JP4356324B2 - Method for producing carrier for methane selective denitration catalyst - Google Patents

Method for producing carrier for methane selective denitration catalyst Download PDF

Info

Publication number
JP4356324B2
JP4356324B2 JP2003012982A JP2003012982A JP4356324B2 JP 4356324 B2 JP4356324 B2 JP 4356324B2 JP 2003012982 A JP2003012982 A JP 2003012982A JP 2003012982 A JP2003012982 A JP 2003012982A JP 4356324 B2 JP4356324 B2 JP 4356324B2
Authority
JP
Japan
Prior art keywords
methane
catalyst
sulfate
supported
denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003012982A
Other languages
Japanese (ja)
Other versions
JP2004223381A (en
Inventor
和宏 矢野
厚 福寿
進 日数谷
岳弘 清水
正義 市来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2003012982A priority Critical patent/JP4356324B2/en
Publication of JP2004223381A publication Critical patent/JP2004223381A/en
Application granted granted Critical
Publication of JP4356324B2 publication Critical patent/JP4356324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、ボイラ、ガスタービン、エンジンおよび燃焼炉などに代表される排ガス中に存在する窒素酸化物を、酸素過剰雰囲気で5〜20%の水蒸気共存下に、メタンを還元剤として使用して効率的に分解除去する触媒用の担体の製造方法に関する。
【0002】
【従来の技術】
酸素過剰雰囲気下で窒素酸化物を還元し、無害な窒素に変換する技術として、NHを還元剤に用いるNOx選択接触還元法(NH・SCR)が知られている。この技術によれば、簡便な装置でNOxを効率的に還元除去できるが、還元剤として用いるNHの貯蔵、装置の維持管理、適切な安全管理などが必要であり、これが脱硝コストの上昇を招いている。還元剤を使用せず、NOxを窒素と酸素に分解する技術は現在研究開発中であるが、まだ実用に供しうる成績を得ていない。燃焼排ガス中に含まれる未燃の炭化水素を還元剤として用いる脱硝法(HC・SCR)も研究されているが、これもまだ実用化されるに至っていない。HC・SCR技術の一つとして、メタンを還元剤に用いて酸素過剰雰囲気下でNOxを分解する方法およびこれに用いる触媒が提案されている(特許文献1参照)。しかし該文献記載の触媒では、空間速度15000h−1の反応開始初期においてはNOx転化率が約60%であるものの、経時的に活性が低下し、その低下の程度が大きいことがわかった。また該触媒の実用化を考えると更なる活性の向上が要求される。
【0003】
【特許文献1】
特開2000−61308号公報
【0004】
【発明が解決しようとする課題】
本発明は、上記の点に鑑み、水蒸気共存下においてもメタンを還元剤に用いて高い脱硝率でNOxを効率良くかつ長時間にわたって分解しうる触媒用の担体の製造方法を提供することを主たる目的とする
【0005】
【課題を解決するための手段と発明の効果】
請求項1の発明によるメタン選択型脱硝触媒用担体の製造方法は、ジルコニウムの硝酸塩または塩酸塩の水溶液にアルカリ水溶液またはアンモニア水溶液を添加することにより生成した生成物を濾過、水洗して水酸化ジルコニウムを得、この水酸化ジルコニウムを300〜400℃で乾燥した後、乾燥した水酸化ジルコニウムを硫酸または硫酸アンモニウムの水溶液に投入して硫酸根を担持させ、500〜600℃で焼成することを特徴とするものである。
請求項1の発明は、次のような経緯で完成されたものである。
【0006】
炭化水素を還元剤として窒素酸化物を分解する場合の反応メカニズムの一部として、炭化水素が触媒により部分的に酸化され、ラジカル等の活性種に変化すると考えられている。ところが、メタンに代表されるように、飽和度が高くかつ炭素数の小さいものは、一般に化学的に安定な構造をしており、容易に構造的変化を起こさない。したがって、メタンを還元剤として使用する脱硝触媒は、非常に強い酸化力が必要である。酸化力を有する触媒は、担体として固体酸性を有するものを用いたものである。
【0007】
そして、本発明者等は、通常の固体酸の酸強度を上回る固体超強酸性、たとえば100%硫酸よりも強い強酸性を有し、しかも固体超強酸性の上限が所定の値にある担体を用いた触媒によれば、化学的に安定なメタンを還元剤として使用しても、酸素過剰雰囲気で水蒸気共存下において、メタンを還元剤として使用して窒素酸化物を効率的にかつ安定的に長時間にわたって分解除去しうることを見出し、請求項1の発明を完成したのである。
【0008】
請求項1の発明において、水酸化ジルコニウムを300〜400℃で乾燥することにより、水酸化ジルコニウムの表面および結晶内部に存在するH Oを除去してZr原子が有する結合性のOH基をより効果的に発現させることができ、これにより後工程で導入する硫酸根とOH基との接触が促進しZr原子と硫酸根との親和性がより高まった正方晶の硫酸根担持ジルコニアを必要量発現させることができる。この乾燥温度が300℃未満であると、水酸化ジルコニウムの表面に吸着したH Oの除去は可能であるものの、結晶内部に存在するH Oは完全に除去できないためにZr原子と硫酸根と結合がうまく行われないことがあり、400℃を越えると、前駆体物質である水酸化ジルコニウムからジルコニアへの結晶化が進行してZr原子どうしの結合が優位的となるために、後工程で導入する硫酸根が十分にZr原子と結合できなくなって触媒活性を発揮できなくなることがある
【0009】
また、乾燥した水酸化ジルコニウムを硫酸または硫酸アンモニウムの水溶液に投入して硫酸根を担持させた後の焼成温度が500〜600℃であると、固体酸性度の高い硫酸根担持ジルコニアを得ることができる。この焼成温度が500℃未満であると上記効果は得られず、600℃を越えると硫酸根の脱離が優位に進行するため担体からの硫酸根の損失を招き、逆に固体酸性度が低下する
【0010】
請求項1の発明によれば、メタンを還元剤として使用して窒素酸化物を効率的にかつ安定的に長時間にわたって分解除去しうる触媒用の担体を製造することができる
【0011】
請求項1の発明により製造されたメタン選択型脱硝触媒用担体において、正方晶の硫酸根担持ジルコニアと単斜晶の硫酸根担持ジルコニアが混在しており、硫酸根の担持量が、ジルコニアに対する重量比で1〜20%であるのがよい
【0012】
酸強度が高められた硫酸根担持ジルコニアは正方晶であり、酸強度が高められていない硫酸根担持ジルコニアは単斜晶である。正方晶の硫酸根担持ジルコニアは、硫酸根とZr原子とが強い相互作用を持っており、活性金属を導入した際に電子吸引性を発揮して活性金属の電子局在化に寄与することができ、その作動性は単斜晶の硫酸根担持ジルコニアよりも高いと考えられている。そのため、水蒸気共存下において吸着したHO分子が活性金属の電子局在状態を緩和しようとしても、正方晶の硫酸根担持ジルコニアの電子吸引性が改善されていることによって、HO分子の影響が少なくなる
【0013】
そして、硫酸根の担持量が、ジルコニアに対する重量比で1〜20%であると、供給した硫酸根をジルコニアとの結合性に有効に作用させることができ、硫酸根担持ジルコニアを安定的に形成することができる
【0014】
メタン選択型脱硝触媒としては、請求項1の発明により製造されたメタン選択型脱硝触媒用担体に、白金、パラジウムおよびルテニウムのうちの少なくとも1種を担持してなるものがある
【0015】
白金、パラジウムおよびルテニウムのうちの少なくとも1種は、メタンを活性化させる触媒活性点として作用し、その結果この触媒によれば、化学的に安定なメタンを還元剤として使用しても、水蒸気存在下でかつ過剰酸素濃度の雰囲気で水蒸気共存下において、メタンを還元剤として使用して効率的にかつ安定的に長時間にわたって分解除去しうる。
【0016】
また、他のメタン選択型脱硝触媒としては、請求項1の発明により製造されたメタン選択型脱硝触媒用担体に、パラジウムを担持してなり、パラジウムの担持量が担体に対する重量比で0.001〜5%であるものがある
【0017】
メタンによる選択還元脱硝反応は以下のような機構で進行すると考えられる。
【0018】
1)触媒活性点に吸着されたメタンは著しく活性化され、気相からの酸素分子の到達を待たずに、迅速に触媒格子酸素と反応する。
【0019】
2)吸着されたNOxは、上述のようにメタンとの反応で酸素欠陥を生じた触媒に、気相からの酸素分子の到達より早く酸素を奪われ(すなわち還元されて)窒素ガスとして脱離する。
【0020】
パラジウム担持量とメタンの酸化活性は、パラジウム担持量が増加するほどメタンの酸化活性が高いという関係にある。また、気相の酸素濃度が低くなればメタンの酸化活性は低下し、この低下の度合いはパラジウム担持量が多いほど大きい。これは、反応機構1)の触媒活性点がパラジウムであり、パラジウム担持量が増加するに従い活性化されたメタンが触媒格子酸素よりも気相酸素と優先的に反応していることを示している。活性化されたメタンが気相酸素と優先的に反応するならば反応機構2)において触媒中に酸素欠陥が生じることはなくNOxの還元反応も進行しない。以上の知見に基づき、パラジウム上で活性化されたメタンが触媒格子酸素と優先的に反応するようにパラジウム担持量の検討を行い、パラジウムの担持量が担体に対する重量比で0.001〜0.5%である触媒が、水蒸気存在下、メタンを還元剤に用いてNOxを分解するに際し、高いNOx分解活性を示し、さらに水蒸気の存在による活性低下の程度が小さいことを見出した。パラジウムの担持量は、担体に対する重量比で0.01〜0.1%であることが好ましい。
【0021】
さらに、他のメタン選択型脱硝触媒としては、請求項1の発明により製造されたメタン選択型脱硝触媒用担体に、パラジウムおよび白金を担持してなり、パラジウムの担持量が担体に対する重量比で0.001〜5%であり、白金の担持量がパラジウムに対する重量比で100%以下であるものがある。白金はパラジウムと共存させることにより、NO分子をより反応性の高いNO分子へ活性化させるという働きをするが、白金の担持量がパラジウムに対する重量比で100%を越えると酸化能力が高くなりすぎてCHを酸化させてしまい、反応に寄与するCH量を減ずるおそれがある。
【0022】
上述したいずれかのメタン選択型脱硝触媒を排ガスに接触させ、酸素過剰雰囲気で水分共存下にメタンを還元剤として用いて窒素酸化物を分解することにより、排ガスを浄化することができる。
【0023】
【発明の実施形態】
以下、本発明の具体的実施例を比較例とともに説明する。
【0024】
実施例1〜2および比較例1〜3
硝酸ジルコニル二水和物を蒸留水に溶解させた後、これを攪拌しながら28%アンモニア水溶液をpH=8となるまで滴下し、水酸化ジルコニウムの白色沈殿物を生成させた。ついで、これを数回デカンテーションした後、濾過分離して水酸化ジルコニウムを得、この水酸化ジルコニウムを100℃(比較例1)、300℃(実施例1)、400℃(実施例2)、500℃(比較例2)および700℃(比較例3)で12時間乾燥させた。
【0025】
ついで、乾燥した水酸化ジルコニウムを0.5mol/リットルの硫酸水溶液に投入し110℃で蒸発乾固させて硫酸根を担持させた。このとき、S分量は硫酸水溶液をSOとして10wt%となるように調整した。その後、これを550℃で3時間焼成し、6種類の硫酸根担持ジルコニアを得た
【0026】
硫酸根担持ジルコニアを担体として用いた触媒の脱硝試験
実施例1〜2および比較例1〜3の硫酸根担持ジルコニアをテトラクロロパラジウム塩およびヘキサアンミン白水酸塩の混合水溶液に投入し、110℃で蒸発乾固させた後、500℃で15時間焼成して0.05%Pd−0.01%Pt/硫酸根担持ジルコニアよりなる脱硝触媒を得た。
【0027】
得られた脱硝触媒を反応管に充填し、NO:100ppm、CH:1000ppm、O:12%、CO:4%、HO:10%、N2:balからなる排ガスを、空間速度(SV)30000h−1、反応温度450℃の条件下で反応管に通して脱硝反応率の測定を行った。その結果を図1に示す。また、20時間経過後の脱硝反応率を表1に示す。
【0028】
【表1】

Figure 0004356324
【0029】
脱硝反応率に対する水分の影響
排ガス中のHOを0〜10%にした他は上記脱硝試験と同様にして、脱硝反応率に対する水分の影響を調べた。その結果を図2に示す。
【図面の簡単な説明】
【図1】 硫酸根担持ジルコニアを担体として用いた触媒の脱硝試験の結果を示すグラフである。
【図2】 脱硝反応率に対する水分の影響を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention uses nitrogen oxides present in exhaust gas typified by boilers, gas turbines, engines, combustion furnaces, etc., using methane as a reducing agent in the presence of 5-20% water vapor in an oxygen-excess atmosphere. The present invention relates to a method for producing a catalyst carrier that is efficiently decomposed and removed.
[0002]
[Prior art]
A NOx selective catalytic reduction method (NH 3 .SCR) using NH 3 as a reducing agent is known as a technique for reducing nitrogen oxides in an excess of oxygen atmosphere to convert them into harmless nitrogen. According to this technology, NOx can be efficiently reduced and removed with a simple device, but storage of NH 3 used as a reducing agent, maintenance and management of the device, appropriate safety management, and the like are necessary, which increases the denitration cost. Invited. A technique for decomposing NOx into nitrogen and oxygen without using a reducing agent is currently under research and development, but has not yet obtained practical results. A denitration method (HC / SCR) using unburned hydrocarbons contained in combustion exhaust gas as a reducing agent has also been studied, but this has not yet been put into practical use. As one of the HC / SCR technologies, a method for decomposing NOx under an oxygen-excess atmosphere using methane as a reducing agent and a catalyst used therefor have been proposed (see Patent Document 1). However, in the catalyst described in this document, it was found that although the NOx conversion rate was about 60% at the beginning of the reaction at a space velocity of 15000 h −1 , the activity decreased with time and the degree of the decrease was large. Considering the practical application of the catalyst, further improvement in activity is required.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-61308
[Problems to be solved by the invention]
In view of the above-mentioned points, the present invention mainly provides a method for producing a catalyst carrier capable of efficiently decomposing NOx over a long period of time at a high denitration rate using methane as a reducing agent even in the presence of water vapor. for the purpose.
[0005]
[Means for Solving the Problems and Effects of the Invention]
According to the first aspect of the present invention, there is provided a method for producing a support for a methane selective denitration catalyst, wherein a product formed by adding an alkaline aqueous solution or an aqueous ammonia solution to an aqueous solution of zirconium nitrate or hydrochloride is filtered, washed with water and washed with zirconium hydroxide. The zirconium hydroxide is dried at 300 to 400 ° C., and then the dried zirconium hydroxide is put into an aqueous solution of sulfuric acid or ammonium sulfate to carry a sulfate radical and calcined at 500 to 600 ° C. Is.
The invention of claim 1 has been completed in the following manner.
[0006]
As a part of the reaction mechanism in the case of decomposing nitrogen oxides using hydrocarbon as a reducing agent, it is considered that the hydrocarbon is partially oxidized by a catalyst and converted into active species such as radicals. However, as represented by methane, those having a high degree of saturation and a small number of carbons generally have a chemically stable structure and do not easily undergo structural changes. Therefore, a denitration catalyst using methane as a reducing agent needs a very strong oxidizing power. A catalyst having an oxidizing power is one having a solid acidity as a carrier.
[0007]
The inventors of the present invention have a solid superacidity exceeding that of a normal solid acid, for example, a strong acidity stronger than 100% sulfuric acid, and a carrier whose upper limit of solid superacidity is at a predetermined value. According to the catalyst used, even if chemically stable methane is used as the reducing agent, nitrogen oxides can be efficiently and stably used using methane as the reducing agent in the presence of water vapor in an oxygen-excess atmosphere. The inventors have found that it can be decomposed and removed over a long period of time, and have completed the invention of claim 1.
[0008]
In the invention of claim 1, by drying the zirconium hydroxide at 300 to 400 ° C., H 2 O existing on the surface of the zirconium hydroxide and inside the crystal is removed, and the binding OH group possessed by the Zr atom is further increased. Necessary amount of tetragonal sulfate radical-supporting zirconia that can be effectively expressed, thereby promoting the contact between sulfate radical and OH group to be introduced in the subsequent process and increasing the affinity between Zr atom and sulfate radical. Can be expressed. If the drying temperature is lower than 300 ° C., although the removal of H 2 O adsorbed to the surface of the zirconium hydroxide can be, Zr atoms and sulfate radicals to H 2 O is not completely removed existing inside the crystal If the temperature exceeds 400 ° C., crystallization from zirconium hydroxide, which is a precursor material, to zirconia progresses and bonding between Zr atoms becomes dominant. In some cases, the sulfate radical introduced in step (b) cannot be sufficiently combined with the Zr atom, so that the catalytic activity cannot be exhibited .
[0009]
Further, when the calcining temperature after the dried zirconium hydroxide is put into an aqueous solution of sulfuric acid or ammonium sulfate to carry sulfate radicals is 500 to 600 ° C., sulfate radical-supporting zirconia having high solid acidity can be obtained. . If the calcination temperature is less than 500 ° C., the above effect cannot be obtained. If the calcination temperature exceeds 600 ° C., the elimination of sulfate radicals proceeds predominately, leading to loss of sulfate radicals from the carrier, and conversely the solid acidity decreases To do .
[0010]
According to the first aspect of the present invention, it is possible to produce a catalyst carrier that can efficiently and stably decompose and remove nitrogen oxides over a long period of time using methane as a reducing agent .
[0011]
In the carrier for methane selective denitration catalyst produced by the invention of claim 1 , tetragonal sulfate-supported zirconia and monoclinic sulfate-supported zirconia are mixed, and the supported amount of sulfate radicals is the weight relative to zirconia. The ratio is preferably 1 to 20% .
[0012]
Sulfate-supported zirconia with increased acid strength is tetragonal, and sulfate-supported zirconia without increased acid strength is monoclinic. Tetragonal sulfate radical-supporting zirconia has a strong interaction between sulfate radicals and Zr atoms, and when active metal is introduced, it exhibits electron withdrawing and contributes to electron localization of the active metal. It is considered that its operability is higher than that of monoclinic sulfate-supported zirconia. Therefore, even if an attempt alleviate electrons localized states of the H 2 O molecules active metal adsorbed in the water vapor coexist, by electron-withdrawing sulfate group supported zirconia tetragonal has been improved, the H 2 O molecules Impact is reduced .
[0013]
When the supported amount of sulfate radicals is 1 to 20% by weight with respect to zirconia, the supplied sulfate radicals can effectively act on the binding properties with zirconia, and the sulfate radical-supported zirconia can be stably formed. Can
[0014]
The methane selective denitration catalyst, methane selective denitration catalyst carrier produced by the invention of claim 1, platinum, there is formed by carrying at least one of palladium and ruthenium.
[0015]
At least one of platinum, palladium, and ruthenium acts as a catalytic active site for activating methane, and as a result, according to this catalyst, water vapor is present even when chemically stable methane is used as a reducing agent. Under the presence of water vapor in an atmosphere of excess oxygen concentration, methane can be efficiently and stably decomposed and removed over a long period of time using a reducing agent.
[0016]
In addition, as another methane selective denitration catalyst, palladium is supported on the methane selective denitration catalyst carrier manufactured according to the invention of claim 1 , and the supported amount of palladium is 0.001 in a weight ratio with respect to the carrier. Some are ~ 5%.
[0017]
The selective reduction denitration reaction with methane is considered to proceed by the following mechanism.
[0018]
1) Methane adsorbed on the catalytic active site is remarkably activated and reacts with the catalytic lattice oxygen quickly without waiting for the arrival of oxygen molecules from the gas phase.
[0019]
2) The adsorbed NOx is desorbed as nitrogen gas by oxygen depletion (ie, reduced) earlier than the arrival of oxygen molecules from the gas phase by the catalyst that has generated oxygen defects due to the reaction with methane as described above. To do.
[0020]
The amount of palladium supported and the oxidation activity of methane have a relationship that the oxidation activity of methane increases as the amount of palladium supported increases. Further, when the oxygen concentration in the gas phase is lowered, the oxidation activity of methane is lowered, and the degree of the reduction is larger as the amount of palladium supported is larger. This indicates that the catalytic active site of reaction mechanism 1) is palladium, and that activated methane reacts preferentially with gaseous oxygen over catalytic lattice oxygen as the palladium loading increases. . If the activated methane reacts preferentially with gas phase oxygen, no oxygen defects are generated in the catalyst in the reaction mechanism 2), and the reduction reaction of NOx does not proceed. Based on the above knowledge, the amount of palladium supported was examined so that methane activated on palladium preferentially reacts with the catalyst lattice oxygen, and the amount of palladium supported was 0.001 to 0.001 by weight ratio to the support. It was found that a catalyst of 5% exhibited high NOx decomposition activity when NOx was decomposed using methane as a reducing agent in the presence of water vapor, and the degree of activity decrease due to the presence of water vapor was small. The supported amount of palladium is preferably 0.01 to 0.1% by weight with respect to the support.
[0021]
Further, as another methane selective denitration catalyst , palladium and platinum are supported on the methane selective denitration catalyst support produced according to the invention of claim 1, and the supported amount of palladium is 0 by weight ratio to the support. a .001~5%, there is the amount of supported platinum is less than 100% by weight relative to the palladium. When platinum coexists with palladium, it works to activate NO molecules to more reactive NO 2 molecules. However, if the amount of platinum supported exceeds 100% by weight with respect to palladium, the oxidation ability increases. Too much CH 4 is oxidized, which may reduce the amount of CH 4 contributing to the reaction.
[0022]
One of the methane selective denitration catalysts described above is brought into contact with the exhaust gas, and the exhaust gas can be purified by decomposing nitrogen oxides using methane as a reducing agent in the presence of moisture in an oxygen-excess atmosphere.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific examples of the present invention will be described together with comparative examples.
[0024]
Examples 1-2 and Comparative Examples 1-3
Zirconyl nitrate dihydrate was dissolved in distilled water, and then a 28% aqueous ammonia solution was added dropwise until stirring until pH = 8 while stirring to produce a white precipitate of zirconium hydroxide. Subsequently, this was decanted several times, and then filtered and separated to obtain zirconium hydroxide. The zirconium hydroxide was obtained at 100 ° C. (Comparative Example 1), 300 ° C. ( Example 1 ), 400 ° C. ( Example 2 ). , And dried at 500 ° C. ( Comparative Example 2 ) and 700 ° C. ( Comparative Example 3 ) for 12 hours.
[0025]
Subsequently, the dried zirconium hydroxide was put into a 0.5 mol / liter sulfuric acid aqueous solution and evaporated to dryness at 110 ° C. to carry a sulfate radical. At this time, the amount of S was adjusted to 10 wt% with a sulfuric acid aqueous solution as SO 4 . Then, this was baked at 550 ° C. for 3 hours to obtain six kinds of sulfate radical-supporting zirconia.
[0026]
Catalyst denitration test using sulfate-supported zirconia as support The sulfate-supported zirconia of Examples 1 and 2 and Comparative Examples 1 to 3 was added to a mixed aqueous solution of tetrachloropalladium salt and hexaammine hydrate, at 110 ° C. After evaporating to dryness, it was calcined at 500 ° C. for 15 hours to obtain a denitration catalyst comprising 0.05% Pd-0.01% Pt / sulfuric acid radical-supporting zirconia.
[0027]
The obtained denitration catalyst is filled in a reaction tube, and an exhaust gas composed of NO: 100 ppm, CH 4 : 1000 ppm, O 2 : 12%, CO 2 : 4%, H 2 O: 10%, N2: bal is used as a space velocity. (SV) The denitration reaction rate was measured through a reaction tube under the conditions of 30000 h −1 and a reaction temperature of 450 ° C. The result is shown in FIG. In addition, Table 1 shows the denitration reaction rate after 20 hours.
[0028]
[Table 1]
Figure 0004356324
[0029]
Effect of moisture on denitration reaction rate The effect of moisture on the denitration reaction rate was examined in the same manner as in the above denitration test except that H 2 O in the exhaust gas was changed to 0 to 10%. The result is shown in FIG.
[Brief description of the drawings]
FIG. 1 is a graph showing the results of a denitration test of a catalyst using sulfate radical-supporting zirconia as a carrier.
FIG. 2 is a graph showing the influence of moisture on the denitration reaction rate.

Claims (1)

ジルコニウムの硝酸塩または塩酸塩の水溶液にアルカリ水溶液またはアンモニア水溶液を添加することにより生成した生成物を濾過、水洗して水酸化ジルコニウムを得、この水酸化ジルコニウムを300〜400℃で乾燥した後、乾燥した水酸化ジルコニウムを硫酸または硫酸アンモニウムの水溶液に投入して硫酸根を担持させ、500〜600℃で焼成することを特徴とするメタン選択型脱硝触媒用担体の製造方法。A product formed by adding an alkaline aqueous solution or an aqueous ammonia solution to an aqueous solution of zirconium nitrate or hydrochloride is filtered, washed with water to obtain zirconium hydroxide, dried at 300 to 400 ° C., and then dried. A method for producing a carrier for a methane selective denitration catalyst, wherein the zirconium hydroxide is added to an aqueous solution of sulfuric acid or ammonium sulfate to carry a sulfate radical and calcined at 500 to 600 ° C.
JP2003012982A 2003-01-22 2003-01-22 Method for producing carrier for methane selective denitration catalyst Expired - Fee Related JP4356324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003012982A JP4356324B2 (en) 2003-01-22 2003-01-22 Method for producing carrier for methane selective denitration catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003012982A JP4356324B2 (en) 2003-01-22 2003-01-22 Method for producing carrier for methane selective denitration catalyst

Publications (2)

Publication Number Publication Date
JP2004223381A JP2004223381A (en) 2004-08-12
JP4356324B2 true JP4356324B2 (en) 2009-11-04

Family

ID=32901429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003012982A Expired - Fee Related JP4356324B2 (en) 2003-01-22 2003-01-22 Method for producing carrier for methane selective denitration catalyst

Country Status (1)

Country Link
JP (1) JP4356324B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10112178B2 (en) 2015-03-05 2018-10-30 Shell Oil Company Methane oxidation catalyst, process to prepare the same and method of using the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7718153B2 (en) * 2008-05-16 2010-05-18 Siemens Energy, Inc. Catalytic process for control of NOx emissions using hydrogen
WO2010101636A2 (en) * 2009-03-02 2010-09-10 Sud-Chemie Inc. Promoted zirconium oxide catalyst support
CN104148057A (en) * 2014-07-31 2014-11-19 南京师范大学 Low-temperature SCR catalyst based on monoclinic-phase nano-zirconia carrier and preparation method of low-temperature SCR catalyst based on monoclinic-phase nano-zirconia carrier
EP3507009B1 (en) 2016-08-31 2021-09-22 Shell Internationale Research Maatschappij B.V. Process to prepare a methane oxidation catalyst
SG11201901348XA (en) 2016-08-31 2019-03-28 Shell Int Research Methane oxidation catalyst, process to prepare the same and method of using the same
KR102113122B1 (en) * 2017-01-20 2020-05-21 효성화학 주식회사 Method of preparing dehydrogenation catalysts
JPWO2023074101A1 (en) * 2021-10-28 2023-05-04

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3985118B2 (en) * 1998-06-08 2007-10-03 大阪瓦斯株式会社 Exhaust gas purification catalyst and exhaust gas purification method
KR100319922B1 (en) * 1999-03-05 2002-01-09 이형도 catalyst for reduction of exhaust gas from diesel engine
JP3643948B2 (en) * 1999-03-15 2005-04-27 株式会社豊田中央研究所 Titania-zirconia powder and method for producing the same
JP3756706B2 (en) * 1999-09-03 2006-03-15 ダイハツ工業株式会社 Exhaust gas purification catalyst
JP2001354973A (en) * 2000-06-13 2001-12-25 Petroleum Energy Center Method for hydrodesulfurizing hydrocarbon oil
JP3932437B2 (en) * 2000-11-27 2007-06-20 日立造船株式会社 Exhaust gas purification catalyst and exhaust gas purification method
KR100392943B1 (en) * 2001-05-16 2003-07-28 (주)케이에이치 케미컬 Catalyst for purification of diesel engine exhaust gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10112178B2 (en) 2015-03-05 2018-10-30 Shell Oil Company Methane oxidation catalyst, process to prepare the same and method of using the same
US10512896B2 (en) 2015-03-05 2019-12-24 Shell Oil Company Methane oxidation catalyst, process to prepare the same and method of using the same

Also Published As

Publication number Publication date
JP2004223381A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
JP3741303B2 (en) Exhaust gas purification catalyst
JP5526410B2 (en) Method for removing nitrogen oxides in exhaust gas
US8252257B2 (en) Method for purifying gas, gas purifying apparatus, and gas purifying catalyst
JP2004512162A (en) Catalyst for eliminating CO, VOC and halogenated organic emissions
KR20140015295A (en) Nox absorber catalyst
KR20080066920A (en) Method for treating a gas containing nitrogen oxides (nox), using as nox trap a composition based on zirconium oxide and praseodymium oxide
JPWO2005044426A1 (en) Method for catalytic reduction of nitrogen oxides and catalyst therefor
JP2003530983A (en) Plasma assisted catalytic processing of gas
Matarrese et al. Simultaneous removal of soot and NOx over K-and Ba-doped ruthenium supported catalysts
JP4356324B2 (en) Method for producing carrier for methane selective denitration catalyst
Wögerbauer et al. Structure sensitivity of NO reduction over iridium catalysts in HC–SCR
US20100075842A1 (en) Potassium oxide-incorporated alumina catalysts with enhanced storage capacities of nitrogen oxide and a producing method therefor
JP2003236343A (en) Method for decontaminating exhaust gas and apparatus for denitration at low temperature
EP1138384A2 (en) Process for manufacturing NOx traps with improved sulphur tolerance
JP2006026635A (en) Method of removing nitrogen oxides contained in exhaust gas
JP3835436B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
JP2001058130A (en) Catalyst for nitrogen oxide decomposition
JP2001038211A (en) Catalyst and method for cleaning exhaust gas
JP3721112B2 (en) Method for catalytic reduction of nitrogen oxides and catalyst therefor
JP4194805B2 (en) Method for catalytic removal of nitrogen oxides and catalyst therefor
JP4290391B2 (en) Method and apparatus for catalytic removal of nitrogen oxides
JP3745988B2 (en) Method for catalytic reduction of nitrogen oxides and catalyst therefor
JP2003305342A (en) Method for catalytically removing nitrogen oxides and device used for the same
JP4051514B2 (en) Combustion exhaust gas purification method and combustion exhaust gas purification device
JP4822049B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090727

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees