JP4730998B2 - Exhaust gas purification catalyst and exhaust gas purification device - Google Patents

Exhaust gas purification catalyst and exhaust gas purification device Download PDF

Info

Publication number
JP4730998B2
JP4730998B2 JP2000228440A JP2000228440A JP4730998B2 JP 4730998 B2 JP4730998 B2 JP 4730998B2 JP 2000228440 A JP2000228440 A JP 2000228440A JP 2000228440 A JP2000228440 A JP 2000228440A JP 4730998 B2 JP4730998 B2 JP 4730998B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
gas purification
gas purifying
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000228440A
Other languages
Japanese (ja)
Other versions
JP2002035582A (en
Inventor
雨叢 王
智広 岩井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000228440A priority Critical patent/JP4730998B2/en
Publication of JP2002035582A publication Critical patent/JP2002035582A/en
Application granted granted Critical
Publication of JP4730998B2 publication Critical patent/JP4730998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス浄化用触媒と排ガス浄化装置、特に、焼却炉から発生するダイオキシン類有機塩素化合物及びその前駆体、例えば芳香族炭化水素化合物等の有害物質を分解除去するための排ガス浄化用触媒とそれを用いた排ガス浄化装置に関する。
【0002】
【従来技術】
有機塩素化合物は、人体にとって有害な物質として知られており、特に近年では廃棄物の焼却により毒性が強いダイオキシン類有害物質の発生が指摘されており、環境問題として深刻な社会問題となっている。そのため、ダイオキシン類有害物質の除去に種々の方法が提案されている。
【0003】
ダイオキシン類有害物質の除去方法としては、吸着剤への吸着除去、高温での燃焼分解等の方法が挙げられるが、近年、ダイオキシン類有害物質を触媒による分解除去が提案されている。この方法では、例えば、特許第2633316号公報では、燃焼排ガスをガス冷却塔で冷却された後、電気集塵器で除塵され、150〜290℃の温度で、酸化チタン担体にV25とWO3を担持させた触媒と接触させて前記排ガス中の有機塩素化合物を分解するものである。
【0004】
また、特開平7−243634号公報では、600℃以上の高温で排ガスを直接に触媒に接触させて有害物質を除去する方法であり、ヘキサアルミネートの一部をMn、Cuなどの活性物質に置換された構造の触媒材料が用いられている。
【0005】
【発明が解決しようとする課題】
しかし、特許第2633316号公報に記載された方法では、高温での蒸気圧が高いVが触媒材料として用いられており、300℃以下の温度領域で反応活性が大きいため、焼却炉の排ガスを冷却してから集塵し、その後に触媒による浄化を行っていたため、ガス冷却中に粉塵に付着してダイオキシンが多量に生成する問題があった。
【0006】
特開平7−243634号公報に記載されたMnやCu等の活性物質で一部が置換されたヘキサアルミネートからなる触媒材料は、耐熱性は有するものの、排ガス温度の500〜8000℃範囲での活性が十分でなく、特に500℃以上の高温存在するダイオキシン類の前駆体を除去しにくいという問題があった。
【0007】
したがって、本発明は、優れた耐熱性を有するとともに、高温でダイオキシン類有害物質及びその前駆体に対する分解触媒活性が高く、高温で使用可能な排ガス浄化用触媒及び排ガス浄化装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明は、高温での触媒活性を示す酸化物を用いることによって、ダイオキシン及びその前駆体等の有害物質を高温においても高い効率で分解し、清浄な排ガスに変換できるという知見に基づくものであり、特に、V25等の酸化物と他の酸化物との複合化合物や、固溶体型複合酸化物を形成させ、融点を高めることにより高安定性を実現したものである。
【0009】
すなわち、本発明の排ガス浄化用触媒は、Mg、Mn、Nb、Ta及び周期律表第3a族金属から選ばれる少なくとも1種と、5価のVとからなる複合酸化物を97質量%以上含有する触媒材料を、チタニア担体に担持させてなることを特徴とするものである。これにより、500〜800℃の排ガス温度での安定性が向上し、また、V(バナジウム)の酸化価数が周囲の条件により変化するため、ダイオキシン類有害物質およびその前駆体を酸化分解する触媒効果を発現させることが可能となる。
【0010】
特に、触媒材料は、・2MnO、V・2MgO、V・3MgO、V・Ln(Lnは周期律表第3a属元素)、V・9Nb及びV・9Taのうち少なくとも1種を含むことが好ましい。このように、5価のVを含む複合酸化物は、少なくとも500〜800℃の範囲で高触媒活性と耐熱性を有し、高温用ダイオキシン分解触媒材料として好適に使用される。
【0011】
さらに、本発明の高温触媒は常圧下での触媒反応温度が500℃以上であることが好ましい。これにより、特に排ガスを冷却しない条件下で有害物質を分解する場合に高い分解効率が得られる。
【0012】
さらにまた、本発明の高温触媒のBET比表面積が90m2/g以下であることが好ましい。高温で長期使用しても、触媒の比表面積の低下が少ないためである。
【0013】
また、本発明の排ガス浄化装置は、排ガスを、500℃以上の温度で請求項1乃至3のうちいずれかに記載の排ガス浄化用触媒に接触させ、前記排ガスを浄化することを特徴とするもので、これにより、排ガス中存在する有害物質を高温で除去することができる。
【0014】
【発明の実施の形態】
本発明の排ガス浄化用触媒の触媒材料は、Mg、Mn,Nb、Ta及び周期律表第3a族金属から選ばれる少なくとも1種と、5価のVとを含む複合酸化物からなることが重要である。使用条件でVの価数は2+〜5+と幅広く変化し、酸化触媒材料としての特性を示す活性化エネルギーが小さいため、触媒材料として適している。Vは単独でも触媒材料として使用可能であるが、その融点は680℃と低いため、500℃以上の高温では化学的に不安定になり、寿命が著しく低下する。従って、高温触媒材料としては使用できない。
【0015】
そこで、V25にMg、Mn,Nb、Taおよび周期律表第3a族金属(以下、Lnで示すことがある)から選ばれる少なくとも1種の元素を特定の割合で含有させ、V25と上記の元素との固溶体を形成させたり、複合化合物を形成させることによって融点を1000℃以上とすることができ、少なくとも800℃まで十分な耐熱性を有するとともに、高い触媒活性を維持することが可能となる。
【0016】
ここで、Mg、Mn,Nb、Taおよび周期律表第3a族金属から選ばれる少なくとも1種の元素は、V25と複合酸化物を形成するものであれば、単体でも、水酸化物、酸化物、塩類等の化合物でもよい。なお、周期律表第3a属元素は、Y及びLa、Yb、Er、Nd、Sm、Dy、Gd、又はLu等の希土類元素を示す。
【0017】
また、本発明によれば、5価のVを含む複合酸化物は、特に、V25・2MnO、V25・2MgO、V25・3MgO、V25・Ln23(Lnは周期律表第3a属元素)、V25・9Nb25及びV25・9Ta25のうち少なくとも1種を含むものであることが、耐熱性及び触媒活性の点で好ましい。そして、これらの中でも特に、V25・2MgO、V25・9Nb25、V25・Sm23、V25・Nd23、V25・Er23、V25・Yb23、V25・Lu23が好ましい。
【0018】
本発明の排ガス浄化用触媒は使用条件に応じて組成を調節し、触媒の反応温度を変更することができるが、常圧で触媒反応温度が500℃以上であることが好ましい。また、触媒活性を考慮すると、特に600℃以上、さらには650℃以上が好ましい。
【0019】
したがって、例えば850℃の焼却炉の燃焼ガスが、煙道を通って触媒に接触するまでの自然冷却後に500℃以上であるため、この排ガスを直接触媒に接触させて有毒物質を排除することができる。したがって、従来の焼却炉において必要とされた強制冷却を特に必要としなくなり、焼却システムを簡便化することができる。
【0020】
一般に、触媒の反応効率は、触媒の比表面積に伴って高くなるが、500℃以上の高温における比表面積の大きな触媒は、物質移動による焼結等の反応のため、時間と共に比表面積が減少するなど、触媒特性が不安定で劣化しやすくなる。従って、本発明の排ガス浄化用触媒の比表面積は90m2/g以下であることが好ましく、特に50〜90m2/g、さらに65〜80m2/gであることが好ましい。
【0021】
上記の排ガス浄化用触媒を用いた本発明排ガス浄化装置は、種々の焼却炉、石炭発電、鉄鋼製錬等の高温排ガスの浄化処理に、窒素酸化物、ダイオキシン類有害物質に代表される有機ハロゲン化物、これらの有害物質を発生する前駆体を分解除去するのに使用される。本発明の触媒は高温で使用されることが重要な特徴であるため、ガスを冷却する前に微量のダイオキシン類有害物質およびダイオキシン類有害物質を発生する前駆体およびその他有害物質を分解除去し、ガス冷却中での有害物質の生成を抑制できる。
【0022】
従って、クリーンな排ガスおよび無毒の灰塵処理を実現でき、環境負荷を大幅に軽減できる。この場合、燃焼ガスを触媒と接触させる前に脱塵処理することが好ましく、これにより触媒の劣化を効果的に防ぐことができる。
【0023】
本発明の排ガス浄化用触媒は、公知の触媒作製方法により得ることができる。例えば、平均粒径が0.3〜5μmのV25に対して平均粒径が0.2〜2μmのSm23を1:1のの割合で混合し、1100〜1400℃の仮焼により複合酸化物を得る。そして、上記複合酸化物と触媒担体の原料とを混合し、成形後に焼成する方法である。場合によっては、V25及びSm23を仮焼せずに担体と混合、成形の後、焼成することも可能である。さらに、V25及びSm23の前駆体である金属、金属酸化物粉末、固体、液体の金属塩の溶液等を用い、担体に分散させて高比表面積を有する触媒を合成することも可能である。
【0024】
前記触媒担体としては種々の高比表面積の材質が使用されるが、Ti、Mg、Al、Zr等を主成分とした酸化物は高温排ガスの条件下でも安定性を有し、活性物質との反応による触媒の劣化が発生しにくい等の見地より好適に使用される。上記担体はハニカム、ペレット、チューブなど任意の形状に形成される。
【0025】
【実施例】
及び表1のNo.1〜12に示す金属酸化物を添加物として表1に示す割合で混合し、表1に示す条件で仮焼した。得られた仮焼粉末をTiOの100体積部に対して10体積部の割合で混合し、ペーレット状に成形した後、900℃で焼成した。
【0026】
また、試料No.13〜14はチタンの硫酸塩を加熱加水分解により沈殿させ、乾燥後600℃で5時間焼成し、評価用チタニアペレットに成形した後、メタバナジン酸アンモニウム、炭酸マグネシウムおよび塩化マンガン等を用いて表1に示す組成になるように調合した。次に、硝酸及びアンモニウム液を加えて中和沈殿処理し、この沈殿物を上記チタニアペレットに含浸、担持させた。そして、表1に示す温度で仮焼し、上記チタニアペレットの気孔表面に、V・3MgO及びV・2MnOをそれぞれ形成した。この時、触媒担持量は、チタニア100体積部に対して1.7〜2.5体積部であった。
【0027】
さらに、試料No.15は本発明の触媒材料がない場合の比較例である。
【0028】
なお、得られた触媒中に低融点のV25が残存しないように、調合組成には目標の化合物の組成よりもVを不足になるように調整した。
【0029】
触媒は、測定用として20φ×20mmのペレット状に加工した。
【0030】
得られた触媒材料の結晶相をX線回折によって調べ、主結晶相を表1に示した。いずれも95質量%以上が主結晶相であり、残部は過剰に加えた金属酸化物であった。触媒の比表面積は水銀圧入法により測定した。
【0031】
得られた試料の触媒分解特性を、図1に示す試験装置を用いて評価した。試験装置は、ヒータ1内に反応管2が設けられており、その中に触媒3が充填されている。加熱炉1を600℃、700℃及び800℃に設定し、それぞれの温度でガス導入管4から試験用ガスを導入し、ガス排気管5から排出されるガスを冷却部6で冷却した。そして、冷却されたガスのダイオキシン濃度をHRGC/HRMS法により測定した。
【0032】
なお、試験用ガスは通常の家庭ゴミを焼却する時の燃焼ガスを回収したものである。また、試験用ガスの流速SVは9000/hにした。結果を表1に示した。
【0033】
【表1】

Figure 0004730998
【0034】
本発明の試料No.1〜14は、触媒材料の主結晶相の融点が1000℃以上であり、本発明の触媒材料を設けないNo.15に対して600℃以上の排ガス温度で高いダイオキシン除去率を示し、冷却後の排ガス中のダイオキシン濃度は0.1ngTEQ/Nm以下であった。
【0035】
一方、WOとVとの混合物で、通常の低温用触媒材料で本発明の範囲外の試料No.15は、600℃以上の温度ではダイオキシン濃度が0.62ngTEQ/Nm以上となり、触媒活性が低かった。
【0036】
また、Fe23とV25との複合酸化物で、本発明の範囲外の試料No.16は、870℃と低融点の主結晶相を有しているため、600℃以上で0.134ngTEQ/Nm3以上、特に700℃以上ではダイオキシン濃度が1.15ngTEQ/Nm3以上となり、触媒活性が低かった。
【0037】
【発明の効果】
本発明の排ガス浄化用触媒は、高温において安定性と触媒活性とが高く、ダイオキシン及びその前駆体等の有害物質を高温においても高い効率で分解することができ、排ガス及び粉塵中の有害物質濃度を低減し、環境保護に寄与できる。
【図面の簡単な説明】
【図1】実施例で用いた触媒の試験装置の概略断面図である。
【符号の説明】
1・・・ヒータ
2・・・反応管
3・・・触媒
4・・・ガス導入管
5・・・ガス排気管
6・・・冷却部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purifying catalyst and an exhaust gas purifying device, and in particular, an exhaust gas purifying catalyst for decomposing and removing harmful substances such as dioxin organochlorine compounds and precursors thereof such as aromatic hydrocarbon compounds generated from an incinerator. And an exhaust gas purification apparatus using the same.
[0002]
[Prior art]
Organochlorine compounds are known to be harmful to the human body, and in recent years, the generation of highly toxic dioxins that are highly toxic has been pointed out by incineration of waste, which has become a serious social problem as an environmental problem. . Therefore, various methods have been proposed for removing dioxins and harmful substances.
[0003]
Examples of methods for removing dioxins harmful substances include adsorption removal to adsorbents, combustion decomposition at high temperatures, and the like. In recent years, decomposition removal of dioxins harmful substances using a catalyst has been proposed. In this method, for example, in Japanese Patent No. 2633316, after the combustion exhaust gas is cooled by a gas cooling tower, the dust is removed by an electric dust collector, and V 2 O 5 is added to the titanium oxide carrier at a temperature of 150 to 290 ° C. The organochlorine compound in the exhaust gas is decomposed by contacting with a catalyst supporting WO 3 .
[0004]
Japanese Patent Laid-Open No. 7-243634 discloses a method for removing harmful substances by directly contacting exhaust gas with a catalyst at a high temperature of 600 ° C. or higher, and converting a part of hexaaluminate into an active substance such as Mn and Cu. A catalyst material having a substituted structure is used.
[0005]
[Problems to be solved by the invention]
However, in the method described in Japanese Patent No. 2633316, V 2 O 5 having a high vapor pressure at a high temperature is used as a catalyst material , and the reaction activity is large in a temperature range of 300 ° C. or lower. Since dust was collected after the exhaust gas was cooled and then purified by a catalyst, there was a problem that a large amount of dioxin was generated by adhering to the dust during gas cooling.
[0006]
A catalyst material made of hexaaluminate partially substituted with an active substance such as Mn and Cu described in JP-A-7-243634 has heat resistance, but has an exhaust gas temperature in the range of 500 to 8000 ° C. There was a problem that the activity was not sufficient, and it was difficult to remove dioxin precursors present at a high temperature of 500 ° C. or more.
[0007]
Accordingly, an object of the present invention is to provide an exhaust gas purifying catalyst and an exhaust gas purifying apparatus that have excellent heat resistance, have high decomposition catalytic activity for dioxins harmful substances and their precursors at high temperatures, and can be used at high temperatures. It is said.
[0008]
[Means for Solving the Problems]
The present invention is based on the knowledge that by using an oxide exhibiting catalytic activity at high temperatures, harmful substances such as dioxins and their precursors can be decomposed with high efficiency even at high temperatures and converted into clean exhaust gas. In particular, high stability is realized by forming a compound compound of an oxide such as V 2 O 5 and another oxide or a solid solution type complex oxide and increasing the melting point.
[0009]
That is, the exhaust gas purifying catalyst of the present invention contains 97% by mass or more of a composite oxide composed of at least one selected from Mg, Mn, Nb, Ta and Group 3a metal of the periodic table and pentavalent V. The catalyst material is supported on a titania carrier . As a result, the stability at an exhaust gas temperature of 500 to 800 ° C. is improved, and the oxidation valence of V (vanadium) varies depending on the surrounding conditions, so that the catalyst decomposes oxidatively decomposing dioxins and their precursors. An effect can be expressed.
[0010]
In particular, catalytic material, V 2 O 5 · 2MnO, V 2 O 5 · 2MgO, V 2 O 5 · 3MgO, V 2 O 5 · Ln 2 O 3 (Ln is the Periodic Table 3a group element), V 2 O out of 5 · 9Nb 2 O 5 and V 2 O 5 · 9Ta 2 O 5 preferably contains at least one. Thus, the complex oxide containing pentavalent V has high catalytic activity and heat resistance in the range of at least 500 to 800 ° C., and is suitably used as a high-temperature dioxin decomposition catalyst material .
[0011]
Furthermore, the high temperature catalyst of the present invention preferably has a catalytic reaction temperature of 500 ° C. or higher under normal pressure. As a result, high decomposition efficiency can be obtained particularly when the harmful substances are decomposed under conditions where the exhaust gas is not cooled.
[0012]
Furthermore, it is preferable that the BET specific surface area of the high-temperature catalyst of the present invention is 90 m 2 / g or less. This is because the specific surface area of the catalyst is little lowered even when used for a long time at a high temperature.
[0013]
The exhaust gas purifying apparatus of the present invention is characterized in that exhaust gas is brought into contact with the exhaust gas purifying catalyst according to any one of claims 1 to 3 at a temperature of 500 ° C. or more to purify the exhaust gas. Thus, harmful substances present in the exhaust gas can be removed at a high temperature.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
It is important that the catalyst material of the exhaust gas purifying catalyst of the present invention comprises a composite oxide containing at least one selected from Mg, Mn, Nb, Ta and Group 3a metal of the periodic table and pentavalent V. It is. The valence of V varies widely from 2+ to 5+ under the use conditions, and the activation energy showing the characteristics as an oxidation catalyst material is small, so it is suitable as a catalyst material . V 2 O 5 can be used alone as a catalyst material , but since its melting point is as low as 680 ° C., it becomes chemically unstable at a high temperature of 500 ° C. or more, and the life is remarkably reduced. Therefore, it cannot be used as a high temperature catalyst material .
[0015]
Therefore, V 2 O 5 contains at least one element selected from Mg, Mn, Nb, Ta and Group 3a metal of the periodic table (hereinafter sometimes referred to as Ln) in a specific ratio, and V 2 By forming a solid solution of O 5 and the above element or forming a composite compound, the melting point can be raised to 1000 ° C. or higher, and it has sufficient heat resistance up to at least 800 ° C. and maintains high catalytic activity. It becomes possible.
[0016]
Here, at least one element selected from Mg, Mn, Nb, Ta, and Group 3a metal of the periodic table may be a simple substance or a hydroxide as long as it forms a composite oxide with V 2 O 5. Further, compounds such as oxides and salts may be used. The group 3a element of the periodic table indicates Y and rare earth elements such as La, Yb, Er, Nd, Sm, Dy, Gd, or Lu.
[0017]
Further, according to the present invention, a composite oxide containing pentavalent V is in particular, V 2 O 5 · 2MnO, V 2 O 5 · 2MgO, V 2 O 5 · 3MgO, V 2 O 5 · Ln 2 O 3 (Ln is a 3a group element periodic table), it is intended to include at least one of V 2 O 5 · 9Nb 2 O 5 and V 2 O 5 · 9Ta 2 O 5, in terms of heat resistance and catalytic activity Is preferable. And, among these, V 2 O 5 · 2MgO, V 2 O 5 · 9Nb 2 O 5, V 2 O 5 · Sm 2 O 3, V 2 O 5 · Nd 2 O 3, V 2 O 5 · Er 2 O 3 , V 2 O 5 .Yb 2 O 3 , and V 2 O 5 .Lu 2 O 3 are preferable.
[0018]
The exhaust gas-purifying catalyst of the present invention can be adjusted in composition according to the conditions of use to change the reaction temperature of the catalyst, but the catalyst reaction temperature is preferably 500 ° C. or higher at normal pressure. In consideration of the catalytic activity, 600 ° C. or higher, more preferably 650 ° C. or higher is preferable.
[0019]
Therefore, for example, since the combustion gas of an incinerator at 850 ° C. is 500 ° C. or higher after natural cooling until it contacts the catalyst through the flue, this exhaust gas can be directly contacted with the catalyst to eliminate toxic substances. it can. Therefore, the forced cooling required in the conventional incinerator is not particularly required, and the incineration system can be simplified.
[0020]
In general, the reaction efficiency of a catalyst increases with the specific surface area of the catalyst. However, a catalyst with a large specific surface area at a high temperature of 500 ° C. or more has a specific surface area that decreases with time due to a reaction such as sintering by mass transfer. The catalyst characteristics are unstable and easily deteriorate. Therefore, the specific surface area of the exhaust gas purifying catalyst of the present invention is preferably at most 90m 2 / g, it is particularly preferably 50~90m 2 / g, further 65~80m 2 / g.
[0021]
The exhaust gas purification apparatus of the present invention using the exhaust gas purification catalyst described above is an organic halogen represented by nitrogen oxides and dioxins harmful substances for purification treatment of high temperature exhaust gas such as various incinerators, coal power generation, and steel smelting. Is used to decompose and remove precursors that generate these harmful substances. Since it is an important feature that the catalyst of the present invention is used at a high temperature, a trace amount of dioxins harmful substances and precursors that generate dioxins harmful substances and other harmful substances are decomposed and removed before cooling the gas, Generation of harmful substances during gas cooling can be suppressed.
[0022]
Therefore, clean exhaust gas and non-toxic ash dust treatment can be realized, and the environmental load can be greatly reduced. In this case, it is preferable to perform a dust removal treatment before the combustion gas is brought into contact with the catalyst, whereby the deterioration of the catalyst can be effectively prevented.
[0023]
The exhaust gas purifying catalyst of the present invention can be obtained by a known catalyst preparation method. For example, Sm 2 O 3 having an average particle diameter of 0.2 to 2 μm is mixed with V 2 O 5 having an average particle diameter of 0.3 to 5 μm at a ratio of 1: 1, and a temporary temperature of 1100 to 1400 ° C. is mixed. A composite oxide is obtained by calcination. And it is the method of mixing the said complex oxide and the raw material of a catalyst carrier, and baking after shaping | molding. In some cases, V 2 O 5 and Sm 2 O 3 may be calcined after being mixed with a carrier without being calcined and molded. Furthermore, a metal having a high specific surface area is synthesized by dispersing it in a support using a metal, metal oxide powder, solid or liquid metal salt solution, which is a precursor of V 2 O 5 and Sm 2 O 3. Is also possible.
[0024]
As the catalyst carrier, materials having various high specific surface areas are used. However, oxides mainly composed of Ti, Mg, Al, Zr, etc. are stable under high temperature exhaust gas conditions, It is preferably used from the standpoint that it is difficult for the catalyst to deteriorate due to the reaction. The carrier is formed in an arbitrary shape such as a honeycomb, a pellet, or a tube.
[0025]
【Example】
V 2 O 5 and No. 1 in Table 1. Were mixed in indicates to percentage in Table 1 as an additive metal oxide shown in 1-12, and calcined under the conditions shown in Table 1. The obtained calcined powder was mixed at a ratio of 10 parts by volume with respect to 100 parts by volume of TiO 2 , molded into a pellet shape, and then fired at 900 ° C.
[0026]
Sample No. 13-14 precipitated by thermal hydrolysis of sulfates of titanium, 600 was fired ℃ for 5 hours after drying, after forming the titania pellets for evaluation, using ammonium metavanadate, magnesium carbonate, and manganese chloride The composition shown in Table 1 was prepared. Then neutralized precipitation treatment by addition of nitric acid and ammonium solution, impregnating the precipitate on the titania pellets was supported. Then, calcined at a temperature shown in Table 1, the pores the surface of the titania pellets was formed V 2 O 5 · 3MgO and V 2 O 5 · 2MnO respectively. At this time, the amount of the catalyst supported was 1.7 to 2.5 parts by volume with respect to 100 parts by volume of titania.
[0027]
Furthermore, sample no. 15 is a comparative example in the case where there is no catalyst material of the present invention .
[0028]
Note that in the resultant catalyst to the low melting point V 2 O 5 in does not remain, the formulated composition was adjusted to the lack of V than the composition of the target compound.
[0029]
The catalyst was processed into a 20φ × 20 mm pellet for measurement.
[0030]
The crystal phase of the obtained catalyst material was examined by X-ray diffraction, and the main crystal phase is shown in Table 1. In both cases, 95% by mass or more was the main crystal phase, and the balance was an excessively added metal oxide. The specific surface area of the catalyst was measured by mercury porosimetry.
[0031]
The catalytic decomposition characteristics of the obtained samples were evaluated using the test apparatus shown in FIG. In the test apparatus, a reaction tube 2 is provided in a heater 1 and a catalyst 3 is filled therein. The heating furnace 1 was set to 600 ° C., 700 ° C., and 800 ° C., a test gas was introduced from the gas introduction pipe 4 at each temperature, and the gas discharged from the gas exhaust pipe 5 was cooled by the cooling unit 6. And the dioxin density | concentration of the cooled gas was measured by the HRGC / HRMS method.
[0032]
The test gas is obtained by collecting the combustion gas when incinerating ordinary household waste. The flow rate SV of the test gas was 9000 / h. The results are shown in Table 1.
[0033]
[Table 1]
Figure 0004730998
[0034]
Sample No. of the present invention. 1-14, the melting point of the main crystal phase of the catalyst material is at 1000 ° C. or higher, without the catalyst material of the present invention No. 15 showed a high dioxin removal rate at an exhaust gas temperature of 600 ° C. or higher, and the dioxin concentration in the exhaust gas after cooling was 0.1 ngTEQ / Nm 3 or less.
[0035]
On the other hand, it is a mixture of WO 3 and V 2 O 5 and is a normal low-temperature catalyst material , and sample No. No. 15 had a dioxin concentration of 0.62 ng TEQ / Nm 3 or higher at a temperature of 600 ° C. or higher, and the catalytic activity was low.
[0036]
Further, it is a composite oxide of Fe 2 O 3 and V 2 O 5, and sample No. No. 16 has a main crystal phase with a low melting point of 870 ° C., so that the catalyst activity is 0.134 ngTEQ / Nm 3 or higher at 600 ° C. or higher, and particularly 1.700 ngTEQ / Nm 3 or higher at 700 ° C. or higher. Was low.
[0037]
【The invention's effect】
The exhaust gas purifying catalyst of the present invention has high stability and catalytic activity at high temperatures, can decompose dioxins and their precursors with high efficiency even at high temperatures, and concentration of harmful substances in exhaust gases and dusts Can contribute to environmental protection.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a catalyst testing apparatus used in Examples.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Heater 2 ... Reaction tube 3 ... Catalyst 4 ... Gas introduction tube 5 ... Gas exhaust pipe 6 ... Cooling part

Claims (5)

Mg、Mn、Nb、Ta及び周期律表第3a族金属から選ばれる少なくとも1種と、5価のVとからなる複合酸化物を97質量%以上含有する触媒材料を、チタニア担体に担持させてなることを特徴とする排ガス浄化用触媒。A catalyst material containing 97% by mass or more of a complex oxide composed of at least one selected from Mg, Mn, Nb, Ta and Group 3a metal of the periodic table and pentavalent V is supported on a titania support. an exhaust gas purifying catalyst characterized by comprising. 前記触媒材料は、・2MnO、V・2MgO、V・3MgO、V・Ln(Lnは周期律表第3a属元素)、V・9Nb及びV・9Taのうち少なくとも1種を含むことを特徴とする請求項1記載の排ガス浄化用触媒。 The catalytic material, V 2 O 5 · 2MnO, V 2 O 5 · 2MgO, V 2 O 5 · 3MgO, V 2 O 5 · Ln 2 O 3 (Ln is the Periodic Table 3a group element), V 2 O 5 · 9Nb 2 O 5 and V 2 O 5 · 9Ta 2 claim 1, wherein the exhaust gas purifying catalyst which comprises at least one of O 5. 常圧下で触媒反応温度が500℃以上であることを特徴とする請求項1又は2記載の排ガス浄化用触媒。  The catalyst for exhaust gas purification according to claim 1 or 2, wherein the catalyst reaction temperature is 500 ° C or higher under normal pressure. BET比表面積が90m/g以下であることを特徴とする請求項1乃至3のうちいずれかに記載の排ガス浄化用触媒。The exhaust gas purifying catalyst according to any one of claims 1 to 3, wherein the BET specific surface area is 90 m 2 / g or less. 排ガスを、500℃以上の温度で請求項1乃至4のうちいずれかに記載の排ガス浄化用触媒に接触させ、前記排ガスを浄化することを特徴とする排ガス浄化装置。  An exhaust gas purifying apparatus, wherein the exhaust gas is brought into contact with the exhaust gas purifying catalyst according to any one of claims 1 to 4 at a temperature of 500 ° C or more to purify the exhaust gas.
JP2000228440A 2000-07-28 2000-07-28 Exhaust gas purification catalyst and exhaust gas purification device Expired - Fee Related JP4730998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000228440A JP4730998B2 (en) 2000-07-28 2000-07-28 Exhaust gas purification catalyst and exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000228440A JP4730998B2 (en) 2000-07-28 2000-07-28 Exhaust gas purification catalyst and exhaust gas purification device

Publications (2)

Publication Number Publication Date
JP2002035582A JP2002035582A (en) 2002-02-05
JP4730998B2 true JP4730998B2 (en) 2011-07-20

Family

ID=18721722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000228440A Expired - Fee Related JP4730998B2 (en) 2000-07-28 2000-07-28 Exhaust gas purification catalyst and exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP4730998B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114225930B (en) * 2021-12-23 2024-03-29 广东誉谱检测科技有限公司 Composite material for decomposing dioxin and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3085178B2 (en) * 1994-12-30 2000-09-04 堺化学工業株式会社 Catalyst and method for treating exhaust gas
JP3826161B2 (en) * 1995-06-08 2006-09-27 株式会社 日本触媒 Vanadium-containing catalyst, method for producing the same, and method for using the same
JP3785558B2 (en) * 1997-11-27 2006-06-14 バブコック日立株式会社 Organochlorine compound removal catalyst and organochlorine compound removal method
JPH11216361A (en) * 1998-01-30 1999-08-10 Toshiba Corp Decomposition catalyst of organic halogenide, decomposition device for organic halogenide and method of decomposition organic halogenide
JP3212577B2 (en) * 1998-06-19 2001-09-25 三菱重工業株式会社 Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus

Also Published As

Publication number Publication date
JP2002035582A (en) 2002-02-05

Similar Documents

Publication Publication Date Title
JP3589529B2 (en) Method and apparatus for treating flue gas
JP3326836B2 (en) Catalyst body and method for producing catalyst body
JP4113090B2 (en) Exhaust gas treatment method
NO334050B1 (en) Catalyst for the decomposition of N <N> 2 </N> O, its use as well as process for its preparation
JP2000197822A (en) Catalyst for decomposing and removing nitrogen oxide and method for decomposing and removing nitrogen oxide
CN1327966C (en) Process for preparing fluorine blended metal oxide catalyst
JP4730998B2 (en) Exhaust gas purification catalyst and exhaust gas purification device
JP4424653B2 (en) Gaseous mercury removing agent, method for producing the same, and gaseous mercury removing method
JP2001079346A (en) Method and device for treating gas and method for regenerating honeycomb activated carbon
JP2002529225A (en) Catalyst body and method for reducing halogenated hydrocarbons
JP2001286734A (en) Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
KR100382050B1 (en) Catalyst for Removing Dioxin and Nitrogen Oxides in Flue Gas and Method for Treating Combustion Exhaust Gases Using the Same
JP2004066009A (en) Carbon material and equipment for treating flue gas
JP2007283209A (en) Gasification catalyst, its manufacturing method and gasification system
JP3868705B2 (en) Combustion exhaust gas treatment method
JP2008126103A (en) Oxidation catalyst for removing fine particulate substance in exhaust gas, and removing method of fine particulate substance using the same
TWI411470B (en) Catalyst for regenerative catalytic oxidizer, method for producing the same and method for treating volatile organic compounds
JP2004290753A (en) Heat-resistant denitrification catalyst
JP2010051867A (en) Filter for cleaning exhaust gas
JPH11300160A (en) Waste incinerating device and waste incinerating method
JP5541843B2 (en) Composite oxide for exhaust gas purification catalyst and exhaust gas purification filter using the same
JP4169235B2 (en) N2O emission reduction method from incinerator
JP2019136632A (en) Combustion catalyst
JP2001286729A (en) Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
JP3920332B2 (en) Catalyst for the decomposition of organic compounds in gas mixtures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees