KR20230067406A - Exhaust gas treatment system for liquefied natural gas combined cycle power generation - Google Patents

Exhaust gas treatment system for liquefied natural gas combined cycle power generation Download PDF

Info

Publication number
KR20230067406A
KR20230067406A KR1020210153471A KR20210153471A KR20230067406A KR 20230067406 A KR20230067406 A KR 20230067406A KR 1020210153471 A KR1020210153471 A KR 1020210153471A KR 20210153471 A KR20210153471 A KR 20210153471A KR 20230067406 A KR20230067406 A KR 20230067406A
Authority
KR
South Korea
Prior art keywords
exhaust gas
catalyst
scr
combined cycle
cycle power
Prior art date
Application number
KR1020210153471A
Other languages
Korean (ko)
Inventor
노세윤
서병한
가명진
석영환
강철희
이효상
Original Assignee
대영씨엔이(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대영씨엔이(주) filed Critical 대영씨엔이(주)
Priority to KR1020210153471A priority Critical patent/KR20230067406A/en
Publication of KR20230067406A publication Critical patent/KR20230067406A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/003Arrangements of devices for treating smoke or fumes for supplying chemicals to fumes, e.g. using injection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8643Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/10Nitrogen; Compounds thereof
    • F23J2215/101Nitrous oxide (N2O)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/10Catalytic reduction devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Provided is an exhaust gas treatment system for liquefied natural gas combined cycle power generation, comprising: a selective catalytic reduction (SCR) unit for reducing nitrogen oxides in the exhaust gas discharged after the combined cycle power generation; and a carbon monoxide (CO) treatment unit disposed after the selective catalytic reduction (SCR) unit and equipped with a catalyst to remove carbon monoxide, wherein the NO_2/NO_x ratio in the exhaust gas is 0.5 or more.

Description

액화천연가스 복합화력발전용 배기가스 처리 시스템{Exhaust gas treatment system for liquefied natural gas combined cycle power generation} Exhaust gas treatment system for liquefied natural gas combined cycle power generation}

본 발명은 액화천연가스 복합화력발전용 배기가스 처리 시스템에 관한 것으로, 보다 상세하게는 초기 기동 운전 시 배출되는 질소산화물과 일산화탄소를 모두 효과적으로 제거할 수 있는, 액화천연가스 복합화력발전용 배기가스 처리 시스템에 관한 것이다. The present invention relates to an exhaust gas treatment system for a liquefied natural gas combined cycle power plant, and more particularly, to an exhaust gas treatment system for a liquefied natural gas combined cycle power plant capable of effectively removing both nitrogen oxides and carbon monoxide emitted during initial start-up operation. It's about the system.

LNG 복합화력은 발전기 정상운전 시에는 대기오염물질이 거의 발생하지 않지만 기동 시에는 일시적으로 오염물질이 발생한다. 발전기 기동 시에는 운전 시보다 낮은 배출가스 온도(200℃)로 인해 환원제와의 반응성이 낮아 대기오염물질 제거에 어려움이 있다.LNG combined cycle power generation generates almost no air pollutants during normal operation of the generator, but pollutants are temporarily generated during start-up. When the generator is started, it is difficult to remove air pollutants due to the low reactivity with the reducing agent due to the lower exhaust gas temperature (200 ° C) than during operation.

과거에는 기동 시부터 배출되는 여러가지 유해물질 중 정상운전 모드 시까지 NOx 제거에 대한 유예시간을 두고 있었으나, 현재 미세먼지에 대한 총량규제가 강화되면서 기동 시 부터 배출되는 NOx를 처리해야 되어 유예시간이 없어지면서 초기부터 NOx 제거(디녹스)를 하여야 하는 문제가 있다. In the past, there was a grace period for NOx removal from various harmful substances emitted from start-up to normal operation mode. However, there is a problem that NOx removal (denox) must be performed from the beginning.

따라서, 초기 배출되는 CO, NOx와 CH4 등의 탄화수소를 효과적으로 제거할 수 있는 새로운 기술 개발이 필요하다. Therefore, it is necessary to develop a new technology capable of effectively removing hydrocarbons such as CO, NOx, and CH4 that are initially emitted.

따라서, 본 발명이 해결하고자 하는 과제는 액화천연가스 복합화력발전 기동 시 배출되는 배기가스 특성을 고려한 새로운 배기가스 처리시스템을 제공하는 것이다. Therefore, the problem to be solved by the present invention is to provide a new exhaust gas treatment system in consideration of the characteristics of exhaust gas discharged when starting a liquefied natural gas combined cycle power plant.

상기 과제를 해결하기 위하여, 본 발명은 액화천연가스 복합화력발전용 배기가스 처리 시스템으로, 상기 복합화력발전 후 배출되는 배기가스에서 질소산화물을 저감하는 선택적 촉매환원(SCR)부; 상기 선택적 촉매환원(SCR)부 후단에 배치되어, 일산화탄소를 제거하는 촉매가 구비된 일산화탄소(CO)처리부;를 포함하며, 상기 배기가스에서 NO2/NOx 비 0.5 이상인 것을 특징으로 하는 액화천연가스 복합화력발전용 배기가스 처리 시스템을 제공한다. In order to solve the above problems, the present invention is an exhaust gas treatment system for a liquefied natural gas combined cycle power plant, a selective catalytic reduction (SCR) unit for reducing nitrogen oxides in exhaust gas discharged after the combined cycle power plant; A carbon monoxide (CO) processing unit disposed at the rear end of the selective catalytic reduction (SCR) unit and equipped with a catalyst for removing carbon monoxide; and a liquefied natural gas characterized in that the NO 2 /NO x ratio in the exhaust gas is 0.5 or more. An exhaust gas treatment system for combined cycle power generation is provided.

본 발명의 일 실시예에서, 상기 선택적 촉매환원(SCR)부의 촉매는 NO2/NOx비 0.5 이상에서도 선택적 촉매환원반응이 일어나는 NO2 SCR 촉매이며, 상기 액화천연가스 복합화력발전용 배기가스 처리 시스템은, 상기 선택적 촉매환원(SCR)부에 결합되어 상기 선택적 촉매환원(SCR)부로 암모니아를 직분사하는 암모니아 주입부를 더 포함한다. In one embodiment of the present invention, the catalyst of the selective catalytic reduction (SCR) unit is an NO 2 SCR catalyst in which a selective catalytic reduction reaction occurs even at a NO 2 / NOx ratio of 0.5 or more, and the exhaust gas treatment system for liquefied natural gas combined cycle power generation , Further comprising an ammonia injection unit coupled to the selective catalytic reduction (SCR) unit and directly injecting ammonia into the selective catalytic reduction (SCR) unit.

본 발명의 일 실시예에서, 상기 액화천연가스 복합화력발전용 배기가스 처리 시스템은, 상기 선택적 촉매환원(SCR)부 전단에 구비되어 탄화수소를 촉매로 처리하는 탄화수소처리부를 더 포함한다. In one embodiment of the present invention, the exhaust gas treatment system for the liquefied natural gas combined cycle power plant further includes a hydrocarbon processing unit provided in front of the selective catalytic reduction (SCR) unit to treat hydrocarbons with a catalyst.

본 발명의 일 실시예에서, 상기 NO2 SCR 촉매는 바나듐/텅스텐/티타니아 및 망간을 포함하며, 상기 망간은 α-Mn2O3 및 Mn3O4 구조를 모두 포함하며, 이로써 질산암모늄(NH4NO3)의 형성 및 아산화질소(N2O) 발생이 억제된다. In one embodiment of the present invention, the NO 2 SCR catalyst includes vanadium/tungsten/titania and manganese, and the manganese includes both α-Mn 2 O 3 and Mn 3 O 4 structures, whereby ammonium nitrate (NH 4 NO 3 ) formation and nitrous oxide (N 2 O) generation are inhibited.

본 발명은 초기 기동시 높은 NO2 함량을 고려한 FAST SCR 공정으로 배기가스로부터 디녹스를 진행한다. 또한 CO 제거촉매에 대한 NOx의 피독영향을 최소화하기 위하여 기동 시부터 반응하는 SCR 촉매부 후단에 CO와 NH3 제거의 산화공정을 진행하여 암모니아 슬립, 유해한 일산화탄소 배출 문제를 해결한다. 더 나아가, 암모이나가 주입되는 SCR 공정 전단에 CH4 제거공정을 진행함으로써 CH4 촉매에 의한 암모니아 산화 문제를 해결한다. In the present invention, denox is performed from the exhaust gas by the FAST SCR process considering the high NO2 content at the time of initial start-up. In addition, in order to minimize the poisoning effect of NOx on the CO removal catalyst, an oxidation process of CO and NH3 removal is performed at the rear end of the SCR catalyst, which reacts from the start, to solve the problems of ammonia slip and harmful carbon monoxide emission. Furthermore, by performing a CH4 removal process prior to the SCR process in which ammonia is injected, the problem of ammonia oxidation by the CH4 catalyst is solved.

도 1은 본 발명의 일 실시예에 따른 액화천연가스 복합화력발전용 배기가스 처리 시스템의 모식도이다.
도 2는 본 발명의 또 다른 일 실시예에 따른 액화천연가스 복합화력발전용 배기가스 처리 시스템의 모식도이다.
도 1은 본 발명의 일 실시예)에 따른 액화천연가스 복합화력발전 배기가스 처리 시스템의 모식도이다.
도 3은 “Standard SCR” 및 NO2 비율에 따른 조건에서 비교예2에 따른 탈질촉매의 활성을 비교한 결과를 나타낸 그래프이다.
도 4는 NO2 비율이 높은 배가스 조건에서 비교예2의 180℃와 350℃에 따른 촉매를 이용한 탈질반응의 FT-IR DRIFT 분석 결과를 나타낸 그래프이다.
도 5는 본 발명의 제조예와 비교예2에 따른 탈질촉매의 NO2 90% 조건에서의 활성을 비교한 그래프이다.
도 6은 본 발명의 제조예와 비교예1에 따른 탈질촉매의 NO2 90% 조건에서의 활성을 비교한 그래프이다.
도 7은 NO2 비율이 높은 배가스 조건에서 본 발명의 제조예와 비교예1, 비교예 2에 따른 탈질촉매를 이용한 탈질반응의 FT-IR DRIFT 분석 결과를 나타낸 그래프이다.
도 8은 본 발명의 제조예와 비교예1, 비교예 2에 따른 탈질촉매를 이용한 H2-TPR 분석 결과를 나타낸 그래프이다.
도 9는 본 발명의 제조예에 따른 탈질촉매를 이용한 Raman 분석 결과를 나타낸 그래프이다.
1 is a schematic diagram of an exhaust gas treatment system for a liquefied natural gas combined cycle power plant according to an embodiment of the present invention.
2 is a schematic diagram of an exhaust gas treatment system for a liquefied natural gas combined cycle power plant according to another embodiment of the present invention.
1 is a schematic diagram of a liquefied natural gas combined cycle power plant exhaust gas treatment system according to an embodiment of the present invention).
3 is a graph showing the results of comparing the activity of the denitration catalyst according to Comparative Example 2 under conditions according to “Standard SCR” and NO 2 ratio.
4 is a graph showing the results of FT-IR DRIFT analysis of the denitrification reaction using catalysts according to 180 ° C and 350 ° C of Comparative Example 2 under flue gas conditions with a high NO 2 ratio.
5 is a graph comparing the activities of the denitration catalysts according to Preparation Example of the present invention and Comparative Example 2 under the condition of 90% NO 2 .
6 is a graph comparing the activities of the denitration catalysts according to Preparation Example of the present invention and Comparative Example 1 under the condition of 90% NO 2 .
7 is a graph showing the results of FT-IR DRIFT analysis of the denitrification reaction using the denitration catalysts according to Preparation Example of the present invention and Comparative Examples 1 and 2 under flue gas conditions with a high NO 2 ratio.
8 is a graph showing the results of H 2 -TPR analysis using denitration catalysts according to Preparation Example and Comparative Examples 1 and 2 of the present invention.
9 is a graph showing the results of Raman analysis using a denitrification catalyst according to a preparation example of the present invention.

본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예를 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the present invention can apply various transformations and have various embodiments, specific embodiments will be exemplified and described in detail in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all conversions, equivalents, or substitutes included in the spirit and scope of the present invention.

발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Terms used in the present invention are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In the present invention, terms such as include or have are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, but one or more other features, numbers, or steps However, it should be understood that it does not preclude the possibility of existence or addition of operations, components, parts, or combinations thereof.

본 발명은 상술한 액화천연가스 복합화력발전시 발생하는 배기가스의 특성을 고려한 새로운 배기가스 처리시스템을 제공한다. The present invention provides a new exhaust gas treatment system in consideration of the characteristics of the exhaust gas generated during the above-described liquefied natural gas combined cycle power plant.

도 1은 본 발명의 일 실시예)에 따른 액화천연가스 복합화력발전 배기가스 처리 시스템의 모식도이다. 1 is a schematic diagram of a liquefied natural gas combined cycle power plant exhaust gas treatment system according to an embodiment of the present invention).

도 1을 참조하면, 액화천연가스 복합화력발전 엔진으로부터 배출되는 배기가스가 선택적 촉매환원 반응(SCR) 촉매가 구비된 선택적 촉매환원(SCR부(100)로 주입된다. 본 발명은 특히 초기 기동시 높은 함량으로 이산화질화물(NO2 )가 포함된 질소산화물(NO2 /NOx 비가 0.5 이상)에서도 SCR 공정이 느려지지 않는, "NO2 SCR 촉매"를 사용한다. 본 발명에서 사용하는 "NO2 SCR 촉매"는 이하 보다 상세히 설명한다. 1, the exhaust gas discharged from the liquefied natural gas combined cycle power engine is injected into the selective catalytic reduction (SCR) unit 100 equipped with a selective catalytic reduction reaction (SCR) catalyst. A "NO 2 SCR catalyst" is used, which does not slow down the SCR process even in nitrogen oxides (NO 2 /NO x ratio of 0.5 or more) containing a high content of nitrous oxide (NO 2 ). "SCR catalyst" is described in more detail below.

본 발명은 이와 같이 초기 기동시 발생하는 배기가스의 특이한 성분을 고려한 것으로, 기동 초기부터 질소산화물을 제거한다. In this way, the present invention takes into account the peculiar components of the exhaust gas generated during initial startup, and removes nitrogen oxides from the initial startup.

이후 상기 SCR 공정을 거친 배기가스는 다시 CO 제거촉매(산화촉매)가 구비된 CO 제어부(200)로 유입된다. 본 발명은 특히 환원제로 유입되는 암모니아에 의한 CO 제거용 산화촉매의 피독을 방지하고자, SCR 반응 후단에 CO 제거촉매를 구비시킨다. 이로써 1)CO의 산화와 함께 2) 환원제인 NH3의 미량 배출(NH3 슬립) 문제를 동시에 해결할 수 있다. Thereafter, the exhaust gas that has passed through the SCR process is again introduced into the CO controller 200 equipped with a CO removal catalyst (oxidation catalyst). In the present invention, in order to prevent poisoning of the oxidation catalyst for removing CO by ammonia introduced into the reducing agent, a catalyst for removing CO is provided at the rear end of the SCR reaction. As a result, it is possible to simultaneously solve the problem of 1) oxidation of CO and 2) trace emission of NH3, a reducing agent (NH3 slip).

본 발명의 일 실시예에서, 상기 선택적 촉매환원(SCR부(100)에는 환원제인 암모니아를 직분사하기 위한 환원제 직분사부(300)가 구비된다. 본 발명으 일 실시예에서 상기 환원제는 암모니아로, 이는 요소수로부터 촉매반응으로 분해되거나, 희석된 암모니아수 자체일 수 있다. In one embodiment of the present invention, the selective catalytic reduction (SCR unit 100) is provided with a reducing agent direct injection unit 300 for directly injecting ammonia, which is a reducing agent. In one embodiment of the present invention, the reducing agent is ammonia, This may be decomposed from urea water by a catalytic reaction or diluted ammonia water itself.

특히 요소수 분해촉매 기화방식 적용으로 일반 기화식보다 장치 크기가 작아 설치장소 크기와 설비가격에 장점이 있으며, 암모니아에 비하여 상대적으로 안전한 요소수를 사용가능하다는 장점이 있다. In particular, by applying the urea water decomposition catalyst vaporization method, the size of the device is smaller than that of the general vaporization method, and it has advantages in installation site size and equipment cost, and it has the advantage that relatively safe urea water can be used compared to ammonia.

도 2는 본 발명의 또 다른 일 실시예에 따른 액화천연가스 복합화력발전용 배기가스 처리 시스템의 모식도이다. 2 is a schematic diagram of an exhaust gas treatment system for a liquefied natural gas combined cycle power plant according to another embodiment of the present invention.

도 2를 참조하면, 상기 시스템은 선택적 촉매환원(SCR부(100) 전단에 CH4와 같은 탄화수소를 제거하는 촉매가 구비된 탄화수소제거부(400)를 더 포함한다. 즉, CH4를 처리하기 위하여 NH3 주입 장치(AIG; Ammonia Injection Grid) 전단에 CH4 분해 촉매를 설치함으로써 암모니아 산화를 방지한다. Referring to FIG. 2, the system further includes a hydrocarbon removal unit 400 equipped with a catalyst for removing hydrocarbons such as CH4 in front of the selective catalytic reduction (SCR unit 100). That is, NH3 to treat CH4. Ammonia oxidation is prevented by installing a CH4 decomposition catalyst in front of the Ammonia Injection Grid (AIG).

특히 본 발명은 LNG에서 배출되는 CH4 농도는 약 수백 ~ 1,000 ppm 이내로 CH4 촉매의 산화 반응온도는 약 400도 이상이며, SCR 앞단에 CH4 촉매가 설치되는 최고 450 ~ 550도 이내로 산화반응 후, C로 전환되지 않고, CO2로 전환되어 SCR 반응에 영향이 없다. In particular, in the present invention, the concentration of CH4 discharged from LNG is within about several hundred to 1,000 ppm, and the oxidation reaction temperature of the CH4 catalyst is about 400 degrees or more. It is not converted to CO2 and has no effect on the SCR reaction.

본 발명의 일 실시예에서, 상기 SCR 촉매는 NOx 중 NO2 비가 0.5 미만에서 선택적 환원반응이 일어날 뿐만 아니라 NOx 중 NO2 비가 0.5 이상에서도 선택적 환원반응이 일어난다. 특히 특히 질산암모늄(NH4NO3)의 형성 및 아산화질소(N2O) 발생을 억제하여 탈질효율이 저하되지 않는데 이하 이를 보다 상세히 설명한다 In one embodiment of the present invention, the SCR catalyst not only causes a selective reduction reaction when the NO2 ratio in NOx is less than 0.5, but also selective reduction reaction occurs even when the NO2 ratio in NOx is greater than 0.5. In particular, by suppressing the formation of ammonium nitrate (NH 4 NO 3 ) and the generation of nitrous oxide (N 2 O), the denitrification efficiency is not lowered. This will be described in more detail below.

도 3은 “Standard SCR” 및 NO2 비율에 따른 조건에서 비교예2에 따른 탈질촉매의 활성을 비교한 결과를 나타낸 그래프이다.3 is a graph showing the results of comparing the activity of the denitration catalyst according to Comparative Example 2 under conditions according to “Standard SCR” and NO 2 ratio.

도 4는 NO2 비율이 높은 배가스 조건에서 비교예2의 180℃와 350℃에 따른 촉매를 이용한 탈질반응의 FT-IR DRIFT 분석 결과를 나타낸 그래프이다.4 is a graph showing the results of FT-IR DRIFT analysis of the denitrification reaction using catalysts according to 180 ° C and 350 ° C of Comparative Example 2 under flue gas conditions with a high NO 2 ratio.

도 5는 본 발명의 제조예와 비교예2에 따른 탈질촉매의 NO2 90% 조건에서의 활성을 비교한 그래프이다.5 is a graph comparing the activities of the denitration catalysts according to Preparation Example of the present invention and Comparative Example 2 under the condition of 90% NO 2 .

도 6은 본 발명의 제조예와 비교예1에 따른 탈질촉매의 NO2 90% 조건에서의 활성을 비교한 그래프이다.6 is a graph comparing the activities of the denitration catalysts according to Preparation Example of the present invention and Comparative Example 1 under the condition of 90% NO 2 .

도 7은 NO2 비율이 높은 배가스 조건에서 본 발명의 제조예와 비교예1, 비교예 2에 따른 탈질촉매를 이용한 탈질반응의 FT-IR DRIFT 분석 결과를 나타낸 그래프이다.7 is a graph showing the results of FT-IR DRIFT analysis of the denitrification reaction using the denitration catalysts according to Preparation Example of the present invention and Comparative Examples 1 and 2 under flue gas conditions with a high NO 2 ratio.

도 8은 본 발명의 제조예와 비교예1, 비교예 2에 따른 탈질촉매를 이용한 H2-TPR 분석 결과를 나타낸 그래프이다.8 is a graph showing the results of H 2 -TPR analysis using denitration catalysts according to Preparation Example and Comparative Examples 1 and 2 of the present invention.

도 9는 본 발명의 제조예에 따른 탈질촉매를 이용한 Raman 분석 결과를 나타낸 그래프이다.9 is a graph showing the results of Raman analysis using a denitrification catalyst according to a preparation example of the present invention.

현재 국내 화력발전소는 높은 발전단가로 인해 전력 수요에 따라 가동과 중지를 수시로 반복하고 있다. 가동과 중지를 반복하는 운전방식은 가동 초기(저출력)에 불완전 연소, 즉 연소를 위해 공급한 공기 중에 포함된 산소가 원료와 반응하는 대신 질소와 반응을 일으켜 질소산화물, 특히 이산화질소(NO2)가 다량으로 발생하는 현상을 야기한다.Currently, domestic thermal power plants are repeatedly operating and stopping according to power demand due to high power generation costs. The operation method of repeating operation and shutdown causes incomplete combustion at the beginning of operation (low power), that is, oxygen contained in the air supplied for combustion reacts with nitrogen instead of reacting with the raw material, resulting in nitrogen oxides, especially nitrogen dioxide (NO 2 ). cause a phenomenon that occurs in large quantities.

일반적으로 SCR의 질소산화물 분해반응은 하기 반응식 1처럼 암모니아(NH3) 및 우레아(Urea)를 환원제로 하여 촉매상에서 NOx를 제거하는 “Standard SCR” 반응에 의해 진행되거나, 하기 반응식 2처럼 NO와 NO2의 비율이 1:1에 해당하여 촉매반응을 빠르게 하는 “Fast SCR” 반응에 의해 진행된다.In general, the nitrogen oxide decomposition reaction of SCR proceeds by a “Standard SCR” reaction that removes NO x on a catalyst using ammonia (NH 3 ) and urea as reducing agents, as shown in Reaction Scheme 1 below, or as shown in Reaction Scheme 2 below, The ratio of NO 2 corresponds to 1:1 and proceeds by “Fast SCR” reaction that speeds up the catalytic reaction.

(반응식 1) 4NO + 4NH3 + O2 -> 4N2 + 6H2O(Scheme 1) 4NO + 4NH 3 + O 2 -> 4N 2 + 6H 2 O

(반응식 2) 2NH3 + NO2 + NO -> 2N2 + 3H2O(Scheme 2) 2NH 3 + NO 2 + NO -> 2N 2 + 3H 2 O

대부분의 연소장치로부터 배출되는 배가스 내 NOx는 90~95%의 일산화질소(NO)와 5~10%의 이산화질소(NO2 )로 존재하여 “Standard SCR” 반응을 진행하거나, 별도의 산화반응을 유도하여 NO를 NO2로 산화시킴으로써 “Fast SCR” 반응을 진행하고 있다. NOx in flue gas discharged from most combustion devices exists as 90~95% nitrogen monoxide (NO) and 5~10% nitrogen dioxide (NO 2 ) , so it can proceed with “Standard SCR” reaction or separate oxidation reaction. “Fast SCR” reaction is proceeding by oxidizing NO to NO 2 by induction.

도 3은 “Standard SCR” 및 NO2 비율에 따른 조건에서 비교예에 따른 탈질촉매의 활성을 비교한 결과를 나타낸 그래프이다.3 is a graph showing the results of comparing the activity of the denitration catalyst according to Comparative Example under conditions according to “Standard SCR” and NO 2 ratio.

도 3을 참조하면, NO2 비율이 높아질수록 NOx 전환율이 감소하는 것을 확인할 수 있다. 또한, N2O 발생 농도가 높아지는 것을 확인할 수 있다. 이처럼, 탈질반응에 있어서는 NO2/NOx 비율을 조절하는 것이 핵심이며, NOx 내 NO2 비율이 지배적인 환경, 즉 상기 화력발전소 초기 가동 조건에서는 고농도의 이산화질소로 인하여 “Standard SCR” 또는 “Fast SCR” 반응이 진행되지 아니하여 탈질 기능이 저하되거나 마비되는 문제가 발생한다.Referring to FIG. 3 , it can be seen that the NO x conversion rate decreases as the NO 2 ratio increases. In addition, it can be confirmed that the concentration of N 2 O is increased. As such, in the denitrification reaction, controlling the NO 2 /NO x ratio is key, and in an environment where the ratio of NO 2 in NO x dominates, that is, in the initial operating conditions of the thermal power plant, high concentrations of nitrogen dioxide cause “Standard SCR” or “Fast SCR” reaction does not proceed, resulting in denitrification or paralysis.

또한, 가동초기 발생된 배가스 내 고농도의 이산화질소(NO2)는 하기 반응식 3과 같이 탈질 반응에 사용되는 환원제인 암모니아(NH3)와 반응하여 질산암모늄(NH4NO3)을 발생시킨다. 질산암모늄(NH4NO3)의 녹는점은 대략 170 ℃ 이므로, 가동 초기 조건에서 생성된 고형의 질산암모늄은 탈질촉매의 활성 사이트(site)를 차단하여 탈질성능을 저감시킨다.In addition, a high concentration of nitrogen dioxide (NO 2 ) in the flue gas generated at the beginning of operation reacts with ammonia (NH 3 ), a reducing agent used in the denitrification reaction, to generate ammonium nitrate (NH 4 NO 3 ), as shown in Scheme 3 below. Since the melting point of ammonium nitrate (NH 4 NO 3 ) is approximately 170° C., the solid ammonium nitrate generated in the initial operating condition blocks the active site of the NOx removal catalyst, thereby reducing NOx removal performance.

(반응식 3) 2NH3 + 2NO2 -> NH4NO3 + H2O + N2 (Scheme 3) 2NH 3 + 2NO 2 -> NH 4 NO 3 + H 2 O + N 2

도 4는 NO2 비율이 높은 배가스 조건에서 비교예2의 180℃와 350℃에 따른 촉매를 이용한 탈질반응의 FT-IR DRIFT 분석 결과를 나타낸 그래프이다.4 is a graph showing the results of FT-IR DRIFT analysis of the denitrification reaction using catalysts according to 180 ° C and 350 ° C of Comparative Example 2 under flue gas conditions with a high NO 2 ratio.

도 4를 참조하면, NH3 1000 ppm을 30분 동안 흡착 후, NO2 1000 ppm과 O2 3% 를 주입하여 촉매 표면에서의 반응을 확인한 결과, NO2와 O2를 주입한지 25분이 지나서 1346 cm-1 NO2 peak 및 1620 cm-1의 NO2 peak가 생성된 것을 확인할 수 있다. Referring to FIG. 4, after adsorbing 1000 ppm of NH 3 for 30 minutes, injecting 1000 ppm of NO 2 and 3% of O 2 to confirm the reaction on the catalyst surface, 1346 25 minutes after NO 2 and O 2 were injected It can be seen that cm -1 NO 2 peak and 1620 cm -1 NO 2 peak were generated.

반면, NO2 비율이 증가하여도 유사한 탈질 성능을 나타낸 350℃에서는 이러한 NO2 peak의 생성을 확인할 수 없었다. 따라서 이러한 NO2 peak의 형성은 NH3 와 반응하여 생긴 질산암모늄(NH4NO3) 유도 물질로서, 탈질촉매의 활성 저하의 요인으로 볼 수 있다.On the other hand, even when the NO 2 ratio increased, it was not possible to confirm the generation of such a NO 2 peak at 350° C., which showed similar denitrification performance. Therefore, the formation of this NO 2 peak is an ammonium nitrate (NH 4 NO 3 )-derived material produced by reacting with NH 3 , and can be seen as a factor in reducing the activity of the denitration catalyst.

이에, 본 발명은 화력발전소 초기 가동 조건, 즉 고농도의 이산화질소를 함유하는 배가스 조건에서도 탈질성능이 우수하고, 특히 질산암모늄(NH4NO3)의 형성 및 아산화질소(N2O)발생을 억제하여 탄화수소계 환원제 없이도 탈질성능이 유지되는 탈질촉매 및 그 제조방법을 제공한다.Therefore, the present invention has excellent denitrification performance even under the initial operating conditions of a thermal power plant, that is, exhaust gas conditions containing high concentrations of nitrogen dioxide, and in particular, suppresses the formation of ammonium nitrate (NH 4 NO 3 ) and the generation of nitrous oxide (N 2 O). A denitrification catalyst capable of maintaining denitrification performance without a hydrocarbon-based reducing agent and a manufacturing method thereof are provided.

본 발명에 따른 화력발전소용 탈질촉매는 고농도의 이산화질소가 포함된 배가스의 조건에서도 질소산화물을 효율적으로 제거하기 위한 암모니아계 선택적 촉매 환원 기술에 적용 가능한 촉매로서, 바나듐/텅스텐/티타니아계 촉매에 망간이 담지된 바나듐-망간/텅스텐/티타니아계 촉매일 수 있다.The denitrification catalyst for thermal power plants according to the present invention is a catalyst applicable to ammonia-based selective catalytic reduction technology for efficiently removing nitrogen oxides even under conditions of exhaust gas containing high concentrations of nitrogen dioxide. It may be a supported vanadium-manganese/tungsten/titania based catalyst.

여기서, 상기 고농도의 이산화질소가 포함된 배가스란, NO2/NOx 비율이 0.5 이상인 것으로서, 배가스에 포함된 질소산화물 중 이산화질소(NO2)의 비율이 일산화질소(NO)의 비율보다 높은 상태를 의미하며, 화력발전소 초기 가동 조건을 고려할 때, 바람직하게는 NO2/NOx 비율이 0.5 이상, 0.9 이하일 수 있다.Here, the exhaust gas containing a high concentration of nitrogen dioxide means that the NO 2 / NO x ratio is 0.5 or more, and the ratio of nitrogen dioxide (NO 2 ) among the nitrogen oxides contained in the exhaust gas is higher than the ratio of nitrogen monoxide (NO). and considering the initial operating conditions of a thermal power plant, the NO 2 /NO x ratio may preferably be 0.5 or more and 0.9 or less.

상기 바나듐은 티타니아 담체 100 중량부에 대해 2.0 내지 8.0 중량부, 바람직하게는 3.0 내지 5.0 중량부가 바람직하다. 또한 상기 텅스텐은 티타니아 담체 100 중량부에 대해 2.0 내지 10.0 중량부, 바람직하게는 3.0 내지 6.0 중량부가 바람직하다. 본 발명의 일 실시예에서 상기 바나듐은 4.0 중량부, 텅스텐은 5.0 중량부가 사용되었으나, 본 발명의 범위는 이에 제한되지 않는다. The amount of vanadium is preferably 2.0 to 8.0 parts by weight, preferably 3.0 to 5.0 parts by weight, based on 100 parts by weight of the titania support. In addition, the amount of tungsten is preferably 2.0 to 10.0 parts by weight, preferably 3.0 to 6.0 parts by weight, based on 100 parts by weight of the titania support. In one embodiment of the present invention, 4.0 parts by weight of vanadium and 5.0 parts by weight of tungsten were used, but the scope of the present invention is not limited thereto.

상기 망간은 바나듐/텅스텐/티타니아계 촉매와 결합하여 이산화질소(NO2)의 bidentate nitrate, monodentate coordinated nitrate 와 같은 질산암모늄 유도 물질로의 전환 흡착을 억제하며, 결과적으로 탈질촉매 표면에 질산암모늄(NH4NO3)의 형성을 억제하여 탈질촉매의 활성을 증진시키는 것으로서, 티타니아 담체 100 중량부에 대해 1.0 내지 3.0 중량부, 보다 바라직하게는 1.5 중량부 내지 2.5 중량부, 가장 바람직하게는 2.0 중량부로 담지된다. The manganese binds to the vanadium/tungsten/titania-based catalyst to suppress the conversion and adsorption of nitrogen dioxide (NO 2 ) into ammonium nitrate-derived substances such as bidentate nitrate and monodentate coordinated nitrate, and as a result, ammonium nitrate (NH 4 It suppresses the formation of NO 3 ) to enhance the activity of the denitration catalyst, and is used in an amount of 1.0 to 3.0 parts by weight, more preferably 1.5 parts to 2.5 parts by weight, and most preferably 2.0 parts by weight, based on 100 parts by weight of the titania support. are supported

본 발명에서는 특히 망간을 망간 나이트레이트(Mn nitrate)로 첨가하는 경우, 최종 얻어지는 촉매의 Mn 중 Mn4+의 분율을 60% 이하로 억제하며, 그 결과 NMO 등과 같은 다른 망간계 물질보다 섭씨 180도 수준의 저온에서 질산암모늄(NH4NO3)의 형성을 효과적으로 억제하고 아산화질소(N2O)발생을 억제시킨다. In the present invention, in particular, when manganese is added as manganese nitrate (Mn nitrate), the fraction of Mn4+ in the Mn of the finally obtained catalyst is suppressed to 60% or less, and as a result, it is 180 degrees Celsius higher than other manganese materials such as NMO. It effectively inhibits the formation of ammonium nitrate (NH 4 NO 3 ) and suppresses the generation of nitrous oxide (N 2 O) at low temperatures.

하기 표 1은 하기 설명되는 본 발명의 일 실시예에 따라 망간 나이트레이트로 제조된 촉매(제조예)와 NMO(Natural Manganese Ore)로 제조된 촉매(비교예 1)의 XRS 분석을 통하여 촉매의 표면에서 Mn 원자농도를 측정한 결과이다. Table 1 below shows the surface of the catalyst through XRS analysis of a catalyst made of manganese nitrate (Preparation Example) and a catalyst made of NMO (Natural Manganese Ore) (Comparative Example 1) according to an embodiment of the present invention described below. This is the result of measuring the Mn atomic concentration in

Mn4+/ (Mn4+ + Mn3+)Mn 4+ / (Mn 4+ + Mn 3+ ) 제조예manufacturing example 45.0%45.0% 비교예 1Comparative Example 1 66.0%66.0%

본 발명의 일 실시예에 따른 바나듐 전구체 및 텅스텐 전구체가 담지된 티타니아 담체에 망간 전구체인 망간 나이트레이트를 도입하여 혼합 슬러리를 제조한 후 혼합 슬러리를 건조 및 소성하여 제조된다.According to an embodiment of the present invention, a mixed slurry is prepared by introducing manganese nitrate, a manganese precursor, into a titania carrier supported with a vanadium precursor and a tungsten precursor, and then drying and calcining the mixed slurry.

본 발명에서 티타니아 담체로는 anatase TiO2인 DT-51, 텅스텐 전구체로는 ammonium metatungstate hydrate, 바나듐 전구체로는 ammonium metavanadate, 망간 전구체로는 Manganess(II) nitrate hydrate를 사용할 수 있으나, 특별히 제한되는 것은 아니다.In the present invention, DT-51, which is anatase TiO 2 , can be used as the titania carrier, ammonium metatungstate hydrate as the tungsten precursor, ammonium metavanadate as the vanadium precursor, and Manganess(II) nitrate hydrate as the manganese precursor, but is not particularly limited. .

이하, 본 발명에 따른 화력발전소용 탈질촉매의 제조방법에 대해 보다 구체적으로 설명한다.Hereinafter, the manufacturing method of the denitrification catalyst for thermal power plants according to the present invention will be described in more detail.

상술한 바와 같이 제조되는 화력발전소용 탈질촉매는 화력발전소 초기 가동시 발생하는 고농도의 이산화질소를 함유하는 배가스 조건에서도 질소산화물 제거 효율이 뛰어나며, 특히 질산암모늄 형성 및 아산화질소 발생을 억제하여 탄화수소계 환원제 없이도 탈질효율이 유지될 수 있다.The denitrification catalyst for thermal power plants prepared as described above has excellent nitrogen oxide removal efficiency even under flue gas conditions containing high concentrations of nitrogen dioxide generated during the initial operation of thermal power plants. The denitrification efficiency can be maintained.

한편, 본 발명에 따른 화력발전소용 탈질촉매는 분말 형태를 비롯하여 소량의 바인더와 함께 입자형이 단일체(monolith) 형태로 압출 가공하거나 슬레이트, 플레이트, 펠렛 등의 다양한 형태로 제조하여 사용될 수 있다.On the other hand, the denitration catalyst for thermal power plants according to the present invention may be used in powder form or in a particle form with a small amount of binder, extruded in a monolith form, or manufactured in various forms such as slate, plate, or pellet.

또한, 탈질촉매의 실제 적용시에는 허니컴, 금속판, 금속 섬유, 세라믹 필터, 메탈 폼 등의 구조체에 코팅하여 사용될 수 있다.In addition, when the NOx removal catalyst is actually applied, it can be used by coating on structures such as honeycomb, metal plate, metal fiber, ceramic filter, metal foam, and the like.

이하, 본 발명의 바람직한 실시예에 기초하여 본 발명을 더욱 구체적으로 설명한다. 그러나 본 발명의 기술적 사상은 이에 한정되거나 제한되지 않고 당업자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다.Hereinafter, the present invention will be described in more detail based on preferred embodiments of the present invention. However, it goes without saying that the technical idea of the present invention is not limited or limited thereto and can be modified and implemented in various ways by those skilled in the art.

제조예manufacturing example

Anatase type TiO2 담체 100 중량부에 Ammonium metatugstate hydrate 전구체를 텅스텐 5.0 중량부로 환산하여 정량 후 상온의 증류수에 각각 용해시킨다. 계속해서 앞서 제조된 텅스텐 수용액에 TiO2 담체를 투입하여 슬러리 형태로 제조한다. 이후, 제조된 슬러리를 103℃의 온도에서 24시간 이상 건조하여 미세기공에 포함된 수분을 완전히 제거한 다음 공기분위기에서 600℃의 온도에서 4시간 동안 소성하여 W/TiO2를 제조하였다. 이후, W/TiO2 담체 100 중량부에 Ammonium metavanadate, Manganess(II) nitrate hydrate를 각각 바나듐 4.0 중량부, 망간 2.0 중량부로 환산하여 정량 후 바나듐은 60~80℃의 증류수에, 망간은 상온의 증류수에 각각 용해시킨다. 바나듐 수용액의 경우, Oxalic acid dehydrate를 1 대 1의 몰비로 추가투입하여 용출을 방지하였다. 계속해서 앞서 제조된 W/TiO2 담체에 바나듐 수용액과 망간 수용액을 투입하여 슬러리 형태로 제조한다. 제조된 슬러리는 앞선 방법과 동일하게 건조하여 공기분위기에서 400℃의 온도에서 4시간 동안 소성하여 V-Mn/W/TiO2를 제조하였다.Ammonium metatugstate hydrate precursor is converted to 5.0 parts by weight of tungsten in 100 parts by weight of Anatase type TiO 2 carrier, and then dissolved in distilled water at room temperature. Subsequently, a TiO 2 carrier was added to the previously prepared tungsten aqueous solution to prepare a slurry form. Thereafter, the prepared slurry was dried at a temperature of 103° C. for more than 24 hours to completely remove moisture contained in the micropores, and then calcined at a temperature of 600° C. for 4 hours in an air atmosphere to prepare W/TiO 2 . Then, Ammonium metavanadate and Manganess (II) nitrate hydrate were converted to 4.0 parts by weight of vanadium and 2.0 parts by weight of manganese, respectively, in 100 parts by weight of W / TiO 2 carrier. dissolved in each. In the case of the vanadium aqueous solution, oxalic acid dehydrate was additionally added at a molar ratio of 1:1 to prevent elution. Subsequently, the prepared W/TiO 2 carrier was prepared in the form of a slurry by adding an aqueous solution of vanadium and an aqueous solution of manganese. The prepared slurry was dried in the same manner as in the previous method and calcined at 400° C. for 4 hours in an air atmosphere to prepare V-Mn/W/TiO 2 .

비교예 1Comparative Example 1

Anatase type TiO2 담체 100 중량부에 Ammonium metatugstate hydrate 전구체를 텅스텐 5.0 중량부로 환산하여 정량 후 상온의 증류수에 각각 용해시킨다. 계속해서 앞서 제조된 텅스텐 수용액에 TiO2 담체를 투입하여 슬러리 형태로 제조한다. 이후, 제조된 슬러리를 103℃의 온도에서 24시간 이상 건조하여 미세기공에 포함된 수분을 완전히 제거한 다음 공기분위기에서 600℃의 온도에서 4시간 동안 소성하여 W/TiO2를 제조하였다. 이후, W/TiO2 담체 100 중량부에 Ammonium metavanadate를 바나듐 4.0 중량부로 환산하여 정량 후 60~80℃의 증류수에 용해시킨다. 바나듐 수용액의 경우, Oxalic acid dehydrate를 1 대 1의 몰비로 추가투입하여 용출을 방지하였다. 계속해서 앞서 제조된 W/TiO2 담체에 바나듐 수용액을 투입하여 슬러리 형태로 제조한다. 제조된 슬러리는 앞선 방법과 동일하게 건조하여 공기분위기에서 400℃의 온도에서 4시간 동안 소성하여 V/W/TiO2를 제조하였다. 이후, 103℃에서 12시간 건조 후 400℃에서 4시간동안 공기분위기하에서 소성한 천연망간광석(NMO, Natural Manganese Ore)을 제조한다. 상기 준비된 V/W/TiO2와 NMO를 10:1의 무게비로 혼합하고 볼밀링하여 NMO/V/W/TiO2를 제조하였다.Ammonium metatugstate hydrate precursor is converted to 5.0 parts by weight of tungsten in 100 parts by weight of Anatase type TiO 2 carrier, and then dissolved in distilled water at room temperature. Subsequently, a TiO 2 carrier was added to the previously prepared tungsten aqueous solution to prepare a slurry form. Thereafter, the prepared slurry was dried at a temperature of 103° C. for more than 24 hours to completely remove moisture contained in the micropores, and then calcined at a temperature of 600° C. for 4 hours in an air atmosphere to prepare W/TiO 2 . Thereafter, Ammonium metavanadate is converted to 4.0 parts by weight of vanadium in 100 parts by weight of W/TiO 2 carrier, and after quantification, it is dissolved in distilled water at 60 to 80 °C. In the case of the vanadium aqueous solution, oxalic acid dehydrate was additionally added at a molar ratio of 1:1 to prevent elution. Subsequently, the vanadium aqueous solution was added to the previously prepared W/TiO 2 carrier to prepare a slurry form. The prepared slurry was dried in the same manner as in the previous method and calcined for 4 hours at a temperature of 400° C. in an air atmosphere to prepare V/W/TiO 2 . Thereafter, after drying at 103 ° C. for 12 hours, natural manganese ore (NMO, Natural Manganese Ore) calcined under an air atmosphere at 400 ° C. for 4 hours is prepared. NMO/V/W / TiO 2 was prepared by mixing the prepared V/W/TiO 2 and NMO at a weight ratio of 10:1 and ball-milling.

비교예 2Comparative Example 2

상기 W/TiO2 담체에 망간 첨가를 배제한 것을 제외하고 비교예 1과 동일하게 제조하였다. 이를 보다 상세히 설명하면 다음과 같다. It was prepared in the same manner as in Comparative Example 1 except that the addition of manganese to the W/TiO 2 carrier was excluded. A more detailed description of this is as follows.

Anatase type TiO2 담체 100 중량부에 Ammonium metatugstate hydrate 전구체를 텅스텐 5.0 중량부로 환산하여 정량 후 상온의 증류수에 각각 용해시킨다. 계속해서 앞서 제조된 텅스텐 수용액에 TiO2 담체를 투입하여 슬러리 형태로 제조한다. 이후, 제조된 슬러리를 103℃의 온도에서 24시간 이상 건조하여 미세기공에 포함된 수분을 완전히 제거한 다음 공기분위기에서 600℃의 온도에서 4시간 동안 소성하여 W/TiO2를 제조하였다. 이후, W/TiO2 담체 100 중량부에 Ammonium metavanadate를 바나듐 4.0 중량부로 환산하여 정량 후 60~80℃의 증류수에 용해시킨다. 바나듐 수용액의 경우, Oxalic acid dehydrate를 1 대 1의 몰비로 추가투입하여 용출을 방지하였다. 계속해서 앞서 제조된 W/TiO2 담체에 바나듐 수용액을 투입하여 슬러리 형태로 제조한다. 제조된 슬러리는 앞선 방법과 동일하게 건조하여 공기분위기에서 400℃의 온도에서 4시간 동안 소성하여 V/W/TiO2를 제조하였다.Ammonium metatugstate hydrate precursor is converted to 5.0 parts by weight of tungsten in 100 parts by weight of Anatase type TiO 2 carrier, and then dissolved in distilled water at room temperature. Subsequently, a TiO 2 carrier was added to the previously prepared tungsten aqueous solution to prepare a slurry form. Thereafter, the prepared slurry was dried at a temperature of 103° C. for more than 24 hours to completely remove moisture contained in the micropores, and then calcined at a temperature of 600° C. for 4 hours in an air atmosphere to prepare W/TiO 2 . Thereafter, Ammonium metavanadate is converted to 4.0 parts by weight of vanadium in 100 parts by weight of W/TiO 2 carrier, and after quantification, it is dissolved in distilled water at 60 to 80 °C. In the case of the vanadium aqueous solution, oxalic acid dehydrate was additionally added at a molar ratio of 1:1 to prevent elution. Subsequently, the vanadium aqueous solution was added to the previously prepared W/TiO 2 carrier to prepare a slurry form. The prepared slurry was dried in the same manner as in the previous method and calcined for 4 hours at a temperature of 400° C. in an air atmosphere to prepare V/W/TiO 2 .

비교제조예 3Comparative Preparation Example 3

상기 탈질촉매의 담체를 amorphous TiO2를 사용한 것을 제외하고 제조예와 동일하게 제조하였다.The carrier of the denitration catalyst was prepared in the same manner as in Preparation Example, except that amorphous TiO 2 was used.

비교제조예 4Comparative Preparation Example 4

상기 탈질촉매의 담체를 anatase TiO2와 rutile TiO2가 섞인 TiO2를 사용한 것을 제외하고 제조예와 동일하게 제조하였다.The support of the denitration catalyst was prepared in the same manner as in Preparation Example, except that TiO 2 in which anatase TiO 2 and rutile TiO 2 were mixed was used.

비교제조예 5Comparative Preparation Example 5

상기 탈질촉매의 담체를 anatase TiO2를 사용하되 제조예와 다른 물성을 지닌 TiO2를 사용한 것을 제외하고 제조예와 동일하게 제조하였다.The support of the denitration catalyst was prepared in the same manner as in Preparation Example, except that anatase TiO 2 was used, but TiO 2 having physical properties different from those of Preparation Example was used.

비교제조예 6Comparative Preparation Example 6

상기 제조예와 동일한 구성으로 촉매 슬러리의 제조 및 건조하여 공기분위기에서 300℃의 온도에서 4시간 동안 소성하여 V-Mn/W/TiO2를 제조하였다.V-Mn/W/TiO 2 was prepared by preparing and drying a catalyst slurry with the same configuration as in the preparation example, and then calcining the slurry at 300° C. for 4 hours in an air atmosphere.

비교제조예 7Comparative Preparation Example 7

상기 제조예와 동일한 구성으로 촉매 슬러리의 제조 및 건조하여 공기분위기에서 500℃의 온도에서 4시간 동안 소성하여 V-Mn/W/TiO2를 제조하였다.V-Mn/W/TiO 2 was prepared by preparing and drying a catalyst slurry with the same configuration as in the preparation example, and then calcining the slurry at 500° C. for 4 hours in an air atmosphere.

비교제조예 8Comparative Preparation Example 8

상기 제조예와 동일한 구성으로 촉매 슬러리의 제조 및 건조하여 공기분위기에서 600℃의 온도에서 4시간 동안 소성하여 V-Mn/W/TiO2를 제조하였다.V-Mn/W/TiO 2 was prepared by preparing and drying a catalyst slurry in the same configuration as in the above Preparation Example and firing it for 4 hours at a temperature of 600° C. in an air atmosphere.

실험예 1Experimental Example 1

도 5는 본 발명의 제조예와 비교예2에 따른 탈질촉매의 NO2 90% 조건에서의 활성을 비교한 그래프이다.5 is a graph comparing the activities of the denitration catalysts according to Preparation Example of the present invention and Comparative Example 2 under the condition of 90% NO 2 .

도 5를 참조하면, 본 발명의 제조예에 따른 바나듐-망간/텅스텐/티타니아계 탈질촉매는 비교예2에 따른 바나듐/텅스텐/티타니아계 탈질촉매보다 높은 활성을 나타내었고, “Standard SCR” 조건에서의 촉매와 비슷한 활성을 나타내는 것을 확인할 수 있었다. 이는, 본 발명에 따른 화력발전소용 탈질촉매가 질산암모늄의 형성을 억제함으로써 화력발전소 초기 가동시 발생되는 고농도의 이산화질소가 함유된 배가스 조건에서도 우수한 탈질성능이 유지되는 것으로 판단된다. 특히, 본 발명의 제조예에 따른 바나듐-망간/텅스텐/티타니아계 탈질촉매는 전 온도구간(180~350℃)에서 5ppm 이하의 아산화질소가 나타남에 따라 발생 억제를 확인하였다. 따라서, 본 발명에 따른 화력발전소용 탈질촉매를 사용할 경우, 이산화질소를 일산화탄소로 환원시키기 위한 별도의 탄화수소계 환원제 없이도 “Standard SCR” 과 유사한 탈질성능을 유지할 수 있어, 효율적이면서도 친환경적인 탈질반응을 진행할 수 있을 것으로 판단된다. Referring to FIG. 5, the vanadium-manganese/tungsten/titania-based denitrification catalyst according to Preparation Example of the present invention showed higher activity than the vanadium/tungsten/titania-based denitration catalyst according to Comparative Example 2, and under “Standard SCR” conditions It was confirmed that the activity of the catalyst was similar to that of It is believed that the denitrification catalyst for thermal power plants according to the present invention suppresses the formation of ammonium nitrate, thereby maintaining excellent denitrification performance even under flue gas conditions containing a high concentration of nitrogen dioxide generated during the initial operation of a thermal power plant. In particular, as the vanadium-manganese/tungsten/titania-based denitrification catalyst according to the preparation example of the present invention showed less than 5 ppm of nitrous oxide in the entire temperature range (180 to 350° C.), generation inhibition was confirmed. Therefore, when the denitrification catalyst for thermal power plants according to the present invention is used, it is possible to maintain denitrification performance similar to that of “Standard SCR” without a separate hydrocarbon-based reducing agent for reducing nitrogen dioxide to carbon monoxide, thereby enabling an efficient and environmentally friendly denitration reaction. It is judged that there will be

실험예 2Experimental Example 2

도 6은 본 발명의 제조예와 비교예1에 따른 탈질촉매의 NO2 90% 조건에서의 활성을 비교한 그래프이다.6 is a graph comparing the activities of the denitration catalysts according to Preparation Example of the present invention and Comparative Example 1 under the condition of 90% NO 2 .

도 6을 참조하면, 본 발명의 제조예에 따른 바나듐-망간/텅스텐/티타니아계 탈질촉매는 비교예1에 따른 천연망간광석/바나듐/텅스텐/티타니아계 탈질촉매보다 높은 활성을 나타내었다. 특히, 본 발명의 제조예에 따른 바나듐-망간/텅스텐/티타니아계 탈질촉매는 200℃ 이하에서 45% 이상의 탈질성능을 확인하였으며, 전 온도구간(180~350℃)에서 아산화질소의 농도가 5ppm 이하로 발생이 억제됨을 확인하였다. 이는, 본 발명에 따른 화력발전소용 탈질촉매가 질산암모늄의 형성을 억제함으로써 화력발전소 초기 가동 시 발생되는 고농도의 이산화질소가 함유된 배가스 조건에서도 우수한 탈질성능이 유지되는 것으로 판단된다. 따라서, 본 발명에 따른 화력발전소용 탈질촉매를 사용할 경우, 이산화질소를 일산화탄소로 환원시키기 위한 별도의 탄화수소계 환원제 없이도 “Standard SCR” 과 유사한 탈질성능을 유지할 수 있어, 효율적이면서도 친환경적인 탈질반응을 진행할 수 있을 것으로 판단된다. Referring to FIG. 6 , the vanadium-manganese/tungsten/titania-based denitrification catalyst according to Preparation Example of the present invention exhibited higher activity than the natural manganese ore/vanadium/tungsten/titania-based denitration catalyst according to Comparative Example 1. In particular, the vanadium-manganese/tungsten/titania-based denitrification catalyst according to the production example of the present invention confirmed the denitrification performance of 45% or more at 200 ° C or less, and the concentration of nitrous oxide was 5 ppm or less in the entire temperature range (180 to 350 ° C). It was confirmed that the occurrence was inhibited. It is believed that the denitrification catalyst for thermal power plants according to the present invention suppresses the formation of ammonium nitrate, thereby maintaining excellent denitrification performance even under exhaust gas conditions containing a high concentration of nitrogen dioxide generated during the initial operation of a thermal power plant. Therefore, when the denitrification catalyst for thermal power plants according to the present invention is used, it is possible to maintain denitrification performance similar to that of “Standard SCR” without a separate hydrocarbon-based reducing agent for reducing nitrogen dioxide to carbon monoxide, thereby enabling an efficient and environmentally friendly denitration reaction. It is judged that there will be

실험예 3Experimental Example 3

도 7은 섭씨 180도에서 NO2 비율이 높은 배가스 조건에서 제조예와 비교예1, 비교예2에 따른 탈질촉매를 이용한 탈질반응의 FT-IR DRIFT 분석 결과를 나타낸 그래프이다.7 is a graph showing the results of FT-IR DRIFT analysis of the denitrification reaction using the denitration catalysts according to Preparation Example and Comparative Examples 1 and 2 under exhaust gas conditions with a high NO 2 ratio at 180 degrees Celsius.

도 7을 참조하면, NH3 1000 ppm을 30분 동안 흡착 후, NO2 1000 ppm과 O2 3% 를 주입하여 촉매 표면에서의 반응을 확인한 결과, 비교예1에 따른 천연망간광석/바나듐/텅스텐/티타니아계 촉매와 비교예2에 따른 바나듐/텅스텐/타타니아계 탈질촉매는 NO2와 O2를 주입한지 45분, 25분이 지나서 1346 cm-1 NO2 peak 및 1620 cm-1의 NO2 peak가 생성된 것을 확인할 수 있으며, 이러한 NO2 peak는 NH3 와 반응하여 생긴 질산암모늄(NH4NO3)으로서, 탈질촉매의 활성 저하의 요인으로 볼 수 있다.Referring to FIG. 7, after adsorbing 1000 ppm of NH 3 for 30 minutes, injecting 1000 ppm of NO 2 and 3% of O 2 to confirm the reaction on the catalyst surface, natural manganese ore/vanadium/tungsten according to Comparative Example 1 / Titania-based catalyst and vanadium / tungsten / titania-based denitrification catalyst according to Comparative Example 2 showed 1346 cm -1 NO 2 peak and 1620 cm -1 NO 2 peak after 45 minutes and 25 minutes after injection of NO 2 and O 2 It can be confirmed that is generated, and this NO 2 peak is ammonium nitrate (NH 4 NO 3 ) generated by reacting with NH 3 , which can be seen as a factor in reducing the activity of the denitration catalyst.

반면, 망간이 첨가된 본 발명의 제조예에 따른 바나듐-망간/텅스텐/티타니아계 탈질촉매는 1346 cm-1 NO2 peak 및 1620 cm-1의 NO2 peak가 생성되지 않음을 확인할 수 있었다. 이는, 본 발명에 따른 화력발전소용 탈질촉매가 망간의 첨가에 따른 반응성으로 인해 질산암모늄(NH4NO3)의 생성이 억제되는 것으로 판단된다.On the other hand, it was confirmed that the vanadium-manganese/tungsten/titania-based denitration catalyst according to the preparation example of the present invention to which manganese was added did not generate NO 2 peaks of 1346 cm −1 and NO 2 peaks of 1620 cm −1 . It is believed that the generation of ammonium nitrate (NH 4 NO 3 ) is suppressed due to the reactivity of the denitration catalyst for thermal power plants according to the present invention according to the addition of manganese.

실험예 4Experimental Example 4

도 8은 본 발명의 제조예와 비교예1, 비교예 2에 따른 탈질촉매를 이용한 H2-TPR 분석 결과를 나타낸 그래프이다.8 is a graph showing the results of H 2 -TPR analysis using denitration catalysts according to Preparation Example and Comparative Examples 1 and 2 of the present invention.

도 8을 참조하면 비교예1에 따른 천연망간광석/바나듐/텅스텐/티타니아계 탈질촉매는 MnO2에서 MnO, Mn2O3로써의 환원 peak가 확인되었다. 이는 주로 β-MnO2(pyrolusite) 구조가 지배적인 천연망간광석이 첨가됨에 따라 Mn4+가 66%로 존재함을 확인하였다. 또한 천연망간광석이 활성금속인 바나듐을 covering함으로써 환원 peak가 낮게 형성됨을 확인하였다. Referring to FIG. 8, in the natural manganese ore/vanadium/tungsten/titania-based denitrification catalyst according to Comparative Example 1, reduction peaks from MnO 2 to MnO and Mn 2 O 3 were confirmed. It was confirmed that 66% of Mn 4+ was present as the natural manganese ore, in which the β-MnO 2 (pyrolusite) structure was dominant, was added. In addition, it was confirmed that the reduced peak was formed low by covering the natural manganese ore with vanadium, an active metal.

반면, 본 발명에 따른 바나듐-망간/텅스텐/티타니아계 탈질 촉매는 망간의 전구체로써 망간 나이트레이트를 사용함에 따라 바나듐과 망간의 결합작용을 통해 낮은 Mn의 환원 peak가 형성되었으며, Mn4+가 60% 이하로 존재함을 확인하였다. 또한 바나듐과 망간의 결합작용에 따라 바나듐 환원 peak가 비교예1, 비교예2와는 다른 온도에서 형성됨을 확인하였다. 이러한 결과는 망간의 높은 산화력이 바나듐과의 결합에 의하여 일부 억제됨으로써 환원제인 암모니아의 산화를 제어하여 아산화질소의 발생을 최소화하였다고 판단된다.On the other hand, as the vanadium-manganese/tungsten/titania-based denitration catalyst according to the present invention uses manganese nitrate as a precursor of manganese, a low Mn reduction peak is formed through the combination of vanadium and manganese, and Mn 4+ is 60 % or less. In addition, it was confirmed that the vanadium reduction peak was formed at a different temperature than Comparative Example 1 and Comparative Example 2 according to the binding action of vanadium and manganese. These results suggest that manganese's high oxidizing power is partially suppressed by its combination with vanadium, thereby minimizing the generation of nitrous oxide by controlling the oxidation of ammonia, a reducing agent.

따라서는 상대적으로 Mn4+의 함량이 적은 망간 나이트레이트를 사용한 본 실시예의 촉매가 천연망간광석 보다 SCR 촉매 활성에 치명적인 질산암모늄(NH4NO3) 형성, 특히 저온 공정 시 발생하는 질산암모늄(NH4NO3) 및 아산화질소(N2O) 발생 억제에 매우 효과적인 것을 시사한다. Therefore, the catalyst of this embodiment using manganese nitrate with a relatively low content of Mn 4+ reduces the formation of ammonium nitrate (NH 4 NO 3 ), which is more fatal to the SCR catalyst activity than natural manganese ore, especially during low-temperature processes. 4 NO 3 ) and nitrous oxide (N 2 O), suggesting that it is very effective in inhibiting generation.

실험예 5Experimental Example 5

하기 표 2는 망간 나이트레이트로 제조된 바나듐-망간/텅스텐/티타니아 촉매의 지지체를 각기 달리하여 제조된 제조예, 비교제조예 3, 비교제조예 4의 200도에서의 탈질성능을 확인한 결과이다.Table 2 below shows the results of confirming the denitrification performance at 200 degrees of Preparation Example, Comparative Preparation Example 3, and Comparative Preparation Example 4 prepared by using different supports for vanadium-manganese/tungsten/titania catalysts made of manganese nitrate.

NOx 전환율NOx conversion rate N2O 발생량Amount of N2O 제조예manufacturing example 5050 00 비교제조예 3Comparative Preparation Example 3 1919 1111 비교제조예 4Comparative Preparation Example 4 2727 1717

상기 표 2를 참조하면 Anatase TiO2를 사용한 본 발명의 제조예를 제외하고 200도에서 30% 이하의 NOx 전환율 및 10ppm 이상의 N2O 발생을 확인하였다. 하기 표 3은 각기 다른 물성을 지닌 Anatase TiO2를 이용하여 제조된 제조예, 비교제조예 5의 200도에서의 탈질성능을 확인한 결과이다.Referring to Table 2, except for the production example of the present invention using Anatase TiO 2 , NOx conversion rate of 30% or less and generation of N 2 O of 10 ppm or more at 200 degrees were confirmed. Table 3 below shows the results of confirming the denitrification performance at 200 degrees of Preparation Example and Comparative Preparation Example 5 prepared using Anatase TiO 2 having different physical properties.

NOx 전환율NOx conversion rate N2O 발생량Amount of N2O 제조예manufacturing example 5050 00 비교제조예 5Comparative Preparation Example 5 6363 1111

상기 표 3을 참조하면 Anatase TiO2를 사용하였을 때, 200도에서 두 촉매 모두 50% 이상의 NOx 전환율을 나타내었다. 반면, 비교제조예 5는 10ppm 이상의 N2O 발생이 확인되었다.Referring to Table 3, when Anatase TiO 2 was used, both catalysts exhibited NOx conversion rates of 50% or more at 200 degrees. On the other hand, in Comparative Preparation Example 5, generation of N 2 O of 10 ppm or more was confirmed.

하기 표 4는 각기 다른 물성을 지닌 Anatase TiO2를 이용하여 제조된 제조예, 비교제조예 5의 BET 분석 결과이다.Table 4 below shows the BET analysis results of Preparation Example and Comparative Preparation Example 5 prepared using Anatase TiO 2 having different physical properties.

BET (cm3/g)BET (cm 3 /g) Mean pore iameter
(nm)
Mean pore size
(nm)
Vp
(cm3/g)
Vp
(cm 3 /g)
제조예manufacturing example 59.01859.018 23.57223.572 0.34610.3461 비교제조예 5Comparative Preparation Example 5 44.06844.068 32.66232.662 0.35980.3598

따라서 anatase TiO2를 사용하여 촉매를 제조하고 바나듐-망간/텅스텐/티타니아 촉매의 최종 물성이 BET 45 cm3/g 이상, Mean pore diameter 32 상대적으로 nm 이하, Vp 0.35cm3/g 이하인 조건에서 SCR 촉매 활성에 치명적인 질산암모늄(NH4NO3) 형성, 특히 저온 공정 시 발생하는 질산암모늄(NH4NO3) 및 아산화질소(N2O) 발생 억제에 매우 효과적인 것을 시사한다. Therefore, a catalyst was prepared using anatase TiO 2 and the final physical properties of the vanadium-manganese/tungsten/titania catalyst were BET 45 cm 3 /g or more, mean pore diameter 32 nm or less, and Vp 0.35 cm 3 /g or less. It is suggested that it is very effective in inhibiting the formation of ammonium nitrate (NH 4 NO 3 ), which is fatal to the catalyst activity, especially the generation of ammonium nitrate (NH 4 NO 3 ) and nitrous oxide (N 2 O) generated during low-temperature processes.

실험예 6Experimental Example 6

도 9는 본 발명의 제조예와 비교제조예 5에 따른 탈질촉매를 이용한 Raman 분석 결과를 나타낸 그래프이다.9 is a graph showing the results of Raman analysis using the denitrification catalyst according to Preparation Example 5 and Comparative Preparation Example 5 of the present invention.

비교제조예 1을 참조하면 천연망간광석/바나듐/텅스텐/티타니아계 탈질촉매는 천연망간광석이 첨가됨에 따라 주로 β-MnO2(pyrolusite) 구조가 지배적인 존재함을 확인하였다 Referring to Comparative Preparation Example 1, it was confirmed that the natural manganese ore/vanadium/tungsten/titania-based denitrification catalyst mainly had a β-MnO 2 (pyrolusite) structure as the natural manganese ore was added.

반면, 본 발명에 제조예에 따른 바나듐-망간/텅스텐/티타니아계 탈질 촉매는 망간의 전구체로써 망간 나이트레이트를 사용함에 따라 α-Mn2O3 구조(304, 396, 696cm-1) 및 Mn3O4 구조(283, 480cm-1)의 성장이 확인되었다.On the other hand, the vanadium-manganese/tungsten/titania-based denitration catalyst according to the preparation example of the present invention uses manganese nitrate as a manganese precursor, and thus has an α-Mn 2 O 3 structure (304, 396, 696cm -1 ) and Mn 3 Growth of the O 4 structure (283, 480 cm −1 ) was confirmed.

반면, 비교제조예 5는 α-Mn2O3 구조(304, 396cm-1)는 확인되었지만, Mn3O4 구조(283, 480cm-1)은 확인되지 않았다.On the other hand, in Comparative Preparation Example 5, the α-Mn 2 O 3 structure (304, 396 cm −1 ) was confirmed, but the Mn 3 O 4 structure (283, 480 cm −1 ) was not confirmed.

따라서 β-MnO2(pyrolusite) 구조가 지배적인 천연망간광석과는 달리 α-Mn2O3 및 Mn3O4 구조의 망간을 모두 포함하는 발명의 제조예만이 높은 NO2 비의 배기가스에서 발생하며, SCR 촉매 활성에 치명적인 질산암모늄(NH4NO3) 형성, 특히 저온 공정 시 발생하는 질산암모늄(NH4NO3) 및 아산화질소(N2O) 발생 억제에 매우 효과적인 것을 시사한다. Therefore, unlike natural manganese ores in which the β-MnO 2 (pyrolusite) structure dominates, only the manufacturing example of the invention containing both α-Mn 2 O 3 and Mn 3 O 4 manganese is generated in exhaust gas with a high NO2 ratio. It suggests that it is very effective in suppressing the formation of ammonium nitrate (NH 4 NO 3 ), which is fatal to the SCR catalyst activity, especially the generation of ammonium nitrate (NH 4 NO 3 ) and nitrous oxide (N 2 O) generated during low-temperature processes.

실험예 7Experimental Example 7

하기 표 5는 망간 나이트레이트로 제조된 바나듐-망간/텅스텐/티타니아 촉매 슬러리의 건조 후 각기 다른 소성온도에 따라 제조된 제조예, 비교제조예 6, 비교제조예 7, 비교제조예 8의 200도에서의 탈질성능을 확인한 결과이다.Table 5 below shows Preparation Examples, Comparative Preparation Example 6, Comparative Preparation Example 7, and Comparative Preparation Example 8 prepared according to different firing temperatures after drying the vanadium-manganese/tungsten/titania catalyst slurry prepared from manganese nitrate at 200 degrees. This is the result of confirming the denitrification performance in

NOx 전환율NOx conversion rate NN 22 O 발생량O generation amount 제조예manufacturing example 5050 00 비교제조예 6Comparative Preparation Example 6 3232 22 비교제조예 7Comparative Preparation Example 7 4848 1One 비교제조예 8Comparative Preparation Example 8 3838 55

이상의 결과는 촉매 소성온도는 섭씨 400도 수준, 즉, 섭씨 350도 내지 450도 범위가 바람직하다는 것을 나타낸다. The above results indicate that the catalyst firing temperature is preferably at the level of 400 degrees Celsius, that is, in the range of 350 degrees Celsius to 450 degrees Celsius.

Claims (5)

액화천연가스 복합화력발전용 배기가스 처리 시스템으로,
상기 복합화력발전 후 배출되는 배기가스에서 질소산화물을 저감하는 선택적 촉매환원(SCR)부;
상기 선택적 촉매환원(SCR)부 후단에 배치되어, 일산화탄소를 제거하는 촉매가 구비된 일산화탄소(CO)처리부;를 포함하며,
상기 배기가스에서 NO2/NOx 비 0.5 이상인 것을 특징으로 하는 액화천연가스 복합화력발전용 배기가스 처리 시스템.
As an exhaust gas treatment system for liquefied natural gas combined cycle power plants,
a selective catalytic reduction (SCR) unit for reducing nitrogen oxides in the exhaust gas discharged after the combined cycle power plant;
A carbon monoxide (CO) treatment unit disposed after the selective catalytic reduction (SCR) unit and equipped with a catalyst for removing carbon monoxide; includes,
An exhaust gas treatment system for a liquefied natural gas combined cycle power plant, characterized in that the NO 2 / NO x ratio in the exhaust gas is 0.5 or more.
제 1항에 있어서,
상기 선택적 촉매환원(SCR)부의 촉매는 NO2/NOx비 0.5 이상에서도 선택적 촉매환원반응이 일어나는 NO2 SCR 촉매인 것을 특징으로 하는 액화천연가스 복합화력발전용 배기가스 처리 시스템.
According to claim 1,
The catalyst of the selective catalytic reduction (SCR) unit is an exhaust gas treatment system for a liquefied natural gas combined cycle power plant, characterized in that the NO 2 SCR catalyst in which a selective catalytic reduction reaction occurs even at a NO 2 / NOx ratio of 0.5 or more.
제 1항에 있어서, 상기 액화천연가스 복합화력발전용 배기가스 처리 시스템은,
상기 선택적 촉매환원(SCR)부에 결합되어 상기 선택적 촉매환원(SCR)부로 암모니아를 직분사하는 암모니아 주입부를 더 포함하는 것을 특징으로 하는 액화천연가스 복합화력발전용 배기가스 처리 시스템.
The method of claim 1, wherein the exhaust gas treatment system for the liquefied natural gas combined cycle power plant,
The exhaust gas treatment system for a liquefied natural gas combined cycle power plant further comprising an ammonia injection unit coupled to the selective catalytic reduction (SCR) unit and directly injecting ammonia into the selective catalytic reduction (SCR) unit.
제 3항에 있어서, 상기 액화천연가스 복합화력발전용 배기가스 처리 시스템은,
상기 선택적 촉매환원(SCR)부 전단에 구비되어 탄화수소를 촉매로 처리하는 탄화수소처리부를 더 포함하는 것을 특징으로 하는 액화천연가스 복합화력발전용 배기가스 처리 시스템.
The method of claim 3, wherein the liquefied natural gas combined cycle power plant exhaust gas treatment system,
The exhaust gas treatment system for a liquefied natural gas combined cycle power plant, characterized in that it further comprises a hydrocarbon processing unit provided in front of the selective catalytic reduction (SCR) unit to treat hydrocarbons with a catalyst.
제 2항에 있어서,
상기 NO2 SCR 촉매는 바나듐/텅스텐/티타니아 및 망간을 포함하며, 상기 망간은 α-Mn2O3 및 Mn3O4 구조를 모두 포함하며, 이로써 질산암모늄(NH4NO3)의 형성 및 아산화질소(N2O) 발생이 억제되는 것을 특징으로 하는 액화천연가스 복합화력발전용 배기가스 처리 시스템.
According to claim 2,
The NO 2 SCR catalyst includes vanadium/tungsten/titania and manganese, and manganese includes both α-Mn 2 O 3 and Mn 3 O 4 structures, thereby forming ammonium nitrate (NH 4 NO 3 ) and suboxidation. An exhaust gas treatment system for a liquefied natural gas combined cycle power plant, characterized in that the generation of nitrogen (N 2 O) is suppressed.
KR1020210153471A 2021-11-09 2021-11-09 Exhaust gas treatment system for liquefied natural gas combined cycle power generation KR20230067406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210153471A KR20230067406A (en) 2021-11-09 2021-11-09 Exhaust gas treatment system for liquefied natural gas combined cycle power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210153471A KR20230067406A (en) 2021-11-09 2021-11-09 Exhaust gas treatment system for liquefied natural gas combined cycle power generation

Publications (1)

Publication Number Publication Date
KR20230067406A true KR20230067406A (en) 2023-05-16

Family

ID=86546346

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210153471A KR20230067406A (en) 2021-11-09 2021-11-09 Exhaust gas treatment system for liquefied natural gas combined cycle power generation

Country Status (1)

Country Link
KR (1) KR20230067406A (en)

Similar Documents

Publication Publication Date Title
US7744840B2 (en) Selective catalytic reduction system and process using a pre-sulfated zirconia binder
CN111939757A (en) Method for removing nitrogen oxides in low-temperature flue gas
US7988940B2 (en) Selective catalytic reduction system and process for treating NOx emissions using a zinc or titanium promoted palladium-zirconium catalyst
JP3352494B2 (en) Nitrogen oxide decomposition catalyst and denitration method using the same
US11371406B2 (en) Low-temperature de-NOx catalyst for treatment of exhaust gas from stationary source and method of manufacturing same
US7976805B2 (en) Selective catalytic reduction system and process for treating NOx emissions using a palladium and rhodium or ruthenium catalyst
JP2005081189A (en) Catalyst for denitrifying high temperature waste gas
KR102378405B1 (en) Selective reduction catalyst for removing nitrogen oxide using ammonia, manufacturing method thereof and method for removing nitrogen oxide using the same
KR20080059958A (en) Simultaneous flue gas desulfurization and denitrification with ozone and active coke
KR101137469B1 (en) THE METHOD FOR THE SIMULTANEOUS REMOVAL OF Sox AND NOx IN FLUE GAS AND THE CATALYST THEREFOR
CN115282752B (en) Low-temperature flue gas NOx and VOCs cooperative removal method based on coupling catalysis of pre-oxidation tempering
KR20230067406A (en) Exhaust gas treatment system for liquefied natural gas combined cycle power generation
KR20230085785A (en) Exhaust gas treatment system for liquefied natural gas combined cycle power generation
KR102476863B1 (en) Denitrification catalyst and exhaust gas treatment system for thermal power generation using the same
JP4356324B2 (en) Method for producing carrier for methane selective denitration catalyst
JP3843520B2 (en) Low temperature denitration catalyst, production method thereof, and low temperature denitration method
KR102382083B1 (en) Elimination Method of Chlorine in Inorganics Using Bases and Selective Catalytic Reduction(SCR) Catalysts Manufactured Thereby
KR20230091061A (en) Method for operation of combined cycle power plant using denitrification catalyst and metal support
KR20230085034A (en) Denitrification catalyst and exhaust gas treatment system for thermal power generation using the same
KR20230090284A (en) Method for operation of combined cycle power plant using denitrification catalyst
CN108355656A (en) Flue gas pre-oxidation catalyst and its preparation method and application and low-temperature denitration of flue gas method
KR20220145935A (en) Catalyst for ammonia oxidation, and method for producing the same
US8197779B2 (en) Catalyst for removing nitrogen oxides from exhaust gas, method for preparing the same and method for removing nitrogen oxides using the same from exhaust gas
KR20230091060A (en) Selective catalytic reduction method using ammonium nitrate
CN108246305B (en) Selective oxidation catalyst for flue gas denitration and preparation method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal