A specimen was obtained. The amount of CaO in the table is a numerical value converted as the amount of CaO by multiplying the mass of each compound by the CaO concentration.
[0051]
In addition, calcined alumina manufactured by Showa Denko Co., Ltd. was used as the ultrafine alumina powder in each example. As the volatile silica, silica flour manufactured by Elchem Co., Ltd. was used. Aluminum lactate and aluminum glycolate are manufactured by Taki Chemical Co., Ltd. P2 OFive Each contained powder is P in mass%.2 OFive 60% Na2 A material containing 20% O and having a particle size of 100 μm or less was used.
[0052]
The test method is as follows.
Corrosion resistance: Steel slab: converter slag (FeO content; 20% by mass) = 50: 50 was used as an erodant by mass ratio, and a erosion test was conducted at 1700 ° C. for 5 hours to measure a erosion dimension. Displayed with a melt index normalized to 100 for Comparative Example A11. The smaller the value, the higher the corrosion resistance and the better.
[0053]
Resistance to slag penetration; after performing a rotary erosion test under the above conditions, the slag penetration dimension was measured. The case of Comparative Example A11 was displayed as a slag penetration index normalized to 100. The smaller the value, the lighter and better the slag penetration.
[0054]
Spalling: Steel slab by mass ratio: Converter slag (FeO content; 20% by mass) = 50: 50 as an erodant, heated at 1700 ° C. for 30 minutes using a rotary erosion test apparatus, and then air-cooled for 30 minutes. This was repeated 6 times, and the occurrence of cracks was observed. ◎ indicates no crack, ◯ indicates a microcrack (with a width of about a hair crack that can be visually confirmed), △ indicates a small crack (a crack with a width of approximately 0.3 mm or less), and × indicates a large crack (with a width of approximately 0.00 mm). This shows that a crack of more than 3 mm has occurred.
[0055]
The room temperature bending test was measured as follows. That is, a sample was prepared by pouring into a 40 × 40 × 160 mm metal frame, dried, and then fired at 1000 ° C. for 3 hours in an air atmosphere before being subjected to a three-point bending test. The conditions were a span of 100 mm and a crosshead speed of 0.5 mm / min.
[0056]
In the hot bending test, a dried sample was used, heated in an argon atmosphere and held at 1400 ° C. for 15 minutes or more, and then measured by a three-point bending method at a span of 100 mm and a crosshead speed of 0.5 mm / min.
[0057]
  Table 1 shows examples of the present invention.(A01 to C01) and Reference Example (D01)Table 2 shows a comparative example. For easy comparison, alumina-magnesia is A, alumina-spinel is B, alumina-spinel-magnesia is C, magnesia-spinel is D, and the next is 0.And Reference Example (D01)1 was a comparative example.
[0058]
In the case of alumina-magnesia, A11 of the comparative example contains alumina cement and contains a large amount of CaO, so the melting index is large and the hot bending strength at 1400 ° C. is low. A12 of the comparative example in which no alumina cement is blended has good corrosion resistance, but has a low ordinary temperature bending strength after firing at 1000 ° C. On the other hand, A01 of the present invention is high in corrosion resistance, normal temperature bending strength after baking at 1000 ° C., and hot strength, and is less susceptible to spalling. P2 OFive It can be seen that excellent properties are exhibited even with A02 and A03 in which the addition amount of the contained powder is changed.
[0059]
The trend is the same in the case of alumina-spinel. That is, B11 of the comparative example contains alumina cement and has a large CaO, and thus has a large melting index. B12 of the comparative example which does not mix | blend an alumina cement has low normal temperature bending strength after 1000 degreeC baking. On the other hand, B01 of the present invention has good corrosion resistance and normal-temperature bending strength after baking at 1000 ° C., and it is good that spalling hardly occurs.
[0060]
The trend is the same in the case of alumina-spinel-magnesia. That is, C11 of the comparative example contains alumina cement and has a large amount of CaO, so the melting index is large and the hot bending strength is low. C12 of the comparative example which does not mix | blend an alumina cement has low normal temperature bending strength after 1000 degreeC baking. On the other hand, C01 of the present invention is excellent in corrosion resistance, normal temperature bending strength after baking at 1000 ° C. and hot bending strength, and is less susceptible to spalling.
[0061]
  In the case of magnesia-spinel, D11 of Comparative Example containing alumina cement and containing a large amount of CaO has a low hot bending strength and is likely to cause a spall. Comparative Example D12 containing no alumina cement has a low ordinary temperature bending strength after firing at 1000 ° C. P2O5D13 containing the contained powder and alumina cement had a high ordinary temperature bending strength after firing at 1000 ° C., but its hot bending strength was too low to be measured. It was also easy to spall.In addition, D01 of the reference example has large slag permeability as shown in Table 1, and the spalling property was inferior to the examples of the present invention.
[0062]
[Table 1]
Figure 0004744066
[0063]
[Table 2]
Figure 0004744066
[0064]
【The invention's effect】
As described above, according to the present invention, an amorphous refractory with high corrosion resistance and high strength can be obtained. Thereby, the lifetime of the refractory lining of various kilns can be extended, and the refractory cost and the manufacturing cost of steel can be reduced.

Claims (2)

が0.1〜3質量%、CaOが0.5質量%以下、SiOが0.05〜5質量%、乳酸とグリコール酸の合量が0.005〜1質量%、残部がAl、MgO及びその他不可避な成分からなるアルミナ−マグネシア質、アルミナ−スピネル質、又は、アルミナ−マグネシア−スピネル質の不定形耐火物であって、アルミナセメントを配合しないことにより、前記CaOを0.5質量%以下とし、
且つ、前記P成分が、P含有粉末を添加して供給されたものであり、このP含有粉末にはさらにNaO成分、B成分のいずれか一方または両方が含有されており、P含有粉末における含有量として、Pが10〜70質量%、NaOが10〜30質量%、Bが5〜60質量%、PとNaOとBの合計が50質量%以上であり、
且つ、耐火骨材組成100質量%に占める割合で、平均粒径1.5μm以下のアルミナ超微粉を3〜15質量%と、ヨード吸収量20ヨードmg/g以上で且つ平均粒径1μm以下の軽焼マグネシア微粉を0.01〜3質量%含有することを特徴とする不定形耐火物。
P 2 O 5 is 0.1 to 3 wt%, CaO 0.5 wt% or less, SiO 2 is 0.05 to 5 wt%, total amount of lactic acid and glycolic acid 0.005 wt%, the balance Is an amorphous refractory material of alumina-magnesia, alumina-spinel, or alumina-magnesia-spinel composed of Al 2 O 3 , MgO and other inevitable components, and by adding no alumina cement, CaO is 0.5 mass% or less,
The P 2 O 5 component is supplied by adding a P 2 O 5 -containing powder, and the P 2 O 5 -containing powder is further supplied with either a Na 2 O component or a B 2 O 3 component. One or both are contained, and the content in the P 2 O 5 -containing powder is 10 to 70% by mass of P 2 O 5 , 10 to 30% by mass of Na 2 O, and 5 to 60% by mass of B 2 O 3. %, P 2 O 5 , Na 2 O and B 2 O 3 is 50% by mass or more,
And, in a proportion of 100% by mass of the refractory aggregate composition, 3 to 15% by mass of alumina ultrafine powder having an average particle size of 1.5 μm or less, an iodine absorption of 20 iodine mg / g or more and an average particle size of 1 μm or less An amorphous refractory containing 0.01 to 3% by mass of light-burned magnesia fine powder.
さらに、流し込み材として、解こう剤、耐火粗大粒子、硬化調整剤、金属短繊維、有機繊維、セラミックファイバー、炭素繊維、クロム鉱、発泡剤が添加されていることを特徴とする請求項1に記載の不定形耐火物。  Furthermore, as a pouring material, a peptizer, a refractory coarse particle, a curing regulator, a short metal fiber, an organic fiber, a ceramic fiber, a carbon fiber, chromium ore, and a foaming agent are added. Unspecified refractory as described.
JP2003177113A 2003-06-20 2003-06-20 Indefinite refractory Expired - Fee Related JP4744066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003177113A JP4744066B2 (en) 2003-06-20 2003-06-20 Indefinite refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003177113A JP4744066B2 (en) 2003-06-20 2003-06-20 Indefinite refractory

Publications (2)

Publication Number Publication Date
JP2005008496A JP2005008496A (en) 2005-01-13
JP4744066B2 true JP4744066B2 (en) 2011-08-10

Family

ID=34099792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003177113A Expired - Fee Related JP4744066B2 (en) 2003-06-20 2003-06-20 Indefinite refractory

Country Status (1)

Country Link
JP (1) JP4744066B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020050572A (en) * 2018-09-28 2020-04-02 日本製鉄株式会社 Castable refractory

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047563A (en) * 2009-08-26 2011-03-10 Agc Ceramics Co Ltd Powder material composition for monolithic refractory and method of manufacturing refractory using the same
JP5436498B2 (en) * 2010-07-20 2014-03-05 日本碍子株式会社 Amorphous refractories for heat treatment furnace and lining structure of the furnace
SI3044183T1 (en) 2013-09-11 2018-02-28 Nabaltec Ag Hydraulic binder system on an aluminium oxide basis
JP6219764B2 (en) * 2014-03-27 2017-10-25 黒崎播磨株式会社 Lined casting material
JP2016052962A (en) * 2014-09-03 2016-04-14 新日鐵住金株式会社 Construction method of castable to abutting part of molten steel ladle and lining structure of liner part of molten steel ladle
JP7242788B1 (en) 2021-09-03 2023-03-20 株式会社ヨータイ castable refractories

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119171A (en) * 1985-11-16 1987-05-30 燐化学工業株式会社 Monolithic refractories
JPS62176963A (en) * 1986-01-29 1987-08-03 新日本製鐵株式会社 Filling material around blast furnace tapping hole constructed by flow-in
JPH0671422A (en) * 1992-08-27 1994-03-15 Harima Ceramic Co Ltd Method for lining bottom part in ladle
JP2604310B2 (en) * 1992-12-04 1997-04-30 ハリマセラミック株式会社 Pouring refractories
JP3514393B2 (en) * 1994-02-10 2004-03-31 黒崎播磨株式会社 Castable refractories for lining dip tubes or lance pipes used in molten metal processing
JPH07330452A (en) * 1994-06-13 1995-12-19 Harima Ceramic Co Ltd Casting refractories for molten steel treating equipment
JPH10158072A (en) * 1996-11-25 1998-06-16 Harima Ceramic Co Ltd Magnesia-carbon castable refractory and its applied body
JPH11240773A (en) * 1998-02-27 1999-09-07 Kawasaki Refract Co Ltd Castable refractory
JP4608056B2 (en) * 2000-06-28 2011-01-05 黒崎播磨株式会社 Refractory for casting construction
JP2003104781A (en) * 2001-09-28 2003-04-09 Shinagawa Refract Co Ltd Monolithic refractory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020050572A (en) * 2018-09-28 2020-04-02 日本製鉄株式会社 Castable refractory
JP7052664B2 (en) 2018-09-28 2022-04-12 日本製鉄株式会社 Castable refractory

Also Published As

Publication number Publication date
JP2005008496A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
WO2007061070A1 (en) Refractory brick
KR20130093609A (en) Chromium oxide powder
JP4796170B2 (en) Chromium castable refractories and precast blocks using the same
JP4744066B2 (en) Indefinite refractory
JP6259643B2 (en) High chromia castable refractory, precast block using the same, and waste melting furnace lined with one or both of them
JP4094353B2 (en) Rare earth metal-containing amorphous refractory and construction body and kiln furnace lined with these
JP2016199449A (en) Monolithic refractory composition and monolithic refractory
JP2012072051A (en) Powder composition for fireproof castable, and fireproof castable using the same
JP7052664B2 (en) Castable refractory
JP2874831B2 (en) Refractory for pouring
JP2004131310A (en) Castable refractory for lining tundish
JP2001302364A (en) Alumina-magnesia-based castable refractory containing zirconium oxide and molten metal vessel for metal refining
JP2017075063A (en) Method for producing zirconia precast refractory for waste melting furnace
JP2002234776A (en) Monolithic refractory composition for molten steel ladle
JP4102065B2 (en) Refractory for casting construction
JP4373081B2 (en) Refractory
JP2604310B2 (en) Pouring refractories
JP4576367B2 (en) Chrome-free amorphous refractory for waste melting furnace and waste melting furnace using the same for lining
JP4608056B2 (en) Refractory for casting construction
JP2975849B2 (en) Refractories for steelmaking
JPH0952169A (en) Refractory for tuyere of molten steel container
JPH06144939A (en) Basic castable refractory
JP2019137561A (en) Monolithic refractory composition
JPH0640774A (en) Castable refractory
JP3026640B2 (en) Zirconia material added basic pouring material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4744066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees