JP2005279508A - Prior-to-drying pretreatment method of three-dimensional structure body, exhausted gas purification filter and production method thereof - Google Patents

Prior-to-drying pretreatment method of three-dimensional structure body, exhausted gas purification filter and production method thereof Download PDF

Info

Publication number
JP2005279508A
JP2005279508A JP2004098958A JP2004098958A JP2005279508A JP 2005279508 A JP2005279508 A JP 2005279508A JP 2004098958 A JP2004098958 A JP 2004098958A JP 2004098958 A JP2004098958 A JP 2004098958A JP 2005279508 A JP2005279508 A JP 2005279508A
Authority
JP
Japan
Prior art keywords
catalyst
dimensional structure
drying
catalyst solution
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004098958A
Other languages
Japanese (ja)
Inventor
Ryosuke Suga
亮介 須賀
Masahiro Inoue
雅博 井上
Tatsuro Miyazaki
達郎 宮崎
Masaaki Arita
雅昭 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004098958A priority Critical patent/JP2005279508A/en
Publication of JP2005279508A publication Critical patent/JP2005279508A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a prior-to-drying pretreatment method for obtaining a honeycomb filter which reduces time required for drying a honeycomb filter to which a catalyst solution sticks, the honeycomb filter being free from the increase of pressure loss since its micropores are not covered and filled up by a catalyst, carrying a plurality of catalyst components which are homogeneously carried on it, and having a large catalyst-carrying area, so as to solve the problem that more time is required when a catalyst is carried on a three-dimensional structure body, and the pressure loss after the catalyst is carried on it greatly increases and the catalyst is not homogeneously carried on due to the movement of catalyst components in a catalyst solution; and also provide a method for manufacturing the honeycomb filter and a catalyst-carried exhausted gas purification filter obtained by said manufacturing method. <P>SOLUTION: In order to prevent a catalyst solution 9 from covering and filling the micropores 8 of a three-dimensional structure body, the micropores 8 are degassed by subjecting the three-dimensional structure body to vacuum processing or the like. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、三次元構造体の乾燥前処理方法と、その乾燥前処理行程を含む排ガス処理用フィルターの製造方法と、その製造方法により製造された触媒担持排ガス処理用フィルターに関する。   The present invention relates to a three-dimensional structure pre-drying treatment method, a method for producing an exhaust gas treatment filter including the pre-drying treatment step, and a catalyst-supported exhaust gas treatment filter produced by the production method.

近年、内燃機関から排出される排ガス中に含まれるパティキュレートや窒素酸化物が環境保護および健康上の理由から、段階的に規制が強化されつつある。   In recent years, regulations and nitrogen oxides contained in exhaust gas discharged from an internal combustion engine have been gradually tightened for environmental protection and health reasons.

従来より、大気中に放出されるパティキュレートや窒素酸化物を捕集、浄化するために、セラミック製や金属製のハニカムフィルターを排気経路の途中に取り付けるという方法が一般的に提唱されてきた。さらに最近では、特許文献1に示すように、セラミックハニカム構造体に排ガス浄化用触媒を担持させ、排ガスの熱でパティキュレートを燃焼させる試みがなされている。
特開2003−190793号公報
Conventionally, in order to collect and purify particulates and nitrogen oxides released into the atmosphere, a method of attaching a ceramic or metal honeycomb filter in the middle of the exhaust path has been generally proposed. More recently, as shown in Patent Document 1, an attempt has been made to support a catalyst for exhaust gas purification on a ceramic honeycomb structure and burn particulates with the heat of exhaust gas.
JP 2003-190793 A

しかしながら、ハニカムフィルターに触媒を担持させるとき、触媒がフィルター内隔壁の微細孔を覆い塞いだまま乾燥させると、そこに残った触媒が微細孔を覆い塞いでしまうため、触媒担持後のフィルターの圧力損失が大きく上昇してしまうという課題があった。また、触媒液が付着したハニカムフィルターを通風乾燥する際に、触媒液がフィルター内隔壁の微細孔を覆い塞いでしまうため、空気が通りにくくなり、乾燥に時間がかかるという課題もあった。さらに、乾燥に時間がかかるのに伴い、触媒液中の触媒成分が移動してしまい、触媒担持量に分布ができてしまうという課題もあった。   However, when the catalyst is supported on the honeycomb filter, if the catalyst is dried while covering the fine pores of the filter inner partition walls, the remaining catalyst covers and closes the fine pores. There was a problem that the loss would increase greatly. In addition, when the honeycomb filter to which the catalyst solution is attached is air-dried, the catalyst solution covers and closes the fine pores of the filter inner partition wall, which makes it difficult for air to pass and takes time to dry. Furthermore, as drying takes time, the catalyst component in the catalyst solution moves, and there is a problem that the amount of catalyst supported is distributed.

そこで本発明は、触媒液が付着したハニカムフィルターの乾燥時間を短縮することができるだけでなく、微細孔が触媒に覆い塞がれていないため圧力損失の上昇が抑えられており、かつ複数の触媒成分が均一に担持され、かつ触媒担持面積の大きなハニカムフィルターを得るための、乾燥前処理方法と製造方法とを提供することを目的とする。また、その製造方法により得られた触媒担持排ガス浄化用フィルターを提供することも目的とする。   Therefore, the present invention can not only shorten the drying time of the honeycomb filter to which the catalyst solution is adhered, but also suppresses an increase in pressure loss because the fine pores are not covered with the catalyst, and a plurality of catalysts It is an object of the present invention to provide a drying pretreatment method and a production method for obtaining a honeycomb filter in which components are uniformly supported and a catalyst supporting area is large. Another object of the present invention is to provide a catalyst-carrying exhaust gas purification filter obtained by the production method.

本発明の乾燥前処理方法は、触媒液を付着させた三次元構造体を乾燥させる前に、三次元構造体中の微細孔を覆い塞がないようにすることを特徴とするものである。これにより、微細孔、特に貫通孔、が覆い塞がれていないため、通風乾燥する際に、三次元構造体中を通過する気体が容易に通過できるようになり、乾燥時間を短縮することができる。さらには乾燥時間を短縮することにより触媒成分の移動を防ぐことができ、触媒を均一に担持することができる。また、乾燥後の三次元構造体の圧力損失が上昇するのを抑えることができる。また、微細孔の内部まで触媒液を行き渡らせ、触媒液付着表面積を大きくすることができる。   The drying pretreatment method of the present invention is characterized in that the fine pores in the three-dimensional structure are not covered and blocked before the three-dimensional structure to which the catalyst solution is adhered is dried. As a result, the fine holes, particularly the through-holes, are not covered, so that the gas passing through the three-dimensional structure can easily pass through when drying by ventilation, thereby shortening the drying time. it can. Furthermore, by shortening the drying time, movement of the catalyst component can be prevented and the catalyst can be supported uniformly. Moreover, it can suppress that the pressure loss of the three-dimensional structure after drying raises. In addition, the catalyst solution can be spread to the inside of the micropores to increase the catalyst solution adhesion surface area.

また、本発明の乾燥前処理方法は、三次元構造体中の微細孔内を脱気することを特徴とするものである。これにより、微細孔から気泡が抜けるときに、微細孔を覆い塞いでいた触媒液を取り除くことができ、通風乾燥する際に、三次元構造体中を通過する気体が容易に通過できるようになり、乾燥時間を短縮することができる。さらには乾燥時間を短縮することにより触媒成分の移動を防ぐことができ、触媒を均一に担持することができる。また、乾燥後の三次元構造体の圧力損失が上昇するのを抑えることができる。また、微細孔の内部まで触媒液を行き渡らせ、触媒液付着表面積を大きくすることができる。   In addition, the drying pretreatment method of the present invention is characterized in that the inside of the micropores in the three-dimensional structure is degassed. As a result, when bubbles are removed from the micropores, the catalyst solution covering and closing the micropores can be removed, and the gas passing through the three-dimensional structure can easily pass through when drying by ventilation. , Drying time can be shortened. Furthermore, by shortening the drying time, movement of the catalyst component can be prevented and the catalyst can be supported uniformly. Moreover, it can suppress that the pressure loss of the three-dimensional structure after drying raises. In addition, the catalyst solution can be spread to the inside of the micropores to increase the catalyst solution adhesion surface area.

また、本発明の乾燥前処理方法は、三次元構造体を減圧することを特徴とするものである。これにより、微細孔を覆い塞いでいた触媒液を取り除くことができ、通風乾燥する際に、三次元構造体中を通過する気体が容易に通過できるようになり、乾燥時間を短縮することができる。さらには乾燥時間を短縮することにより触媒成分の移動を防ぐことができ、触媒を均一に担持することができる。また、乾燥後の三次元構造体の圧力損失が上昇するのを抑えることができる。また、微細孔の内部まで触媒液を行き渡らせ、触媒液付着表面積を大きくすることができる。   The drying pretreatment method of the present invention is characterized in that the three-dimensional structure is decompressed. As a result, the catalyst solution covering and closing the micropores can be removed, and the gas passing through the three-dimensional structure can be easily passed during the ventilation drying, and the drying time can be shortened. . Furthermore, by shortening the drying time, movement of the catalyst component can be prevented and the catalyst can be supported uniformly. Moreover, it can suppress that the pressure loss of the three-dimensional structure after drying raises. In addition, the catalyst solution can be spread to the inside of the micropores to increase the catalyst solution adhesion surface area.

また、本発明の乾燥前処理方法は、三次元構造体から触媒液が染み出さないように、徐々に減圧することを特徴とするものである。これにより、触媒液付着量を減らすことなく、微細孔内を脱気することができる。   The drying pretreatment method of the present invention is characterized in that the pressure is gradually reduced so that the catalyst solution does not ooze out from the three-dimensional structure. Thereby, the inside of a micropore can be deaerated, without reducing a catalyst liquid adhesion amount.

また、本発明の乾燥前処理方法は、三次元構造体に付着した触媒液の温度を、触媒液に含まれる触媒が析出する温度にしないことを特徴とするものである。これにより、触媒液に含まれる触媒が複数成分であっても、いずれか一つの触媒が析出してしまい触媒液成分が不均一となることのない前処理をすることができる。   Further, the drying pretreatment method of the present invention is characterized in that the temperature of the catalyst solution adhering to the three-dimensional structure is not set to a temperature at which the catalyst contained in the catalyst solution is deposited. Thereby, even if the catalyst contained in the catalyst liquid is a plurality of components, it is possible to perform a pretreatment without any one of the catalysts being deposited and the catalyst liquid components becoming non-uniform.

また、本発明の乾燥前処理方法は、三次元構造体が排ガス浄化用フィルターであることを特徴とするものである。これにより、有害物質を含んだ排ガスを効果的に捕集、除去することができる。   In the drying pretreatment method of the present invention, the three-dimensional structure is an exhaust gas purifying filter. Thereby, exhaust gas containing harmful substances can be effectively collected and removed.

また、本発明の乾燥前処理方法は、排ガス浄化用フィルターが金属またはセラミック多孔体であることを特徴とするものである。これにより、金属またはセラミック多孔体フィルターの乾燥前処理を効果的に行うことができる。   The drying pretreatment method of the present invention is characterized in that the exhaust gas purifying filter is a metal or ceramic porous body. Thereby, the pre-drying process of a metal or ceramic porous body filter can be performed effectively.

また、本発明の排ガス浄化用フィルター製造方法は、前記乾燥前処理を行う行程を含むことを特徴とするものである。これにより、乾燥時間を短縮することができるので、製造に係る時間を短縮することができる。   In addition, the exhaust gas purification filter manufacturing method of the present invention includes a step of performing the pre-drying treatment. Thereby, since drying time can be shortened, the time concerning manufacture can be shortened.

また、本発明の触媒担持排ガス浄化用フィルターは、前記製造方法で、触媒液が付着した排ガス浄化用フィルターを処理することにより得られることを特徴とするものである。これにより、微細孔が触媒に覆い塞がれていないため圧力損失の上昇が抑えられており、かつ複数の触媒成分が均一に担持され、かつ触媒担持面積の大きな触媒担持排ガス浄化用フィルターを得ることができる。   In addition, the catalyst-carrying exhaust gas purification filter of the present invention is obtained by treating the exhaust gas purification filter to which a catalyst solution is adhered in the above production method. As a result, an increase in pressure loss is suppressed because the fine pores are not covered with the catalyst, and a catalyst-carrying exhaust gas purification filter having a plurality of catalyst components uniformly supported and a large catalyst-carrying area is obtained. be able to.

本発明によれば、乾燥時間を短縮させることができ、さらには乾燥時間を短縮させることにより触媒成分の移動を防ぐことができ、触媒を均一に担持することができる乾燥前処理方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, drying time can be shortened, Furthermore, movement of a catalyst component can be prevented by shortening drying time, and the drying pre-processing method which can carry | support a catalyst uniformly can be provided. .

また、本発明によれば、乾燥後の三次元構造体の圧力損失が上昇するのを抑えることができる、かつ微細孔の内部まで触媒液を行き渡らせ、触媒液付着表面積を大きくすることができる乾燥前処理方法を提供できる。   Further, according to the present invention, it is possible to suppress an increase in pressure loss of the three-dimensional structure after drying, and to spread the catalyst liquid to the inside of the micropores, thereby increasing the surface area of the catalyst liquid adhesion. A drying pretreatment method can be provided.

また、本発明によれば、触媒液付着量を減らすことなく、微細孔内を脱気することができる乾燥前処理方法を提供できる。   Moreover, according to this invention, the drying pre-processing method which can deaerate the inside of a micropore can be provided, without reducing the catalyst liquid adhesion amount.

また、本発明によれば、触媒液に含まれる触媒が複数成分であっても、いずれか一つの触媒が析出してしまい触媒液成分が不均一となることのない乾燥前処理方法を提供できる。   Further, according to the present invention, it is possible to provide a drying pretreatment method in which any one catalyst is deposited and the catalyst liquid component does not become non-uniform even when the catalyst contained in the catalyst liquid is a plurality of components. .

また、本発明によれば、乾燥時間を短縮した排ガス浄化用フィルター製造方法を提供できる。   Moreover, according to this invention, the filter manufacturing method for exhaust gas purification which shortened drying time can be provided.

また、本発明によれば、微細孔が触媒に覆い塞がれていないため圧力損失の上昇が抑えられており、かつ複数の触媒成分が均一に担持され、かつ触媒担持面積の大きな触媒担持排ガス浄化用フィルターを提供できる。   Further, according to the present invention, the catalyst-supported exhaust gas having a large catalyst support area in which the increase in pressure loss is suppressed because the micropores are not covered with the catalyst, and a plurality of catalyst components are supported uniformly. A purification filter can be provided.

本発明の乾燥前処理方法は、触媒液を付着させた三次元構造体を乾燥させる前に、三次元構造体中の微細孔を覆い塞がないようにすることを特徴とするものである。   The drying pretreatment method of the present invention is characterized in that the fine pores in the three-dimensional structure are not covered and blocked before the three-dimensional structure to which the catalyst solution is adhered is dried.

ここに示した触媒液とは、触媒を溶媒に溶解または分散させたものである。触媒は二つ以上の成分が混在していても構わない。溶媒は水、アルコール類などの極性溶媒、または無極性溶媒であっても構わない。また、触媒液中に、触媒を分散させるための分散剤や界面活性剤などがあっても構わない。触媒液の表面張力が小さければ、触媒液が三次元構造体中の微細孔を覆い塞ぎにくくなるため、表面張力を下げるための添加剤を添加するのも良い。   The catalyst solution shown here is a solution obtained by dissolving or dispersing a catalyst in a solvent. Two or more components may be mixed in the catalyst. The solvent may be a polar solvent such as water or alcohol, or a nonpolar solvent. Further, there may be a dispersant or a surfactant for dispersing the catalyst in the catalyst solution. If the surface tension of the catalyst solution is small, it becomes difficult for the catalyst solution to cover and close the micropores in the three-dimensional structure. Therefore, an additive for reducing the surface tension may be added.

触媒液を付着させる方法としては、三次元構造体を触媒液に含浸する、触媒液をスプレーする、触媒液をはけやローラーなどで塗る等の方法が挙げられるが、これらの方法に限定されるものではない。   Examples of the method for adhering the catalyst solution include impregnating the catalyst solution with the three-dimensional structure, spraying the catalyst solution, and applying the catalyst solution with a brush or a roller, but are not limited to these methods. It is not something.

また、ここに示した三次元構造体とは、三次元構造を有するものであり、触媒液を付着させることができるものであれば特に限定されるものではない。   The three-dimensional structure shown here is not particularly limited as long as it has a three-dimensional structure and can be attached with a catalyst solution.

また、ここに示した微細孔とは、多孔体によく見られるくぼみ状の孔や貫通孔などが挙げられるが、これらに限定されるものではない。   Examples of the micropores shown here include, but are not limited to, hollows and through-holes that are often found in porous bodies.

また、本発明の乾燥前処理方法は、三次元構造体中の微細孔内を脱気することを特徴とするものである。   In addition, the drying pretreatment method of the present invention is characterized in that the inside of the micropores in the three-dimensional structure is degassed.

脱気の方法としては、加減圧可能な容器内で加圧または減圧する方法が考えられるが、これらの方法に限定されるものではない。   As a degassing method, a method of pressurizing or depressurizing in a container capable of pressurization and depressurization can be considered, but it is not limited to these methods.

また、本発明の乾燥前処理方法は、三次元構造体を減圧することを特徴とするものである。   The drying pretreatment method of the present invention is characterized in that the three-dimensional structure is decompressed.

減圧の方法としては、触媒液が付着した三次元構造体を減圧可能な容器内に入れ、真空ポンプで容器内の空気を吸引することにより減圧する方法があるが、この方法に限定されるものではない。   As a method of depressurization, there is a method of depressurizing by putting a three-dimensional structure adhering to a catalyst solution into a depressurizable container and sucking air in the container with a vacuum pump. However, the method is limited to this method. is not.

また、本発明の乾燥前処理方法は、三次元構造体から触媒液が染み出さないように、徐々に減圧することを特徴とするものである。   The drying pretreatment method of the present invention is characterized in that the pressure is gradually reduced so that the catalyst solution does not ooze out from the three-dimensional structure.

真空度が上がると三次元構造体中の微細孔から気体(通常は空気)が抜け、そのときに微細孔の表面を覆っていた触媒液が染み出てくる。染み出た触媒液が下の方に溜まったりすると、下の方の圧力損失が高くなるため、通風乾燥の際に乾燥しにくくなる、また、乾燥後の三次元構造体の触媒担持量に分布ができてしまうなどの不具合が生じる。   When the degree of vacuum increases, gas (usually air) escapes from the micropores in the three-dimensional structure, and at that time, the catalyst solution covering the surface of the micropores oozes out. If the exuded catalyst liquid accumulates in the lower part, the pressure loss in the lower part will increase, making it difficult to dry during ventilation drying. Also, it will be distributed in the catalyst loading of the three-dimensional structure after drying. This causes problems such as being able to

触媒液が染み出さないようにするには、徐々に真空度を上げていき、触媒液が染み出そうになったらリークして真空度を下げることを繰り返し行えば良い。   In order to prevent the catalyst solution from oozing out, the degree of vacuum may be gradually increased, and when the catalyst solution is about to ooze out, leakage and lowering of the degree of vacuum may be repeated.

また、本発明の乾燥前処理方法は、三次元構造体に付着した触媒液の温度を、触媒液に含まれる触媒が析出する温度にしないことを特徴とするものである。   Further, the drying pretreatment method of the present invention is characterized in that the temperature of the catalyst solution adhering to the three-dimensional structure is not set to a temperature at which the catalyst contained in the catalyst solution is deposited.

このことは特に、触媒液中に複数成分の触媒が混在している場合に重要である。触媒液の温度が、触媒が析出してしまう温度になると、触媒液の溶媒に対する溶解度の小さな触媒から順に析出してしまう。すると、各触媒成分ごとの層が形成され、最下層すなわち溶媒に対する溶解度の大きな触媒は、溶解度の小さな触媒にコーティングされるような格好となり、触媒として作用できなくなってしまう。   This is particularly important when a multi-component catalyst is mixed in the catalyst solution. When the temperature of the catalyst solution reaches a temperature at which the catalyst is deposited, the catalyst solution is deposited in descending order of the solubility of the catalyst solution in the solvent. Then, a layer for each catalyst component is formed, and the catalyst having the highest solubility in the lowermost layer, that is, the solvent, looks like being coated with a catalyst having a low solubility and cannot function as a catalyst.

水酸化カルシウムなど、温度が高くなるにつれて溶解度が小さくなる一部の塩は、温度が高くなり過ぎないようにする必要がある。減圧による前処理を行う場合は、溶媒が蒸発することにより気化熱が奪われて温度が下がるので、温度が低くなるにつれて溶解度が小さくなる多くの塩は注意が必要である。   Some salts, such as calcium hydroxide, that become less soluble as the temperature increases require that the temperature not be too high. When pretreatment by reduced pressure is performed, the evaporation of the solvent removes the heat of vaporization and lowers the temperature, so care must be taken with many salts whose solubility decreases as the temperature decreases.

また、本発明の乾燥前処理方法は、三次元構造体が排ガス浄化用フィルターであることを特徴とするものである。   In the drying pretreatment method of the present invention, the three-dimensional structure is an exhaust gas purifying filter.

排ガス浄化用フィルターは、自動車、耕運機、船舶、列車等の運輸機関のエンジン、また、発電機等の固定されたエンジン、さらに、焼成炉、焼却炉、ボイラー等、様々な排ガスを浄化することができる。エンジンの種類としては、ガソリンエンジンおよびディーゼルエンジン等が挙げられるが、これらに限定されるものではない。   Exhaust gas purification filters can purify various exhaust gases such as engines of transport engines such as automobiles, cultivators, ships and trains, fixed engines such as generators, and firing furnaces, incinerators, boilers, etc. it can. Examples of the engine include, but are not limited to, a gasoline engine and a diesel engine.

また、排ガス浄化用フィルターの形状としては、円柱形、角柱形、直方体、立方体等が挙げられるがこれらに限定されるものではない。   Examples of the shape of the exhaust gas purifying filter include, but are not limited to, a cylindrical shape, a prismatic shape, a rectangular parallelepiped shape, and a cubic shape.

また、本発明の乾燥前処理方法は、排ガス浄化用フィルターが金属またはセラミック多孔体であることを特徴とするものである。   The drying pretreatment method of the present invention is characterized in that the exhaust gas purifying filter is a metal or ceramic porous body.

金属としては、鉄、銅、ニッケル、クロム、チタン等の比較的安価で高融点の単体金属、あるいはこれらの合金等の金属材料を用いることができるが、これらに限定されるものではない。またセラミック多孔体としては、ムライト、コージェライト、チタン酸アルミニウム、シリカ、アルミナ、シリカアルミナ、炭化珪素、窒化珪素等を用いることができるが、これらに限定されるものではない。   As the metal, a relatively inexpensive and high melting point single metal such as iron, copper, nickel, chromium, titanium, or a metal material such as an alloy thereof can be used, but is not limited thereto. As the ceramic porous body, mullite, cordierite, aluminum titanate, silica, alumina, silica alumina, silicon carbide, silicon nitride and the like can be used, but are not limited thereto.

また、本発明の排ガス浄化用フィルター製造方法は、前記乾燥前処理を行う行程を含むことを特徴とするものである。   In addition, the exhaust gas purification filter manufacturing method of the present invention includes a step of performing the pre-drying treatment.

排ガス浄化用フィルターを触媒液に含浸する、または触媒液を排ガス浄化用フィルターにスプレーする、などの方法により排ガス浄化用フィルターに触媒液を付着させ、本発明の乾燥前処理を行った後、自然乾燥、通風乾燥、減圧乾燥、加熱乾燥、加圧乾燥、凍結乾燥等の方法で乾燥し、その後必要であれば、触媒に応じた適正な温度で焼成する。   After impregnating the exhaust gas purification filter into the catalyst solution or spraying the catalyst solution onto the exhaust gas purification filter, the catalyst solution is attached to the exhaust gas purification filter, and after the drying pretreatment of the present invention, Drying is performed by a method such as drying, ventilation drying, reduced pressure drying, heat drying, pressure drying, freeze drying, and then calcined at an appropriate temperature according to the catalyst if necessary.

また、本発明の触媒担持排ガス浄化用フィルターは、前記製造方法で、触媒液が付着した排ガス浄化用フィルターを処理することにより得られることを特徴とするものである。   In addition, the catalyst-carrying exhaust gas purification filter of the present invention is obtained by treating the exhaust gas purification filter to which a catalyst solution is adhered in the above production method.

前記製造方法により製造することにより、微細孔が触媒に覆い塞がれていないため圧力損失の上昇が抑えられており、かつ複数の触媒成分が均一に担持され、かつ触媒担持面積の大きな触媒担持排ガス浄化用フィルターを得ることができる。これを内燃機関の排気経路に設置した場合、圧力損失の上昇が抑えられているためエンジンへの負荷が低減され、かつ触媒担持面積が大きいため排ガスを効率よく浄化することができる。   By producing by the above production method, the increase in pressure loss is suppressed because the fine pores are not covered with the catalyst, and a plurality of catalyst components are uniformly supported, and the catalyst support having a large catalyst support area is supported. An exhaust gas purifying filter can be obtained. When this is installed in the exhaust path of the internal combustion engine, an increase in pressure loss is suppressed, so the load on the engine is reduced, and the exhaust gas can be efficiently purified because the catalyst carrying area is large.

また、前記触媒担持排ガス浄化用フィルターは、触媒の種類を変えることによって、様々な作用をする排ガス浄化用フィルターとなる。例えば、ディーゼル排ガス中に含まれるパティキュレートを燃焼させるための燃焼触媒、NOおよびCOを酸化させるため、かつ酸化熱で排ガス温度を上げるための酸化触媒、NOxやSOxを吸蔵するための吸蔵触媒などがある。パティキュレート燃焼触媒担持排ガス浄化用フィルターの前段に、排ガス温度を上げるためのヒーター、あるいは酸化触媒担持排ガス浄化用フィルター、また後段に、吸蔵触媒担持排ガス浄化用フィルターといった組み合わせで用いると、より一層排ガスを浄化することができる。   Further, the catalyst-carrying exhaust gas purification filter becomes an exhaust gas purification filter having various functions by changing the type of catalyst. For example, a combustion catalyst for burning particulates contained in diesel exhaust gas, an oxidation catalyst for oxidizing NO and CO and raising the exhaust gas temperature by oxidation heat, an occlusion catalyst for storing NOx and SOx, etc. There is. When combined with a heater for raising exhaust gas temperature or an oxidation catalyst-carrying exhaust gas purification filter in the front stage of the particulate combustion catalyst-carrying exhaust gas purification filter, and a downstream catalyst-carrying exhaust gas purification filter in the subsequent stage, the exhaust gas is further increased. Can be purified.

以下、本発明を実施の形態および実施例にて詳細に説明するが、本発明は、以下の記載に何ら限定して解釈されるものではない。   Hereinafter, the present invention will be described in detail with reference to embodiments and examples, but the present invention should not be construed as being limited to the following description.

(実施の形態1)
図1及び図2に示すように、減圧装置1は、減圧可能な容器2、真空ポンプ3、リーク弁4と熱電対5とを備えている。減圧可能な容器2の中に触媒液が付着したDPF6を入れ、触媒液が付着したDPF6のセル内に熱電対5を差し込んだ。
(Embodiment 1)
As shown in FIGS. 1 and 2, the decompression device 1 includes a container 2 that can be decompressed, a vacuum pump 3, a leak valve 4, and a thermocouple 5. The DPF 6 with the catalyst solution attached was placed in the depressurizable container 2, and the thermocouple 5 was inserted into the cell of the DPF 6 with the catalyst solution attached.

上記構成において、減圧可能な容器2内の空気を真空ポンプ3により吸引することにより、減圧可能な容器2内を減圧することができる。真空度が急激に上がると、触媒液が付着したDPF6から触媒液が染み出てくる恐れがあるので、リーク弁4を開閉することにより、真空度を調節する必要がある。また、熱電対5を触媒液が付着したDPF6のセル内に差し込むことにより、セル内の温度を測定することができるので、触媒が析出してしまう温度まで下がらないように前処理をすることができる。   In the above configuration, the inside of the depressurizable container 2 can be depressurized by sucking the air in the depressurizable container 2 with the vacuum pump 3. If the degree of vacuum increases rapidly, the catalyst solution may ooze out from the DPF 6 to which the catalyst solution adheres. Therefore, it is necessary to adjust the degree of vacuum by opening and closing the leak valve 4. In addition, since the temperature in the cell can be measured by inserting the thermocouple 5 into the cell of the DPF 6 to which the catalyst solution is adhered, pretreatment may be performed so as not to lower the temperature at which the catalyst is deposited. it can.

(実施例1)
図3及び図4に示すように、硫酸銅5水和物などの複数の触媒成分を溶解させた水溶液に、直径5.66インチ、長さ6インチの円柱形ディーゼルパティキュレートフィルター(DPF)を含浸させた後、約1時間静置して余剰の液を除去した。触媒液が付着したDPF6を減圧可能な容器2に入れ、DPFの中心および外周のセル内に熱電対5を差し込み、真空ポンプ3の電源を入れて、触媒液が染み出さないようにリーク弁4を徐々に閉じ、微細孔を覆い塞がないための減圧処理を開始した。水が蒸発し始めると気化熱が奪われ、外周から温度が下がり始めるので、触媒液の温度が下がり過ぎないように熱電対5の温度を注意深く確認しながら、リーク弁4を調節することにより徐々に真空度を上げた。真空度を上げる操作をしばらく行い、外周セル内の温度が10℃まで下がったところでリーク弁4を全開し、乾燥前処理操作を終了した。図4に触媒液が付着したDPFセル内壁7を示す。
(Example 1)
As shown in FIGS. 3 and 4, a cylindrical diesel particulate filter (DPF) having a diameter of 5.66 inches and a length of 6 inches is added to an aqueous solution in which a plurality of catalyst components such as copper sulfate pentahydrate are dissolved. After impregnation, the excess liquid was removed by allowing to stand for about 1 hour. The DPF 6 to which the catalyst solution is attached is placed in a container 2 that can be depressurized, the thermocouple 5 is inserted into the center and outer peripheral cells of the DPF, the vacuum pump 3 is turned on, and the leak valve 4 is kept from leaking out the catalyst solution. Was gradually closed, and pressure reduction treatment was started to cover the fine holes and prevent clogging. When water begins to evaporate, the heat of vaporization is deprived, and the temperature starts to drop from the outer periphery. Therefore, by carefully checking the temperature of the thermocouple 5 so that the temperature of the catalyst solution does not drop too much, the leak valve 4 is adjusted gradually. Increased the degree of vacuum. The operation for raising the degree of vacuum was performed for a while, and when the temperature in the outer peripheral cell decreased to 10 ° C., the leak valve 4 was fully opened, and the pretreatment for drying was finished. FIG. 4 shows the inner wall 7 of the DPF cell to which the catalyst solution is attached.

これにより、DPF中の微細孔8が触媒液9に覆い塞がれておらず、かつ複数の触媒成分が均一に添着したDPFが得られることとなる。   As a result, a DPF in which the fine holes 8 in the DPF are not covered with the catalyst liquid 9 and a plurality of catalyst components are uniformly attached is obtained.

(実施例2)
硫酸銅5水和物などの複数の触媒成分を溶解させた水溶液に、直径5.66インチ、長さ6インチの円柱形DPFを含浸させた後、約1時間静置して余剰の液を除去した。その後、実施例1記載の方法で乾燥前処理した場合と、前処理しなかった場合の、乾燥時における触媒液が付着したDPF6の中心セル内温度を測定した。乾燥機内の温度は25℃から150℃まで、5℃/minで上昇させ、さらにファンを設けて乾燥機内の空気を循環させた。
(Example 2)
An aqueous solution in which a plurality of catalyst components such as copper sulfate pentahydrate is dissolved is impregnated with a cylindrical DPF having a diameter of 5.66 inches and a length of 6 inches, and then left to stand for about 1 hour to remove excess liquid. Removed. Then, the temperature in the center cell of DPF6 to which the catalyst liquid adhered at the time of drying when dry pretreatment was performed by the method described in Example 1 and when pretreatment was not performed was measured. The temperature in the dryer was increased from 25 ° C. to 150 ° C. at 5 ° C./min, and a fan was further provided to circulate the air in the dryer.

図5より、乾燥前処理した場合の方が温度がより上がりやすいことがわかる。これは、DPFの微細孔を触媒液が覆い塞がないようにするための前処理をしたことにより、微細孔8を覆い塞いでいた触媒液を取り除くことができたため、圧力損失の上昇が抑えられ、熱風がより通過しやすかったためだと考えられる。   From FIG. 5, it can be seen that the temperature is more likely to increase in the case of pre-drying treatment. This is because the catalyst solution covering and closing the fine holes 8 can be removed by performing the pretreatment to prevent the catalyst holes from covering and closing the fine holes of the DPF, thereby suppressing an increase in pressure loss. This is probably because hot air was easier to pass through.

(実施例3)
硫酸銅5水和物などの複数の触媒成分を溶解させた水溶液に、直径5.66インチ、長さ6インチの円柱形DPFを含浸させた後、約1時間静置して余剰の液を除去した。その後、実施例1記載の方法で乾燥前処理した場合と、前処理しなかった場合それぞれの触媒液が付着したDPF6を乾燥、焼成後、圧力損失の測定を行った。
(Example 3)
An aqueous solution in which a plurality of catalyst components such as copper sulfate pentahydrate is dissolved is impregnated with a cylindrical DPF having a diameter of 5.66 inches and a length of 6 inches, and then left to stand for about 1 hour to remove excess liquid. Removed. Thereafter, when the pre-drying treatment was performed by the method described in Example 1 and when the pre-treatment was not performed, the DPF 6 to which each catalyst solution was adhered was dried and calcined, and then the pressure loss was measured.

測定方法は、図6に示すように、送風機10から送り出された風を風量調節ハンドル11により風量を調節し、DPF取付パイプ12に送る。焼成後DPF13の入口側の圧力損失をマノメーター14から読み取る。測定は流量が100、150、200、250、300m↑3/hのときの圧力損失(単位:kPa)を読み取った。   As shown in FIG. 6, the measurement method adjusts the volume of the wind sent from the blower 10 by the volume adjustment handle 11 and sends it to the DPF attachment pipe 12. After firing, the pressure loss on the inlet side of the DPF 13 is read from the manometer 14. The measurement was performed by reading the pressure loss (unit: kPa) when the flow rate was 100, 150, 200, 250, 300 m ↑ 3 / h.

Figure 2005279508
Figure 2005279508

表1はDPF中心温度のグラフである。表1より、乾燥前処理した場合の方が圧力損失が低いことがわかる。これは、DPFの微細孔8を触媒液9が覆い塞がないようにするための前処理をしたことにより、微細孔8を覆い塞いでいた触媒液9を取り除くことができたため、圧力損失の上昇が抑えられたためだと考えられる。   Table 1 is a graph of the DPF center temperature. From Table 1, it can be seen that the pressure loss is lower when the pre-drying treatment is performed. This is because the catalyst liquid 9 covering and closing the fine holes 8 can be removed by performing the pretreatment to prevent the catalyst liquid 9 from covering and closing the fine holes 8 of the DPF. This is thought to be because the rise was suppressed.

(実施例4)
硫酸銅5水和物などの複数の触媒成分を溶解させた水溶液に、直径5.66インチ、長さ6インチの円柱形DPFを含浸させた後、約1時間静置して余剰の液を除去した。その後、実施例1記載の方法で乾燥前処理した場合と、前処理しなかった場合それぞれの触媒液が付着したDPF6を乾燥、焼成後、パティキュレートに対する燃焼活性温度(BPT)の測定を行った。測定はエンジンベンチを用いて行い、排ガス温度を250℃から30℃ずつ上げていき、各温度で40分ずつ保持するということを繰り返し、各温度での圧力損失を測定した。この圧力損失の値から、圧力上昇速度が0となったときの温度、すなわちパティキュレート堆積速度とパティキュレート燃焼速度とが等しくなったときの温度を算出し、そのときの温度をBPT(単位:℃)とした。
Example 4
An aqueous solution in which a plurality of catalyst components such as copper sulfate pentahydrate is dissolved is impregnated with a cylindrical DPF having a diameter of 5.66 inches and a length of 6 inches, and left to stand for about 1 hour to remove excess liquid. Removed. Thereafter, when the drying pretreatment was performed by the method described in Example 1 and when the pretreatment was not performed, the DPF 6 to which each catalyst solution was adhered was dried and calcined, and then the combustion activation temperature (BPT) for the particulates was measured. . The measurement was performed using an engine bench, and the exhaust gas temperature was increased from 250 ° C. to 30 ° C. and kept at each temperature for 40 minutes, and the pressure loss at each temperature was measured. From this pressure loss value, the temperature when the pressure increase rate becomes 0, that is, the temperature when the particulate deposition rate and the particulate combustion rate are equal, is calculated, and the temperature at that time is expressed as BPT (unit: ° C).

Figure 2005279508
Figure 2005279508

表2はBPT測定結果の表である。表2より、乾燥前処理した場合の方がBPTが低い、すなわち高活性であることがわかる。これは、DPFの微細孔8を触媒液9が覆い塞がないようにするための前処理をしたことにより、触媒が均一かつ広範囲に担持されたためだと考えられる。   Table 2 is a table of BPT measurement results. From Table 2, it can be seen that the BPT is lower in the case of the pre-drying treatment, that is, the activity is higher. This is presumably because the catalyst was supported uniformly and over a wide range as a result of the pretreatment for preventing the catalyst solution 9 from covering and closing the fine holes 8 of the DPF.

本発明の乾燥前処理方法は、触媒液の付着した三次元構造体の乾燥時間を短縮することができ、有用である。   The drying pretreatment method of the present invention is useful because it can shorten the drying time of the three-dimensional structure to which the catalyst solution is adhered.

また、本発明の乾燥前処理方法は、微細孔が触媒に覆い塞がれていないため圧力損失の上昇が抑えられており、かつ複数の触媒成分が均一に担持され、かつ触媒担持面積の大きな触媒担持排ガス浄化用フィルターを提供することができ、有用である。   In the drying pretreatment method of the present invention, the increase in pressure loss is suppressed because the fine pores are not covered with the catalyst, and a plurality of catalyst components are uniformly supported, and the catalyst supporting area is large. A catalyst-supporting exhaust gas purification filter can be provided and is useful.

本発明実施の形態1における減圧装置の概略断面図Schematic cross-sectional view of the decompression device in Embodiment 1 of the present invention 本発明実施の形態1における熱電対差込位置概略図Thermocouple insertion position schematic diagram in Embodiment 1 of the present invention 本発明実施例1における減圧装置の概略断面図Schematic cross-sectional view of the decompression device in Example 1 of the present invention 本発明実施例1におけるDPFセル内壁の拡大外略図Enlarged schematic view of the inner wall of the DPF cell in Example 1 of the present invention 本発明実施例2におけるDPF中心温度のグラフGraph of DPF center temperature in Example 2 of the present invention 本発明実施例3における圧力損失測定装置の概略図Schematic of the pressure loss measuring device in Example 3 of the present invention

符号の説明Explanation of symbols

1 減圧装置
2 減圧可能な容器
3 真空ポンプ
4 リーク弁
5 熱電対
6 触媒液が付着したDPF
7 触媒液が付着したDPFセル内壁
8 微細孔
9 触媒液
10 送風機
11 風量調節ハンドル
12 DPF取付パイプ
13 焼成後DPF
14 マノメーター
DESCRIPTION OF SYMBOLS 1 Depressurization device 2 Depressurizable container 3 Vacuum pump 4 Leak valve 5 Thermocouple 6 DPF with catalyst solution attached
7 DPF cell inner wall to which catalyst solution adheres 8 Fine hole 9 Catalyst solution 10 Blower 11 Air flow rate adjustment handle 12 DPF attachment pipe 13 DPF after firing
14 Manometer

Claims (9)

触媒液を付着させた三次元構造体を乾燥させる前に、三次元構造体中の微細孔を覆い塞がないようにすることを特徴とする三次元構造体の乾燥前処理方法。 A drying pretreatment method for a three-dimensional structure, characterized in that, before the three-dimensional structure to which the catalyst solution is adhered is dried, the micropores in the three-dimensional structure are covered and not blocked. 三次元構造体中の微細孔内を脱気することを特徴とする請求項1記載の三次元構造体の乾燥前処理方法。 The method for pre-drying a three-dimensional structure according to claim 1, wherein the inside of the micropores in the three-dimensional structure is degassed. 三次元構造体を減圧することを特徴とする請求項1または2記載の三次元構造体の乾燥前処理方法。 The method for pre-drying a three-dimensional structure according to claim 1 or 2, wherein the three-dimensional structure is decompressed. 三次元構造体から触媒液が染み出さないように、徐々に減圧することを特徴とする請求項1乃至3記載の三次元構造体の乾燥前処理方法。 The method for pre-drying a three-dimensional structure according to any one of claims 1 to 3, wherein the pressure is gradually reduced so that the catalyst solution does not ooze out of the three-dimensional structure. 三次元構造体に付着した触媒液の温度を、触媒液に含まれる触媒が析出する温度にしないことを特徴とする請求項1乃至4記載の三次元構造体の乾燥前処理方法。 5. The three-dimensional structure drying pretreatment method according to claim 1, wherein the temperature of the catalyst solution adhering to the three-dimensional structure is not set to a temperature at which the catalyst contained in the catalyst solution is deposited. 三次元構造体が、排ガス浄化用フィルターであることを特徴とする請求項1乃至5記載の三次元構造体の乾燥前処理方法。 6. The three-dimensional structure pre-drying method according to claim 1, wherein the three-dimensional structure is an exhaust gas purification filter. 排ガス浄化用フィルターが、金属またはセラミック多孔体であることを特徴とする請求項1乃至6記載の三次元構造体の乾燥前処理方法。 The method for pre-drying a three-dimensional structure according to any one of claims 1 to 6, wherein the exhaust gas purifying filter is a metal or ceramic porous body. 請求項1乃至7記載の乾燥前処理を行う行程を含むことを特徴とする排ガス浄化用フィルター製造方法。 A method for producing an exhaust gas purifying filter, comprising a step of performing the pre-drying treatment according to claim 1. 請求項8記載の製造方法で、触媒液が付着した排ガス浄化用フィルターを処理することにより得られることを特徴とする触媒担持排ガス浄化用フィルター。 9. A catalyst-supported exhaust gas purification filter, which is obtained by treating the exhaust gas purification filter to which a catalyst solution is adhered in the production method according to claim 8.
JP2004098958A 2004-03-30 2004-03-30 Prior-to-drying pretreatment method of three-dimensional structure body, exhausted gas purification filter and production method thereof Pending JP2005279508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004098958A JP2005279508A (en) 2004-03-30 2004-03-30 Prior-to-drying pretreatment method of three-dimensional structure body, exhausted gas purification filter and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004098958A JP2005279508A (en) 2004-03-30 2004-03-30 Prior-to-drying pretreatment method of three-dimensional structure body, exhausted gas purification filter and production method thereof

Publications (1)

Publication Number Publication Date
JP2005279508A true JP2005279508A (en) 2005-10-13

Family

ID=35178461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004098958A Pending JP2005279508A (en) 2004-03-30 2004-03-30 Prior-to-drying pretreatment method of three-dimensional structure body, exhausted gas purification filter and production method thereof

Country Status (1)

Country Link
JP (1) JP2005279508A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246312A (en) * 2007-03-29 2008-10-16 Chiyoda Corp Catalyst for producing synthesis gas and method of producing synthesis gas using the same
CN112973690A (en) * 2019-12-17 2021-06-18 山东工业陶瓷研究设计院有限公司 Cu-Fe catalyst loading method and catalyst loaded by Cu-Fe catalyst loading method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228695B2 (en) * 1978-01-19 1987-06-22 Gen Motors Corp
JPH10225641A (en) * 1997-02-14 1998-08-25 Osaka Gas Co Ltd Low temperature denitration catalyst and its production and low temperature denitration method
JP2001149794A (en) * 1999-11-30 2001-06-05 Natl Inst Of Advanced Industrial Science & Technology Meti Method for forming catalyst supporting layer and catalyst layer in wall flow type filter
JP2002526241A (en) * 1998-10-05 2002-08-20 サソール テクノロジー(プロプライエタリー)リミテッド Impregnation method for catalyst
JP2003190793A (en) * 2001-12-21 2003-07-08 Toyota Motor Corp Filter type catalyst for purifying diesel exhaust gas
JP2004097891A (en) * 2002-09-06 2004-04-02 Masaru Ichikawa Manufacturing method of catalyst for converting lower hydrocarbon to aromatic compound, catalyst and conversion method for lower hydrocarbon

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228695B2 (en) * 1978-01-19 1987-06-22 Gen Motors Corp
JPH10225641A (en) * 1997-02-14 1998-08-25 Osaka Gas Co Ltd Low temperature denitration catalyst and its production and low temperature denitration method
JP2002526241A (en) * 1998-10-05 2002-08-20 サソール テクノロジー(プロプライエタリー)リミテッド Impregnation method for catalyst
JP2001149794A (en) * 1999-11-30 2001-06-05 Natl Inst Of Advanced Industrial Science & Technology Meti Method for forming catalyst supporting layer and catalyst layer in wall flow type filter
JP2003190793A (en) * 2001-12-21 2003-07-08 Toyota Motor Corp Filter type catalyst for purifying diesel exhaust gas
JP2004097891A (en) * 2002-09-06 2004-04-02 Masaru Ichikawa Manufacturing method of catalyst for converting lower hydrocarbon to aromatic compound, catalyst and conversion method for lower hydrocarbon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246312A (en) * 2007-03-29 2008-10-16 Chiyoda Corp Catalyst for producing synthesis gas and method of producing synthesis gas using the same
CN112973690A (en) * 2019-12-17 2021-06-18 山东工业陶瓷研究设计院有限公司 Cu-Fe catalyst loading method and catalyst loaded by Cu-Fe catalyst loading method
CN112973690B (en) * 2019-12-17 2023-09-29 山东工业陶瓷研究设计院有限公司 Cu-Fe catalyst loading method and catalyst body loaded by same

Similar Documents

Publication Publication Date Title
JP6998871B2 (en) Honeycomb structure and method for manufacturing the honeycomb structure
JP4285096B2 (en) Exhaust gas purification device for internal combustion engine
US8409519B2 (en) Exhaust-gas converting filter and production process for the same
CN102574039B (en) Exhaust emission control filter
JP5452606B2 (en) Exhaust gas purification filter
KR100626194B1 (en) Honeycomb structural body and canning structural body storing the honeycomb structural body
EP2106835A1 (en) Ceramic honeycomb filter and method for manufacturing the same
JP2021107713A (en) Exhaust emission control device
JPWO2011040554A1 (en) Exhaust gas purification filter
JP2011092933A (en) Method for cleaning internal combustion engine exhaust gases
JP2007130629A (en) Exhaust gas cleaning filter and manufacturing method for the same
WO2013162814A1 (en) Axially sectioned ceramic honeycomb assemblies
JP2008501496A (en) Particle filter with catalyst coating
JP2009160547A (en) Exhaust-gas cleaning catalyst and its production method
CN107362950A (en) A kind of wall-flow particulate filter carrier painting method using organosol
JP2008537510A5 (en)
ZA200504013B (en) Catalyst and method for coating a catalyst carrier containing two different partial structures with a catalytically active coating
US20180023434A1 (en) Method of manufacturing catalyzed particulate filter
JP2005279436A (en) Process for producing catalyst for purifying exhaust gas
JP2005279508A (en) Prior-to-drying pretreatment method of three-dimensional structure body, exhausted gas purification filter and production method thereof
JP2009247995A (en) Exhaust gas cleaning catalyst and production method thereof
JP4407348B2 (en) Exhaust gas purification filter manufacturing method and catalyst-carrying exhaust gas purification filter
JP2002242655A (en) Filter for collecting particulate in exhaust gas
JP6043227B2 (en) Honeycomb structure
JP2608641B2 (en) Honeycomb catalyst for purifying exhaust gas and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20061213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004