JP3843520B2 - Low temperature denitration catalyst, production method thereof, and low temperature denitration method - Google Patents

Low temperature denitration catalyst, production method thereof, and low temperature denitration method Download PDF

Info

Publication number
JP3843520B2
JP3843520B2 JP03079097A JP3079097A JP3843520B2 JP 3843520 B2 JP3843520 B2 JP 3843520B2 JP 03079097 A JP03079097 A JP 03079097A JP 3079097 A JP3079097 A JP 3079097A JP 3843520 B2 JP3843520 B2 JP 3843520B2
Authority
JP
Japan
Prior art keywords
low
temperature denitration
temperature
catalyst
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03079097A
Other languages
Japanese (ja)
Other versions
JPH10225641A (en
Inventor
正晃 吉川
隆敬 嘉数
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP03079097A priority Critical patent/JP3843520B2/en
Publication of JPH10225641A publication Critical patent/JPH10225641A/en
Application granted granted Critical
Publication of JP3843520B2 publication Critical patent/JP3843520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低温脱硝触媒及びその製造方法ならびに低温脱硝方法に関する。
【0002】
【従来技術】
従来より、ボイラ等の固定式窒素酸化物発生源における脱硝手段としては、酸化バナジウムを触媒とし、アンモニアを還元剤として用い、窒素酸化物(NOx)を選択的に還元する方法が広く知られており、実用化されるに至っている。
【0003】
しかしながら、この触媒を用いる場合は、脱硝活性を上げるために300℃以上に反応温度を高める必要がある。すなわち、反応温度を高温にすれば、担体であるチタニアがシンタリングを起こし、触媒性能の低下を引き起こす。その結果として、非常に高価なバナジウム触媒を比較的頻繁に交換する必要も生じる。
【0004】
また、高い反応温度が要求されると、脱硝装置も、ボイラ出口直後、廃熱ボイラの伝熱部途中等の限られた箇所にしか設置できないため、装置の複雑化、耐熱材料の仕様による高額化、交換時の作業性の悪さ等の問題も生じる。
【0005】
さらに、かかる従来技術では、集塵機出口の150℃以下の排気ガス或いは低温の製鉄所の焼結排気ガスの脱硝に適用しようとすると再加熱が必要となり、経済的な見地よりその適用は事実上困難である。
【0006】
【発明が解決しようとする課題】
従って、本発明は、特に比較的低温で排気ガスの脱硝を行うことを主な目的とする。
【0007】
【課題を解決するための手段】
本発明者は、上記の従来技術の問題に鑑み、鋭意研究を重ねた結果、特定の構成からなる触媒を一定条件下で用いる場合には、低温下であっても有効に脱硝できることを見出し、本発明を完成するに至った。
【0008】
すなわち、本発明は、下記の低温脱硝触媒及びその製造方法ならびに低温脱硝方法に係るものである。
【0009】
1.Mn、Fe、Co及びNiの少なくとも1種の金属酸化物が活性炭素繊維に担持されている低温脱硝触媒。
【0010】
2.Mn、Fe、Co及びNiの少なくとも1種の金属塩の水溶液を活性炭素繊維に含浸し、減圧脱気した後、乾燥し、次いで酸化性雰囲気下200〜300℃で加熱処理して当該金属塩を金属酸化物とする低温脱硝触媒の製造方法。
【0011】
3.上記1項に記載の触媒に、窒素酸化物を含むガスを還元剤の存在下で接触させることを特徴とする排気ガスの低温脱硝方法。
【0012】
【発明の実施の形態】
以下、本発明をその実施の形態とともに詳細に説明する。
【0013】
本発明の低温脱硝触媒は、Mn、Fe、Co及びNiの少なくとも1種の金属酸化物が活性炭素繊維に担持されているものである。
【0014】
担持させる金属酸化物としては、マンガン酸化物(MnO2、MnO、Mn23等)、鉄酸化物(Fe23、Fe34等)、コバルト酸化物(Co23等)及びニッケル酸化物(NiO等)の少なくとも1種を用いることができ、これらの酸化物の中においては、本発明の効果が得られる限り特にその酸化物の種類は制限されない。これらの中でも、マンガン酸化物が好ましく、特に二酸化マンガン(MnO2)がより好ましい。金属酸化物の担持量は、最終製品の用途等に応じて適宜変更でき、通常は活性炭素繊維に対して5〜30重量%程度、好ましくは10〜15重量%とする。
【0015】
活性炭素繊維としては、金属酸化物を担持できる限り特に制限されず、公知のピッチ系、PAN系等のものが使用でき、また市販の活性炭素繊維も使用することができる。この中でも、特にピッチ系活性炭素繊維が好ましい。また、活性炭素繊維の比表面積は、最終製品の用途等に応じて適宜設定することができるが、通常は500〜1500m2/g程度、好ましくは700〜1000m2/gとする。
【0016】
本発明の低温脱硝触媒は、例えば次の方法により製造することができる。まず、Mn、Fe、Co及びNiの少なくとも1種の金属塩の水溶液を活性炭素繊維に含浸し、減圧脱気した後、乾燥し、次いで酸化性雰囲気下200〜300℃で加熱処理して当該金属塩を金属酸化物とする。
【0017】
上記金属塩としては、水溶性のものであれば特に制限されないが、特に硝酸塩(例えば、硝酸マンガン(II)、硝酸鉄(III)等)を用いることが好ましい。これら金属塩は、水和物も含まれる。水溶液の濃度は、最終製品の担持量が上記範囲になれば特に限定されないが、通常は0.5〜15重量%程度、好ましくは5〜10重量%とすれば良い。
【0018】
次いで、上記水溶液に活性炭素繊維を含浸させる。含浸させた活性炭素繊維を減圧下で脱気処理した後、乾燥する。減圧する程度は、通常10-1〜10Torr程度の圧力下とすれば良いが、この範囲外であっても良い。また、乾燥温度も、特に制限されず、通常は100℃以下とすれば良い。
【0019】
乾燥後、活性炭素繊維を加熱処理する。加熱温度は、含浸されている金属塩が金属酸化物として担持できる限りは特に制限されないが、通常は200〜300℃程度、好ましくは280〜300℃とすれば良い。加熱雰囲気は、酸化性雰囲気下(例えば空気中)とすれば良く、好ましくは空気気流下とする。空気気流を用いる場合の流通量は、通常0.1〜1.0m3/min程度とすれば良い。
【0020】
本発明の低温脱硝方法は、上記の本発明触媒に、窒素酸化物を含むガスを還元剤の存在下で接触させることを特徴とする。
【0021】
本発明方法では、還元剤の存在下で窒素酸化物を含むガスとの接触を行うが、還元剤としては公知のものをそのまま使用でき、例えばアンモニア、水素、炭化水素等が使用できる。この中でも、特にアンモニアが好ましい。還元剤の含有量は、上記ガス中の窒素酸化物の濃度と等モル又はそれ以上の量とすれば良い。
【0022】
窒素酸化物を含むガスの組成は、排気ガス等の組成のままでも良いが、特に窒素酸化物10〜5000ppm(好ましくは20〜300ppm)、酸素3vol%以上(好ましくは3〜10vol%)及び水蒸気80vol%以下(好ましくは5〜20vol%)を含む組成とすることが好ましい。また、接触させる際の温度も特に制限されないが、通常は200℃以下、好ましくは100〜150℃で行えば良い。
【0023】
接触させる方法は、特に制限されず、公知の方法に従えば良い。例えば、触媒を反応管等に充填し、その中に窒素酸化物を含むガスを流通させれば良い。このガスの流通量は、用いる触媒量等に応じて適宜定めることができる。
【0024】
【作用】
本発明においては、低温脱硝触媒を通過する間に、ガス中に含まれる窒素酸化物が還元剤(例えばアンモニア)と反応し、無害な窒素と水蒸気に分解される。
その反応例を示すと下記(1)(2)の通りである。
【0025】
4NO+4NH3+O2→4N2+6H2O …(1)
6NO2+8NH3→7N2+12H2O …(2)
活性炭素繊維の表面の金属酸化物にNOが吸着され、金属酸化物の強い酸化性能によりNO2となる。生成した反応性の高いNO2がアンモニアと反応し、N2とH2Oに還元される。N2とH2Oが脱離した後の金属酸化物は酸素により酸化され、酸化性金属酸化物表面が再生される。これらの反応が200℃以下の低温で進行するのは、特に、活性炭素繊維のもつ2nm以下のミクロポア中でこれらの反応物質が凝縮し、ミクロな領域で高圧反応するためである。
【0026】
【発明の効果】
本発明の脱硝方法によれば、排気ガス中等において低濃度から高濃度で含まれる窒素酸化物を特に150℃以下という低温下でも効率的に除去し、これを主として窒素と水に還元することが可能である。特に、常温〜150℃の温度で低濃度〜高濃度の窒素酸化物を通常40〜80%という高い除去率で脱硝することができる。
【0027】
このような本発明方法では、ボイラ、エンジン、タービン等から排出される燃焼排気ガスの脱硝に有効であり、特に排煙処理装置、廃熱処理装置等の出口における比較的低温(通常200℃以下)の排気ガスを効率良く脱硝することができる。
【0028】
【実施例】
以下、実施例を示し、本発明の特徴をより一層明確にする。
【0029】
実施例1〜6及び参考例7〜9
表1に示す条件で金属酸化物を活性炭素繊維に担持させて触媒をそれぞれ製造した。
【0030】
【表1】

Figure 0003843520
【0031】
活性炭素繊維としては、ピッチ系活性炭素繊維(アドール(株)製)を用いた。試料名は「A7」であり、その比表面積は700m2/gである。このピッチ系活性炭素繊維に、硝酸マンガン(II)6水和物、硝酸鉄(III)9水和物又は硝酸コバルト(II)6水和物の水溶液をそれぞれ含浸させた。含浸させた水溶液の濃度は、表1に示すように、最終的な金属酸化物の担持量として5〜15重量%の範囲となるように調整した。
【0032】
その後、デシケーター内で室温下、真空ポンプにより10-1Torrまで減圧し、各試料について脱気処理を施した。この処理によって、活性炭素繊維のミクロポア内への脱気と金属塩の浸透を促進することができる。次いで、これを100℃の熱風下で1昼夜乾燥し、さらに空気気流下200〜300℃の範囲で1時間加熱処理し、上記金属硝酸塩を熱分解して金属酸化物とし、触媒をそれぞれ得た。
【0033】
次に、得られた触媒を反応管(内径15mm)に2.5gを充填し、温度60〜150℃でガスを500cc/minで流通した。ガス組成は、NO:200ppm、NH3:200ppm、O2:10.5vol%、N2バランス、水分:8.1vol%とした。反応管より出口ガスを、化学発光式NOx計(「ECL−88US」、柳本製作所(株)製)により分析し、次式により脱硝率を算出した。
【0034】
脱硝率(%)=入口NO濃度(ppm)−出口NO濃度(ppm)/入口NO濃度(ppm) ×100なお、脱硝率は、反応開始後30時間後の安定化した状態の定常反応中における値を示す。
【0035】
比較例1〜3
比較例1及び2として、金属酸化物を担持しないピッチ系活性炭素繊維(いずれもアドール(株)製、試料名「A15」及び「A7」、比表面積はそれぞれ1500m2/g及び700m2/g)、並びに比較例3として従来技術であるバナジウム系触媒(V25/TiO2)を用いて脱硝した。その結果も図1に示す。
【0036】
図1の結果より、本発明の触媒を用いた脱硝によれば、もとの活性炭素繊維(比較例1及び2)或いは従来技術(バナジウム系触媒:比較例3)に比べて、全般的に150℃以下の低温における脱硝活性に優れていることがわかる。殊に、活性炭素繊維「A7」にMnを15%担持し、300℃で熱分解して得た触媒を用いた実施例1では、脱硝率が94%にも達した。
【図面の簡単な説明】
【図1】実施例及び比較例における脱硝効果と温度との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low-temperature denitration catalyst, a production method thereof, and a low-temperature denitration method.
[0002]
[Prior art]
Conventionally, as a denitration means in a stationary nitrogen oxide generation source such as a boiler, a method of selectively reducing nitrogen oxide (NOx) using vanadium oxide as a catalyst and ammonia as a reducing agent has been widely known. It has been put to practical use.
[0003]
However, when this catalyst is used, it is necessary to increase the reaction temperature to 300 ° C. or higher in order to increase the denitration activity. That is, if the reaction temperature is increased, titania as a support causes sintering, which causes a decrease in catalyst performance. As a result, very expensive vanadium catalysts need to be replaced relatively frequently.
[0004]
In addition, when a high reaction temperature is required, a denitration device can be installed only in a limited location, such as immediately after the boiler outlet, or in the middle of the heat transfer section of a waste heat boiler. Problems such as poor workability at the time of conversion and replacement also occur.
[0005]
Furthermore, in this conventional technique, reheating is necessary when applying to denitration of exhaust gas at 150 ° C. or less at the outlet of the dust collector or sintering exhaust gas at a low temperature steelworks, and its application is practically difficult from an economical point of view. It is.
[0006]
[Problems to be solved by the invention]
Therefore, the main object of the present invention is to denitrate exhaust gas particularly at a relatively low temperature.
[0007]
[Means for Solving the Problems]
In light of the problems of the prior art described above, the present inventors have conducted extensive research and found that when a catalyst having a specific configuration is used under certain conditions, it can be effectively denitrated even at low temperatures, The present invention has been completed.
[0008]
That is, the present invention relates to the following low-temperature denitration catalyst, its production method, and low-temperature denitration method.
[0009]
1. A low-temperature denitration catalyst in which at least one metal oxide of Mn, Fe, Co, and Ni is supported on activated carbon fibers.
[0010]
2. An activated carbon fiber is impregnated with an aqueous solution of at least one metal salt of Mn, Fe, Co and Ni, degassed under reduced pressure, dried, and then heat-treated at 200 to 300 ° C. in an oxidizing atmosphere. A method for producing a low-temperature denitration catalyst using a metal oxide as a catalyst.
[0011]
3. A method for low-temperature denitration of exhaust gas, comprising contacting the catalyst according to item 1 with a gas containing nitrogen oxides in the presence of a reducing agent.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail together with embodiments thereof.
[0013]
The low-temperature denitration catalyst of the present invention is one in which at least one metal oxide of Mn, Fe, Co, and Ni is supported on activated carbon fibers.
[0014]
As metal oxides to be supported, manganese oxides (MnO 2 , MnO, Mn 2 O 3 etc.), iron oxides (Fe 2 O 3 , Fe 3 O 4 etc.), cobalt oxides (Co 2 O 3 etc.) And at least one kind of nickel oxide (NiO or the like) can be used, and among these oxides, the kind of the oxide is not particularly limited as long as the effect of the present invention is obtained. Among these, manganese oxide is preferable, and manganese dioxide (MnO 2 ) is particularly preferable. The amount of the metal oxide supported can be appropriately changed according to the use of the final product, and is usually about 5 to 30% by weight, preferably 10 to 15% by weight with respect to the activated carbon fiber.
[0015]
The activated carbon fiber is not particularly limited as long as it can carry a metal oxide, and known pitch-based and PAN-based materials can be used, and commercially available activated carbon fibers can also be used. Of these, pitch-based activated carbon fibers are particularly preferable. The specific surface area of the activated carbon fiber can be appropriately set according to the use of the final product, but is usually about 500 to 1500 m 2 / g, preferably 700 to 1000 m 2 / g.
[0016]
The low-temperature denitration catalyst of the present invention can be produced, for example, by the following method. First, an activated carbon fiber is impregnated with an aqueous solution of at least one metal salt of Mn, Fe, Co, and Ni, degassed under reduced pressure, dried, and then heat-treated at 200 to 300 ° C. in an oxidizing atmosphere. The metal salt is a metal oxide.
[0017]
The metal salt is not particularly limited as long as it is water-soluble, but nitrates (for example, manganese (II) nitrate, iron (III) nitrate, etc.) are particularly preferably used. These metal salts include hydrates. The concentration of the aqueous solution is not particularly limited as long as the supported amount of the final product is within the above range, but it is usually about 0.5 to 15% by weight, preferably 5 to 10% by weight.
[0018]
Next, the activated carbon fiber is impregnated in the aqueous solution. The impregnated activated carbon fiber is degassed under reduced pressure and then dried. The degree of pressure reduction is usually a pressure of about 10 −1 to 10 Torr, but may be outside this range. Also, the drying temperature is not particularly limited, and may usually be 100 ° C. or lower.
[0019]
After drying, the activated carbon fiber is heated. The heating temperature is not particularly limited as long as the impregnated metal salt can be supported as a metal oxide, but is usually about 200 to 300 ° C, preferably 280 to 300 ° C. The heating atmosphere may be an oxidizing atmosphere (for example, in the air), preferably an air stream. The flow rate in the case of using an air stream is usually about 0.1 to 1.0 m 3 / min.
[0020]
The low temperature denitration method of the present invention is characterized in that a gas containing nitrogen oxides is brought into contact with the above-described catalyst of the present invention in the presence of a reducing agent.
[0021]
In the method of the present invention, contact with a gas containing nitrogen oxides is carried out in the presence of a reducing agent. Known reducing agents can be used as they are, for example, ammonia, hydrogen, hydrocarbons and the like. Among these, ammonia is particularly preferable. The content of the reducing agent may be equal to or higher than the concentration of nitrogen oxide in the gas.
[0022]
The composition of the gas containing nitrogen oxide may be the composition of exhaust gas or the like, but in particular, nitrogen oxide is 10 to 5000 ppm (preferably 20 to 300 ppm), oxygen is 3 vol% or more (preferably 3 to 10 vol%), and water vapor. A composition containing 80 vol% or less (preferably 5 to 20 vol%) is preferable. Further, the temperature at the time of contacting is not particularly limited, but is usually 200 ° C. or lower, preferably 100 to 150 ° C.
[0023]
The method for contacting is not particularly limited, and may be a known method. For example, the catalyst may be filled in a reaction tube or the like, and a gas containing nitrogen oxide may be circulated therein. The amount of gas flow can be determined as appropriate according to the amount of catalyst used.
[0024]
[Action]
In the present invention, while passing through the low-temperature denitration catalyst, nitrogen oxides contained in the gas react with a reducing agent (for example, ammonia) and decompose into harmless nitrogen and water vapor.
The reaction examples are as follows (1) and (2).
[0025]
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (1)
6NO 2 + 8NH 3 → 7N 2 + 12H 2 O (2)
NO is adsorbed to the metal oxide on the surface of the activated carbon fiber, and becomes NO 2 due to the strong oxidation performance of the metal oxide. The highly reactive NO 2 produced reacts with ammonia and is reduced to N 2 and H 2 O. The metal oxide after N 2 and H 2 O are desorbed is oxidized by oxygen, and the surface of the oxidizable metal oxide is regenerated. The reason why these reactions proceed at a low temperature of 200 ° C. or lower is that these reactants condense in the micropores of 2 nm or less of the activated carbon fiber and cause a high-pressure reaction in a microscopic region.
[0026]
【The invention's effect】
According to the denitration method of the present invention, nitrogen oxides contained in low to high concentrations in exhaust gas etc. can be efficiently removed even at a low temperature of 150 ° C. or less, and this can be mainly reduced to nitrogen and water. Is possible. In particular, it is possible to denitrate low to high concentration nitrogen oxides at a high removal rate of usually 40 to 80% at a temperature of normal temperature to 150 ° C.
[0027]
Such a method of the present invention is effective for denitration of combustion exhaust gas discharged from boilers, engines, turbines, etc., and is relatively low temperature (usually 200 ° C. or less) particularly at the outlet of a flue gas treatment device, waste heat treatment device or the like. The exhaust gas can be efficiently denitrated.
[0028]
【Example】
Hereinafter, an example is shown and the feature of the present invention is clarified further.
[0029]
Examples 1 to 6 and Reference Examples 7 to 9
Catalysts were produced by supporting metal oxides on activated carbon fibers under the conditions shown in Table 1.
[0030]
[Table 1]
Figure 0003843520
[0031]
As the activated carbon fiber, pitch-based activated carbon fiber (manufactured by Adol Co., Ltd.) was used. The sample name is “A7”, and the specific surface area is 700 m 2 / g. This pitch-based activated carbon fiber was impregnated with an aqueous solution of manganese nitrate (II) hexahydrate, iron nitrate (III) nonahydrate or cobalt nitrate (II) hexahydrate. As shown in Table 1, the concentration of the impregnated aqueous solution was adjusted to be in the range of 5 to 15% by weight as the final supported amount of metal oxide.
[0032]
Thereafter, the sample was depressurized to 10 −1 Torr with a vacuum pump at room temperature in a desiccator, and each sample was deaerated. By this treatment, degassing of activated carbon fibers into the micropores and penetration of the metal salt can be promoted. Next, this was dried for 1 day under hot air at 100 ° C., and further heat-treated in the range of 200 to 300 ° C. for 1 hour under an air stream, and the metal nitrate was thermally decomposed into metal oxides to obtain catalysts. .
[0033]
Next, 2.5 g of the obtained catalyst was filled in a reaction tube (inner diameter 15 mm), and gas was circulated at a temperature of 60 to 150 ° C. at 500 cc / min. The gas composition was NO: 200 ppm, NH 3 : 200 ppm, O 2 : 10.5 vol%, N 2 balance, and moisture: 8.1 vol%. The outlet gas from the reaction tube was analyzed by a chemiluminescence NOx meter (“ECL-88US”, manufactured by Yanagimoto Seisakusho Co., Ltd.), and the denitration rate was calculated by the following formula.
[0034]
Denitration rate (%) = Inlet NO concentration (ppm) −Outlet NO concentration (ppm) / Inlet NO concentration (ppm) × 100 Note that the denitration rate is a steady state reaction in a stable state 30 hours after the start of the reaction. Indicates the value.
[0035]
Comparative Examples 1-3
As Comparative Examples 1 and 2, it bears no metal oxide pitch-based activated carbon fibers (both Adol Co., sample name "A15" and "A7", respectively the specific surface area of 1500 m 2 / g and 700 meters 2 / g ), And Comparative Example 3 was denitrated using a vanadium catalyst (V 2 O 5 / TiO 2 ) which is a conventional technique. The results are also shown in FIG.
[0036]
From the results shown in FIG. 1, according to the denitration using the catalyst of the present invention, compared with the original activated carbon fibers (Comparative Examples 1 and 2) or the conventional technique (Vanadium catalyst: Comparative Example 3), It turns out that it is excellent in the denitration activity in the low temperature of 150 degrees C or less. In particular, in Example 1 using a catalyst obtained by supporting 15% of Mn on activated carbon fiber “A7” and thermally decomposing at 300 ° C., the denitration rate reached 94%.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a denitration effect and temperature in Examples and Comparative Examples.

Claims (10)

マンガン酸化物がピッチ系活性炭素繊維に担持されている低温脱硝触媒。A low-temperature denitration catalyst in which manganese oxide is supported on pitch-based activated carbon fibers. マンガン酸化物が二酸化マンガンである請求項1記載の低温脱硝触媒。The low-temperature denitration catalyst according to claim 1, wherein the manganese oxide is manganese dioxide. ピッチ系活性炭素繊維が、比表面積500〜1500m2/gである請求項1記載の低温脱硝触媒。The low-temperature denitration catalyst according to claim 1, wherein the pitch-based activated carbon fiber has a specific surface area of 500 to 1500 m 2 / g. Mnの金属塩の水溶液をピッチ系活性炭素繊維に含浸し、減圧脱気した後、乾燥し、次いで酸化性雰囲気下200〜300℃で加熱処理して当該金属塩を金属酸化物とする低温脱硝触媒の製造方法。Low temperature denitration by impregnating an aqueous solution of Mn metal salt into pitch-based activated carbon fiber, degassing under reduced pressure, drying, and then heat-treating at 200 to 300 ° C. in an oxidizing atmosphere to make the metal salt a metal oxide A method for producing a catalyst. 空気気流下で加熱処理する請求項4記載の製造方法。The manufacturing method of Claim 4 which heat-processes under an airflow. 金属塩が硝酸塩である請求項4記載の製造方法。The method according to claim 4, wherein the metal salt is nitrate. 乾燥温度を100℃以下とする請求項4記載の製造方法。The manufacturing method of Claim 4 which makes a drying temperature 100 degrees C or less. 請求項1乃至3のいずれかに記載の触媒に、窒素酸化物を含むガスを還元剤の存在下で接触させることを特徴とする排気ガスの低温脱硝方法。A low-temperature denitration method for exhaust gas, comprising contacting the catalyst according to any one of claims 1 to 3 with a gas containing nitrogen oxides in the presence of a reducing agent. 窒素酸化物を含むガスが、窒素酸化物10〜5000ppm、酸素3vol%以上及び水蒸気80vol%以下を含有し、かつ、当該ガスの温度が200℃以下である請求項8記載の排気ガスの低温脱硝方法。The low-temperature denitration of exhaust gas according to claim 8, wherein the gas containing nitrogen oxide contains 10 to 5000 ppm of nitrogen oxide, 3 vol% or more of oxygen and 80 vol% or less of water vapor, and the temperature of the gas is 200 ° C or less. Method. 請求項4〜7のいずれかの方法により得られる低温脱硝触媒。A low-temperature denitration catalyst obtained by the method according to any one of claims 4 to 7.
JP03079097A 1997-02-14 1997-02-14 Low temperature denitration catalyst, production method thereof, and low temperature denitration method Expired - Lifetime JP3843520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03079097A JP3843520B2 (en) 1997-02-14 1997-02-14 Low temperature denitration catalyst, production method thereof, and low temperature denitration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03079097A JP3843520B2 (en) 1997-02-14 1997-02-14 Low temperature denitration catalyst, production method thereof, and low temperature denitration method

Publications (2)

Publication Number Publication Date
JPH10225641A JPH10225641A (en) 1998-08-25
JP3843520B2 true JP3843520B2 (en) 2006-11-08

Family

ID=12313480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03079097A Expired - Lifetime JP3843520B2 (en) 1997-02-14 1997-02-14 Low temperature denitration catalyst, production method thereof, and low temperature denitration method

Country Status (1)

Country Link
JP (1) JP3843520B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279508A (en) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd Prior-to-drying pretreatment method of three-dimensional structure body, exhausted gas purification filter and production method thereof
JP6079056B2 (en) * 2012-08-28 2017-02-15 株式会社Ihi Denitration apparatus and denitration method
CN102989466B (en) * 2012-12-27 2015-04-15 北京石油化工学院 Flue gas desulfurization and denitrification catalyst for reduction method and applications of catalyst
JP2016087587A (en) 2014-11-10 2016-05-23 トヨタ自動車株式会社 EXHAUST GAS PURIFYING CATALYST FOR NOx SELECTIVE REDUCTION AND EXHAUST GAS PURIFYING METHOD
US20170232424A1 (en) 2016-02-17 2017-08-17 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst and production method thereof
CN108176403B (en) * 2018-01-24 2020-09-29 四川农业大学 Co-loaded activated carbon fiber3O4Method for preparing catalytic material
CN115155608A (en) * 2022-05-09 2022-10-11 山西大学 Method for enhancing performance of activated carbon-based low-temperature SCR denitration catalyst by utilizing iron component in activated carbon
CN116037115B (en) * 2023-01-29 2024-09-24 石河子大学 Foam nickel-based CO-SCR denitration catalyst and preparation method thereof

Also Published As

Publication number Publication date
JPH10225641A (en) 1998-08-25

Similar Documents

Publication Publication Date Title
KR100204257B1 (en) Heat treated activated carbon for denitration process for preparing the same method of denitration using the same and system of denitration using the same
JP4813830B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device
KR101098247B1 (en) Catalyst for removing NOx in the emission gases of lean burn engines and stationary sources
CN101507923B (en) Preparation method of catalyst for sintering flue gas and desulfurizing and denitrifying
JP3843520B2 (en) Low temperature denitration catalyst, production method thereof, and low temperature denitration method
KR20140033069A (en) Catalysts possessing an improved resistance to poisoning
JP4182325B2 (en) Low temperature denitration catalyst and exhaust gas low temperature denitration method
US4031185A (en) Process for making nitrogen oxides contained in flue gas harmless
US6106791A (en) Exhaust gas treating systems
KR102161131B1 (en) Antimony / titania carrier and its production method, catalyst for removal of harmful gaseous substances using the carrier, and production method thereof
US6814948B1 (en) Exhaust gas treating systems
CN112023693B (en) Efficient denitration method for hot blast stove and hot blast stove device
CN111530454B (en) Low-temperature denitration catalyst and preparation method and application thereof
CN110404525B (en) Catalyst with sulfur resistance for catalytic oxidation of NO, preparation method and application thereof
JP6640357B2 (en) Exhaust gas denitration catalyst, exhaust gas treatment system, and exhaust gas treatment method
JP5285459B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3944597B2 (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method
CN109999923A (en) A kind of method and device for realizing SCR catalyst in-situ activation using ozone
JP4228152B2 (en) Waste heat recovery method by low temperature denitration of cogeneration exhaust gas
JP3502966B2 (en) Nitrogen dioxide removal method
KR102476863B1 (en) Denitrification catalyst and exhaust gas treatment system for thermal power generation using the same
JP3713634B2 (en) Nitrogen oxide removal method and flue gas denitration equipment in exhaust gas
KR20100001315A (en) Catalytic composition for removing nitrogen oxide, and method for producing that, and method for removing nitrogen oxide using the same
KR20230091061A (en) Method for operation of combined cycle power plant using denitrification catalyst and metal support
KR20230090284A (en) Method for operation of combined cycle power plant using denitrification catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150825

Year of fee payment: 9

EXPY Cancellation because of completion of term