JP4169235B2 - N2O emission reduction method from incinerator - Google Patents

N2O emission reduction method from incinerator Download PDF

Info

Publication number
JP4169235B2
JP4169235B2 JP2000136791A JP2000136791A JP4169235B2 JP 4169235 B2 JP4169235 B2 JP 4169235B2 JP 2000136791 A JP2000136791 A JP 2000136791A JP 2000136791 A JP2000136791 A JP 2000136791A JP 4169235 B2 JP4169235 B2 JP 4169235B2
Authority
JP
Japan
Prior art keywords
exhaust gas
heat exchanger
incinerator
catalyst
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000136791A
Other languages
Japanese (ja)
Other versions
JP2001317725A (en
Inventor
勝浩 徳倉
利直 仲原
和徹 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2000136791A priority Critical patent/JP4169235B2/en
Publication of JP2001317725A publication Critical patent/JP2001317725A/en
Application granted granted Critical
Publication of JP4169235B2 publication Critical patent/JP4169235B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下水汚泥等を焼却する焼却炉からのN 2 O排出低減方法に関するものである。
【0002】
【従来の技術】
地球温暖化物質としては、現在のところ主として炭酸ガスが問題とされているが、焼却炉から排出される亜酸化窒素(N2O)は炭酸ガスよりもはるかに大きい温室効果を示し、かつ半減期も150年と長いことから、地球温暖化物質として新たに問題となりつつある。N2Oの大部分は地中や水中の生物から発生するが、燃焼排ガス中にもN2Oが含まれており、例えば下水汚泥や石炭の燃焼排ガス中には数100ppmのN2Oが含まれているとの報告がある。
【0003】
このため、燃焼排ガス中に含まれるN2OをNiO,Fe,CoO、CuO,ゼオライト、アルミナ等のN2O除去触媒により分解する技術が提案されている。ところがN2O除去触媒の反応温度は通常500℃以上の高温であり、しかも排ガス中のダストや塩化水素等の影響を受け易い。そこで実設備にN2O除去触媒を組み込む場合には、図2に示すようなフローが採用されている。
【0004】
すなわちこのフローでは、焼却炉1の排ガスを流動空気予熱器2や白煙防止空気予熱器3に通したのち集塵機4でダストを除去し、更にスクラバ5でSOや塩化水素を除去する。スクラバ5を通過した排ガスは40℃程度まで降温しているため、排ガスファン6により第一の熱交換器7を通して450℃程度まで昇温させたうえ、加熱炉8に送り再に昇温させる。加熱炉8は排ガスを反応に必要な温度(例えば550℃)まで化石燃料を用いて昇温し、触媒反応塔9でN2O除去触媒と接触させて分解する。その後、排ガスは第一の熱交換器7で廃熱回収されたうえ、煙突10から排出される。
【0005】
ところがこのような従来フローにおいては、化石燃料を用いて排ガスを加熱する必要があるため、地球温暖化物質であるN2Oの排出低減の工程で新たに炭酸ガスを発生させてしまうこととなり、システム全体としては地球温暖化物質の排出低減効果に疑問が残る。特にN2Oを十分に分解するためには500℃以上の高温で反応させることが好ましいので加熱炉8で多量に化石燃料を消費することとなり、地球温暖化物質である炭酸ガスを発生させてしまう。
【0006】
また、従来提案されているNiO,Fe,CoO、CuO,ゼオライト、アルミナ等のN2O除去触媒は、排ガス中の硫黄酸化物や塩化水素等により被毒し、活性が低下する。このため排ガス中のN2O除去用の触媒としては、未だ実用性に欠けるという問題があった。
【0007】
【発明が解決しようとする課題】
本発明は上記した従来の問題点を解決し、化石燃料を用いることなく排ガスをN2O除去触媒の反応温度まで昇温することにより、システム全体の地球温暖化物質の排出低減を図ることができるようにした焼却炉からのN 2 O排出低減方法を提供することを主な目的としてなされたものである。また本発明の他の目的は、排ガス中のN2Oを確実に除去することができる実用性に優れた触媒を提供し、焼却炉からのN 2 O排出低減方法を提供することである。
【0008】
【課題を解決するための手段】
上記の課題を解決するためになされた本発明は、焼却炉から排出されたN 2 Oを含む排ガスを第一の熱交換器に導いて排ガスから熱放出を行う工程と、前記熱放出により温度が低下した排ガスを集塵機に導いてダスト除去を行い、続いてスクラバに導いてSO 及びHCl除去を行う工程と、ダスト除去とSO 及びHCl除去がなされた排ガスを第二の熱交換器に導いて熱吸収を行う工程と、第二の熱交換器での熱吸収出により温度が上昇した排ガスを、前記第一の熱交換器に導いて更に熱吸収を行う工程と、前記の連続する熱吸収により550℃〜650℃に昇温した排ガスを触媒反応塔に導いてN 2 Oの熱分解を行う工程と、前記熱分解によりN 2 Oが除去された排ガスを前記第二の熱交換器に導いて排ガスから熱放出を行う工程とからなる方法により焼却炉からのN 2 O排出量を低減させることを特徴とするものである。
【0009】
なお、触媒反応塔に充填される触媒が、Sn若しくはSnCl・5HOから得られる錫酸を原料としたN2O除去触媒であることが好ましい。また触媒反応塔に充填される触媒が、Pt又はPdをTiO2に担持させたN2O除去触媒であることが好ましい。このPt又はPdをTiO2に担持させたN2O除去触媒としては、Pt又はPdの塩とTiの有機化合物と有機結合体とを溶媒中で反応させることによりPt又はPdとTiとを分子内に含む有機金属前駆体を合成し、これを加熱することにより得られたものが活性が高く特に好ましい。
【0010】
本発明の方法によれば、スクラバを通過した排ガスを第二の熱交換器で加熱したうえ、焼却炉出口に設置された第一の熱交換器に返送して焼却炉出口の排ガスとの熱交換により更に昇温したうえ、触媒反応塔に通してN2Oを除去するので、図2に示した従来法のように化石燃料を用いて排ガスを加熱する必要がない。従って余分な炭酸ガスを発生させることなくN2Oを分解することができ、システム全体の地球温暖化物質の排出低減を図ることができる。またこのフローにおいて上記のような錫酸を原料としたN2O除去触媒や、Pt又はPdをTiO2に担持させたN2O除去触媒の触媒を用いれば、排ガス中の硫黄酸化物や塩化水素等による触媒の活性低下が少なく、実用性に優れた排ガス処理が可能である。
【0011】
【発明の実施の形態】
以下に本発明の好ましい実施形態を示す。
図1は本発明の好ましい実施形態を示すフローシートであり、下水汚泥や石炭を燃焼させる焼却炉1の出口部分に第一の熱交換器7を配置してある。焼却炉1から排出された800〜900℃の高温の排ガスはまずこの第一の熱交換器7を通過したうえ、従来と同様に流動空気予熱器2や白煙防止空気予熱器を通り、集塵機4でダストを除去され、更にスクラバ5でSOや塩化水素を除去される。
【0012】
そしてスクラバ5を通ることにより40℃程度まで冷却された排ガスは、排ガスファン6により第二の熱交換器11に送られ例えば390℃まで加熱され、更に前記した炉出口の第一の熱交換器7に返送されて高温の排ガスとの熱交換により触媒反応に適した温度(例えば550℃)となるまで更に昇温される。このようにして昇温された排ガスは、触媒反応塔9に通されてN2Oを除去され、第二の熱交換器11を通る際に排ガスを予熱したうえ煙突10から排出される。
【0013】
上記の通り、本発明では化石燃料を燃焼させる従来の加熱炉8に代えて炉出口の第一の熱交換器7によって排ガスをN2O除去触媒の反応に適した温度となるまで昇温するようにしたので、余分な炭酸ガスの発生をなくすることができ、しかも従来と同様に排ガス中のN2Oを分解できるので、システム全体の地球温暖化物質の排出低減を図ることができる。
【0014】
以下に、各構成要素の好ましい実施形態を更に詳細に説明する。まず触媒反応塔9にはN2O除去触媒が充填されているが、単独で充填するほか、前段にNOx除去触媒を設置し、その後段にN2O除去触媒を充填することもできる。これにより排ガス中のNOxをも分解することができる。また、 Pt又はPdをTiO2に担持させたN2O除去触媒においては、同時にダイオキシン、臭気をも除去することができる。いずれの場合にも、N2O除去触媒の温度は250〜650℃とすることが好ましく、より好ましくは550〜650℃とする。
【0015】
触媒反応塔9に充填されたN2O除去触媒のSV値は500〜20000h-1、より好ましくは2000〜8000h-1とする。N2O除去触媒の形状はペレット又はハニカムとすることが好ましい。ペレットとした場合、そのサイズは1〜20mm程度、より好ましくは5〜10mm程度である。またハニカムとした場合、その貫通孔の相当直径は1〜30mm,より好ましくは2〜10mmであり、開口率は50%以上とすることが好ましい。
【0016】
請求項2の発明では、N2O除去触媒としてSn若しくはSnCl・5HOから得られる錫酸(SnO・nHO)を原料とした触媒が用いられる。この触媒は,SnO(IV)を主成分とするものである。一般にSnOは高表面積のものが得られにくいのであるが、Sn若しくはSnCl・5HOを出発物質としてこれを溶媒に溶かし、NH4OHを沈殿剤として沈殿させた白色結晶である錫酸を前駆体とし、300℃程度で焼成することによって得られた触媒は、30〜100m2/gという大きい比表面積を持つ。このため高い触媒活性を発揮させることができる。
【0017】
請求項3の発明では、Pt又はPdをTiO2に担持させたN2O除去触媒が用いられる。この発明では主成分であるPt又はPdをアナターゼ型のTiO2に0.2〜5重量%程度担持させることが好ましく、更にこのTiO2をコージエライトハニカムにコーティングさせて用いることができる。この場合、コージエライトハニカムに対するTiO2の量を30〜200g/Lとすることが好ましい。
【0018】
Pt又はPdをTiO2に担持させる方法としては、Pt又はPdの塩の溶液をTiO2にコーティングし、加熱分解してPt又はPdを析出させる方法を取ることができる。しかしこの方法ではPt又はPdの析出粒子径が大きくなって活性点が減少し、その触媒効果が十分に発揮されないおそれがある。そこで請求項4に示すように、Pt又はPdの塩とTiの有機化合物と有機結合体とを溶媒中で反応させることによりPt又はPdとTiとを分子内に含む有機金属前駆体を合成し、これを加熱することにより得られたN2O除去触媒を用いることが好ましい。
【0019】
この場合、Tiの有機化合物としてはTiのアルコキシド誘導体を使用することができ、有機結合体としてはリシン、グリシン、プロリン等のアミノ酸を用いることができる。具体的には、塩化白金酸、塩化パラジウムのようなPt又はPdの可溶性塩をアミノ酸及びTiのアルコキシド誘導体とともに溶媒に溶解させる。この有機結合体によりTiイオンとPt又はPdのイオンとが結合され分子内に固定されるので、これを加熱すると各成分が分子レベルで均等に分散した有機金属前駆体が得られる。
【0020】
この状態では、TiイオンとPt又はPdのイオンとはアミノ酸を介して結合しているが、500℃前後に加熱するとアミノ酸が焼失して有機金属前駆体は分解され、Pt又はPdが超微粒子化してTi中に高分散された活性の高いN2O除去触媒を得ることができる。この触媒もまた排ガスに対して高い触媒活性を発揮させることができ、実用性に優れたものである。
【0021】
上記したようなN2O除去触媒は、還元剤と組み合わせて使用することにより、更にその効果を高めることができる。還元剤としては例えばメタン、エタン、プロパン、エチレン、プロピレン等の炭化水素を用いることができ、その注入量はN2Oの分解に必要な理論モル当量の5倍以下とすることができる。なお、N2O除去触媒の前段にNOx除去触媒を設置する場合、NOx除去触媒とN2O除去触媒との間に還元剤を注入することが好ましい。
【0022】
【実施例】
以下に本発明の実施例を示す。
一般的な下水汚泥焼却において、図2に示した従来フローと図1に示した本発明のフローとによって、N2Oの分解実験を行った。また比較のために、図3に示すN2O除去触媒のないフローを用いた場合も示した。実施例の焼却炉は排煙処理塔出口排ガス量が13000mN/hでその排ガス中のCO濃度11%、NO濃度380ppmのものであり、年間330日にわたり24時間運転されるものである。なお、地球温暖化係数は、CO=1、NO=310、CH=21とする。
【0023】
各フローにおいて、触媒の種類を変えて大気中に放出されるCO及びNOを測定し、年間排出量に換算した結果を表1に示す。このようにN2O除去触媒が全くない場合に比較して、従来フローによっても地球温暖化物質の年間排出量のCO換算値は大きく減少する。しかし、本発明のフローによれば化石燃料を使用しないので、地球温暖化物質の年間排出量を更に減少できることがわかる。
【0024】
【表1】

Figure 0004169235
【0025】
【発明の効果】
以上に説明したように、本発明によれば化石燃料を用いることなく排ガスをN2O除去触媒の反応温度まで昇温することができ、システム全体としての地球温暖化物質の排出量を、従来法よりも低減することができる。また請求項2以下に記載のN2O除去触媒は、排ガスに適用しても高い活性を発揮させることができる実用性に優れたものであり、排ガス中のN2Oを確実に除去することができる利点がある。
【図面の簡単な説明】
【図1】本発明の実施形態を示すフローシートである。
【図2】従来例を示すフローシートである。
【図3】N2O除去を行わない従来例を示すフローシートである。
【符号の説明】
1 焼却炉、2 流動空気予熱器、3 白煙防止空気予熱器、4 集塵機、5 スクラバ、6 排ガスファン、 第一の熱交換器、8 加熱炉、9 触媒反応塔、10 煙突、11 第二の熱交換器 [0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for reducing N 2 O emission from an incinerator that incinerates sewage sludge and the like.
[0002]
[Prior art]
The global warming substance, at present mainly but carbon dioxide is a problem, nitrous oxide discharged from an incinerator (N 2 O) showed a much greater greenhouse effect than carbon dioxide, and half Since the period is as long as 150 years, it is becoming a new problem as a global warming substance. Most of N 2 O is generated from underground or underwater organisms, but N 2 O is also contained in the combustion exhaust gas. For example, sewage sludge and coal combustion exhaust gas contain several hundred ppm of N 2 O. There is a report that it is.
[0003]
For this reason, a technique for decomposing N 2 O contained in combustion exhaust gas with an N 2 O removal catalyst such as NiO, Fe 2 O 3 , CoO, CuO, zeolite, alumina, or the like has been proposed. However, the reaction temperature of the N 2 O removal catalyst is usually a high temperature of 500 ° C. or higher, and is easily affected by dust, hydrogen chloride, etc. in the exhaust gas. Therefore, when the N 2 O removal catalyst is incorporated in the actual equipment, a flow as shown in FIG. 2 is adopted.
[0004]
That is, in this flow, the exhaust gas of the incinerator 1 to remove the dust in the dust collector 4 then passed through a fluidized air preheater 2 and white smoke prevention air preheater 3, further removing the SO X or hydrogen chloride scrubber 5. Since the exhaust gas that has passed through the scrubber 5 has dropped to about 40 ° C., the exhaust gas fan 6 raises the temperature to about 450 ° C. through the first heat exchanger 7 , and then sends it to the heating furnace 8 to raise the temperature again. The heating furnace 8 raises the temperature of the exhaust gas to a temperature necessary for the reaction (for example, 550 ° C.) using fossil fuel, and decomposes it in contact with the N 2 O removal catalyst in the catalytic reaction tower 9. Thereafter, the exhaust gas is exhausted by the first heat exchanger 7 and then discharged from the chimney 10.
[0005]
However, in such a conventional flow, since it is necessary to heat the exhaust gas using fossil fuel, carbon dioxide gas is newly generated in the process of reducing emission of N 2 O, which is a global warming substance, The system as a whole remains questionable about the effect of reducing emissions of global warming substances. Especially will consume a large amount of fossil fuel in a heating furnace 8 so it is preferable to react at a high temperature of at least 500 ° C. In order to sufficiently decompose N 2 O, by generating carbon dioxide gas is global warming substances End up.
[0006]
In addition, conventionally proposed N 2 O removal catalysts such as NiO, Fe 2 O 3 , CoO, CuO, zeolite, and alumina are poisoned by sulfur oxides, hydrogen chloride, and the like in the exhaust gas, and the activity decreases. For this reason, there has been a problem that the catalyst for removing N 2 O in the exhaust gas still lacks practicality.
[0007]
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems and aims to reduce emission of global warming substances in the entire system by raising the temperature of the exhaust gas to the reaction temperature of the N 2 O removal catalyst without using fossil fuel. The main object of the present invention is to provide a method for reducing N 2 O emission from an incinerator . Another object of the present invention is to provide a superior catalyst utility that can reliably remove N 2 O in the exhaust gas, to provide a N 2 O emissions reduction method from incinerators.
[0008]
[Means for Solving the Problems]
The present invention made to solve the above-mentioned problems includes a step of conducting heat release from the exhaust gas by introducing the exhaust gas containing N 2 O discharged from the incinerator to the first heat exchanger, and a temperature by the heat release. There performed dedusting led to a dust collector the exhaust gas drops, followed and performing SO X and HCl removal led to scrubber, the exhaust gas dust removal and SO X and HCl removal is made to the second heat exchanger A step of conducting heat absorption by guiding the exhaust gas whose temperature has risen due to heat absorption by the second heat exchanger to the first heat exchanger and further performing heat absorption; and performing thermal decomposition of N 2 O to the exhaust gas temperature was raised to 550 ° C. to 650 ° C. by the heat absorbed is guided to the catalytic reaction tower, the second heat exchange gas to N 2 O is removed by the thermal decomposition A process of conducting heat from the exhaust gas, It is characterized in reducing the N 2 O emissions from incinerator by Ranaru method.
[0009]
Incidentally, the catalyst to be filled in the catalytic reaction tower is preferably a stannate obtained from Sn or SnCl 4 · 5H 2 O is N 2 O removal catalyst as a raw material. The catalyst to be filled in the catalytic reaction tower is preferably Pt or Pd is N2O removal catalyst supported on TiO 2. As the N2O removal catalyst in which Pt or Pd is supported on TiO 2 , Pt or Pd and Ti are converted into a molecule by reacting a Pt or Pd salt, an organic compound of Ti and an organic conjugate in a solvent. A product obtained by synthesizing an organometallic precursor containing the precursor and heating it is particularly preferred because of its high activity.
[0010]
According to the method of the present invention, the exhaust gas that has passed through the scrubber is heated by the second heat exchanger, and then returned to the first heat exchanger installed at the incinerator outlet to heat the exhaust gas at the incinerator outlet. Since the temperature is further increased by exchange and N 2 O is removed through the catalytic reaction tower, it is not necessary to heat the exhaust gas using fossil fuel as in the conventional method shown in FIG. Therefore, N 2 O can be decomposed without generating excess carbon dioxide gas, and the emission of global warming substances in the entire system can be reduced. In this flow, if a catalyst such as the above-described N 2 O removal catalyst using stannic acid or an N 2 O removal catalyst in which Pt or Pd is supported on TiO 2 is used, sulfur oxide, hydrogen chloride, etc. in the exhaust gas Therefore, it is possible to perform exhaust gas treatment with excellent practicality.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention are shown below.
FIG. 1 is a flow sheet showing a preferred embodiment of the present invention, in which a first heat exchanger 7 is arranged at an outlet portion of an incinerator 1 for burning sewage sludge and coal. The high-temperature exhaust gas at 800 to 900 ° C. discharged from the incinerator 1 first passes through the first heat exchanger 7 and passes through the fluidized air preheater 2 and the white smoke-preventing air preheater in the same manner as in the past. The dust is removed at 4 and the SO X and hydrogen chloride are removed at the scrubber 5.
[0012]
The exhaust gas which has been cooled to approximately 40 ° C. by passing through the scrubber 5 is heated by the exhaust gas fan 6 to the second sent of the heat exchanger 11, for example 390 ° C., further first heat exchanger of the furnace outlets and the The temperature is further raised until the temperature reaches a temperature suitable for the catalytic reaction (for example, 550 ° C.) by heat exchange with the high-temperature exhaust gas. The exhaust gas heated in this way is passed through the catalytic reaction tower 9 to remove N 2 O. When passing through the second heat exchanger 11 , the exhaust gas is preheated and discharged from the chimney 10.
[0013]
As described above, in the present invention, the exhaust gas is heated up to a temperature suitable for the reaction of the N 2 O removal catalyst by the first heat exchanger 7 at the furnace outlet instead of the conventional heating furnace 8 for burning fossil fuel. since the way, it is possible to eliminate the generation of excess carbon dioxide, and since it decompose N 2 O in the exhaust gas as in the conventional, it is possible to reduce emissions of the entire system global warming substances.
[0014]
Below, preferable embodiment of each component is described in detail. First, the catalyst reaction tower 9 is filled with the N 2 O removal catalyst. However, in addition to filling the catalyst reaction tower 9 alone, it is possible to install a NOx removal catalyst in the previous stage and fill the N 2 O removal catalyst in the subsequent stage. Thereby, NOx in the exhaust gas can also be decomposed. In addition, in the N 2 O removal catalyst in which Pt or Pd is supported on TiO 2 , dioxins and odors can be removed at the same time. In any case, the temperature of the N 2 O removal catalyst is preferably 250 to 650 ° C., more preferably 550 to 650 ° C.
[0015]
The SV value of the N 2 O removal catalyst packed in the catalytic reaction tower 9 is 500 to 20000 h −1 , more preferably 2000 to 8000 h −1 . The shape of the N2O removal catalyst is preferably a pellet or a honeycomb. In the case of pellets, the size is about 1 to 20 mm, more preferably about 5 to 10 mm. Moreover, when it is set as a honeycomb, the equivalent diameter of the through-hole is 1-30 mm, More preferably, it is 2-10 mm, and it is preferable that an aperture ratio shall be 50% or more.
[0016]
In the invention of claim 2, a catalyst made of stannic acid (SnO 2 .nH 2 O) obtained from Sn or SnCl 4 .5H 2 O as a raw material is used as the N 2 O removal catalyst. The catalyst, as a primary component, SnO 2 and (IV). In general, SnO 2 is difficult to obtain with a high surface area. However, stannic acid is a white crystal in which Sn or SnCl 4 · 5H 2 O is used as a starting material and dissolved in a solvent, and NH 4 OH is precipitated as a precipitating agent. The catalyst obtained by calcining at about 300 ° C. has a large specific surface area of 30 to 100 m 2 / g. For this reason, high catalytic activity can be exhibited.
[0017]
In the invention of claim 3, it was supported Pt or Pd on TiO 2 N2O removal catalyst is used. In the present invention, it is preferable to support Pt or Pd as a main component on anatase type TiO 2 in an amount of about 0.2 to 5% by weight, and this TiO 2 can be coated on a cordierite honeycomb. In this case, the amount of TiO 2 with respect to the cordierite honeycomb is preferably 30 to 200 g / L.
[0018]
As a method for supporting Pt or Pd on TiO 2 , a method can be used in which a solution of a salt of Pt or Pd is coated on TiO 2 and thermally decomposed to precipitate Pt or Pd. However, in this method, the precipitated particle size of Pt or Pd is increased and the active sites are decreased, so that the catalytic effect may not be sufficiently exhibited. Therefore, as shown in claim 4, an organometallic precursor containing Pt or Pd and Ti in a molecule is synthesized by reacting a salt of Pt or Pd, an organic compound of Ti and an organic conjugate in a solvent. It is preferable to use an N 2 O removal catalyst obtained by heating this.
[0019]
In this case, an alkoxide derivative of Ti can be used as the organic compound of Ti, and amino acids such as lysine, glycine, and proline can be used as the organic conjugate. Specifically, a soluble salt of Pt or Pd such as chloroplatinic acid or palladium chloride is dissolved in a solvent together with an amino acid and an alkoxide derivative of Ti. Ti ions and Pt or Pd ions are bonded and fixed in the molecule by this organic bond, and when heated, an organometallic precursor in which each component is evenly dispersed at the molecular level is obtained.
[0020]
In this state, Ti ions and Pt or Pd ions are bonded via amino acids, but when heated to around 500 ° C., the amino acids are burned out and the organometallic precursor is decomposed, and Pt or Pd is made into ultrafine particles. Thus, a highly active N 2 O removal catalyst highly dispersed in Ti can be obtained. This catalyst can also exhibit high catalytic activity against exhaust gas, and is excellent in practicality.
[0021]
The effect of the N 2 O removal catalyst as described above can be further enhanced by using it in combination with a reducing agent. The reducing agent such as methane, ethane, propane, ethylene, can be a hydrocarbon such as propylene, the injection volume can be less than or equal to 5 times the theoretical molar equivalent necessary for the breakdown of the N 2 O. In the case of installing a NOx removal catalyst upstream of N 2 O removal catalyst, it is preferred to inject the reducing agent between the NOx removal catalyst and the N 2 O removal catalyst.
[0022]
【Example】
Examples of the present invention are shown below.
In general sewage sludge incineration, an N 2 O decomposition experiment was performed by the conventional flow shown in FIG. 2 and the flow of the present invention shown in FIG. For comparison, the case where the flow without the N 2 O removal catalyst shown in FIG. 3 was used was also shown. The incinerator of the embodiment has an exhaust gas amount of 13000 m 3 N / h at the flue gas processing tower, has a CO 2 concentration of 11% and an N 2 O concentration of 380 ppm, and operates for 24 hours over 330 days a year. It is. Note that the global warming potential is CO 2 = 1, N 2 O = 310, and CH 4 = 21.
[0023]
Table 1 shows the results of measuring CO 2 and N 2 O released into the atmosphere by changing the type of catalyst in each flow and converting them into annual emissions. Thus, compared with the case where there is no N 2 O removal catalyst, the CO 2 equivalent value of the annual emissions of global warming substances is greatly reduced even by the conventional flow. However, according to the flow of the present invention, fossil fuel is not used, so it can be seen that the annual emission of global warming substances can be further reduced.
[0024]
[Table 1]
Figure 0004169235
[0025]
【The invention's effect】
As described above, according to the present invention, the exhaust gas can be heated up to the reaction temperature of the N 2 O removal catalyst without using fossil fuel, and the amount of global warming substances discharged as a whole system can be reduced. It can be reduced more than the law. Further, the N 2 O removal catalyst described in claim 2 and below is excellent in practicality that can exhibit high activity even when applied to exhaust gas, and reliably removes N 2 O in the exhaust gas. There is an advantage that can be.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing an embodiment of the present invention.
FIG. 2 is a flow sheet showing a conventional example.
3 is a flow sheet showing a conventional example is not performed N 2 O removal.
[Explanation of symbols]
1 incinerator, 2 fluid air preheater, 3 white smoke prevention air preheater, 4 dust collector, 5 scrubber, 6 exhaust gas fan, 7 1st heat exchanger , 8 heating furnace, 9 catalytic reaction tower, 10 chimney, 11 Second heat exchanger

Claims (4)

焼却炉から排出されたNN discharged from the incinerator 22 Oを含む排ガスを第一の熱交換器に導いて排ガスから熱放出を行う工程と、Introducing exhaust gas containing O to the first heat exchanger and releasing heat from the exhaust gas;
前記熱放出により温度が低下した排ガスを集塵機に導いてダスト除去を行い、続いてスクラバに導いてSOThe exhaust gas whose temperature has decreased due to the heat release is led to a dust collector to remove dust, and then led to a scrubber to be SO. X 及びHCl除去を行う工程と、And removing HCl;
ダスト除去とSODust removal and SO X 及びHCl除去がなされた排ガスを第二の熱交換器に導いて熱吸収を行う工程と、And a step of conducting heat absorption by introducing the exhaust gas from which HCl has been removed to a second heat exchanger;
第二の熱交換器での熱吸収出により温度が上昇した排ガスを、前記第一の熱交換器に導いて更に熱吸収を行う工程と、A step of conducting heat absorption by introducing the exhaust gas whose temperature has increased by heat absorption in the second heat exchanger to the first heat exchanger; and
前記の連続する熱吸収により550℃〜650℃に昇温した排ガスを触媒反応塔に導いてNThe exhaust gas heated to 550 ° C. to 650 ° C. by the continuous heat absorption is led to the catalytic reaction tower, and N 22 Oの熱分解を行う工程と、A step of thermally decomposing O;
前記熱分解によりNN by the thermal decomposition 22 Oが除去された排ガスを前記第二の熱交換器に導いて排ガスから熱放出を行う工程とIntroducing the exhaust gas from which O has been removed to the second heat exchanger to release heat from the exhaust gas;
からなることを特徴とする焼却炉からのNN from an incinerator characterized by comprising 22 O排出低減方法。O emission reduction method.
触媒反応塔に充填される触媒が、Sn若しくはSnCl・5HOから得られる錫酸を原料としたN2O除去触媒である請求項1記載の焼却炉からのN 2 O排出低減方法。 2. The method for reducing N 2 O emission from an incinerator according to claim 1, wherein the catalyst charged in the catalytic reaction tower is an N 2 O removal catalyst using stannic acid obtained from Sn or SnCl 4 .5H 2 O as a raw material . 触媒反応塔に充填される触媒が、Pt又はPdをTiO2に担持させたN2O除去触媒である請求項1記載の焼却炉からのN 2 O排出低減方法。 2. The method for reducing N 2 O emission from an incinerator according to claim 1, wherein the catalyst charged in the catalytic reaction tower is an N 2 O removal catalyst in which Pt or Pd is supported on TiO 2 . Pt又はPdをTiO2に担持させたN2O除去触媒が、Pt又はPdの塩とTiの有機化合物と有機結合体とを溶媒中で反応させることによりPt又はPdとTiとを分子内に含む有機金属前駆体を合成し、これを加熱することにより得られたものである請求項3記載の焼却炉からのN 2 O排出低減方法。 An N2O removal catalyst in which Pt or Pd is supported on TiO 2 is an organic compound containing Pt or Pd and Ti in the molecule by reacting a Pt or Pd salt, an organic compound of Ti and an organic conjugate in a solvent. The method for reducing N 2 O emission from an incinerator according to claim 3, which is obtained by synthesizing a metal precursor and heating it .
JP2000136791A 2000-05-10 2000-05-10 N2O emission reduction method from incinerator Expired - Lifetime JP4169235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000136791A JP4169235B2 (en) 2000-05-10 2000-05-10 N2O emission reduction method from incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000136791A JP4169235B2 (en) 2000-05-10 2000-05-10 N2O emission reduction method from incinerator

Publications (2)

Publication Number Publication Date
JP2001317725A JP2001317725A (en) 2001-11-16
JP4169235B2 true JP4169235B2 (en) 2008-10-22

Family

ID=18644678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000136791A Expired - Lifetime JP4169235B2 (en) 2000-05-10 2000-05-10 N2O emission reduction method from incinerator

Country Status (1)

Country Link
JP (1) JP4169235B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227728A (en) * 2007-06-26 2010-10-14 Metawater Co Ltd Method for removing n2o contained in exhaust gas from sewage sludge incinerator
JP5576593B2 (en) * 2008-02-05 2014-08-20 メタウォーター株式会社 Method for removing N2O in exhaust gas
JP5916470B2 (en) * 2011-08-04 2016-05-11 三菱重工業株式会社 Fluidized bed processing system and N2O removal method of fluidized bed combustion exhaust gas
WO2024048386A1 (en) * 2022-08-29 2024-03-07 日本ヒューム株式会社 Method for treating high-temperature gas

Also Published As

Publication number Publication date
JP2001317725A (en) 2001-11-16

Similar Documents

Publication Publication Date Title
JP3589529B2 (en) Method and apparatus for treating flue gas
JP4831801B2 (en) Method and apparatus for removing mercury from exhaust gas
CN109482052A (en) CO and NO in a kind of purifying sintering flue gasxDevice and method
CN101543793B (en) In-situ regeneration of a catalyst masked by calcium sulfate
US20070160517A1 (en) Catalyst, a method of using a catalyst, and an arrangement including a catalyst, for controlling NO and/or CO emissions from a combustion system without using external reagent
CN204768246U (en) Semidry method desulfurization, dust removal and low temperature denitration combination purifier
JP7445925B2 (en) combustion system
US6767526B1 (en) Method for treating by combustion carbon-containing particles in an internal combustion engine exhaust circuit
CN108722464B (en) Pd three-way low-temperature catalyst with nitrogen-doped titanium dioxide as carrier and preparation method and application thereof
CN108261904A (en) A kind of dry method multi-pollutant for low-temperature flue gas cooperates with high-efficient purification reactor
JP4169235B2 (en) N2O emission reduction method from incinerator
US5192515A (en) Reduction of nitrogen oxide and carbon monoxide in effluent gases
CN112169590A (en) System and method for CO catalytic oxidation outside deep staged combustion furnace
CN1748865A (en) Process for preparing fluorine blended metal oxide catalyst
JP4182325B2 (en) Low temperature denitration catalyst and exhaust gas low temperature denitration method
CN208145743U (en) A kind of dry method multi-pollutant collaboration high-efficient purification reactor for low-temperature flue gas
JP3843520B2 (en) Low temperature denitration catalyst, production method thereof, and low temperature denitration method
JP4169236B2 (en) N2O emission reduction method from incinerator
WO2004096436A1 (en) Catalyst material comprising transition metal oxide
CN210601689U (en) Waste incineration system based on integration of selective catalytic denitration and catalytic combustion
KR20200002120A (en) deNOx catalyst with improved NOx reduction performance, method of manufacturing the same and NOx abatement method
JP2008126103A (en) Oxidation catalyst for removing fine particulate substance in exhaust gas, and removing method of fine particulate substance using the same
JP2004255342A (en) Exhaust gas treatment system and method
JP2001079346A (en) Method and device for treating gas and method for regenerating honeycomb activated carbon
CN213725793U (en) CO catalytic oxidation system outside deep staged combustion furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080307

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080509

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4169235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term