JP4608056B2 - Refractory for casting construction - Google Patents

Refractory for casting construction Download PDF

Info

Publication number
JP4608056B2
JP4608056B2 JP2000195251A JP2000195251A JP4608056B2 JP 4608056 B2 JP4608056 B2 JP 4608056B2 JP 2000195251 A JP2000195251 A JP 2000195251A JP 2000195251 A JP2000195251 A JP 2000195251A JP 4608056 B2 JP4608056 B2 JP 4608056B2
Authority
JP
Japan
Prior art keywords
mass
alumina
magnesia
refractory
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000195251A
Other languages
Japanese (ja)
Other versions
JP2002020176A (en
Inventor
彰一 糸瀬
利弘 礒部
潔 後藤
壽志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Nippon Steel Corp
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Krosaki Harima Corp filed Critical Nippon Steel Corp
Priority to JP2000195251A priority Critical patent/JP4608056B2/en
Publication of JP2002020176A publication Critical patent/JP2002020176A/en
Application granted granted Critical
Publication of JP4608056B2 publication Critical patent/JP4608056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルミナ−マグネシア質の流し込み施工用耐火物に関するものである。
【0002】
【従来の技術】
溶鋼取鍋、タンデッシュ、真空脱ガス炉等の溶鋼容器あるいは溶鋼処理装置の耐火物として使用する流し込み施工用耐火物(以下「流し込み材」と称する。)として、例えば特開平11−130550号公報等にアルミナ−マグネシア質が提案されている。
【0003】
この材質は、アルミナ、マグネシアが持つ耐食性と、アルミナとマグネシアの反応により生成されるMgO・Al系スピネル(以下「スピネル」と称する。)による耐スラグ浸透性によって、優れた耐用性を発揮する。
【0004】
しかし、近年の溶鋼容器および溶鋼処理装置の使用条件は、溶鋼温度の上昇・滞湯時間の延長・ガス吹き込み撹拌等によって苛酷化の一途をたどり、アルミナ−マグネシア質といえどもその寿命は決して十分なものではない。そこで、さらに耐用性に優れた流し込み材が強く求められている。
【0005】
特開平11−130550号公報にその改善策として、結合剤に塩基性乳酸アルミニウムを添加したアルミナ−マグネシア質流し込み材が提案されている。ここでは結合剤に乳酸アルミニウムを使用し、CaO源であるアルミナセメントおよびSiO源のシリカを除くことで、耐溶損性の改善と焼結抑制による耐熱スポーリング性向上の効果を得ている。また、特開平10−194853号公報にも、湿式吹付け施工用材質として結合剤に塩基性乳酸アルミニウムを添加し、CaO源であるアルミナセメントを除いたアルミナ−マグネシア質流し込み材が提案されている。
【0006】
【発明が解決しようとする課題】
しかしアルミナ−マグネシア質の場合、アルミナセメントおよびシリカを除くと低融点物質の生成が少なくなることでアルミナとマグネシアとによるスピネル生成反応が遅く、その分、スピネル生成反応時の急激な膨張から膨張応力による内部亀裂あるいは剥離損傷が生じる問題がある。
【0007】
また、アルミナセメントおよびシリカを除くと低融点物質の生成が抑制され、耐火物使用中にスラグとの接触境界に低融点物質層の形成が少なくなるためか、スラグ浸透による構造的スポーリング抑制の防止の効果に劣る。その結果、構造的スポーリングによる剥離損傷と前記亀裂とによって十分な耐用性が得られない。
【0008】
特開平10−194853号公報のように施工が吹付けで行われる場合は、施工体組織が比較的多孔質なため、アルミナとマグネシアの粒子間接触面積が小さいことでスピネル生成反応が緩慢でしかも多孔質組織が膨張吸収作用を持つことにより、アルミナセメントおよびシリカを除くことによる焼結抑制によって耐熱スポーリング性が得られる。
【0009】
これに対し、中子等の型枠を使用する流し込み施工は、施工体組織が緻密であり、セメントを除いただけの材質では急激な膨張が避けられず、複雑な形状を持つ実際の溶鋼容器あるいは溶鋼処理装置に対する内張りにおいては、膨張応力による内部亀裂あるいは剥離損傷が生じる。
【0010】
また、アルミナセメントあるいはシリカを除き、結合剤として塩基性乳酸アルミニウムを使用した場合、養生時に発生する収縮亀裂を抑制できないためか、施工体に欠陥を生じる。この亀裂は耐火物使用中に、スラグや溶鋼の内部組織への侵入を容易にするため、構造的スポーリング抑制の防止の効果に劣る。その結果、構造的スポーリングによる剥離損傷と前記亀裂とによって十分な耐用性が得られない。
【0011】
本発明は、型枠を使用して施工されるアルミナ−マグネシア質流し込み材において、剥離損傷と前記亀裂の発生を防止して十分な耐用性が得られる流し込み材を提供するものである。
【0012】
【課題を解決するための手段】
本発明の流し込み材は、マグネシア系原料2〜23質量%、揮発シリカ0.05〜3質量%、アルミナ系原料75〜97質量%を含む耐火骨材組成100質量%に塩基性乳酸アルミニウムを外掛け0.01〜2質量%添加すると共に、前記耐火骨材組成100質量%に占める割合において、前記マグネシア系原料のうち0.01〜3質量%をヨード吸着量20ヨードmg/g以上で且つ平均粒径1μm以下の軽焼マグネシア微粉とし、さらに、前記耐火骨材組成100質量%に占める割合において、前記アルミナ系原料のうち3〜15質量%を平均粒径1.5μm以下のアルミナ超微粉としたことを特徴とする。
【0013】
本発明では耐食性および耐熱スポーリング性の向上を目的として、CaO源となるアルミナセメントを使用しないか、またはアルミナセメント量を低く押さえる。また、揮発シリカの添加によって耐火物組織に高温下での軟化性を付与し、スピネル生成時の膨張を吸収緩和させる。
【0014】
塩基性質乳酸アルミニウムは、施工水との反応によるゲル化で養生中の流し込み材を硬化させる結合剤としての役割の他に、そのゲル化に伴う膨張収縮で施工体組織に微細亀裂を形成させる。この微細亀裂は、施工体の乾燥・加熱時に組織内に残存することでクッション材的な役目をし、スピネル生成に伴う施工体組織の膨張を吸収する。
【0015】
スピネル生成反応は1200℃程度から開始する。揮発シリカによる膨張吸収作用は、1350℃を超える高温域に限られるが、塩基性質乳酸アルミニウムによる膨張吸収の効果は低温域での膨張吸収の効果を持つことで、スピネル生成反応の開始温度である1200℃を含む温度域全体を通して膨張吸収の効果をもつ。
【0016】
本発明ではさらに特定の軽焼マグネシアおよびアルミナ超微粉を併用する。これにより、本発明が目的とする容積安定性および耐食性の効果を得ることができる。その理由は以下のとおりと考えられる。
【0017】
塩基性乳酸アルミニウムのゲル化反応による微細亀裂は、前記したように施工体の膨張吸収に効果があるが、同時に養生収縮による亀裂が生じる。この養生収縮の亀裂は、前記ゲル化反応による微細亀裂に比べて亀裂幅がはるかに大きく、耐食性低下の原因となる。
【0018】
これに対し本発明は軽焼マグネシアを組み合わせることで、混練時に軽焼マグネシアから溶出したMgにゲル化した塩基性乳酸アルミニウムが吸着し、塩基性乳酸アルミニウム単独使用に見られた急激なゲル化反応が抑制されることで、養生時の収縮亀裂が防止される。
【0019】
また、本発明では軽焼マグネシアと塩基性乳酸アルミニウムとの反応で養生時にマグネシアとアルミナが既に結合した養生形態にあり、これらが比較的低温域でスピネル化する。ここで生成されるスピネルは粒径がきわめて微細である。このことが、前記養生時の収縮亀裂の防止とも相俟って耐食性および容積安定性の向上に大きく貢献する。
【0020】
本発明によるこれらの効果は、軽焼マグネシアの中でもヨード吸着量20ヨードmg/g以上で且つ平均粒径1μm以下の軽焼マグネシア微粉を使用することではじめて発揮される。塩基性乳酸アルミニウムとの反応性のためか、軽焼マグネシアはヨード吸着量、平均粒径のいずれかがこの範囲から外れても本発明が目指す効果は得られない。
【0021】
本発明では、平均粒径1.5μm以下のアルミナ超微粉を組み合わせる。これは施工体組織のマトリックス部の充填性を高めることで、粒子間の余分な空隙をなくし、塩基性乳酸アルミニウムのゲル化に伴う収縮亀裂を防止する本発明の効果をより確実なものとする。
【0022】
本発明で使用するマグネシア系原料の一部または全部を、化学分析値でMgO含有量35質量%以上の炭酸マグネシウム原料としてもよい。炭酸マグネシウム原料は600℃付近からの分解(MgCO→MgO+CO)によって施工体組織中に微細空隙を生成する。そしてこの微細空隙は、スピネル生成時の膨張を吸収緩和することに加え、施工体使用時における表層部の過焼結を防止し、構造的スポーリングに対しても優れた効果を発揮する。また、スピネル生成時に起因する残存膨張を緩和する効果もある。
【0023】
【発明の実施の形態】
本発明で使用するマグネシア系原料は、焼結品、電融品のいずれでもよい。MgO純度は90質量%以上、さらに好ましくは95質量%である。耐火骨材に占める割合は、2質量%未満では耐食性に劣り、23質量%を超えるとマグネシア自身の熱膨張性によって耐スポーリング性が低下する。
【0024】
このマグネシア系原料の一部又は全部を、化学分析値でMgO含有量35質量%以上の炭酸マグネシウム原料としてもよい。炭酸マグネシウム原料を使用することで施工体組織の耐スポーリング性はさらに向上する。また、耐食性の面から炭酸マグネシウム原料の割合は、マグネシア質原料全体の70質量%以下がより好ましい。
【0025】
マグネシア質原料の粒度は、後述のアルミナ質原料と同様、流し込み材施工時の流動性あるいは施工体の充填性等を考慮し粗粒、中粒、微粒に調整する。
【0026】
本発明ではマグネシア系原料の一部にヨード吸着量20ヨードmg/g以上、さらに好ましくは30〜200ヨードmg/gの軽焼マグネシア微粉を使用する。また、この軽焼マグネシア微粉の平均粒径は、1μm以下、さらに好ましくは0.5μm以下とする。
【0027】
軽焼マグネシア微粉のヨード吸着量が20ヨードmg/g未満では塩基性乳酸アルミニウムとの反応に劣るためか、養生時の収縮亀裂の防止に効果がない。軽焼マグネシア微粉は、平均粒径が1μmを超えるとヨード吸着量が20ヨードmg/g以上であっても塩基性乳酸アルミニウムとの反応が遅いためか同様に養生時の収縮亀裂の防止効果がない。また、軽焼マグネシア微粉のこのヨード吸着量が200ヨードmg/gを超えると水和反応しやすくなって耐火物組織の耐消化性が低下する傾向にあり好ましくない。
【0028】
ここでのヨード吸着量の測定はマグネシア微粉の表面性状の測定法であるJIS−K6338に準じて行うことができる。平均粒径の測定はレーザー回析法で行うことができる。また、後述するアルミナ超微粉の粒径測定もレーザー回析法で測定できる。
【0029】
軽焼マグネシアは、耐火骨材組成100質量%に占める割合で0.01質量%未満では養生収縮を防止する効果がない。3質量%を超えると流し込み材が混練時に粘性が高くなり、施工時の流動性の低下で緻密な施工体が得られ難い。
【0030】
軽焼マグネシア微粉は、水酸化マグネシウムを比較的低温域で焼成処理して得られるもので、製造過程における粒径調整、焼成温度等の操作でヨード吸着量が異なる。ヨード吸着量、粒度について種々の品質が市販されており、本発明で使用する軽焼マグネシア微粉もこの市販品から求めることができる。また、本発明で限定したヨード吸着量および粒度の軽焼マグネシア微粉を本発明で限定した範囲の量で使用しておれば、他のヨード吸着量および粒度の軽焼マグネシア微粉を組み合わせて使用してもよい。
【0031】
炭酸マグネシウムは、天然のマグネサイト、合成炭酸マグネシウム、炭酸水酸化マグネシウム(塩基性炭酸マグネシウム)等が使用でき、MgO含有量は35質量%以上、粒径は1mm以下が望ましい。
【0032】
アルミナ質原料は耐食性と容積安定性とを兼ね備えた耐火原料である。電融品、焼結品を問わない。微粉部分での使用は微粉として入手しやすい仮焼アルミナでもよい。Al純度は95質量%以上のものが好ましい。
【0033】
アルミナ質原料の割合は75質量%未満では耐スポーリング性に劣る。97質量%を超えるとその分、マグネシア質原料の割合が少なくなって耐スラグ浸透性が低下する。
【0034】
アルミナ質原料のうち耐火骨材組成100質量%に占める割合で、3〜15質量%を平均粒径1.5μm以下のアルミナ超微粉を使用する。このアルミナ超微粉の割合が3質量%未満では施工体の収縮亀裂防止の効果に劣り、15質量%を超えるとスピネル反応過多となるためか耐スポーリング性の低下を招く。
【0035】
前記のアルミナ超微粉は、市販品から入手しやすいという点で仮焼アルミナの使用が好ましい。仮焼アルミナは種々の粒度のものが知られている。本発明では平均粒径1.5μm以下のアルミナ超微粉を3〜15質量%使用している以上、他の粒径のアルミナ超微粉を組み合わせてもよい。また、平均粒径1.5μm以下範囲で、粒径が異なるアルミナ超微粉を複数組み合わせてもよい。
【0036】
揮発シリカは、例えばシリコンまたは珪素合金製造の際の副産物として得られれ、シリカフラワーまたはマイクロシリカ等の商品名で市販されている。平均粒径1μm以下の超微粒子であり、スピネル生成時の膨張を吸収緩和する効果を持つ。その割合は3質量%以下とする。3質量%を超えると低融点物質を生成が多くなり耐食性を低下させる。最も好ましい範囲は0.05〜1.5質量%である。
【0037】
耐火骨材は以上の組成を必須とするが、必要によってはさらにスピネル、炭化珪素、クロム鉱、炭素等を組み合わせてもよい。スピネルは比較的多く配合してもよいが、本発明におけるアルミナとマグネシアとの反応によるスピネル生成を阻害させないためにも、耐火骨材組成に占める割合で20質量%以下が好ましい。
【0038】
塩基性乳酸アルミニウムは、例えば水溶性アルミニウムと炭酸または炭酸塩等と乳酸を反応させて製造される。Al/乳酸がモル比で0.3〜2のものが好ましいが、これに限定されるものではなく、グリコール酸、クエン酸を含有した乳酸アルミニウムでもよい。
【0039】
塩基性乳酸アルミニウムの添加割合は、耐火骨材組成100質量%に対する外掛けで0.05質量%未満では膨張吸収の効果がなく、2質量%を超えると耐食性が低下する。また、その添加は予め水で解いた状態で行ってもよい。
【0040】
本発明では結合剤としてのアルミナセメントを原則として使用しないが、使用条件が比較的過酷でない場合は、耐火骨材組成100質量%に対して1質量%以下の範囲で添加してもよい。1質量%以下の範囲では施工体の膨張に伴う迫り出しを耐食性を低下させることなく防止する効果がある。1質量%を超えると耐食性低下の原因となる。
【0041】
結合剤として例えば水硬性アルミナ微粉を添加してもよい。水硬性アルミナ微粉はアルミナセメントと違って耐食性低下の原因とならず、しかも施工体の膨張に伴う迫り出しを防止する効果がある。
【0042】
その他、流し込み材の添加物として知られている解こう剤、耐火粗大粒子、硬化調整剤、金属短繊維(例えばステンレス鋼ファイバー)、有機繊維、ガラス粉、炭素粉、ピッチ粉、セラミックファイバー、発泡剤等を添加してもよい。
【0043】
特に解こう剤の添加は施工時の流動性付与として必要である。具体例としては、例えばトリポリリン酸ソーダ、ヘキサメタリン酸ソーダ、ウルトラポリリン酸ソーダ、酸性ヘキサメタリン酸ソーダ、ホウ酸ソーダ、クエン酸ソーダ、カルボキシル基含有ポリエーテル系分散剤、酒石酸ソーダ、ポリアクリル酸ソーダ、スルホン酸ソーダ等がある。その添加割合は、耐火骨材100質量%に対する外掛けで0.01〜0.5質量%が好ましい。
【0044】
耐火粗大粒子は、耐火物組織内に発生した亀裂の発達を寸断することで剥離損傷防止の効果がある。具体例としてはアルミナ質、スピネル質、ムライト質、マグネシア質等である。またアルミナ質あるいはスピネル質を主材としたれんが屑、耐火物使用後品等でもよい。
【0045】
耐火粗大粒子の粒径は、耐火骨材の最大粒径との兼ね合いもあるが、10〜50mmが好ましい。また、その割合は耐火骨材100質量%に対する外掛けで35質量%以下が好ましく、さらに好ましくは5〜30質量%である。35質量%を超えると粒度構成のバランスの悪さから施工体の強度に劣り、耐食性の低下を招く。
【0046】
本発明の流し込み材の施工は、常法どおり、以上の配合組成物全体に外掛け4〜8質量%程度をもって施工水を添加し、中子等の型枠を使用して流し込み施工される。また、流し込み時には振動の付与で充填率を向上させる。
【0047】
【実施例】
以下に本発明実施例とその比較例を示す。各例は表1及び表2に示す流し込み材組成に施工水分を外掛け6.5質量%添加・混練し、型枠に流し込み施工し、養生後、110℃×24時間で乾燥後して試験片を得た。試験方法は、以下のとおりである。
【0048】
なお、各例におけるアルミナ超微粉は、昭和電工(株)製の仮焼アルミナでを使用した。揮発シリカはエルケム(株)製のシリカフラワーを使用した。また、塩基性乳酸アルミニウムは多木化学(株)製である。
【0049】
耐食性;質量比で鋼片:転炉スラグ(FeO含有量;20質量%)=50:50を侵食剤とし、1700℃×5時間の回転侵食試験を行い、溶損寸法を測定した。
【0050】
耐スラグ浸透性;前記の条件で回転侵食試験を行った後、スラグ浸透寸法を測定した。
【0051】
耐スポーリング性;質量比で鋼片:転炉スラグ(FeO含有量;20質量%)=50:50を侵食剤とし、回転侵食試験装置を用いて1700℃×30分加熱後、30分空冷し、これを6回くり返し、亀裂発生の状況を観察した。◎…亀裂なし、〇…微亀裂、△…小亀裂、×…大亀裂。
【0052】
実機試験;270トン溶鋼取鍋に中子を用いて流し込み施工し、養生後、使用前に約1000℃で加熱乾燥後、使用した。溶損速度(mm/チャージ)および使用後の構造的スポーリングの程度を確認した。
【0053】
【表1】

Figure 0004608056
【表2】
Figure 0004608056
本発明による実施例は、いずれもアルミナ−マグネシア質流し込み材がもつ耐食性、耐スラグ浸透性の効果がいかんなく発揮され、耐食性および耐スポーリング性に優れた効果を発揮する。この効果は実機試験の耐用性において確認される。
【0054】
実施例6〜8はマグネシア系原料の一部または全部を炭酸マグネシウム(MgO:47質量%)を使用した例であって、特に耐構造的スポーリング性に優れることで、耐用性が一段と向上している。また、試験データとして表には示していないが、本発明実施例においてアルミナセメントを1質量%以下の範囲で添加したものは、急熱乾燥によっても施工体は迫り出しが無く、施工能率に優れている。
【0055】
これに対し塩基性乳酸アルミニウムを添加しない比較例1、揮発シリカを添加しない比較例2は膨張緩和による亀裂、剥離抑制の効果が不十分のため耐スポーリング性、耐スラグ浸透性共にに劣る。アルミナセメントの添加量が多い比較例3と揮発シリカの添加量が多い比較例4は、低融点物質の生成過多のためか、耐食性に劣る。
【0056】
塩基性乳酸アルミニウムの添加量が多すぎる比較例5は、養生収縮亀裂が著しいことで耐食性および耐スラグ浸透性に劣る。マグネシア質原料の割合が多い比較例6は、膨張による組織破壊・亀裂の発生により、耐スポーリング性、耐スラグ浸透性共に劣る。マグネシア質原料の割合が少ない比較例7は、アルミナ−マグネシア質流し込材がもつ耐食性、耐スラグ浸透性の効果が発揮されない。
【0057】
軽焼マグネシア微粉を添加していない比較例8、アルミナ超微粉を添加しない比較例9、ヨード吸着量が本発明で限定した範囲より少ない軽焼マグネシア微粉を使用した比較例10、軽焼マグネシア微粉の平均粒子径が大きい比較例11は、いずれも養生収縮亀裂により、耐食性に劣る。比較例12はアルミナ超微粉の割合が多く、耐スポーリング性に劣る。
【0058】
実施例3の配合組成をベースとし、軽焼マグネシア粉のヨード吸着量のみ変化させ、軽焼マグネシア粉のヨード吸着量に対する耐食性および耐スラグ浸透性の関係を試験し、その結果をグラフ化したのが図1である。
【0059】
耐食性はヨード吸着量20mg/gの軽焼マグネシア粉を使用した場合の溶損寸法、スラグ浸透寸法のそれぞれを100とした指数で示し、数値が小さいほど耐食性、耐スラグ浸透性に優れる。同グラフの結果からも、本発明で限定したヨード吸着量の軽焼マグネシア粉の使用が耐食性、耐スラグ浸透性に優れていることが確認される。
【0060】
実機試験は溶鋼取鍋の内張りにおいて行なったが、本発明の流し込み材はこれに限らず、タンデッシュ、真空脱ガス炉、転炉、電気炉等の溶鋼容器、溶鋼処理容器の内張りにも使用することができる。
【0061】
【発明の効果】
本発明のアルミナ−マグネシア質流し込み材は、近年の溶鋼容器および溶鋼処理装置おける過酷な使用条件においても優れた耐用性を発揮することができる。その結果、溶鋼容器あるいは溶鋼処理装置の稼働率向上、内張り耐火物の原単位の低下、内張り耐火物の補修回数の低減など、この効果は大きい。
【図面の簡単な説明】
【図1】アルミナ−マグネシア質流し込み材において軽焼マグネシア粉のヨード吸着量に対する耐食性および耐スラグ浸透性の関係を示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refractory for casting construction of alumina-magnesia.
[0002]
[Prior art]
As a refractory material for casting construction (hereinafter referred to as “casting material”) used as a refractory material for a molten steel container such as a ladle, a tundish, a vacuum degassing furnace or a molten steel processing apparatus, for example, Japanese Patent Application Laid-Open No. 11-130550 Alumina-magnesia has been proposed.
[0003]
This material has excellent durability due to the corrosion resistance of alumina and magnesia and the slag penetration resistance by MgO · Al 2 O 3 spinel (hereinafter referred to as “spinel”) produced by the reaction of alumina and magnesia. Demonstrate.
[0004]
However, the conditions of use of molten steel containers and molten steel processing equipment in recent years have continued to become severe due to the rise of molten steel temperature, the extension of molten metal time, gas blowing stirring, etc., and even the alumina-magnesia quality is never enough Not something. Therefore, there is a strong demand for a casting material having further excellent durability.
[0005]
Japanese Patent Application Laid-Open No. 11-130550 proposes an alumina-magnesia casting material in which basic aluminum lactate is added to a binder. Here, aluminum lactate is used as a binder, and alumina cement as a CaO source and silica as a SiO 2 source are removed, thereby obtaining an effect of improving the heat resistance and improving the spalling resistance by suppressing sintering. Also, JP-A-10-194533 proposes an alumina-magnesia casting material in which basic aluminum lactate is added to a binder as a material for wet spraying construction, and alumina cement as a CaO source is removed. .
[0006]
[Problems to be solved by the invention]
However, in the case of alumina-magnesia, the formation of low melting point substances is reduced except for alumina cement and silica, so that the spinel formation reaction between alumina and magnesia is slow, and the amount of expansion stress due to the rapid expansion during the spinel formation reaction. There is a problem that causes internal cracks or peeling damage due to.
[0007]
Also, if alumina cement and silica are excluded, the formation of low melting point substances is suppressed, and the formation of a low melting point substance layer at the contact boundary with slag is reduced during refractory use. The effect of prevention is inferior. As a result, sufficient durability cannot be obtained due to peeling damage due to structural spalling and the cracks.
[0008]
When construction is performed by spraying as disclosed in JP-A-10-194453, the structure of the construction body is relatively porous, so that the spinel formation reaction is slow due to the small contact area between the particles of alumina and magnesia. Since the porous structure has an expansion absorbing action, heat spalling resistance can be obtained by suppressing sintering by removing alumina cement and silica.
[0009]
On the other hand, in the pouring construction using a mold such as a core, the construction body structure is dense, and the material with only the removal of cement cannot avoid rapid expansion. In the lining for the molten steel processing apparatus, internal cracks or peeling damage due to expansion stress occurs.
[0010]
In addition, when basic aluminum lactate is used as a binder except for alumina cement or silica, it is possible to suppress shrinkage cracks that occur during curing, resulting in defects in the construction body. Since this crack facilitates the penetration of slag and molten steel into the internal structure during use of the refractory, it is inferior in the effect of preventing structural spalling suppression. As a result, sufficient durability cannot be obtained due to peeling damage due to structural spalling and the cracks.
[0011]
The present invention provides a casting material in which sufficient durability is obtained by preventing the occurrence of peeling damage and cracks in an alumina-magnesia casting material constructed using a mold.
[0012]
[Means for Solving the Problems]
The casting material of the present invention is obtained by adding basic aluminum lactate to 100% by mass of a refractory aggregate composition containing 2 to 23% by mass of magnesia-based material, 0.05 to 3% by mass of volatile silica, and 75 to 97% by mass of alumina-based material. In addition to the addition of 0.01 to 2% by mass, 0.01 to 3% by mass of the magnesia-based material in an amount of 100% by mass of the refractory aggregate composition is an iodine adsorption amount of 20 iodine mg / g or more and A light-burned magnesia fine powder having an average particle size of 1 μm or less, and further , 3 to 15% by mass of the alumina-based material in an amount of 100% by mass of the refractory aggregate composition, an alumina ultrafine powder having an average particle size of 1.5 μm or less It is characterized by that.
[0013]
In the present invention, for the purpose of improving corrosion resistance and heat spalling resistance, alumina cement as a CaO source is not used or the amount of alumina cement is kept low. In addition, the addition of volatile silica imparts softening properties to the refractory structure at a high temperature, and absorbs and relaxes expansion during spinel formation.
[0014]
In addition to the role as a binder that hardens the casting material during curing by gelation by reaction with construction water, the basic property aluminum lactate causes microscopic cracks to form in the construction body structure due to expansion and contraction associated with the gelation. The fine cracks act as a cushion material by remaining in the structure when the construction body is dried and heated, and absorb the expansion of the construction body structure accompanying the generation of spinel.
[0015]
The spinel formation reaction starts from about 1200 ° C. The expansion and absorption action by volatile silica is limited to a high temperature range exceeding 1350 ° C., but the effect of expansion and absorption by the basic property aluminum lactate is the start temperature of the spinel formation reaction by having the effect of expansion and absorption in a low temperature range. It has an expansion absorption effect throughout the entire temperature range including 1200 ° C.
[0016]
In the present invention, a specific light burned magnesia and ultrafine alumina powder are used in combination. As a result, the effects of volume stability and corrosion resistance intended by the present invention can be obtained. The reason is considered as follows.
[0017]
As described above, the fine crack caused by the gelation reaction of basic aluminum lactate is effective in expanding and absorbing the construction body, but at the same time, a crack caused by curing shrinkage occurs. This crack due to curing shrinkage has a much larger crack width than the fine crack caused by the gelation reaction, and causes a decrease in corrosion resistance.
[0018]
On the other hand, the present invention combines light-burned magnesia to adsorb gelled basic aluminum lactate to Mg eluted from light-burned magnesia during kneading, and the rapid gelation reaction seen in the use of basic aluminum lactate alone By suppressing, shrinkage cracks during curing are prevented.
[0019]
Moreover, in this invention, it exists in the curing | hardening form which the magnesia and the alumina already couple | bonded at the time of curing by reaction of light-burned magnesia and basic aluminum lactate, and these spinelize in a comparatively low temperature range. The spinel produced here has a very fine particle size. This contributes greatly to the improvement of corrosion resistance and volume stability in combination with the prevention of shrinkage cracks during curing.
[0020]
These effects according to the present invention are exhibited for the first time by using a light-burned magnesia fine powder having an iodine adsorption amount of 20 iodine mg / g or more and an average particle size of 1 μm or less among light-burned magnesia. Because of the reactivity with basic aluminum lactate, light-burned magnesia does not achieve the effect aimed by the present invention even if either the iodine adsorption amount or the average particle size is out of this range.
[0021]
In the present invention, an alumina ultrafine powder having an average particle size of 1.5 μm or less is combined. This enhances the filling property of the matrix part of the structure of the construction body, thereby eliminating the extra voids between the particles and ensuring the effect of the present invention that prevents shrinkage cracks associated with the gelation of basic aluminum lactate. .
[0022]
A part or all of the magnesia-based raw material used in the present invention may be a magnesium carbonate raw material having an MgO content of 35% by mass or more as a chemical analysis value. The magnesium carbonate raw material generates fine voids in the construction body structure by decomposition (MgCO 3 → MgO + CO 2 ) from around 600 ° C. In addition to absorbing and relaxing expansion during spinel generation, the fine voids prevent oversintering of the surface layer portion when using the construction body, and exhibit excellent effects on structural spalling. It also has the effect of mitigating residual expansion caused by spinel formation.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The magnesia-based raw material used in the present invention may be either a sintered product or an electromelted product. The MgO purity is 90% by mass or more, more preferably 95% by mass. When the proportion of the fireproof aggregate is less than 2% by mass, the corrosion resistance is inferior, and when it exceeds 23% by mass, the spalling resistance decreases due to the thermal expansion of magnesia itself.
[0024]
A part or all of the magnesia-based material may be a magnesium carbonate material having an MgO content of 35% by mass or more as a chemical analysis value. By using the magnesium carbonate raw material, the spalling resistance of the construction body structure is further improved. Further, from the viewpoint of corrosion resistance, the proportion of the magnesium carbonate raw material is more preferably 70% by mass or less of the entire magnesia raw material.
[0025]
The particle size of the magnesia material is adjusted to coarse particles, medium particles, and fine particles in consideration of the fluidity at the time of casting material construction or the filling property of the construction body, as in the case of the alumina material described later.
[0026]
In the present invention, a light-burned magnesia powder having an iodine adsorption amount of 20 iodine mg / g or more, more preferably 30 to 200 iodine mg / g, is used as a part of the magnesia-based raw material. Further, the average particle size of the light-burned magnesia fine powder is 1 μm or less, more preferably 0.5 μm or less.
[0027]
If the lightly adsorbed magnesia fine powder has an iodine adsorption amount of less than 20 iodine mg / g, it is inferior in reaction with basic aluminum lactate, or is not effective in preventing shrinkage cracks during curing. The light-burned magnesia fine powder has an effect of preventing shrinkage cracking during curing similarly because the reaction with the basic aluminum lactate is slow even when the average particle size exceeds 1 μm even if the iodine adsorption amount is 20 iodine mg / g or more. Absent. Further, if the iodine adsorption amount of the light-burned magnesia fine powder exceeds 200 iodine mg / g, the hydration reaction tends to occur and the digestion resistance of the refractory structure tends to be lowered, which is not preferable.
[0028]
The measurement of the iodine adsorption amount here can be performed according to JIS-K6338 which is a method for measuring the surface properties of magnesia fine powder. The average particle size can be measured by a laser diffraction method. Moreover, the particle size measurement of the alumina ultrafine powder mentioned later can also be measured by the laser diffraction method.
[0029]
Light burned magnesia has no effect of preventing curing shrinkage if it is less than 0.01% by mass in 100% by mass of the refractory aggregate composition. When the amount exceeds 3% by mass, the casting material has a high viscosity during kneading, and it is difficult to obtain a dense construction body due to a decrease in fluidity during construction.
[0030]
The light-burned magnesia fine powder is obtained by baking magnesium hydroxide at a relatively low temperature range, and the amount of iodine adsorption varies depending on operations such as particle size adjustment and baking temperature in the production process. Various qualities are commercially available in terms of iodine adsorption amount and particle size, and the light-burned magnesia fine powder used in the present invention can also be obtained from this commercially available product. In addition, if the light-adsorbed magnesia fine powder with the iodine adsorption amount and particle size limited in the present invention is used in an amount within the range limited in the present invention, the light-adsorbed magnesia fine powder with other iodine adsorption amount and particle size is used in combination. May be.
[0031]
As the magnesium carbonate, natural magnesite, synthetic magnesium carbonate, magnesium carbonate hydroxide (basic magnesium carbonate) or the like can be used, and the MgO content is preferably 35% by mass or more and the particle size is preferably 1 mm or less.
[0032]
The alumina material is a refractory material having both corrosion resistance and volume stability. It does not matter whether it is an electromelted product or a sintered product. For use in the fine powder portion, calcined alumina that is easily available as fine powder may be used. The Al 2 O 3 purity is preferably 95% by mass or more.
[0033]
When the proportion of the alumina material is less than 75% by mass, the spalling resistance is poor. If it exceeds 97% by mass, the proportion of the magnesia-based raw material is reduced accordingly, and the slag resistance is reduced.
[0034]
Alumina ultrafine powder having an average particle size of 1.5 μm or less is used in a proportion of 100% by mass of the refractory aggregate composition among alumina raw materials. If the proportion of the alumina ultrafine powder is less than 3% by mass, the effect of preventing shrinkage cracking of the construction body is inferior, and if it exceeds 15% by mass, the spinel reaction may be excessive or the spalling resistance may be lowered.
[0035]
The alumina ultrafine powder is preferably calcined alumina because it is easily available from commercial products. The calcined alumina is known in various particle sizes. In the present invention, since 3 to 15% by mass of alumina ultrafine powder having an average particle size of 1.5 μm or less is used, alumina ultrafine particles having other particle sizes may be combined. Moreover, you may combine multiple alumina ultrafine powder from which an average particle diameter is 1.5 micrometers or less and in which a particle size differs.
[0036]
Volatile silica is obtained, for example, as a by-product in the production of silicon or a silicon alloy, and is commercially available under a trade name such as silica flour or microsilica. Ultrafine particles with an average particle size of 1 μm or less, and has the effect of absorbing and relaxing expansion during spinel formation. The ratio shall be 3 mass% or less. When it exceeds 3 mass%, a low melting point substance will be produced | generated more and corrosion resistance will fall. The most preferred range is 0.05 to 1.5 mass%.
[0037]
The refractory aggregate has the above composition as essential, but spinel, silicon carbide, chromium ore, carbon and the like may be further combined as necessary. A relatively large amount of spinel may be blended, but in order not to inhibit the formation of spinel due to the reaction between alumina and magnesia in the present invention, the proportion of the refractory aggregate composition is preferably 20% by mass or less.
[0038]
Basic aluminum lactate is produced, for example, by reacting water-soluble aluminum with carbonic acid or carbonate and lactic acid. Al 2 O 3 / lactic acid preferably has a molar ratio of 0.3 to 2, but is not limited thereto, and aluminum lactate containing glycolic acid or citric acid may be used.
[0039]
If the basic aluminum lactate addition ratio is less than 0.05 mass% as an outer coating with respect to 100 mass% of the refractory aggregate composition, there is no effect of expansion absorption, and if it exceeds 2 mass%, the corrosion resistance decreases. Moreover, you may perform the addition in the state previously thawed with water.
[0040]
In the present invention, alumina cement as a binder is not used in principle, but when the use conditions are not relatively severe, it may be added in a range of 1% by mass or less with respect to 100% by mass of the refractory aggregate composition. In the range of 1% by mass or less, there is an effect of preventing the protrusion accompanying the expansion of the construction body without reducing the corrosion resistance. If it exceeds 1% by mass, corrosion resistance will be reduced.
[0041]
For example, hydraulic alumina fine powder may be added as a binder. Unlike alumina cement, hydraulic alumina fine powder does not cause a decrease in corrosion resistance, and also has an effect of preventing a protrusion due to expansion of the construction body.
[0042]
In addition, peptizers, fire-resistant coarse particles, hardening modifiers, short metal fibers (for example, stainless steel fibers), organic fibers, glass powder, carbon powder, pitch powder, ceramic fibers, foam, which are known as additives for pouring materials An agent or the like may be added.
[0043]
In particular, the addition of peptizer is necessary to impart fluidity during construction. Specific examples include sodium tripolyphosphate, sodium hexametaphosphate, ultrapolyphosphate soda, acid hexametaphosphate soda, sodium borate, sodium citrate, carboxyl group-containing polyether dispersant, sodium tartrate, sodium polyacrylate, sulfone. There is acid soda. The addition ratio is preferably 0.01 to 0.5% by mass with respect to 100% by mass of the refractory aggregate.
[0044]
The coarse refractory particles have an effect of preventing peeling damage by cutting off the development of cracks generated in the refractory structure. Specific examples are alumina, spinel, mullite, magnesia and the like. Further, brick scraps mainly composed of alumina or spinel, and products after using refractories may be used.
[0045]
The particle size of the refractory coarse particles is preferably 10 to 50 mm, although there is a balance with the maximum particle size of the refractory aggregate. In addition, the ratio is preferably 35% by mass or less, more preferably 5 to 30% by mass, based on 100% by mass of the refractory aggregate. If it exceeds 35% by mass, the strength of the construction body is inferior due to the poor balance of the particle size constitution, and the corrosion resistance is reduced.
[0046]
Construction of the casting material of the present invention is carried out by adding the construction water to the entire blended composition as described above in an amount of about 4 to 8% by mass and using a mold such as a core. In addition, the filling rate is improved by applying vibration during pouring.
[0047]
【Example】
Examples of the present invention and comparative examples thereof are shown below. In each example, the casting water composition shown in Table 1 and Table 2 was applied to the outer coating with 6.5% by mass added, kneaded, poured into a mold, cured, dried at 110 ° C for 24 hours, and then tested. I got a piece. The test method is as follows.
[0048]
In addition, the alumina ultrafine powder in each example used the calcined alumina by Showa Denko KK. As the volatile silica, silica flour manufactured by Elchem Co., Ltd. was used. Basic aluminum lactate is manufactured by Taki Chemical Co., Ltd.
[0049]
Corrosion resistance: Steel slab: converter slag (FeO content; 20% by mass) = 50: 50 was used as an erodant by mass ratio, and a erosion test was conducted at 1700 ° C. for 5 hours to measure a erosion dimension.
[0050]
Resistance to slag penetration; after performing a rotary erosion test under the above conditions, the slag penetration dimension was measured.
[0051]
Spalling resistance: Steel slab by mass ratio: Converter slag (FeO content; 20 mass%) = 50:50 as an erodant, heated at 1700 ° C. for 30 minutes using a rotary erosion test apparatus, and then air-cooled for 30 minutes Then, this was repeated 6 times, and the state of crack generation was observed. ◎… No crack, ○… Slight crack, △… Small crack, ×… Large crack.
[0052]
Actual machine test: Poured into a 270-ton molten steel ladle using a core, and after curing, before use, after heating and drying at about 1000 ° C., it was used. The rate of erosion (mm / charge) and the degree of structural spalling after use were confirmed.
[0053]
[Table 1]
Figure 0004608056
[Table 2]
Figure 0004608056
In all the examples according to the present invention, the effects of the corrosion resistance and slag penetration resistance of the alumina-magnesia casting material are exhibited, and the effects of excellent corrosion resistance and spalling resistance are exhibited. This effect is confirmed in the durability of actual machine tests.
[0054]
Examples 6 to 8 are examples in which magnesium carbonate (MgO: 47% by mass) is used for part or all of the magnesia-based raw material, and the durability is further improved by being particularly excellent in structural spalling resistance. ing. In addition, although not shown in the table as test data, in the examples of the present invention, when the alumina cement is added in the range of 1% by mass or less, the construction body does not protrude even by rapid thermal drying, and the construction efficiency is excellent. ing.
[0055]
On the other hand, Comparative Example 1 in which basic aluminum lactate is not added and Comparative Example 2 in which volatile silica is not added are inferior in both spalling resistance and slag permeation resistance due to insufficient cracking and peeling suppression effects due to expansion relaxation. Comparative Example 3 with a large addition amount of alumina cement and Comparative Example 4 with a large addition amount of volatile silica are inferior in corrosion resistance because of excessive production of low melting point substances.
[0056]
Comparative Example 5 in which the amount of basic aluminum lactate added is too large is inferior in corrosion resistance and slag penetration resistance due to remarkable curing shrinkage cracks. Comparative Example 6 having a large proportion of the magnesia material is inferior in both spalling resistance and slag penetration resistance due to the occurrence of structural destruction and cracks due to expansion. In Comparative Example 7 in which the proportion of the magnesia raw material is small, the effects of corrosion resistance and slag penetration resistance possessed by the alumina-magnesia casting material are not exhibited.
[0057]
Comparative Example 8 without adding light-burned magnesia fine powder, Comparative Example 9 without adding alumina ultra-fine powder, Comparative Example 10 using light-burned magnesia fine powder with less iodine adsorption than the range limited in the present invention, Light-burned magnesia fine powder Comparative Example 11 having a large average particle diameter of each is inferior in corrosion resistance due to curing shrinkage cracks. In Comparative Example 12, the proportion of ultrafine alumina powder is large and the spalling resistance is poor.
[0058]
Based on the composition of Example 3, only the amount of iodine adsorbed on the light-burned magnesia powder was changed, the relationship between the corrosion resistance and slag penetration resistance to the amount of iodine adsorbed on the light-burned magnesia powder was tested, and the results were graphed. Is FIG.
[0059]
Corrosion resistance is indicated by an index with each of the erosion dimension and the slag penetration dimension when a light-burned magnesia powder having an iodine adsorption amount of 20 mg / g is used, and the smaller the value, the better the corrosion resistance and slag penetration resistance. From the results of the graph, it is confirmed that the use of the light-burned magnesia powder having an iodine adsorption amount limited in the present invention is excellent in corrosion resistance and slag penetration resistance.
[0060]
Although the actual machine test was performed on the lining of the ladle, the casting material of the present invention is not limited to this, and it is also used for the lining of molten steel containers such as tundish, vacuum degassing furnace, converter, and electric furnace, and molten steel processing containers. be able to.
[0061]
【The invention's effect】
The alumina-magnesia casting material of the present invention can exhibit excellent durability even under severe use conditions in recent molten steel containers and molten steel processing apparatuses. As a result, this effect is significant, such as improving the operating rate of the molten steel container or the molten steel processing apparatus, reducing the basic unit of the lining refractory, and reducing the number of repairs of the lining refractory.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between corrosion resistance and slag penetration resistance with respect to the amount of iodine adsorbed by light-burned magnesia powder in an alumina-magnesia cast material.

Claims (4)

マグネシア系原料2〜23質量%、揮発シリカ0.05〜3質量%、アルミナ系原料75〜97質量%を含む耐火骨材組成100質量%に塩基性乳酸アルミニウムを外掛け0.01〜2質量%添加すると共に、前記耐火骨材組成100質量%に占める割合において、前記マグネシア系原料のうち0.01〜3質量%をヨード吸着量20ヨードmg/g以上で且つ平均粒径1μm以下の軽焼マグネシア微粉とし、さらに、前記耐火骨材組成100質量%に占める割合において、前記アルミナ系原料のうち3〜15質量%を平均粒径1.5μm以下のアルミナ超微粉とした流し込み施工用耐火物。0.01-2 mass of basic aluminum lactate coated on 100 mass% of refractory aggregate composition containing 2-23 mass% of magnesia-based material, 0.05-3 mass% of volatile silica, 75-97 mass% of alumina-based material In addition, 0.01 to 3% by mass of the magnesia-based raw material in a proportion of 100% by mass of the refractory aggregate composition is light with an iodine adsorption amount of 20 iodine mg / g or more and an average particle size of 1 μm or less. Refractory material for casting construction in which the powder is burned magnesia and further 3 to 15% by mass of the alumina-based raw material is alumina ultrafine powder having an average particle size of 1.5 μm or less in the ratio of 100% by mass of the refractory aggregate composition . . マグネシア系原料の一部または全部を化学分析値でMgO含有量35質量%以上の炭酸マグネシウム原料とした請求項1記載の流し込み施工用耐火物。  The refractory for casting construction according to claim 1, wherein a part or all of the magnesia-based material is a magnesium carbonate material having a MgO content of 35% by mass or more as a chemical analysis value. アルミナセメントを添加しない請求項1または2記載の流し込み施工用耐火物。  The refractory for casting construction according to claim 1 or 2, wherein no alumina cement is added. 耐火骨材組成100質量%に対し、アルミナセメントを外掛け1質量%以下添加した請求項1または2記載の流し込み施工用耐火物。  The refractory for casting construction according to claim 1 or 2, wherein alumina cement is added to the outer portion of the refractory aggregate composition in an amount of 1 mass%.
JP2000195251A 2000-06-28 2000-06-28 Refractory for casting construction Expired - Fee Related JP4608056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000195251A JP4608056B2 (en) 2000-06-28 2000-06-28 Refractory for casting construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000195251A JP4608056B2 (en) 2000-06-28 2000-06-28 Refractory for casting construction

Publications (2)

Publication Number Publication Date
JP2002020176A JP2002020176A (en) 2002-01-23
JP4608056B2 true JP4608056B2 (en) 2011-01-05

Family

ID=18693937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000195251A Expired - Fee Related JP4608056B2 (en) 2000-06-28 2000-06-28 Refractory for casting construction

Country Status (1)

Country Link
JP (1) JP4608056B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4744066B2 (en) * 2003-06-20 2011-08-10 新日本製鐵株式会社 Indefinite refractory
JP5578680B2 (en) * 2011-03-23 2014-08-27 黒崎播磨株式会社 Carbon-containing refractories
JP6414000B2 (en) * 2015-09-30 2018-10-31 Jfeスチール株式会社 Method for producing carbon-containing brick refractories
JP6376102B2 (en) * 2015-10-29 2018-08-22 Jfeスチール株式会社 Carbon-containing unfired brick refractory

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172045A (en) * 1992-12-04 1994-06-21 Harima Ceramic Co Ltd Refractory for casting process
JPH10114580A (en) * 1996-10-07 1998-05-06 Towa Taika Kogyo Kk Alumina-magnesia base tundish coating material
JPH11240772A (en) * 1998-02-27 1999-09-07 Kawasaki Refract Co Ltd Castable refractory

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2562767B2 (en) * 1992-07-23 1996-12-11 ハリマセラミック株式会社 Pouring refractories
JPH06256064A (en) * 1993-03-03 1994-09-13 Kurosaki Refract Co Ltd Dense castable refractory low in water content and capable of being cast
JP2704371B2 (en) * 1995-05-02 1998-01-26 多木化学株式会社 Slaking inhibitors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172045A (en) * 1992-12-04 1994-06-21 Harima Ceramic Co Ltd Refractory for casting process
JPH10114580A (en) * 1996-10-07 1998-05-06 Towa Taika Kogyo Kk Alumina-magnesia base tundish coating material
JPH11240772A (en) * 1998-02-27 1999-09-07 Kawasaki Refract Co Ltd Castable refractory

Also Published As

Publication number Publication date
JP2002020176A (en) 2002-01-23

Similar Documents

Publication Publication Date Title
TWI632126B (en) Steel refractory for casting, and plate for sliding nozzle device, and method for producing refractory for casting of steel
JP5073791B2 (en) Alumina-magnesia refractory brick and method for producing the same
JP4608056B2 (en) Refractory for casting construction
JP2874831B2 (en) Refractory for pouring
JP4220131B2 (en) Amorphous refractory composition for ladle
JP7416117B2 (en) Castable refractories and ladle
JP4744066B2 (en) Indefinite refractory
JP2020050572A (en) Castable refractory
JP4102065B2 (en) Refractory for casting construction
JP2604310B2 (en) Pouring refractories
JP2003171184A (en) SiC FOR MONOLITHIC REFRACTORY HAVING EXCELLENT CORROSION RESISTANCE, SPALLING RESISTANCE AND DRYNESS, PRODUCTION METHOD THEREFOR, AND RAW MATERIAL FOR THE MONOLITHIC REFRACTORY
WO2003095391A1 (en) Monothilic refractory composition
JP4408552B2 (en) Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source
JPH09278548A (en) Carbon-containing spray repair material compounded with refractory waste and its production
JP4373081B2 (en) Refractory
JPH0952169A (en) Refractory for tuyere of molten steel container
JP4348174B2 (en) Dry-type spraying refractory for repairing tundish with used refractory
JP3588406B2 (en) Castable refractories and their construction
JP2872670B2 (en) Irregular refractories for lining of molten metal containers
JP4034858B2 (en) Indeterminate refractories for casting construction
JP4204246B2 (en) Silicon carbide raw material and amorphous refractory raw material for amorphous refractories with excellent drying and corrosion resistance
JP3426024B2 (en) Construction method of refractory construction body
JP3040354B2 (en) Magnesia / carbon material
JPH10158072A (en) Magnesia-carbon castable refractory and its applied body
JP3238592B2 (en) Irregular cast refractory moldings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100910

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101008

R150 Certificate of patent or registration of utility model

Ref document number: 4608056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees