KR20230091061A - Method for operation of combined cycle power plant using denitrification catalyst and metal support - Google Patents

Method for operation of combined cycle power plant using denitrification catalyst and metal support Download PDF

Info

Publication number
KR20230091061A
KR20230091061A KR1020220175011A KR20220175011A KR20230091061A KR 20230091061 A KR20230091061 A KR 20230091061A KR 1020220175011 A KR1020220175011 A KR 1020220175011A KR 20220175011 A KR20220175011 A KR 20220175011A KR 20230091061 A KR20230091061 A KR 20230091061A
Authority
KR
South Korea
Prior art keywords
catalyst
denitrification
power plant
manganese
combined cycle
Prior art date
Application number
KR1020220175011A
Other languages
Korean (ko)
Inventor
노세윤
서병한
가명진
이효상
강철희
석영환
임선표
Original Assignee
대영씨엔이(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대영씨엔이(주) filed Critical 대영씨엔이(주)
Publication of KR20230091061A publication Critical patent/KR20230091061A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/10Solids characterised by their surface properties or porosity
    • B01J35/1004Surface area
    • B01J35/101410-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/10Solids characterised by their surface properties or porosity
    • B01J35/1033Pore volume
    • B01J35/1038Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/10Solids characterised by their surface properties or porosity
    • B01J35/1052Pore diameter
    • B01J35/10612-50 nm
    • B01J35/613
    • B01J35/633
    • B01J35/647
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/003Arrangements of devices for treating smoke or fumes for supplying chemicals to fumes, e.g. using injection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/10Nitrogen; Compounds thereof
    • F23J2215/101Nitrous oxide (N2O)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/10Catalytic reduction devices

Abstract

복합화력발전 운전방법으로, 복합화력 발전시 발생하는 배가스를 탈질촉매에 접촉시켜 탈질공정을 진행하는 단계; 및 상기 탈질된 배가스를 CO 산화 촉매에 접촉시켜 CO 산화공정을 진행하는 단계를 포함하는 것을 특징으로 하는 탈질촉매를 이용한 복합화력발전 운전방법이며, 상기 배가스는 NO2/NOx≥0.5 이상이며, 상기 탈질촉매는 바나듐/텅스텐/티타니아 및 망간을 포함하며, 상기 망간은 α-Mn2O3 및 Mn3O4 구조를 모두 포함하며, 이로써 질산암모늄(NH4NO3)의 형성 및 아산화질소(N2O) 발생이 억제되며, 상기 탈질공정는 선택적 촉매환원공정이며, 상기 배가스에 주입되는 환원제는 암모니아와 질산암모늄을 포함하는 환원제인 것을 특징으로 하는 탈질촉매를 이용한 복합화력발전 운전방법이 제공된다. As a combined cycle power plant operating method, a step of performing a denitrification process by bringing exhaust gas generated during combined cycle power generation into contact with a denitrification catalyst; and contacting the denitrated exhaust gas with a CO oxidation catalyst to perform a CO oxidation process. The denitrification catalyst includes vanadium/tungsten/titania and manganese, and the manganese includes both α-Mn 2 O 3 and Mn 3 O 4 structures, thereby forming ammonium nitrate (NH 4 NO 3 ) and nitrous oxide ( N 2 O) generation is suppressed, the denitrification process is a selective catalytic reduction process, and the reducing agent injected into the exhaust gas is a reducing agent containing ammonia and ammonium nitrate. .

Description

금속지지체, 신규 탈질촉매 및 환원제를 이용한 복합화력발전 운전방법{Method for operation of combined cycle power plant using denitrification catalyst and metal support}Method for operation of combined cycle power plant using denitrification catalyst and metal support}

본 발명은 금속지지체, 신규 탈질촉매 및 환원제를 이용한 복합화력발전 운전방법에 관한 것으로서, 보다 상세하게는 초기 과량 발생하는 NO2를 환원시키기 위한 탄화수소계 물질을 사용함으로써 발생하는 이산화탄소 발생 등의 문제를 해결하기 위하여 아예 초기부터 NO2 과량 조건(NO2/NOx≥0.5 이상)에서 바로 탈질반응(SCR) 반응이 가능한 촉매를 사용하며, 이로써 연속되는 공정에서 CO를 산화시켜 기동시 발생하는 불완전연소에 따른 부산물인 CO 발생 또한 억제하는 신규 탈질촉매 및 환원제를 이용한 복합화력발전 운전방법에 관한 것이다. The present invention relates to a method for operating a combined cycle power plant using a metal support, a novel denitrification catalyst, and a reducing agent, and more particularly, solves problems such as carbon dioxide generation caused by using hydrocarbon-based materials for reducing initially excessively generated NO2 In order to do this, a catalyst capable of denitrification reaction (SCR) reaction is used from the beginning under the condition of excessive NO2 (NO 2 /NO x ≥ 0.5 or more), thereby oxidizing CO in a continuous process and reducing It relates to a method for operating a combined cycle power plant using a novel denitrification catalyst and reducing agent that also suppresses the generation of by-product CO.

전력은 일반적으로 대규모 발전시설에서 생산되고 있다. 발전소에서는 주로 연료를 연소시켜 발전하는 화력발전방식이나, 원자력에너지를 이용한 원자력발전방식, 유체의 낙차를 이용하는 수력발전방식 등으로 발전하며, 그 밖의 발전시설 등에서는 태양열, 조력, 풍력 등을 이용한 발전방식도 사용된다.Electric power is generally produced in large-scale power generation facilities. In power plants, power is generated mainly by thermal power generation method by burning fuel, nuclear power generation method using nuclear energy, hydroelectric power generation method using fluid drop, etc. In other power generation facilities, power generation using solar heat, tidal power, wind power, etc. method is also used.

이 중 화력발전방식은 현재까지도 매우 활발하게 사용되고 있는 발전방식으로서 연료를 연소하여 터빈을 구동하는 방식이다. 화력발전으로 전력을 얻기 위해서는 지속적으로 연료를 소비해야 하며 연료는 가스터빈 내에서 연소되며 다량의 배가스(배기가스)를 생성하게 된다. 이러한 배가스는 연료의 연소반응 및 고온 열반응 등에 의해 생성된 오염물질들을 함유하고 있어 각별한 처리가 요구된다.Among them, the thermal power generation method is a power generation method that is still being used very actively, and is a method of driving a turbine by burning fuel. In order to obtain electric power through thermal power generation, fuel must be continuously consumed, and the fuel is burned in a gas turbine to generate a large amount of exhaust gas (exhaust gas). This flue gas contains pollutants generated by a combustion reaction of a fuel and a high-temperature thermal reaction, and thus requires special treatment.

특히, 화력발전소는 설치 목적상 가동과 중지가 수시로 반복되고 가동 초기에 NOx 등 다양한 대기오염물질이 정상가동할 때보다 다량 배출되므로 정상가동 시에 대기오염물질 배출허용기준을 초과하지 않도록 관리하는 것뿐만 아니라, 미세먼지 농도가 높을 때 그 영향을 최소화할 수 있도록 가동 초기에 배출되는 대기오염물질을 줄이는 방안이 요구된다.In particular, thermal power plants are operated and stopped frequently for the purpose of installation, and at the beginning of operation, various air pollutants such as NOx are emitted in larger amounts than during normal operation. In addition, a plan to reduce air pollutants discharged at the beginning of operation is required to minimize the effect when the concentration of fine dust is high.

이에, 대한민국 등록특허공보 제10-2159082호는 탈질촉매의 전단에서 탄화수소계 환원제와 암모니아계 환원제를 포함하는 환원제를 질소산화물 함유 배가스와 접촉시켜 화력발전소의 가스터빈 기동 시 발생하는 고농도 이산화질소 함유 배가스를 처리하는 방법을 개시하고 있다.Accordingly, Korean Patent Registration No. 10-2159082 discloses that a reducing agent including a hydrocarbon-based reducing agent and an ammonia-based reducing agent is brought into contact with nitrogen oxide-containing exhaust gas at the front of the denitrification catalyst to reduce high-concentration nitrogen dioxide-containing exhaust gas generated when a gas turbine of a thermal power plant is started. It describes how to process it.

그러나, 상기 처리방법은 에탄올과 같은 탄화수소계 환원제를 사용함으로써, 포름알데히드와 같은 발암 물질의 배출을 야기할 수 있으며, 배가스 내 이산화질소가 탈질촉매 내에 고형의 질산암모늄(NH4NO3)을 형성하여 탈질 성능이 저하되는 문제가 있다. 따라서, 친환경적이면서도 가동 초기 배가스에 대해 탈질 성능이 유지되는 탈질촉매의 개발에 대한 필요성이 요구되고 있는 실정이다.However, the treatment method may cause the emission of carcinogens such as formaldehyde by using a hydrocarbon-based reducing agent such as ethanol, and nitrogen dioxide in the exhaust gas forms solid ammonium nitrate (NH 4 NO 3 ) in the denitrification catalyst. There is a problem that the denitrification performance is lowered. Therefore, there is a need for the development of a denitrification catalyst that is environmentally friendly and maintains denitrification performance for exhaust gas at the initial stage of operation.

대한민국 등록특허공보 제10-2159082호Republic of Korea Patent Registration No. 10-2159082

본 발명이 해결하고자 하는 과제는, 바나듐/텅스텐/티타니아 촉매에 망간을 첨가하여 화력발전소 초기 가동 시 발생하는 고농도의 이산화질소를 함유하는 배가스 조건에서도 탈질성능이 우수하고, 특히 질산암모늄(NH4NO3)의 형성 및 아산화질소(N2O) 발생을 억제하여 탈질효율이 저하되지 않는 화력발전소용 탈질촉매를 이용한 새로운 복합화력발전 운전방법을 제공하는 것이다. The problem to be solved by the present invention is that manganese is added to the vanadium/tungsten/titania catalyst to achieve excellent denitrification performance even under exhaust gas conditions containing high concentrations of nitrogen dioxide generated during the initial operation of a thermal power plant, and in particular, ammonium nitrate (NH 4 NO 3 ) and suppress the generation of nitrous oxide (N 2 O) to provide a new combined cycle power plant operation method using a denitrification catalyst for thermal power plants in which denitrification efficiency is not lowered.

상기 과제를 해결하기 위하여, 본 발명은 복합화력발전 운전방법으로, 복합화력 발전시 발생하는 배가스를 탈질촉매에 접촉시켜 탈질공정을 진행하는 단계; 및 상기 탈질된 배가스를 CO 산화 촉매에 접촉시켜 CO 산화공정을 진행하는 단계를 포함하는 것을 특징으로 하는 탈질촉매를 이용한 복합화력발전 운전방법이며, 상기 배가스는 NO2/NOx≥0.5 이상이며, 상기 탈질촉매는 바나듐/텅스텐/티타니아 및 망간을 포함하며, 상기 망간은 α-Mn2O3 및 Mn3O4 구조를 모두 포함하며, 이로써 질산암모늄(NH4NO3)의 형성 및 아산화질소(N2O) 발생이 억제되며, 상기 탈질공정는 선택적 촉매환원(SCR)공정이며, 상기 배가스에 주입되는 환원제는 암모니아와 질산암모늄을 포함하는 환원제인 것을 특징으로 하는 탈질촉매를 이용한 복합화력발전 운전방법을 제공한다. In order to solve the above problems, the present invention is a combined cycle power plant operation method, comprising the steps of performing a denitrification process by contacting exhaust gas generated during combined cycle power generation with a denitrification catalyst; and contacting the denitrated exhaust gas with a CO oxidation catalyst to perform a CO oxidation process. The denitrification catalyst includes vanadium/tungsten/titania and manganese, and the manganese includes both α-Mn 2 O 3 and Mn 3 O 4 structures, thereby forming ammonium nitrate (NH 4 NO 3 ) and nitrous oxide ( N 2 O) generation is suppressed, the denitrification process is a selective catalytic reduction (SCR) process, and the reducing agent injected into the exhaust gas is a reducing agent containing ammonia and ammonium nitrate. provides

본 발명의 일 실시예에서, 상기 탈질촉매의 표면 Mn 중 Mn4+의 분율은 60% 이하이며, 상기 화력발전소용 탈질촉매는 망간 나이트레이트를 전구체로 하여 소성되어 제조된다. In one embodiment of the present invention, the fraction of Mn 4+ in the surface Mn of the denitration catalyst is 60% or less, and the denitration catalyst for thermal power plants is prepared by calcining manganese nitrate as a precursor.

본 발명의 일 실시예에서, 상기 탈질촉매는 anatase TiO2를 사용하되, 바나듐-망간/텅스텐/티타니아의 BET는 45 cm3/g 이상, Mean pore diameter는 32 nm 이하, Vp는 0.35cm3/g 이하로 소성되어 제조된다. In one embodiment of the present invention, the denitration catalyst uses anatase TiO 2 , but the BET of vanadium-manganese/tungsten/titania is 45 cm 3 /g or more, the mean pore diameter is 32 nm or less, and the Vp is 0.35 cm 3 /g or more. It is produced by firing at less than g.

본 발명의 일 실시예에서, 상기 탈질촉매의 최종 소성온도는 섭씨 350도 내지 450도이다. In one embodiment of the present invention, the final firing temperature of the denitration catalyst is 350 degrees Celsius to 450 degrees Celsius.

본 발명의 일 실시예에서, 상기 탈질촉매는, NO2/NOx=0.9, 200℃ 이하의 조건에서 질소산화물 전환율이 45% 이상이며, 상기 티타니아 100 중량부에 대해 상기 바나듐은 2.0 내지 8.0 중량부, 상기 텅스텐은 2.0 내지 10.0 중량부. 상기 망간은 1.0 내지 3.0 중량부이다. In one embodiment of the present invention, the denitration catalyst has a nitrogen oxide conversion rate of 45% or more under the condition of NO 2 /NO x =0.9 and 200 ° C or less, and the vanadium is 2.0 to 8.0 parts by weight with respect to 100 parts by weight of the titania. Part, the tungsten is 2.0 to 10.0 parts by weight. The manganese is 1.0 to 3.0 parts by weight.

본 발명의 일 실시예에서 상기 환원제는 암모니아와 질산암모늄가 1:1의 몰비이며, 상기 배기가스의 온도는 섭씨 150도 내지 200도이다. In one embodiment of the present invention, the reducing agent is ammonia and ammonium nitrate in a molar ratio of 1: 1, and the temperature of the exhaust gas is 150 to 200 degrees Celsius.

본 발명에 따른 운전방법에 의하면, NO2와 NOx의 비율과 관계없이 기동시와 정상운전시 모두 적용가능한 새로운 탈질촉매를 이용하여 친환경 전력생산이 가능하다. 특히 초기 과량 발생하는 NO2를 환원시키기 위한 탄화수소계 물질을 사용함으로써 발생하는 이산화탄소 발생 등의 문제를 해결하기 위하여 아예 초기부터 NO2 과량 조건(NO2/NOx≥0.5 이상)에서 바로 탈질반응(SCR) 반응이 가능한 촉매를 사용하며, 이로써 연속되는 공정에서 CO를 산화시켜 기동시 발생하는 불완전연소에 따른 부산물인 CO 발생 또한 억제할 수 있다. 또한, 암모니아와 질산암모늄(AN)을 혼합한 환원제를 사용한다. 이로써 종래 환원성분인 암모니아 외에 AN으로부터 발생하는 NO2의 산화력을 활용하여 생성된 염의 산화로 제거 또는 방지하고, NO만 참가하는 반응에 NO2를 새로우 주입하여 NO/NO2 비율이 5 이하로 하여 Fast-SCR 공정을 진행할 수 있다. 또한 NO2를 SCR 반응에 활용 함으로서 저온의 염 제거 및 저온 영역의 반응온도, De-NOx 성능 개선 효과를 획득할 수 있다. According to the operation method according to the present invention, it is possible to generate eco-friendly electricity using a new denitrification catalyst that can be applied both during start-up and normal operation regardless of the ratio of NO2 to NOx. In particular, in order to solve problems such as carbon dioxide generation caused by using hydrocarbon-based materials to reduce the initially excessive NO2, denitrification reaction (SCR) is performed under NO2 excess conditions (NO 2 /NO x ≥ 0.5 or more) from the beginning. A catalyst capable of reaction is used, and CO is oxidized in a continuous process, thereby suppressing the generation of CO, which is a by-product due to incomplete combustion occurring during start-up. In addition, a reducing agent in which ammonia and ammonium nitrate (AN) are mixed is used. In this way, in addition to ammonia, which is a conventional reducing component, the oxidizing power of NO2 generated from AN is used to remove or prevent oxidation of the salt produced, and to inject NO2 into a reaction in which only NO participates, making the NO/NO2 ratio less than 5, Fast-SCR process can proceed. In addition, by using NO 2 for the SCR reaction, it is possible to obtain low-temperature salt removal, reaction temperature in the low-temperature region, and improvement in De-NOx performance.

도 1은 “Standard SCR” 및 NO2 비율에 따른 조건에서 비교예2에 따른 탈질촉매의 활성을 비교한 결과를 나타낸 그래프이다.
도 2는 NO2 비율이 높은 배가스 조건에서 비교예2의 180℃와 350℃에 따른 촉매를 이용한 탈질반응의 FT-IR DRIFT 분석 결과를 나타낸 그래프이다.
도 3은 본 발명의 일 실시예에 따른 탈질촉매를 이용한 복합화력발전 운전방법의 단계도이다.
도 4는 본 발명의 제조예와 비교예2에 따른 탈질촉매의 NO2 90% 조건에서의 활성을 비교한 그래프이다.
도 5는 본 발명의 제조예와 비교예1에 따른 탈질촉매의 NO2 90% 조건에서의 활성을 비교한 그래프이다.
도 6은 NO2 비율이 높은 배가스 조건에서 본 발명의 제조예와 비교예1, 비교예 2에 따른 탈질촉매를 이용한 탈질반응의 FT-IR DRIFT 분석 결과를 나타낸 그래프이다.
도 7은 본 발명의 제조예와 비교예1, 비교예 2에 따른 탈질촉매를 이용한 H2-TPR 분석 결과를 나타낸 그래프이다.
도 8은 본 발명의 제조예에 따른 탈질촉매를 이용한 Raman 분석 결과를 나타낸 그래프이다.
도 9는 본 발명의 일 실시예에 따른 선택적 촉매환원방법의 단계도이다.
도 10 및 11은 신규 혼합 환원제를 이용한 SCR 반응 테스트 결과이다.
도 13은 동일한 양의 암모니아와 질산암모늄(AN)을 사용하는 경우 온도에 따른 탈질효율을 분석한 결과이다.
1 is a graph showing the results of comparing the activity of the denitration catalyst according to Comparative Example 2 under conditions according to “Standard SCR” and NO 2 ratio.
2 is a graph showing the results of FT-IR DRIFT analysis of the denitrification reaction using catalysts according to 180 ° C and 350 ° C of Comparative Example 2 under exhaust gas conditions with a high NO 2 ratio.
3 is a step diagram of a method for operating a combined cycle power plant using a denitration catalyst according to an embodiment of the present invention.
4 is a graph comparing the activities of the denitration catalysts according to Preparation Example of the present invention and Comparative Example 2 under the condition of 90% NO 2 .
5 is a graph comparing the activities of the denitration catalysts according to Preparation Example of the present invention and Comparative Example 1 under the condition of 90% NO 2 .
6 is a graph showing the results of FT-IR DRIFT analysis of the denitrification reaction using the denitration catalysts according to Preparation Example of the present invention and Comparative Examples 1 and 2 under flue gas conditions with a high NO 2 ratio.
7 is a graph showing the results of H 2 -TPR analysis using denitration catalysts according to Preparation Example and Comparative Examples 1 and 2 of the present invention.
8 is a graph showing the results of Raman analysis using a denitrification catalyst according to a preparation example of the present invention.
9 is a step diagram of a selective catalytic reduction method according to an embodiment of the present invention.
10 and 11 are SCR reaction test results using a novel mixed reducing agent.
13 is a result of analyzing denitrification efficiency according to temperature when using the same amount of ammonia and ammonium nitrate (AN).

이하에서는, 본 발명의 바람직한 실시예를 상세하게 설명한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그 상세한 설명을 생략하기로 한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.Hereinafter, preferred embodiments of the present invention will be described in detail. In describing the present invention, if it is determined that a detailed description of related known technologies may obscure the gist of the present invention, the detailed description will be omitted. Throughout the specification, when a part is said to "include" a certain component, it means that it may further include other components without excluding other components unless otherwise stated.

현재 국내 화력발전소는 높은 발전단가로 인해 전력 수요에 따라 가동과 중지를 수시로 반복하고 있다. 가동과 중지를 반복하는 운전방식은 가동 초기(저출력)에 불완전 연소, 즉 연소를 위해 공급한 공기 중에 포함된 산소가 원료와 반응하는 대신 질소와 반응을 일으켜 질소산화물, 특히 이산화질소(NO2)가 다량으로 발생하는 현상을 야기한다.Currently, domestic thermal power plants are repeatedly operating and stopping according to power demand due to high power generation costs. The operation method of repeating operation and shutdown causes incomplete combustion at the beginning of operation (low power), that is, oxygen contained in the air supplied for combustion reacts with nitrogen instead of reacting with the raw material, resulting in nitrogen oxides, especially nitrogen dioxide (NO 2 ). cause a phenomenon that occurs in large quantities.

일반적으로 SCR의 질소산화물 분해반응은 하기 반응식 1처럼 암모니아(NH3) 및 우레아(Urea)를 환원제로 하여 촉매상에서 NOx를 제거하는 “Standard SCR” 반응에 의해 진행되거나, 하기 반응식 2처럼 NO와 NO2의 비율이 1:1에 해당하여 촉매반응을 빠르게 하는 “Fast SCR” 반응에 의해 진행된다.In general, the nitrogen oxide decomposition reaction of SCR proceeds by a “Standard SCR” reaction that removes NO x on a catalyst using ammonia (NH 3 ) and urea as reducing agents, as shown in Reaction Scheme 1 below, or as shown in Reaction Scheme 2 below, The ratio of NO 2 corresponds to 1:1 and proceeds by “Fast SCR” reaction that speeds up the catalytic reaction.

(반응식 1) 4NO + 4NH3 + O2 -> 4N2 + 6H2O(Scheme 1) 4NO + 4NH 3 + O 2 -> 4N 2 + 6H 2 O

(반응식 2) 2NH3 + NO2 + NO -> 2N2 + 3H2O(Scheme 2) 2NH 3 + NO 2 + NO -> 2N 2 + 3H 2 O

대부분의 연소장치로부터 배출되는 배가스 내 NOx 는 90~95%의 일산화질소(NO)와 5~10%의 이산화질소(NO2 )로 존재하여 “Standard SCR” 반응을 진행하거나, 별도의 산화반응을 유도하여 NO를 NO2로 산화시킴으로써 “Fast SCR” 반응을 진행하고 있다. NOx in flue gas discharged from most combustion devices exists as 90~95% nitrogen monoxide (NO) and 5~10% nitrogen dioxide (NO 2 ) , so it can proceed with “Standard SCR” reaction or separate oxidation reaction. “Fast SCR” reaction is proceeding by oxidizing NO to NO 2 by induction.

도 1은 “Standard SCR” 및 NO2 비율에 따른 조건에서 비교예에 따른 탈질촉매의 활성을 비교한 결과를 나타낸 그래프이다.1 is a graph showing the results of comparing the activity of the denitration catalyst according to Comparative Example under conditions according to “Standard SCR” and NO 2 ratio.

도 1을 참조하면, NO2 비율이 높아질수록 NOx 전환율이 감소하는 것을 확인할 수 있다. 또한, N2O 발생 농도가 높아지는 것을 확인할 수 있다. 이처럼, 탈질반응에 있어서는 NO2/NOx 비율을 조절하는 것이 핵심이며, NOx 내 NO2 비율이 지배적인 환경, 즉 상기 화력발전소 초기 가동 조건에서는 고농도의 이산화질소로 인하여 “Standard SCR” 또는 “Fast SCR” 반응이 진행되지 아니하여 탈질 기능이 저하되거나 마비되는 문제가 발생한다.Referring to FIG. 1 , it can be seen that the NO x conversion rate decreases as the NO 2 ratio increases. In addition, it can be confirmed that the concentration of N 2 O is increased. As such, in the denitrification reaction, controlling the NO 2 /NO x ratio is key, and in an environment where the ratio of NO 2 in NO x dominates, that is, in the initial operating conditions of the thermal power plant, high concentrations of nitrogen dioxide cause “Standard SCR” or “Fast SCR” reaction does not proceed, resulting in denitrification or paralysis.

또한, 가동초기 발생된 배가스 내 고농도의 이산화질소(NO2)는 하기 반응식 3과 같이 탈질 반응에 사용되는 환원제인 암모니아(NH3)와 반응하여 질산암모늄(NH4NO3)을 발생시킨다. 질산암모늄(NH4NO3)의 녹는점은 대략 170 ℃ 이므로, 가동 초기 조건에서 생성된 고형의 질산암모늄은 탈질촉매의 활성 사이트(site)를 차단하여 탈질성능을 저감시킨다.In addition, a high concentration of nitrogen dioxide (NO 2 ) in the flue gas generated at the beginning of operation reacts with ammonia (NH 3 ), a reducing agent used in the denitrification reaction, to generate ammonium nitrate (NH 4 NO 3 ), as shown in Scheme 3 below. Since the melting point of ammonium nitrate (NH 4 NO 3 ) is approximately 170° C., the solid ammonium nitrate generated in the initial operating condition blocks the active site of the NOx removal catalyst, thereby reducing NOx removal performance.

(반응식 3) 2NH3 + 2NO2 -> NH4NO3 + H2O + N2 (Scheme 3) 2NH 3 + 2NO 2 -> NH 4 NO 3 + H 2 O + N 2

도 2는 NO2 비율이 높은 배가스 조건에서 비교예2의 180℃와 350℃에 따른 촉매를 이용한 탈질반응의 FT-IR DRIFT 분석 결과를 나타낸 그래프이다.2 is a graph showing the results of FT-IR DRIFT analysis of the denitrification reaction using catalysts according to 180 ° C and 350 ° C of Comparative Example 2 under exhaust gas conditions with a high NO 2 ratio.

도 2를 참조하면, NH3 1000 ppm을 30분 동안 흡착 후, NO2 1000 ppm과 O2 3% 를 주입하여 촉매 표면에서의 반응을 확인한 결과, NO2와 O2를 주입한지 25분이 지나서 1346 cm-1 NO2 peak 및 1620 cm-1의 NO2 peak가 생성된 것을 확인할 수 있다. Referring to FIG. 2, after adsorbing 1000 ppm of NH 3 for 30 minutes, injecting 1000 ppm of NO 2 and 3% of O 2 to confirm the reaction on the catalyst surface, 1346 25 minutes after NO 2 and O 2 were injected It can be seen that cm -1 NO 2 peak and 1620 cm -1 NO 2 peak were generated.

반면, NO2 비율이 증가하여도 유사한 탈질 성능을 나타낸 350℃에서는 이러한 NO2 peak의 생성을 확인할 수 없었다. 따라서 이러한 NO2 peak의 형성은 NH3 와 반응하여 생긴 질산암모늄(NH4NO3) 유도 물질로서, 탈질촉매의 활성 저하의 요인으로 볼 수 있다.On the other hand, even when the NO 2 ratio increased, it was not possible to confirm the generation of such a NO 2 peak at 350° C., which showed similar denitrification performance. Therefore, the formation of this NO 2 peak is an ammonium nitrate (NH 4 NO 3 )-derived material produced by reacting with NH 3 , and can be seen as a factor in reducing the activity of the denitration catalyst.

이에, 본 발명은 화력발전소 초기 가동 조건, 즉 고농도의 이산화질소를 함유하는 배가스 조건에서도 탈질성능이 우수하고, 특히 질산암모늄(NH4NO3)의 형성 및 아산화질소(N2O)발생을 억제하여 탄화수소계 환원제 없이도 탈질성능이 유지되는 탈질촉매를 활용한 새로운 운전방법을 제공한다. Therefore, the present invention has excellent denitrification performance even under the initial operating conditions of a thermal power plant, that is, exhaust gas conditions containing high concentrations of nitrogen dioxide, and in particular, suppresses the formation of ammonium nitrate (NH 4 NO 3 ) and the generation of nitrous oxide (N 2 O). It provides a new operation method using a denitrification catalyst that maintains denitrification performance without a hydrocarbon-based reducing agent.

도 3은 본 발명의 일 실시예에 따른 탈질촉매를 이용한 복합화력발전 운전방법의 단계도이다. 3 is a step diagram of a method for operating a combined cycle power plant using a denitration catalyst according to an embodiment of the present invention.

도 3을 참조하면, 상기 방법은 복합화력 발전시 발생하는 배가스를 탈질촉매에 접촉시켜 탈질공정을 진행하는 단계; 및 상기 탈질된 배가스를 CO 산화 촉매에 접촉시켜 CO 산화공정을 진행하는 단계를 포함한다. Referring to FIG. 3, the method includes the steps of contacting exhaust gas generated during combined cycle power generation with a NOx removal catalyst to perform a NOx removal process; and contacting the denitrated exhaust gas with a CO oxidation catalyst to perform a CO oxidation process.

본 발명은 특히 초기 과량 발생하는 NO2를 환원시키기 위한 탄화수소계 물질을 사용함으로써 발생하는 이산화탄소 발생 등의 문제를 해결하기 위하여 아예 초기부터 NO2 과량 조건(NO2/NOx≥0.5 이상)에서 바로 탈질반응(SCR) 반응이 가능한 촉매를 사용하며, 이로써 연속되는 공정에서 CO를 산화시켜 기동시 발생하는 불완전연소에 따른 부산물인 CO 발생 또한 억제한다. In particular, in order to solve problems such as carbon dioxide generation caused by using a hydrocarbon-based material for reducing initially excessively generated NO2, the present invention directly denitrates under NO2 excess conditions (NO 2 /NO x ≥ 0.5 or more) from the beginning. (SCR) A catalyst capable of reaction is used, and CO is oxidized in a continuous process, thereby suppressing the generation of CO, a by-product caused by incomplete combustion during start-up.

즉, HC 사용에 따른 부산물 발생 억제, CO 산화촉매의 선택적 사용에 따른 기동시 문제, 기동시 탈질 뿐만 아니라 정상운전시 NO2에 의한 FAST SCR 유도 등의 효과 등을 갖는다. That is, it has effects such as suppression of by-product generation due to the use of HC, problems during startup due to the selective use of a CO oxidation catalyst, denitrification during startup, and induction of FAST SCR by NO2 during normal operation.

본 발명에 따른 화력발전소용 탈질촉매는 고농도의 이산화질소가 포함된 배가스의 조건에서도 질소산화물을 효율적으로 제거하기 위한 암모니아계 선택적 촉매 환원 기술에 적용 가능한 촉매로서, 바나듐/텅스텐/티타니아계 촉매에 망간이 담지된 바나듐-망간/텅스텐/티타니아계 촉매일 수 있다.The denitrification catalyst for thermal power plants according to the present invention is a catalyst applicable to ammonia-based selective catalytic reduction technology for efficiently removing nitrogen oxides even under conditions of exhaust gas containing high concentrations of nitrogen dioxide. It may be a supported vanadium-manganese/tungsten/titania based catalyst.

여기서, 상기 고농도의 이산화질소가 포함된 배가스란, NO2/NOx 비율이 0.5 이상인 것으로서, 배가스에 포함된 질소산화물 중 이산화질소(NO2)의 비율이 일산화질소(NO)의 비율보다 높은 상태를 의미하며, 화력발전소 초기 가동 조건을 고려할 때, 바람직하게는 NO2/NOx 비율이 0.5 이상, 0.9 이하일 수 있다.Here, the exhaust gas containing a high concentration of nitrogen dioxide means that the NO 2 / NO x ratio is 0.5 or more, and the ratio of nitrogen dioxide (NO 2 ) among the nitrogen oxides contained in the exhaust gas is higher than the ratio of nitrogen monoxide (NO). and considering the initial operating conditions of a thermal power plant, the NO 2 /NO x ratio may preferably be 0.5 or more and 0.9 or less.

상기 바나듐은 티타니아 담체 100 중량부에 대해 2.0 내지 8.0 중량부, 바람직하게는 3.0 내지 5.0 중량부가 바람직하다. 또한 상기 텅스텐은 티타니아 담체 100 중량부에 대해 2.0 내지 10.0 중량부, 바람직하게는 3.0 내지 6.0 중량부가 바람직하다. 본 발명의 일 실시예에서 상기 바나듐은 4.0 중량부, 텅스텐은 5.0 중량부가 사용되었으나, 본 발명의 범위는 이에 제한되지 않는다. The amount of vanadium is preferably 2.0 to 8.0 parts by weight, preferably 3.0 to 5.0 parts by weight, based on 100 parts by weight of the titania support. In addition, the amount of tungsten is preferably 2.0 to 10.0 parts by weight, preferably 3.0 to 6.0 parts by weight, based on 100 parts by weight of the titania support. In one embodiment of the present invention, 4.0 parts by weight of vanadium and 5.0 parts by weight of tungsten were used, but the scope of the present invention is not limited thereto.

상기 망간은 바나듐/텅스텐/티타니아계 촉매와 결합하여 이산화질소(NO2)의 bidentate nitrate, monodentate coordinated nitrate 와 같은 질산암모늄 유도 물질로의 전환 흡착을 억제하며, 결과적으로 탈질촉매 표면에 질산암모늄(NH4NO3)의 형성을 억제하여 탈질촉매의 활성을 증진시키는 것으로서, 티타니아 담체 100 중량부에 대해 1.0 내지 3.0 중량부, 보다 바람직하게는 1.5 중량부 내지 2.5 중량부, 가장 바람직하게는 2.0 중량부로 담지된다. The manganese binds to the vanadium/tungsten/titania-based catalyst to suppress the conversion and adsorption of nitrogen dioxide (NO 2 ) into ammonium nitrate-derived substances such as bidentate nitrate and monodentate coordinated nitrate, and as a result, ammonium nitrate (NH 4 It suppresses the formation of NO 3 ) to enhance the activity of the denitration catalyst, and is supported in an amount of 1.0 to 3.0 parts by weight, more preferably 1.5 parts to 2.5 parts by weight, and most preferably 2.0 parts by weight based on 100 parts by weight of the titania support. do.

본 발명에서는 특히 망간을 망간 나이트레이트(Mn nitrate)로 첨가하는 경우, 최종 얻어지는 촉매의 Mn 중 Mn4+의 분율을 60% 이하로 억제하며, 그 결과 NMO 등과 같은 다른 망간계 물질보다 섭씨 180도 수준의 저온에서 질산암모늄(NH4NO3)의 형성을 효과적으로 억제하고 아산화질소(N2O)발생을 억제시킨다. In the present invention, in particular, when manganese is added as manganese nitrate, the fraction of Mn 4+ in Mn of the finally obtained catalyst is suppressed to 60% or less, and as a result, it is 180 degrees Celsius higher than other manganese materials such as NMO. It effectively inhibits the formation of ammonium nitrate (NH 4 NO 3 ) and suppresses the generation of nitrous oxide (N 2 O) at a low temperature of the level.

하기 표 1은 하기 설명되는 본 발명의 일 실시예에 따라 망간 나이트레이트로 제조된 촉매(제조예)와 NMO(Natural Manganese Ore)로 제조된 촉매(비교예 1)의 XRS 분석을 통하여 촉매의 표면에서 Mn 원자농도를 측정한 결과이다. Table 1 below shows the surface of the catalyst through XRS analysis of a catalyst made of manganese nitrate (Preparation Example) and a catalyst made of NMO (Natural Manganese Ore) (Comparative Example 1) according to an embodiment of the present invention described below. This is the result of measuring the Mn atomic concentration in

Mn4+/ (Mn4+ + Mn3+)Mn 4+ / (Mn 4+ + Mn 3+ ) 제조예manufacturing example 45.0%45.0% 비교예 2Comparative Example 2 66.0%66.0%

본 발명의 일 실시예에 따른 바나듐 전구체 및 텅스텐 전구체가 담지된 티타니아 담체에 망간 전구체인 망간 나이트레이트를 도입하여 혼합 슬러리를 제조한 후 혼합 슬러리를 건조 및 소성하여 제조된다.본 발명에서 티타니아 담체로는 anatase TiO2인 DT-51, 텅스텐 전구체로는 ammonium metatungstate hydrate, 바나듐 전구체로는 ammonium metavanadate, 망간 전구체로는 Manganess(II) nitrate hydrate를 사용할 수 있으나, 특별히 제한되는 것은 아니다.According to an embodiment of the present invention, a mixed slurry is prepared by introducing manganese nitrate, a manganese precursor, into a titania carrier on which a vanadium precursor and a tungsten precursor are supported, and then drying and calcining the mixed slurry. DT-51, which is anatase TiO 2 , ammonium metatungstate hydrate as a tungsten precursor, ammonium metavanadate as a vanadium precursor, and Manganess (II) nitrate hydrate as a manganese precursor, but are not particularly limited.

이하, 본 발명에 따른 화력발전소용 탈질촉매의 제조방법에 대해 보다 구체적으로 설명한다.Hereinafter, the manufacturing method of the denitrification catalyst for thermal power plants according to the present invention will be described in more detail.

상술한 바와 같이 제조되는 화력발전소용 탈질촉매는 화력발전소 초기 가동시 발생하는 고농도의 이산화질소를 함유하는 배가스 조건에서도 질소산화물 제거 효율이 뛰어나며, 특히 질산암모늄 형성 및 아산화질소 발생을 억제하여 탄화수소계 환원제 없이도 탈질효율이 유지될 수 있다.The denitrification catalyst for thermal power plants prepared as described above has excellent nitrogen oxide removal efficiency even under flue gas conditions containing high concentrations of nitrogen dioxide generated during the initial operation of thermal power plants. The denitrification efficiency can be maintained.

한편, 본 발명에 따른 화력발전소용 탈질촉매는 분말 형태를 비롯하여 소량의 바인더와 함께 입자형이 단일체(monolith) 형태로 압출 가공하거나 슬레이트, 플레이트, 펠렛 등의 다양한 형태로 제조하여 사용될 수 있다.On the other hand, the denitration catalyst for thermal power plants according to the present invention may be used in powder form or in a particle form with a small amount of binder, extruded in a monolith form, or manufactured in various forms such as slate, plate, or pellet.

또한, 탈질촉매의 실제 적용시에는 허니컴, 금속판, 금속 섬유, 세라믹 필터, 메탈 폼 등의 구조체에 코팅하여 사용될 수 있다.In addition, when the NOx removal catalyst is actually applied, it can be used by coating on structures such as honeycomb, metal plate, metal fiber, ceramic filter, metal foam, and the like.

이하, 본 발명의 바람직한 실시예에 기초하여 본 발명을 더욱 구체적으로 설명한다. 그러나 본 발명의 기술적 사상은 이에 한정되거나 제한되지 않고 당업자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다.Hereinafter, the present invention will be described in more detail based on preferred embodiments of the present invention. However, it goes without saying that the technical idea of the present invention is not limited or limited thereto and can be modified and implemented in various ways by those skilled in the art.

제조예manufacturing example

Anatase type TiO2 담체 100 중량부에 Ammonium metatugstate hydrate 전구체를 텅스텐 5.0 중량부로 환산하여 정량 후 상온의 증류수에 각각 용해시킨다. 계속해서 앞서 제조된 텅스텐 수용액에 TiO2 담체를 투입하여 슬러리 형태로 제조한다. 이후, 제조된 슬러리를 103℃의 온도에서 24시간 이상 건조하여 미세기공에 포함된 수분을 완전히 제거한 다음 공기분위기에서 600℃의 온도에서 4시간 동안 소성하여 W/TiO2를 제조하였다. 이후, W/TiO2 담체 100 중량부에 Ammonium metavanadate, Manganess(II) nitrate hydrate를 각각 바나듐 4.0 중량부, 망간 2.0 중량부로 환산하여 정량 후 바나듐은 60~80℃의 증류수에, 망간은 상온의 증류수에 각각 용해시킨다. 바나듐 수용액의 경우, Oxalic acid dehydrate를 1 대 1의 몰비로 추가투입하여 용출을 방지하였다. 계속해서 앞서 제조된 W/TiO2 담체에 바나듐 수용액과 망간 수용액을 투입하여 슬러리 형태로 제조한다. 제조된 슬러리는 앞선 방법과 동일하게 건조하여 공기분위기에서 400℃의 온도에서 4시간 동안 소성하여 V-Mn/W/TiO2를 제조하였다.Ammonium metatugstate hydrate precursor is converted to 5.0 parts by weight of tungsten in 100 parts by weight of Anatase type TiO 2 carrier, and then dissolved in distilled water at room temperature. Subsequently, a TiO 2 carrier was added to the previously prepared tungsten aqueous solution to prepare a slurry form. Thereafter, the prepared slurry was dried at a temperature of 103° C. for more than 24 hours to completely remove moisture contained in the micropores, and then calcined at a temperature of 600° C. for 4 hours in an air atmosphere to prepare W/TiO 2 . Then, Ammonium metavanadate and Manganess (II) nitrate hydrate were converted to 4.0 parts by weight of vanadium and 2.0 parts by weight of manganese, respectively, in 100 parts by weight of W / TiO 2 carrier. dissolved in each. In the case of the vanadium aqueous solution, oxalic acid dehydrate was additionally added at a molar ratio of 1:1 to prevent elution. Subsequently, the prepared W/TiO 2 carrier was prepared in the form of a slurry by adding an aqueous solution of vanadium and an aqueous solution of manganese. The prepared slurry was dried in the same manner as in the previous method and calcined at 400° C. for 4 hours in an air atmosphere to prepare V-Mn/W/TiO 2 .

비교예 1Comparative Example 1

Anatase type TiO2 담체 100 중량부에 Ammonium metatugstate hydrate 전구체를 텅스텐 5.0 중량부로 환산하여 정량 후 상온의 증류수에 각각 용해시킨다. 계속해서 앞서 제조된 텅스텐 수용액에 TiO2 담체를 투입하여 슬러리 형태로 제조한다. 이후, 제조된 슬러리를 103℃의 온도에서 24시간 이상 건조하여 미세기공에 포함된 수분을 완전히 제거한 다음 공기분위기에서 600℃의 온도에서 4시간 동안 소성하여 W/TiO2를 제조하였다. 이후, W/TiO2 담체 100 중량부에 Ammonium metavanadate를 바나듐 4.0 중량부로 환산하여 정량 후 60~80℃의 증류수에 용해시킨다. 바나듐 수용액의 경우, Oxalic acid dehydrate를 1 대 1의 몰비로 추가투입하여 용출을 방지하였다. 계속해서 앞서 제조된 W/TiO2 담체에 바나듐 수용액을 투입하여 슬러리 형태로 제조한다. 제조된 슬러리는 앞선 방법과 동일하게 건조하여 공기분위기에서 400℃의 온도에서 4시간 동안 소성하여 V/W/TiO2를 제조하였다. 이후, 103℃에서 12시간 건조 후 400℃에서 4시간동안 공기분위기하에서 소성한 천연망간광석(NMO, Natural Manganese Ore)을 제조한다. 상기 준비된 V/W/TiO2와 NMO를 10:1의 무게비로 혼합하고 볼밀링하여 NMO/V/W/TiO2를 제조하였다.Ammonium metatugstate hydrate precursor is converted to 5.0 parts by weight of tungsten in 100 parts by weight of Anatase type TiO 2 carrier, and then dissolved in distilled water at room temperature. Subsequently, a TiO 2 carrier was added to the previously prepared tungsten aqueous solution to prepare a slurry form. Thereafter, the prepared slurry was dried at a temperature of 103° C. for more than 24 hours to completely remove moisture contained in the micropores, and then calcined at a temperature of 600° C. for 4 hours in an air atmosphere to prepare W/TiO 2 . Thereafter, Ammonium metavanadate is converted to 4.0 parts by weight of vanadium in 100 parts by weight of W/TiO 2 carrier, and after quantification, it is dissolved in distilled water at 60 to 80 °C. In the case of the vanadium aqueous solution, oxalic acid dehydrate was additionally added at a molar ratio of 1:1 to prevent elution. Subsequently, the vanadium aqueous solution was added to the previously prepared W/TiO 2 carrier to prepare a slurry form. The prepared slurry was dried in the same manner as in the previous method and calcined for 4 hours at a temperature of 400° C. in an air atmosphere to prepare V/W/TiO 2 . Thereafter, after drying at 103 ° C. for 12 hours, natural manganese ore (NMO, Natural Manganese Ore) calcined under an air atmosphere at 400 ° C. for 4 hours is prepared. NMO/V/W / TiO 2 was prepared by mixing the prepared V/W/TiO 2 and NMO at a weight ratio of 10:1 and ball-milling.

비교예 2Comparative Example 2

상기 W/TiO2 담체에 망간 첨가를 배제한 것을 제외하고 비교예 1과 동일하게 제조하였다. 이를 보다 상세히 설명하면 다음과 같다. It was prepared in the same manner as in Comparative Example 1 except that the addition of manganese to the W/TiO 2 carrier was excluded. A more detailed description of this is as follows.

Anatase type TiO2 담체 100 중량부에 Ammonium metatugstate hydrate 전구체를 텅스텐 5.0 중량부로 환산하여 정량 후 상온의 증류수에 각각 용해시킨다. 계속해서 앞서 제조된 텅스텐 수용액에 TiO2 담체를 투입하여 슬러리 형태로 제조한다. 이후, 제조된 슬러리를 103℃의 온도에서 24시간 이상 건조하여 미세기공에 포함된 수분을 완전히 제거한 다음 공기분위기에서 600℃의 온도에서 4시간 동안 소성하여 W/TiO2를 제조하였다. 이후, W/TiO2 담체 100 중량부에 Ammonium metavanadate를 바나듐 4.0 중량부로 환산하여 정량 후 60~80℃의 증류수에 용해시킨다. 바나듐 수용액의 경우, Oxalic acid dehydrate를 1 대 1의 몰비로 추가투입하여 용출을 방지하였다. 계속해서 앞서 제조된 W/TiO2 담체에 바나듐 수용액을 투입하여 슬러리 형태로 제조한다. 제조된 슬러리는 앞선 방법과 동일하게 건조하여 공기분위기에서 400℃의 온도에서 4시간 동안 소성하여 V/W/TiO2를 제조하였다.Ammonium metatugstate hydrate precursor is converted to 5.0 parts by weight of tungsten in 100 parts by weight of Anatase type TiO 2 carrier, and then dissolved in distilled water at room temperature. Subsequently, a TiO 2 carrier was added to the previously prepared tungsten aqueous solution to prepare a slurry form. Thereafter, the prepared slurry was dried at a temperature of 103° C. for more than 24 hours to completely remove moisture contained in the micropores, and then calcined at a temperature of 600° C. for 4 hours in an air atmosphere to prepare W/TiO 2 . Thereafter, Ammonium metavanadate is converted to 4.0 parts by weight of vanadium in 100 parts by weight of W/TiO 2 carrier, and after quantification, it is dissolved in distilled water at 60 to 80 °C. In the case of the vanadium aqueous solution, oxalic acid dehydrate was additionally added at a molar ratio of 1:1 to prevent elution. Subsequently, the vanadium aqueous solution was added to the previously prepared W/TiO 2 carrier to prepare a slurry form. The prepared slurry was dried in the same manner as in the previous method and calcined for 4 hours at a temperature of 400° C. in an air atmosphere to prepare V/W/TiO 2 .

비교제조예 3Comparative Preparation Example 3

상기 탈질촉매의 담체를 amorphous TiO2를 사용한 것을 제외하고 제조예와 동일하게 제조하였다.The carrier of the denitration catalyst was prepared in the same manner as in Preparation Example, except that amorphous TiO 2 was used.

비교제조예 4Comparative Preparation Example 4

상기 탈질촉매의 담체를 anatase TiO2와 rutile TiO2가 섞인 TiO2를 사용한 것을 제외하고 제조예와 동일하게 제조하였다.The support of the denitration catalyst was prepared in the same manner as in Preparation Example, except that TiO 2 in which anatase TiO 2 and rutile TiO 2 were mixed was used.

비교제조예 5Comparative Preparation Example 5

상기 탈질촉매의 담체를 anatase TiO2를 사용하되 제조예와 다른 물성을 지닌 TiO2를 사용한 것을 제외하고 제조예와 동일하게 제조하였다.The support of the denitration catalyst was prepared in the same manner as in Preparation Example, except that anatase TiO 2 was used, but TiO 2 having physical properties different from those of Preparation Example was used.

비교제조예 6Comparative Preparation Example 6

상기 제조예와 동일한 구성으로 촉매 슬러리의 제조 및 건조하여 공기분위기에서 300℃의 온도에서 4시간 동안 소성하여 V-Mn/W/TiO2를 제조하였다.V-Mn/W/TiO 2 was prepared by preparing and drying a catalyst slurry with the same configuration as in the preparation example, and then calcining the slurry at 300° C. for 4 hours in an air atmosphere.

비교제조예 7Comparative Preparation Example 7

상기 제조예와 동일한 구성으로 촉매 슬러리의 제조 및 건조하여 공기분위기에서 500℃의 온도에서 4시간 동안 소성하여 V-Mn/W/TiO2를 제조하였다.V-Mn/W/TiO 2 was prepared by preparing and drying a catalyst slurry with the same configuration as in the preparation example, and then calcining the slurry at 500° C. for 4 hours in an air atmosphere.

비교제조예 8Comparative Preparation Example 8

상기 제조예와 동일한 구성으로 촉매 슬러리의 제조 및 건조하여 공기분위기에서 600℃의 온도에서 4시간 동안 소성하여 V-Mn/W/TiO2를 제조하였다.V-Mn/W/TiO 2 was prepared by preparing and drying a catalyst slurry in the same configuration as in the above Preparation Example and firing it for 4 hours at a temperature of 600° C. in an air atmosphere.

실험예 1Experimental Example 1

도 4는 본 발명의 제조예와 비교예2에 따른 탈질촉매의 NO2 90% 조건에서의 활성을 비교한 그래프이다.4 is a graph comparing the activities of the denitration catalysts according to Preparation Example of the present invention and Comparative Example 2 under the condition of 90% NO 2 .

도 4를 참조하면, 본 발명의 제조예에 따른 바나듐-망간/텅스텐/티타니아계 탈질촉매는 비교예2에 따른 바나듐/텅스텐/티타니아계 탈질촉매보다 높은 활성을 나타내었고, “Standard SCR” 조건에서의 촉매와 비슷한 활성을 나타내는 것을 확인할 수 있었다. 이는, 본 발명에 따른 화력발전소용 탈질촉매가 질산암모늄의 형성을 억제함으로써 화력발전소 초기 가동시 발생되는 고농도의 이산화질소가 함유된 배가스 조건에서도 우수한 탈질성능이 유지되는 것으로 판단된다. 특히, 본 발명의 제조예에 따른 바나듐-망간/텅스텐/티타니아계 탈질촉매는 전 온도구간(180~350℃)에서 5ppm 이하의 아산화질소가 나타남에 따라 발생 억제를 확인하였다. 따라서, 본 발명에 따른 화력발전소용 탈질촉매를 사용할 경우, 이산화질소를 일산화탄소로 환원시키기 위한 별도의 탄화수소계 환원제 없이도 “Standard SCR” 과 유사한 탈질성능을 유지할 수 있어, 효율적이면서도 친환경적인 탈질반응을 진행할 수 있을 것으로 판단된다. Referring to FIG. 4, the vanadium-manganese/tungsten/titania-based denitrification catalyst according to Preparation Example of the present invention showed higher activity than the vanadium/tungsten/titania-based denitration catalyst according to Comparative Example 2, and under “Standard SCR” conditions It was confirmed that the activity of the catalyst was similar to that of It is believed that the denitrification catalyst for thermal power plants according to the present invention suppresses the formation of ammonium nitrate, thereby maintaining excellent denitrification performance even under flue gas conditions containing a high concentration of nitrogen dioxide generated during the initial operation of a thermal power plant. In particular, as the vanadium-manganese/tungsten/titania-based denitrification catalyst according to the preparation example of the present invention showed less than 5 ppm of nitrous oxide in the entire temperature range (180 to 350° C.), generation inhibition was confirmed. Therefore, when the denitrification catalyst for thermal power plants according to the present invention is used, it is possible to maintain denitrification performance similar to that of “Standard SCR” without a separate hydrocarbon-based reducing agent for reducing nitrogen dioxide to carbon monoxide, thereby enabling an efficient and environmentally friendly denitration reaction. It is judged that there will be

실험예 2Experimental Example 2

도 5는 본 발명의 제조예와 비교예1에 따른 탈질촉매의 NO2 90% 조건에서의 활성을 비교한 그래프이다.5 is a graph comparing the activities of the denitration catalysts according to Preparation Example of the present invention and Comparative Example 1 under the condition of 90% NO 2 .

도 5를 참조하면, 본 발명의 제조예에 따른 바나듐-망간/텅스텐/티타니아계 탈질촉매는 비교예1에 따른 천연망간광석/바나듐/텅스텐/티타니아계 탈질촉매보다 높은 활성을 나타내었다. 특히, 본 발명의 제조예에 따른 바나듐-망간/텅스텐/티타니아계 탈질촉매는 200℃ 이하에서 45% 이상의 탈질성능을 확인하였으며, 전 온도구간(180~350℃)에서 아산화질소의 농도가 5ppm 이하로 발생이 억제됨을 확인하였다. 이는, 본 발명에 따른 화력발전소용 탈질촉매가 질산암모늄의 형성을 억제함으로써 화력발전소 초기 가동 시 발생되는 고농도의 이산화질소가 함유된 배가스 조건에서도 우수한 탈질성능이 유지되는 것으로 판단된다. 따라서, 본 발명에 따른 화력발전소용 탈질촉매를 사용할 경우, 이산화질소를 일산화탄소로 환원시키기 위한 별도의 탄화수소계 환원제 없이도 “Standard SCR” 과 유사한 탈질성능을 유지할 수 있어, 효율적이면서도 친환경적인 탈질반응을 진행할 수 있을 것으로 판단된다. Referring to FIG. 5 , the vanadium-manganese/tungsten/titania-based denitrification catalyst according to Preparation Example of the present invention exhibited higher activity than the natural manganese ore/vanadium/tungsten/titania-based denitration catalyst according to Comparative Example 1. In particular, the vanadium-manganese/tungsten/titania-based denitrification catalyst according to the production example of the present invention confirmed the denitrification performance of 45% or more at 200 ° C or less, and the concentration of nitrous oxide was 5 ppm or less in the entire temperature range (180 to 350 ° C). It was confirmed that the occurrence was inhibited. It is believed that the denitrification catalyst for thermal power plants according to the present invention suppresses the formation of ammonium nitrate, thereby maintaining excellent denitrification performance even under exhaust gas conditions containing a high concentration of nitrogen dioxide generated during the initial operation of a thermal power plant. Therefore, when the denitrification catalyst for thermal power plants according to the present invention is used, it is possible to maintain denitrification performance similar to that of “Standard SCR” without a separate hydrocarbon-based reducing agent for reducing nitrogen dioxide to carbon monoxide, thereby enabling an efficient and environmentally friendly denitration reaction. It is judged that there will be

실험예 3Experimental Example 3

도 6은 섭씨 180도에서 NO2 비율이 높은 배가스 조건에서 제조예와 비교예1, 비교예2에 따른 탈질촉매를 이용한 탈질반응의 FT-IR DRIFT 분석 결과를 나타낸 그래프이다.6 is a graph showing the results of FT-IR DRIFT analysis of the denitrification reaction using the denitration catalysts according to Preparation Example and Comparative Examples 1 and 2 under flue gas conditions with a high NO 2 ratio at 180 degrees Celsius.

도 6을 참조하면, NH3 1000 ppm을 30분 동안 흡착 후, NO2 1000 ppm과 O2 3% 를 주입하여 촉매 표면에서의 반응을 확인한 결과, 비교예1에 따른 천연망간광석/바나듐/텅스텐/티타니아계 촉매와 비교예2에 따른 바나듐/텅스텐/타타니아계 탈질촉매는 NO2와 O2를 주입한지 45분, 25분이 지나서 1346 cm-1 NO2 peak 및 1620 cm-1의 NO2 peak가 생성된 것을 확인할 수 있으며, 이러한 NO2 peak는 NH3 와 반응하여 생긴 질산암모늄(NH4NO3)으로서, 탈질촉매의 활성 저하의 요인으로 볼 수 있다.Referring to FIG. 6, after adsorbing 1000 ppm of NH 3 for 30 minutes, injecting 1000 ppm of NO 2 and 3% of O 2 to confirm the reaction on the catalyst surface, natural manganese ore/vanadium/tungsten according to Comparative Example 1 / Titania-based catalyst and vanadium / tungsten / titania-based denitrification catalyst according to Comparative Example 2 showed 1346 cm -1 NO 2 peak and 1620 cm -1 NO 2 peak after 45 minutes and 25 minutes after injection of NO 2 and O 2 It can be confirmed that is generated, and this NO 2 peak is ammonium nitrate (NH 4 NO 3 ) generated by reacting with NH 3 , which can be seen as a factor in reducing the activity of the denitration catalyst.

반면, 망간이 첨가된 본 발명의 제조예에 따른 바나듐-망간/텅스텐/티타니아계 탈질촉매는 1346 cm-1 NO2 peak 및 1620 cm-1의 NO2 peak가 생성되지 않음을 확인할 수 있었다. 이는, 본 발명에 따른 화력발전소용 탈질촉매가 망간의 첨가에 따른 반응성으로 인해 질산암모늄(NH4NO3)의 생성이 억제되는 것으로 판단된다.On the other hand, it was confirmed that the vanadium-manganese/tungsten/titania-based denitration catalyst according to the preparation example of the present invention to which manganese was added did not generate NO 2 peaks of 1346 cm −1 and NO 2 peaks of 1620 cm −1 . It is believed that the generation of ammonium nitrate (NH 4 NO 3 ) is suppressed due to the reactivity of the denitration catalyst for thermal power plants according to the present invention according to the addition of manganese.

실험예 4Experimental Example 4

도 7은 본 발명의 제조예와 비교예1, 비교예 2에 따른 탈질촉매를 이용한 H2-TPR 분석 결과를 나타낸 그래프이다.7 is a graph showing the results of H 2 -TPR analysis using denitration catalysts according to Preparation Example and Comparative Examples 1 and 2 of the present invention.

도 7을 참조하면 비교예1에 따른 천연망간광석/바나듐/텅스텐/티타니아계 탈질촉매는 MnO2에서 MnO, Mn2O3로써의 환원 peak가 확인되었다. 이는 주로 β-MnO2(pyrolusite) 구조가 지배적인 천연망간광석이 첨가됨에 따라 Mn4+가 66%로 존재함을 확인하였다. 또한 천연망간광석이 활성금속인 바나듐을 covering함으로써 환원 peak가 낮게 형성됨을 확인하였다. Referring to FIG. 7, the natural manganese ore/vanadium/tungsten/titania-based denitrification catalyst according to Comparative Example 1 showed reduction peaks from MnO 2 to MnO and Mn 2 O 3 . It was confirmed that 66% of Mn 4+ was present as the natural manganese ore, in which the β-MnO 2 (pyrolusite) structure was dominant, was added. In addition, it was confirmed that the reduced peak was formed low by covering the natural manganese ore with vanadium, an active metal.

반면, 본 발명에 따른 바나듐-망간/텅스텐/티타니아계 탈질 촉매는 망간의 전구체로써 망간 나이트레이트를 사용함에 따라 바나듐과 망간의 결합작용을 통해 낮은 Mn의 환원 peak가 형성되었으며, Mn4+가 60% 이하로 존재함을 확인하였다. 또한 바나듐과 망간의 결합작용에 따라 바나듐 환원 peak가 비교예1, 비교예2와는 다른 온도에서 형성됨을 확인하였다. 이러한 결과는 망간의 높은 산화력이 바나듐과의 결합에 의해 일부 억제됨으로써 환원제인 암모니아의 산화를 제어하여 아산화질소의 발생을 최소화하였다고 판단된다.On the other hand, as the vanadium-manganese/tungsten/titania-based denitration catalyst according to the present invention uses manganese nitrate as a precursor of manganese, a low Mn reduction peak is formed through the combination of vanadium and manganese, and Mn 4+ is 60 % or less. In addition, it was confirmed that the vanadium reduction peak was formed at a different temperature than Comparative Example 1 and Comparative Example 2 according to the binding action of vanadium and manganese. These results suggest that manganese's high oxidizing power is partially suppressed by its combination with vanadium, thereby minimizing the generation of nitrous oxide by controlling the oxidation of ammonia, a reducing agent.

따라서는 상대적으로 Mn4+의 함량이 적은 망간 나이트레이트를 사용한 본 실시예의 촉매가 천연망간광석 보다 SCR 촉매 활성에 치명적인 질산암모늄(NH4NO3) 형성, 특히 저온 공정 시 발생하는 질산암모늄(NH4NO3) 및 아산화질소(N2O) 발생 억제에 매우 효과적인 것을 시사한다. Therefore, the catalyst of this embodiment using manganese nitrate with a relatively low content of Mn 4+ reduces the formation of ammonium nitrate (NH 4 NO 3 ), which is more fatal to the SCR catalyst activity than natural manganese ore, especially during low-temperature processes. 4 NO 3 ) and nitrous oxide (N 2 O), suggesting that it is very effective in inhibiting generation.

실험예 5Experimental Example 5

하기 표 2는 망간 나이트레이트로 제조된 바나듐-망간/텅스텐/티타니아 촉매의 지지체를 각기 달리하여 제조된 제조예, 비교제조예 3, 비교제조예 4의 200도에서의 탈질성능을 확인한 결과이다.Table 2 below shows the results of confirming the denitrification performance at 200 degrees of Preparation Example, Comparative Preparation Example 3, and Comparative Preparation Example 4 prepared by using different supports for vanadium-manganese/tungsten/titania catalysts made of manganese nitrate.

NOx 전환율NOx conversion rate N2O 발생량Amount of N2O 제조예manufacturing example 5050 00 비교제조예 3Comparative Preparation Example 3 1919 1111 비교제조예 4Comparative Preparation Example 4 2727 1717

표 2를 참조하면 Anatase TiO2를 사용한 본 발명의 제조예를 제외하고 200도에서 30% 이하의 NOx 전환율 및 10ppm 이상의 N2O 발생을 확인하였다. 하기 표 3은 각기 다른 물성을 지닌 Anatase TiO2를 이용하여 제조된 제조예, 비교제조예 5의 200도에서의 탈질성능을 확인한 결과이다. Referring to Table 2, NOx conversion rate of 30% or less and N2O generation of 10 ppm or more were confirmed at 200 degrees, except for the preparation example of the present invention using Anatase TiO 2 . Table 3 below shows the results of confirming the denitrification performance at 200 degrees of Preparation Example and Comparative Preparation Example 5 prepared using Anatase TiO 2 having different physical properties.

NOx 전환율NOx conversion rate N2O 발생량Amount of N2O 제조예manufacturing example 5050 00 비교제조예 5Comparative Preparation Example 5 6363 1111

표 3을 참조하면 Anatase TiO2를 사용하였을 때, 200도에서 두 촉매 모두 50% 이상의 NOx 전환율을 나타내었다. 반면, 비교제조예 5는 10ppm 이상의 N2O 발생이 확인되었다.하기 표 4는 각기 다른 물성을 지닌 Anatase TiO2를 이용하여 제조된 제조예, 비교제조예 5의 BET 분석 결과이다.Referring to Table 3, when Anatase TiO 2 was used, both catalysts exhibited NOx conversion rates of 50% or more at 200 degrees. On the other hand, in Comparative Preparation Example 5, N 2 O generation of 10 ppm or more was confirmed. Table 4 below shows the BET analysis results of Preparation Example and Comparative Preparation Example 5 prepared using Anatase TiO 2 having different physical properties.

BET
(cm3/g)
BET
(cm 3 /g)
Mean pore diameter
(nm)
Mean pore diameter
(nm)
Vp
(cm3/g)
Vp
(cm 3 /g)
제조예manufacturing example 59.01859.018 23.57223.572 0.34610.3461 비교제조예 5Comparative Preparation Example 5 44.06844.068 32.66232.662 0.35980.3598

따라서 anatase TiO2를 사용하여 촉매를 제조하고 바나듐-망간/텅스텐/티타니아 촉매의 최종 물성이 BET 45 cm3/g 이상, Mean pore diameter 32 상대적으로 nm 이하, Vp 0.35cm3/g 이하인 조건에서 SCR 촉매 활성에 치명적인 질산암모늄(NH4NO3) 형성, 특히 저온 공정 시 발생하는 질산암모늄(NH4NO3) 및 아산화질소(N2O) 발생 억제에 매우 효과적인 것을 시사한다. Therefore, a catalyst was prepared using anatase TiO 2 and the final physical properties of the vanadium-manganese/tungsten/titania catalyst were BET 45 cm 3 /g or more, mean pore diameter 32 nm or less, and Vp 0.35 cm 3 /g or less. It is suggested that it is very effective in inhibiting the formation of ammonium nitrate (NH 4 NO 3 ), which is fatal to the catalyst activity, especially the generation of ammonium nitrate (NH 4 NO 3 ) and nitrous oxide (N 2 O) generated during low-temperature processes.

실험예 6Experimental Example 6

도 8은 본 발명의 제조예와 비교제조예 5에 따른 탈질촉매를 이용한 Raman 분석 결과를 나타낸 그래프이다.8 is a graph showing the results of Raman analysis using the denitrification catalyst according to Preparation Example 5 and Comparative Preparation Example 5 of the present invention.

비교제조예 1을 참조하면 천연망간광석/바나듐/텅스텐/티타니아계 탈질촉매는 천연망간광석이 첨가됨에 따라 주로 β-MnO2(pyrolusite) 구조가 지배적인 존재함을 확인하였다 Referring to Comparative Preparation Example 1, it was confirmed that the natural manganese ore/vanadium/tungsten/titania-based denitrification catalyst mainly had a β-MnO 2 (pyrolusite) structure as the natural manganese ore was added.

반면, 본 발명에 제조예에 따른 바나듐-망간/텅스텐/티타니아계 탈질 촉매는 망간의 전구체로써 망간 나이트레이트를 사용함에 따라 α-Mn2O3 구조(304, 396, 696cm-1) 및 Mn3O4 구조(283, 480cm-1)의 성장이 확인되었다.On the other hand, the vanadium-manganese/tungsten/titania-based denitration catalyst according to the preparation example of the present invention uses manganese nitrate as a manganese precursor, and thus has an α-Mn 2 O 3 structure (304, 396, 696cm -1 ) and Mn 3 Growth of the O 4 structure (283, 480 cm −1 ) was confirmed.

반면, 비교제조예 5는 α-Mn2O3 구조(304, 396cm-1)는 확인되었지만, Mn3O4 구조(283, 480cm-1)은 확인되지 않았다.On the other hand, in Comparative Preparation Example 5, the α-Mn 2 O 3 structure (304, 396 cm −1 ) was confirmed, but the Mn 3 O 4 structure (283, 480 cm −1 ) was not confirmed.

따라서 β-MnO2(pyrolusite) 구조가 지배적인 천연망간광석과는 달리 α-Mn2O3 및 Mn3O4 구조의 망간을 모두 포함하며, 이 구조가 혼재된 본 발명의 제조예만이 탈질촉매가, SCR 촉매 활성에 치명적인 질산암모늄(NH4NO3) 형성, 특히 저온 공정 시 발생하는 질산암모늄(NH4NO3) 및 아산화질소(N2O) 발생 억제에 매우 효과적인 것을 시사한다. Therefore, unlike natural manganese ores in which the β-MnO 2 (pyrolusite) structure dominates, it contains both α-Mn 2 O 3 and Mn 3 O 4 manganese, and only the production example of the present invention in which these structures are mixed denitrifies. It is suggested that the catalyst is very effective in suppressing the formation of ammonium nitrate (NH 4 NO 3 ), which is fatal to the SCR catalyst activity, especially the generation of ammonium nitrate (NH 4 NO 3 ) and nitrous oxide (N 2 O) generated during low-temperature processes.

실험예 7Experimental Example 7

하기 표 5는 망간 나이트레이트로 제조된 바나듐-망간/텅스텐/티타니아 촉매 슬러리의 건조 후 각기 다른 소성온도에 따라 제조된 제조예, 비교제조예 6, 비교제조예 7, 비교제조예 8의 200도에서의 탈질성능을 확인한 결과이다.Table 5 below shows Preparation Examples, Comparative Preparation Example 6, Comparative Preparation Example 7, and Comparative Preparation Example 8 prepared according to different firing temperatures after drying the vanadium-manganese/tungsten/titania catalyst slurry prepared from manganese nitrate at 200 degrees. This is the result of confirming the denitrification performance in

NOx 전환율NOx conversion rate N2O 발생량Amount of N 2 O generated 제조예manufacturing example 5050 00 비교제조예 6Comparative Preparation Example 6 3232 22 비교제조예 7Comparative Preparation Example 7 4848 1One 비교제조예 8Comparative Preparation Example 8 3838 55

상기 결과는 소성온도가 350℃ 내지 450℃의 온도에서 소성하는 하는 경우 탈질효율이 매우 우수하다는 것을 나타낸다. 본 발명에 따른 탈질촉매는 화력발전용 배기가스 처리 시스템 중 화력발전 후 배출되는 배기가스에서 질소산화물을 저감하는 선택적 촉매환원(SCR)부에 사용될 수 있다. 특히 초기 기동시 발생하는 높은 NO2/NOx 비에서 질산암모늄(NH4NO3)의 형성 및 아산화질소(N2O) 발생이 억제될 수 있다. The above results indicate that the denitrification efficiency is very good when firing at a temperature of 350 ° C to 450 ° C. The NOx removal catalyst according to the present invention may be used in a selective catalytic reduction (SCR) unit for reducing nitrogen oxides in exhaust gas discharged after thermal power generation in an exhaust gas treatment system for thermal power generation. In particular, the formation of ammonium nitrate (NH 4 NO 3 ) and the generation of nitrous oxide (N 2 O) can be suppressed at a high NO 2 /NO x ratio occurring during initial startup.

본 발명은 더 나아가, FAST-SCR 공정을 유도하기 위하여 암모니아와 질산암모늄(AN)이 1:1의 몰비로 혼합된 환원제를 이용하여 SCR 공정을 진행하다. The present invention further proceeds with the SCR process using a reducing agent in which ammonia and ammonium nitrate (AN) are mixed in a molar ratio of 1:1 to induce the FAST-SCR process.

특히 질산암모늄(AN)은 열분해시 NO2로 분해되며, 섭씨 200 내지 300도의 저온과, 섭씨 150도 내지 200도의 보다 낮은 저온에서 우수한 탈질효율을 보인다. In particular, ammonium nitrate (AN) is decomposed into NO2 during thermal decomposition, and exhibits excellent denitrification efficiency at low temperatures of 200 to 300 degrees Celsius and lower temperatures of 150 degrees Celsius to 200 degrees Celsius.

도 9는 본 발명의 일 실시예에 따른 선택적 촉매환원방법의 단계도이다. 9 is a step diagram of a selective catalytic reduction method according to an embodiment of the present invention.

도 9를 참조하면, 본 발명의 일 실시예에 따른 선택적 촉매환원방법은 질소산화물을 포함하는 배기가스에 암모니아와 질산암모늄을 포함하는 환원제를 주입하는 단계; 및 상기 배기가스를 촉매와 접촉시켜 선택적 촉매환원반응을 진행하는 단계를 포함한다. 본 발명의 일 실시예에서 상기 배기가스는 화력발전이나 소각로 에서 발생하는 배기가스로 다량의 질소산화물을 함유하고 있다. 이때 본 발명은 FAST-SCR 공정을 유도하기 위하여 암모니아와 질산암모늄(AN)이 1:1의 몰비로 혼합된 환원제를 이용하여 탈질 효율을 향상시킨다. Referring to FIG. 9, the selective catalytic reduction method according to an embodiment of the present invention includes the steps of injecting a reducing agent containing ammonia and ammonium nitrate into exhaust gas containing nitrogen oxide; and contacting the exhaust gas with a catalyst to perform a selective catalytic reduction reaction. In one embodiment of the present invention, the exhaust gas is an exhaust gas generated from a thermal power plant or an incinerator and contains a large amount of nitrogen oxides. At this time, the present invention improves the denitrification efficiency by using a reducing agent in which ammonia and ammonium nitrate (AN) are mixed in a molar ratio of 1:1 to induce the FAST-SCR process.

도 10 및 11은 신규 혼합 환원제를 이용한 SCR 반응 테스트 결과이다. 10 and 11 are SCR reaction test results using a novel mixed reducing agent.

도 10을 참조하면, 섭씨 250도의 통상 SCR 공정 온도에서 암모니아(300ppm)과 동일 양의 질산암모늄(AN, 증진제로 표시됨, 300ppm)이 주입되는 경우, NO 전환율이 무려 14% 증가하는 것을 알 수 있다. 이것은 암모니아와 동일 몰비의 질산암모늄을 사용하는 경우, 실질적인 탈질효율이 증가하는 것을 시사한다. Referring to FIG. 10, when ammonia (300 ppm) and the same amount of ammonium nitrate (AN, denoted as an enhancer, 300 ppm) are injected at a normal SCR process temperature of 250 degrees Celsius, it can be seen that the NO conversion rate increases by as much as 14% . This suggests that the actual denitrification efficiency increases when ammonium nitrate is used in the same molar ratio as ammonia.

도 12를 참조하면, 질산암모늄의 양이 80ppm 수준으로 감소하는 경우, 효율은 5% 수준으로 감소하였는데, 이것은 동일 양의 암모니아와 질산암모늄 사용이 중요하다는 것을 시사한다. Referring to FIG. 12, when the amount of ammonium nitrate decreased to 80 ppm, the efficiency decreased to 5%, suggesting that the use of the same amount of ammonia and ammonium nitrate is important.

도 13은 동일한 양의 암모니아와 질산암모늄(AN)을 사용하는 경우 온도에 따른 탈질효율을 분석한 결과이다. 13 is a result of analyzing denitrification efficiency according to temperature when using the same amount of ammonia and ammonium nitrate (AN).

도 13을 참조하면 실질적으로 섭씨 250도에서 탈질효율이 가장 높았으며, 이것은 본 발명에 따른 환원제가 섭씨 300도 이하의 상대적인 저온에서도 우수한 탈질효율을 보내는 것을 시사한다. Referring to FIG. 13, the denitrification efficiency was substantially the highest at 250 degrees Celsius, which suggests that the reducing agent according to the present invention has excellent denitration efficiency even at a relatively low temperature of 300 degrees Celsius or less.

Claims (9)

복합화력발전 운전방법으로,
복합화력 발전시 발생하는 배가스를 탈질촉매에 접촉시켜 탈질공정을 진행하는 단계; 및
상기 탈질된 배가스를 CO 산화 촉매에 접촉시켜 CO 산화공정을 진행하는 단계를 포함하는 것을 특징으로 하는 탈질촉매를 이용한 복합화력발전 운전방법이며,
상기 배가스는 NO2/NOx≥0.5 이상이며,
상기 탈질촉매는 바나듐/텅스텐/티타니아 및 망간을 포함하며, 상기 망간은 α-Mn2O3 및 Mn3O4 구조를 모두 포함하며, 이로써 질산암모늄(NH4NO3)의 형성 및 아산화질소(N2O) 발생이 억제되며,
상기 탈질공정는 선택적 촉매환원(SCR)공정이며, 상기 배가스에 주입되는 환원제는 암모니아와 질산암모늄을 포함하는 환원제인 것을 특징으로 하는 탈질촉매를 이용한 복합화력발전 운전방법.
As a combined cycle power plant operation method,
Proceeding a denitrification process by contacting exhaust gas generated during combined cycle power generation with a denitrification catalyst; and
A combined cycle power plant operating method using a denitrification catalyst, comprising the step of contacting the denitrated exhaust gas with a CO oxidation catalyst to proceed with a CO oxidation process,
The flue gas is NO 2 /NO x ≥ 0.5 or more,
The denitrification catalyst includes vanadium/tungsten/titania and manganese, and the manganese includes both α-Mn 2 O 3 and Mn 3 O 4 structures, thereby forming ammonium nitrate (NH 4 NO 3 ) and nitrous oxide ( N 2 O) generation is suppressed,
The denitrification process is a selective catalytic reduction (SCR) process, and the reducing agent injected into the exhaust gas is a reducing agent containing ammonia and ammonium nitrate.
제 1항에 있어서,
상기 탈질촉매의 표면 Mn 중 Mn4+의 분율은 60% 이하인 것을 특징으로 하는 탈질촉매를 이용한 복합화력발전 운전방법.
According to claim 1,
Combined thermal power plant operating method using a denitration catalyst, characterized in that the fraction of Mn 4+ in the surface Mn of the denitration catalyst is 60% or less.
제 1항에 있어서,
상기 화력발전소용 탈질촉매는 망간 나이트레이트를 전구체로 하여 소성되어 제조된 것을 특징으로 하는 탈질촉매를 이용한 복합화력발전 운전방법.
According to claim 1,
The combined thermal power plant operating method using a denitration catalyst, characterized in that the denitration catalyst for thermal power plants is prepared by firing manganese nitrate as a precursor.
제 1항에 있어서,
상기 화력발전소용 탈질촉매는 anatase TiO2를 사용하되, 바나듐-망간/텅스텐/티타니아의 BET는 45 cm3/g 이상, Mean pore diameter는 32 nm 이하, Vp는 0.35cm3/g 이하로 소성되어 제조된 것을 특징으로 하는 탈질촉매를 이용한 복합화력발전 운전방법.
According to claim 1,
The denitrification catalyst for thermal power plants uses anatase TiO 2 , but the BET of vanadium-manganese/tungsten/titania is 45 cm 3 /g or more, the mean pore diameter is 32 nm or less, and the Vp is 0.35 cm 3 /g or less. Combined cycle power plant operation method using a denitrification catalyst, characterized in that manufactured.
제1항에 있어서,
상기 탈질촉매의 최종 소성온도는 섭씨 350도 내지 450도인 것을 특징으로 하는 탈질촉매를 이용한 복합화력발전 운전방법.
According to claim 1,
The combined thermal power plant operating method using a denitration catalyst, characterized in that the final firing temperature of the denitration catalyst is 350 to 450 degrees Celsius.
제1항에 있어서,
상기 탈질촉매는, NO2/NOx=0.9, 200℃ 이하의 조건에서 질소산화물 전환율이 45% 이상인 것을 특징으로 하는 탈질촉매를 이용한 복합화력발전 운전방법.
According to claim 1,
The denitrification catalyst has a nitrogen oxide conversion rate of 45% or more under the condition of NO 2 /NO x =0.9 and 200° C. or less.
제 1항에 있어서,
상기 티타니아 100 중량부에 대해 상기 바나듐은 2.0 내지 8.0 중량부, 상기 텅스텐은 2.0 내지 10.0 중량부. 상기 망간은 1.0 내지 3.0 중량부인 것을 특징으로 하는 탈질촉매를 이용한 복합화력발전 운전방법.
According to claim 1,
2.0 to 8.0 parts by weight of the vanadium and 2.0 to 10.0 parts by weight of the tungsten based on 100 parts by weight of the titania. The combined cycle power plant operating method using a denitrification catalyst, characterized in that the manganese is 1.0 to 3.0 parts by weight.
제 1항에 있어서,
상기 환원제는 암모니아와 질산암모늄가 1:1의 몰비인 것을 특징으로 하는 질산암모늄을 이용한 탈질촉매를 이용한 복합화력발전 운전방법.
According to claim 1,
The reducing agent is a combined cycle power plant operation method using a denitrification catalyst using ammonium nitrate, characterized in that ammonia and ammonium nitrate have a molar ratio of 1: 1.
제 1항에 있어서,
상기 배기가스의 온도는 섭씨 150도 내지 200도인 것을 특징으로 하는 탈질촉매를 이용한 복합화력발전 운전방법.

According to claim 1,
The combined cycle power plant operating method using a denitrification catalyst, characterized in that the temperature of the exhaust gas is 150 to 200 degrees Celsius.

KR1020220175011A 2021-12-14 2022-12-14 Method for operation of combined cycle power plant using denitrification catalyst and metal support KR20230091061A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210178184 2021-12-14
KR1020210178184 2021-12-14

Publications (1)

Publication Number Publication Date
KR20230091061A true KR20230091061A (en) 2023-06-22

Family

ID=86989279

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220175011A KR20230091061A (en) 2021-12-14 2022-12-14 Method for operation of combined cycle power plant using denitrification catalyst and metal support

Country Status (1)

Country Link
KR (1) KR20230091061A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102159082B1 (en) 2020-01-08 2020-09-23 주식회사 이엠코 Method for treating exhaust gas of thermal plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102159082B1 (en) 2020-01-08 2020-09-23 주식회사 이엠코 Method for treating exhaust gas of thermal plant

Similar Documents

Publication Publication Date Title
KR101314796B1 (en) CATALYTIC PROCESS FOR CONTROL OF NOx EMISSIONS USING HYDROGEN
Skalska et al. Trends in NOx abatement: A review
US7744840B2 (en) Selective catalytic reduction system and process using a pre-sulfated zirconia binder
KR101670075B1 (en) Manufacturing Method of De-NOx Catalyst for Selective Catalytic Reduction
EP2484441B1 (en) Mercury oxidation catalyst and method for producing the same
US7988940B2 (en) Selective catalytic reduction system and process for treating NOx emissions using a zinc or titanium promoted palladium-zirconium catalyst
KR101891233B1 (en) Catalyst for removing nitrogen oxide comprising catalyst layer formed on the body surface, a preparation method and use thereof
US11371406B2 (en) Low-temperature de-NOx catalyst for treatment of exhaust gas from stationary source and method of manufacturing same
US7976805B2 (en) Selective catalytic reduction system and process for treating NOx emissions using a palladium and rhodium or ruthenium catalyst
JP2005081189A (en) Catalyst for denitrifying high temperature waste gas
JP4182325B2 (en) Low temperature denitration catalyst and exhaust gas low temperature denitration method
KR102476863B1 (en) Denitrification catalyst and exhaust gas treatment system for thermal power generation using the same
CN115282752B (en) Low-temperature flue gas NOx and VOCs cooperative removal method based on coupling catalysis of pre-oxidation tempering
KR102161131B1 (en) Antimony / titania carrier and its production method, catalyst for removal of harmful gaseous substances using the carrier, and production method thereof
KR20230091061A (en) Method for operation of combined cycle power plant using denitrification catalyst and metal support
KR20230090284A (en) Method for operation of combined cycle power plant using denitrification catalyst
JP3843520B2 (en) Low temperature denitration catalyst, production method thereof, and low temperature denitration method
KR20230085034A (en) Denitrification catalyst and exhaust gas treatment system for thermal power generation using the same
KR20230085785A (en) Exhaust gas treatment system for liquefied natural gas combined cycle power generation
KR20230067406A (en) Exhaust gas treatment system for liquefied natural gas combined cycle power generation
KR20230091060A (en) Selective catalytic reduction method using ammonium nitrate
KR100473080B1 (en) Method for Improving NOx Removal Efficiency from Flue Gas and Reducing Consumption of Ammonia and Emission of Nitrogen Dioxide Using Modified Natural Manganese Ores
KR20220109617A (en) Denitrification catalyst for thermal power plant and its manufacturing method
KR102558168B1 (en) Catalyst for ammonia oxidation, and method for producing the same
KR102634719B1 (en) Selective catalytic reduction comprising surface treatment layer and method of preparing the same