JP3502966B2 - Nitrogen dioxide removal method - Google Patents

Nitrogen dioxide removal method

Info

Publication number
JP3502966B2
JP3502966B2 JP24437396A JP24437396A JP3502966B2 JP 3502966 B2 JP3502966 B2 JP 3502966B2 JP 24437396 A JP24437396 A JP 24437396A JP 24437396 A JP24437396 A JP 24437396A JP 3502966 B2 JP3502966 B2 JP 3502966B2
Authority
JP
Japan
Prior art keywords
nitrogen dioxide
reducing
aid
nox
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24437396A
Other languages
Japanese (ja)
Other versions
JPH1085560A (en
Inventor
正樹 秋山
正義 市来
厚 福樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP24437396A priority Critical patent/JP3502966B2/en
Priority to PCT/JP1998/001002 priority patent/WO1999046033A1/en
Priority claimed from PCT/JP1998/001002 external-priority patent/WO1999046033A1/en
Publication of JPH1085560A publication Critical patent/JPH1085560A/en
Priority to US09/623,797 priority patent/US6423283B1/en
Application granted granted Critical
Publication of JP3502966B2 publication Critical patent/JP3502966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、二酸化窒素(NO
)除去法に関し、より詳しくは、道路トンネルにおけ
る換気ガス中のNOxを吸着除去した吸着剤の再生時や
硝酸の製造時に生ずる排ガス中のNOを選択的接触還
元によって除去する方法に関する。
TECHNICAL FIELD The present invention relates to nitrogen dioxide (NO).
2 ) Regarding the removal method, more specifically, it relates to a method for removing NO 2 in exhaust gas generated during regeneration of an adsorbent that adsorbs and removes NOx in ventilation gas in a road tunnel or during production of nitric acid by selective catalytic reduction.

【0002】[0002]

【従来の技術】従来の二酸化窒素除去法は、バナジウム
担持チタニア触媒を用いて、還元剤であるアンモニアや
尿素等により、被処理ガス中のNOを還元分解して除
去するものであった。
2. Description of the Related Art A conventional method for removing nitrogen dioxide is to remove NO 2 in a gas to be treated by reducing and decomposing NO 2 with a reducing agent such as ammonia or urea using a vanadium-supported titania catalyst.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記脱
硝法では、後述の通り、被処理ガス中におけるNOxの
成分モル比がNO>NOの場合には、NO≦NOの
場合よりも触媒活性が低いという問題があった。
However, in the above-described denitration method, as will be described later, when the NOx component molar ratio in the gas to be treated is NO 2 > NO, the catalytic activity is higher than when NO 2 ≦ NO. There was a problem of low.

【0004】図1には反応温度250℃におけるNO/
NOx比と脱硝率の関係が示されている。この場合の脱
硝条件は、以下の通りである。
FIG. 1 shows NO / at a reaction temperature of 250 ° C.
The relationship between the NOx ratio and the denitration rate is shown. The denitration conditions in this case are as follows.

【0005】面積速度(AV):35Nm/m
h、被処理ガスは、空気+HO(約3%)、NOx:
90ppm、NH:90ppmである。
Area velocity (AV): 35 Nm 3 / m 2 ·
h, the gas to be treated is air + H 2 O (about 3%), NOx:
90 ppm, NH 3 : 90 ppm.

【0006】ここで、NO/NOx比が0.5(NO:
NO=1:1)の時に触媒の脱硝性能が最大となり、
NO/NOx比が0.5より低くなる(NOリッチ)
ほど脱硝性能が低下する。この触媒活性の低下原因の一
つとして、触媒活性点上の酸素が過剰となることによる
NH吸着点の減少が考えられる。すなわち、 1)NO除去の場合 NO+NH+1/4O→N+3/2HO 触媒活性点が還元されて酸素不足となるが、被処理ガス
中のOの活性点吸着により酸素が補われる。反応温度
が200℃以下の低温であると、この気相酸素による触
媒の再酸化が起こりにくく脱硝性能は急激に低下する。
Here, the NO / NOx ratio is 0.5 (NO:
When NO 2 = 1: 1), the denitration performance of the catalyst becomes maximum,
NO / NOx ratio becomes lower than 0.5 (NO 2 rich)
The denitration performance decreases as it goes. It is considered that one of the causes of the decrease in the catalytic activity is a decrease in NH 3 adsorption points due to an excess of oxygen on the catalytic active points. That is, 1) In the case of NO removal, NO + NH 3 + 1 / 4O 2 → N 2 + 3 / 2H 2 O catalyst active sites are reduced and oxygen becomes insufficient, but oxygen is supplemented by the active site adsorption of O 2 in the gas to be treated. Be seen. When the reaction temperature is a low temperature of 200 ° C. or lower, re-oxidation of the catalyst due to the gas phase oxygen hardly occurs, and the denitration performance sharply decreases.

【0007】2)NO除去の場合 NO+NH→N+3/2HO+1/4O 被処理ガス中に高濃度の酸素が存在する場合、触媒活性
点上に生成した酸素は容易には気相へ脱離できない。そ
のため、触媒活性点上の過剰の酸素によってアンモニア
吸着が阻害され、その結果、当該触媒の脱硝性能が低下
する。
2) In the case of removing NO 2 When NO 2 + NH 3 → N 2 + 3 / 2HO + 1 / 4O 2 high concentration oxygen exists in the gas to be treated, the oxygen generated on the catalytic active point is easily vaporized. It cannot be detached into a phase. Therefore, ammonia adsorption is hindered by excess oxygen on the catalyst active site, and as a result, the denitration performance of the catalyst is reduced.

【0008】3)NO+NO(モル比1:1)脱硝の
場合 NO+NO+2NH→2N+3HO 酸素の過不足がなく、触媒の最高の脱硝性能が得られ
る。
3) NO + NO 2 (molar ratio 1: 1) NOx NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O There is no excess or deficiency of oxygen and the maximum NOx removal performance of the catalyst can be obtained.

【0009】本発明の目的は、NOxを吸着除去した吸
着剤の再生時や硝酸の製造時に生ずる排ガス中における
NOxの成分モル比がNO>NOの場合でも脱硝性能
が低下しない二酸化窒素除去法を提供することにある。
An object of the present invention is to adsorb and remove NOx.
An object of the present invention is to provide a nitrogen dioxide removing method which does not deteriorate the denitration performance even when the NOx component molar ratio in the exhaust gas generated during regeneration of the binder or during production of nitric acid is NO 2 > NO.

【0010】[0010]

【課題を解決するための手段】本発明による二酸化窒素
除去法は、NOxを吸着除去した吸着剤の再生時や硝酸
の製造時に生ずる排ガス中のNOを還元剤であるNH
を用いて選択的接触還元により分解する二酸化窒素除
去法において、脱硝反応温度が低温(300℃以下)で
排ガス中におけるNOxの成分モル比がNO >NOの
場合に、触媒活性点上の過剰酸素と反応しかつ300℃
以下で酸化される物質、好ましくは有機化合物を還元助
剤として用いることを特徴とするものである。
The method for removing nitrogen dioxide according to the present invention is used for regenerating an adsorbent from which NOx has been adsorbed and removed, and nitric acid.
NO 2 in the exhaust gas produced during the production of NH
In nitrogen dioxide removal method decomposed by selective catalytic reduction using a 3, denitration reaction temperature at a low temperature (300 ° C. or less)
When the NOx component molar ratio in the exhaust gas is NO 2 > NO
In case of reacting with excess oxygen on the catalytic active site and at 300 ° C
It is characterized in that a substance that is oxidized below, preferably an organic compound, is used as a reduction aid.

【0011】NHの供給源として、アンモニア水また
は尿素水を用いる場合、これら水溶液に、触媒活性点上
の過剰酸素と反応しかつ300℃以下で酸化される物質
(これを該還元助剤という)を溶かして該還元助剤とN
とを同時に用いるのが好ましい。
When ammonia water or urea water is used as the NH 3 supply source, a substance that reacts with excess oxygen on the catalytic active site and is oxidized at 300 ° C. or lower (this is called the reduction auxiliary agent) is used. ) Is added to the reducing aid and N
It is preferable to use H 3 together.

【0012】該還元助剤は、気相の酸素に関係なく、触
媒活性点上の過剰酸素と反応し、かつ低温(300℃以
下)で酸化されるものであることが条件とされる。
The reducing aid is required to react with excess oxygen on the catalytic active site and be oxidized at a low temperature (300 ° C. or lower) regardless of the gas phase oxygen.

【0013】該還元助剤の注入量は、未反応物の発生及
び副生成物を考慮して、できるだけ少量とするのが望ま
しい。
The amount of the reducing aid injected is preferably as small as possible in consideration of generation of unreacted substances and by-products.

【0014】該還元助剤としては、プロピレンなどの
化水素や2−プロパノールなどのアルコールが例示され
る。
[0014] The reducing Motosuke agent, alcohol such as charcoal <br/> hydrogen or 2-propanol and propylene is exemplified.

【0015】脱硝触媒としては、該還元助剤を酸化し易
いように、酸化力を高めたものであれば良く、特に限定
されない。具体例として、バナジウム担持チタニア触媒
等が挙げられる。
The denitration catalyst is not particularly limited as long as it has an increased oxidizing power so that the reduction aid can be easily oxidized. Specific examples thereof include a vanadium-supported titania catalyst and the like.

【0016】被処理ガス中のNOを還元剤であるNH
を用いて選択的接触還元により分解するNO除去で
は、脱硝反応温度が高温(300℃を超える)の場合、
NO 2 in the gas to be treated is replaced with NH 3 which is a reducing agent.
In the NO 2 removal that decomposes by selective catalytic reduction using 3 , when the denitration reaction temperature is high (more than 300 ° C.),

【化1】 の平衡関係によりNOが生成する。また、アンモニアの
燃焼により、NH+5/4O→NO+3/2H
Oの反応によってNOが生成する。これらの生成したN
Oが触媒表面(活性点上)の過剰酸素を奪うことによ
り、触媒の脱硝性能はあまり低下しない。
[Chemical 1] NO is generated due to the equilibrium relationship of. Further, by burning ammonia, NH 3 + 5 / 4O 2 → NO + 3 / 2H 2
The reaction of O produces NO. These generated N
O deprives the catalyst surface (on the active site) of excess oxygen, so that the denitration performance of the catalyst does not deteriorate so much.

【0017】一方、脱硝反応温度が低温(300℃以
下)の場合は、NOの生成はほとんど望めないので、触
媒表面(活性点上)にアンモニア吸着を阻害する過剰酸
素が存在するが、本発明方法によれば、触媒活性点上の
過剰酸素と反応しかつ300℃以下で酸化される物質を
還元助剤として用いることにより、上記過剰酸素が該還
元助剤の酸化に消費される結果、触媒活性点上における
アンモニア吸着が上記過剰酸素によって阻害されること
がなく、そのためNO除去が確実に行われる。
On the other hand, when the denitration reaction temperature is low (300 ° C. or lower), NO generation can hardly be expected, and therefore excess oxygen that inhibits ammonia adsorption exists on the catalyst surface (on the active site). According to the method, by using a substance that reacts with excess oxygen on the catalytic active site and is oxidized at 300 ° C. or lower as a reduction aid, the excess oxygen is consumed in the oxidation of the reduction aid, resulting in a catalyst. Ammonia adsorption on the active site is not hindered by the above-mentioned excess oxygen, so that NO 2 is reliably removed.

【0018】[0018]

【発明の実施の形態】次に、本発明の実施について説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, examples of the present invention will be described.

【0019】1.触媒の調製 セラミック繊維からなるセラミックペーパー(厚さ0.
25mm)に、硝酸塩加水分解法で得られたチタニアコ
ロイド溶液(固形分32wt%)を含浸担持せしめ、こ
れを110℃で1時間乾燥した後、400℃で3時間焼
成することにより、アナターゼ型チタニアを90g/m
保持した板状担体を得た。
1. Preparation of Catalyst Ceramic paper consisting of ceramic fibers (thickness 0.
25 mm) was impregnated and supported with a titania colloidal solution (solid content: 32 wt%) obtained by the nitrate hydrolysis method, dried at 110 ° C. for 1 hour, and then calcined at 400 ° C. for 3 hours to give anatase-type titania. 90 g / m
Two retained plate-like carriers were obtained.

【0020】この板状担体を、メタバナジン酸アンモン
飽和水溶液(常温)に浸漬した後、200℃で30分間
乾燥した。そして、この操作を更にもう一度繰り返した
後、得られた乾燥品を400℃で1時間焼成することに
よりバナジウム担持チタニア板状触媒を得た。
This plate-shaped carrier was immersed in a saturated aqueous solution of ammonium metavanadate (normal temperature) and then dried at 200 ° C. for 30 minutes. Then, after repeating this operation once more, the obtained dried product was calcined at 400 ° C. for 1 hour to obtain a vanadium-supported titania plate-shaped catalyst.

【0021】2.該還元助剤として炭化水素を用いた二
酸化窒素除去 実施1 脱硝触媒として上記バナジウム担持チタニア板状触媒を
用い、還元剤としてアンモニアを用いると同時に該還元
助剤としてプロピレンを用い、以下の条件下で二酸化窒
素除去を行った。
2. Example 1 Removal of Nitrogen Dioxide Using Hydrocarbon as the Reduction Aid Example 1 Using the above vanadium-supported titania plate catalyst as a denitration catalyst, ammonia as a reducing agent, and propylene as the reduction auxiliary, under the following conditions: To remove nitrogen dioxide.

【0022】比較1および2 該還元助剤を用いずに、還元剤としてアンモニアのみ
(比較1)、プロピレンのみ(比較2)をそれぞれ
用いて二酸化窒素除去を行った。
Comparative Examples 1 and 2 Nitrogen dioxide was removed by using only ammonia (Comparative Example 1) and propylene (Comparative Example 2) as reducing agents without using the reducing aid.

【0023】上記実施1および比較1、2におい
て、還元剤および該還元助剤は、被処理ガスと等量用い
た。
[0023] In the above Example 1 and Comparative Examples 1 and 2, the reducing agent and the reducing Motosuke agent was used in the gas to be treated with an equal volume.

【0024】脱硝条件: 面積速度(AV):35Nm/m・h、被処理ガス
は、空気+HO(約3%)、NO:50ppm、N
:50ppm、プロピレン:50ppm図2に見ら
れるように、還元剤であるアンモニアと共に該還元助剤
としてプロピレンを同時使用した実施1の場合、アン
モニアのみを用いた比較1の場合に比べて、300℃
以下の低温において、二酸化窒素除去性能の高いことが
認められる。また、プロピレンのみを用いた比較2の
場合には、二酸化窒素除去がほとんど行われていないこ
とから、プロピレンは触媒上の過剰酸素を奪う該還元助
剤としてのみ機能し、還元剤としてはアンモニアが機能
することが確認できた。
Denitration conditions: Area velocity (AV): 35 Nm 3 / m 2 · h, gas to be treated is air + H 2 O (about 3%), NO 2 : 50 ppm, N
H 3: 50ppm, propylene: As seen in 50ppm Figure 2, when the propylene co-Example 1 was used as the reducing Motosuke agent with ammonia as a reducing agent, compared with the case of Comparative Example 1 using only ammonia 300 ° C
It is recognized that the nitrogen dioxide removal performance is high at the following low temperatures. Further, in the case of Comparative Example 2 using only propylene, since nitrogen dioxide was scarcely removed, propylene functions only as the reducing aid that deprives the catalyst of excess oxygen, and the reducing agent is ammonia. Was confirmed to work.

【0025】3.該還元助剤としてアルコールを用いた
二酸化窒素除去 実施2〜5 脱硝触媒として上記バナジウム担持チタニア板状触媒を
用いて、還元剤としてアンモニアを被処理ガスと等量用
いると同時に該還元助剤として2−プロパノールを被処
理ガスと等量から順次減量して用いて、以下の条件下で
二酸化窒素除去を行った。
3. Nitrogen dioxide removal using alcohol as the reduction aid Examples 2 to 5 Using the above vanadium-supported titania plate-like catalyst as a denitration catalyst, ammonia was used as a reducing agent in the same amount as the gas to be treated, and at the same time as the reduction aid. Nitrogen dioxide was removed under the following conditions by using 2-propanol sequentially reduced from the same amount as the gas to be treated.

【0026】脱硝条件: 面積速度(AV):35Nm/m・h、被処理ガス
は、空気+HO(約3%)、NO:50ppm、N
:50ppm、2−プロパノール:5〜50ppm 2−プロパノールは、5ppm(実施2)、12.5
ppm(実施3)、25ppm(実施4)、50p
pm(実施5)の各水溶液を加熱気化した後、アンモ
ニアと共に用いた。
Denitration conditions: Area velocity (AV): 35 Nm 3 / m 2 · h, gas to be treated is air + H 2 O (about 3%), NO 2 : 50 ppm, N
H 3: 50 ppm, 2-propanol: 5 to 50 ppm 2-propanol, 5 ppm (Example 2), 12.5
ppm ( Example 3), 25 ppm ( Example 4), 50 p
Each aqueous solution of pm ( Example 5) was heated and vaporized, and then used together with ammonia.

【0027】図3に見られるように、該還元助剤として
2−プロパノールを、還元剤としてのアンモニアと共に
用いた各実施の場合、アンモニアのみを用いた上記比
1の場合に比べて高い二酸化窒素除去性能が認めら
れる。
As shown in FIG. 3, in the case of each example in which 2-propanol was used as the reducing aid together with ammonia as the reducing agent, it was higher than in the case of the comparative example 1 using only ammonia. Nitrogen dioxide removal performance is recognized.

【0028】また、該還元助剤として2−プロパノール
を用いた各実施の場合、該還元助剤としてプロピレン
用いた上記実施1の場合よりも200〜250℃の低
温域で高い二酸化窒素除去性能が認められる。
Further, in the case of each of the examples using 2-propanol as the reducing aid, higher nitrogen dioxide removal was performed in the low temperature range of 200 to 250 ° C. than in the case of the above-mentioned Example 1 using propylene as the reducing aid. Performance is recognized.

【0029】更に、該還元助剤として用いる2−プロパ
ノールの量は、被処理ガスと等量よりもある程度少ない
量の方が二酸化窒素除去性能が高くなることが分かる。
Further, it can be seen that the amount of 2-propanol used as the reduction aid is higher than the amount of the gas to be treated to a certain extent, and the nitrogen dioxide removing performance is higher.

【0030】2−プロパノールは、低温域でプロピレン
よりも酸化され易く、また、2−プロパノールの過剰注
入により触媒が過剰還元されたり、或いは未反応の2−
プロパノールが触媒に吸着する等して脱硝性能を阻害す
る傾向があると考えられる。
2-Propanol is more easily oxidized than propylene in a low temperature range, and the catalyst is excessively reduced by excessive injection of 2-propanol, or unreacted 2-propanol is used.
It is considered that propanol tends to inhibit the denitration performance by adsorbing to the catalyst.

【0031】ここで、2−プロパノールの酸化反応は、 COH+9/2O→3CO+4HO であり、2−プロパノールの注入量は、1molのNO
に対して1/9mol以下で充分であると言える。
Here, the oxidation reaction of 2-propanol is C 3 H 7 OH + 9 / 2O 2 → 3CO 2 + 4H 2 O, and the injection amount of 2-propanol is 1 mol of NO.
It can be said that 1/9 mol or less for 2 is sufficient.

【0032】[0032]

【発明の効果】本発明による二酸化窒素除去法では、
Oxを吸着除去した吸着剤の再生時や硝酸の製造時に生
ずる排ガス中のNOを還元剤であるNHを用いて選
択的接触還元により分解する二酸化窒素除去法におい
て、脱硝反応温度が低温(300℃以下)で排ガス中に
おけるNOxの成分モル比がNO >NOの場合に、触
媒活性点上の過剰酸素と反応しかつ300℃以下で酸化
される炭化水素またはアルコールよりなる物質を還元助
として用いるので、低温度の排ガス中におけるNOx
の成分モル比がNO>NOの場合に、触媒表面(活性
点上)に生成した過剰酸素が該還元助剤の酸化に消費さ
れ、したがって、上記過剰酸素が触媒表面(活性点上)
におけるアンモニア吸着を阻害することがない。そのた
め、触媒活性点上におけるアンモニア吸着が確実に行わ
れるという効果を奏する。
According to the method for removing nitrogen dioxide according to the present invention, N
When the adsorbent from which Ox has been adsorbed and removed is regenerated or nitric acid is produced,
In the nitrogen dioxide removal method that decomposes NO 2 in flue gas by selective catalytic reduction using NH 3 as a reducing agent, the NOx removal reaction temperature is low (300 ° C. or less)
When the NOx component molar ratio in the NOx is NO 2 > NO,
Reacts with excess oxygen on the active site and oxidizes below 300 ° C
Since a substance composed of hydrocarbons or alcohols used is used as a reduction aid, NOx in exhaust gas at low temperature
When the component molar ratio of NO 2 > NO, the excess oxygen generated on the catalyst surface (on the active site) is consumed for the oxidation of the reduction aid, and therefore the excess oxygen is on the catalyst surface (on the active site).
It does not interfere with ammonia adsorption in. Therefore, there is an effect that the adsorption of ammonia on the catalytically active point is surely performed .

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の脱硝法によるNO/NOx比と脱硝率と
の関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a NO / NOx ratio and a denitration rate by a conventional denitration method.

【図2】該還元助剤としてプロピレンを用いた本発明の
実施およびこれとの比較による脱硝率を示すグラフ
である。
2 is a graph showing the NOx removal efficiency according to a comparative example of examples and with which the said reducing Motosuke agent present invention using propylene as.

【図3】該還元助剤として2−プロパノールを用いた本
発明の実施およびこれとの比較による脱硝率を示す
グラフである。
3 is a graph showing the NOx removal efficiency according to a comparative example of examples and with which the said reducing Motosuke present invention using 2-propanol as agent.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−220348(JP,A) 特開 平7−227523(JP,A) 特開 昭53−26262(JP,A) 特開 昭62−163731(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/00 - 53/96 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A 5-220348 (JP, A) JP-A 7-227523 (JP, A) JP-A 53-26262 (JP, A) JP-A 62- 163731 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B01D 53/00-53/96

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 NOxを吸着除去した吸着剤の再生時や
硝酸の製造時に生ずる排ガス中のNOを還元剤である
NHを用いて選択的接触還元により分解する二酸化窒
素除去法において、脱硝反応温度が低温(300℃以
下)で排ガス中におけるNOxの成分モル比がNO
NOの場合に、触媒活性点上の過剰酸素と反応しかつ3
00℃以下で酸化される物質を還元助剤として用いるこ
とを特徴とする二酸化窒素除去法。
1. When regenerating an adsorbent from which NOx is adsorbed and removed,
In nitrogen dioxide removal method decomposed by selective catalytic reduction using NH 3 as a reducing agent NO 2 in exhaust gas produced during the manufacture of nitric acid, the denitration reaction temperature low (300 ° C. or less
(Below), the NOx component molar ratio in the exhaust gas is NO 2 >
In the case of NO, reacts with excess oxygen on the catalytic active site and
A method for removing nitrogen dioxide, which comprises using a substance that is oxidized at 00 ° C. or lower as a reduction aid.
【請求項2】 NHの供給源として、アンモニア水ま
たは尿素水を用いると共に、これら水溶液に該還元助剤
を溶かして該還元助剤とNHとを同時に用いることを
特徴とする請求項1記載の二酸化窒素除去法。
As a source of wherein NH 3, claim 1, together with the use of aqueous ammonia or urea water, which comprises using the said reducing Motosuke agent and NH 3 by dissolving the reducing Motosuke agent thereto an aqueous solution at the same time Nitrogen dioxide removal method described.
【請求項3】 該還元助剤が炭化水素である請求項1ま
たは2記載の二酸化窒素除去法。
3. The method for removing nitrogen dioxide according to claim 1, wherein the reducing aid is a hydrocarbon.
【請求項4】 該還元助剤がアルコールである請求項1
または2記載の二酸化窒素除去法。
4. The reduction aid is alcohol.
Or the method for removing nitrogen dioxide according to 2.
JP24437396A 1996-09-17 1996-09-17 Nitrogen dioxide removal method Expired - Fee Related JP3502966B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP24437396A JP3502966B2 (en) 1996-09-17 1996-09-17 Nitrogen dioxide removal method
PCT/JP1998/001002 WO1999046033A1 (en) 1996-09-17 1998-03-11 METHOD FOR REMOVING NOx
US09/623,797 US6423283B1 (en) 1996-09-17 2000-09-08 Method for removing NOx

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24437396A JP3502966B2 (en) 1996-09-17 1996-09-17 Nitrogen dioxide removal method
PCT/JP1998/001002 WO1999046033A1 (en) 1996-09-17 1998-03-11 METHOD FOR REMOVING NOx
US09/623,797 US6423283B1 (en) 1996-09-17 2000-09-08 Method for removing NOx

Publications (2)

Publication Number Publication Date
JPH1085560A JPH1085560A (en) 1998-04-07
JP3502966B2 true JP3502966B2 (en) 2004-03-02

Family

ID=27308542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24437396A Expired - Fee Related JP3502966B2 (en) 1996-09-17 1996-09-17 Nitrogen dioxide removal method

Country Status (1)

Country Link
JP (1) JP3502966B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100382980B1 (en) * 1998-03-11 2003-05-09 히다치 조센 가부시키가이샤 Method for removing nitrogen oxides
CA2322578A1 (en) * 1998-03-11 1999-09-16 Hitachi Zosen Corporation Process for removing nox
JP2010043782A (en) * 2008-08-12 2010-02-25 Mitsubishi Heavy Ind Ltd Exhaust gas boiler and denitration method of combustion exhaust gas

Also Published As

Publication number Publication date
JPH1085560A (en) 1998-04-07

Similar Documents

Publication Publication Date Title
US5599758A (en) Regeneration of catalyst/absorber
JPH0810575A (en) Nitrogen oxides reducing method
JP3352494B2 (en) Nitrogen oxide decomposition catalyst and denitration method using the same
JPH10118492A (en) Catalyst for removing nitrogen dioxide and method therefor
JP5305133B2 (en) Nitrogen oxide purification catalyst and method for producing the same
JP3059137B2 (en) Reprocessing method for denitration catalyst
JP3502966B2 (en) Nitrogen dioxide removal method
JP2003236343A (en) Method for decontaminating exhaust gas and apparatus for denitration at low temperature
JP4356324B2 (en) Method for producing carrier for methane selective denitration catalyst
JP3843520B2 (en) Low temperature denitration catalyst, production method thereof, and low temperature denitration method
KR101251499B1 (en) Zeolite catalyst for removing nitrogen oxides, method for preparing the same, and removing method of nitrogen oxides using the same
JP3382361B2 (en) Nitrogen oxide purification method
JP3713634B2 (en) Nitrogen oxide removal method and flue gas denitration equipment in exhaust gas
JP3752579B2 (en) Nitrogen dioxide absorbent
KR20230085785A (en) Exhaust gas treatment system for liquefied natural gas combined cycle power generation
KR20230067406A (en) Exhaust gas treatment system for liquefied natural gas combined cycle power generation
JP2529214B2 (en) Nitrogen oxide removal catalyst
JP4228152B2 (en) Waste heat recovery method by low temperature denitration of cogeneration exhaust gas
JP2002153755A (en) Catalyst for nitrogen oxide treatment and method for nitrogen oxide treatment
WO1999046033A1 (en) METHOD FOR REMOVING NOx
JP2864642B2 (en) NO ▲ lower x ▼ Gas treatment method
JPH08117558A (en) Formation of nitrogen dioxide
JPH06254352A (en) Method for purifying waste combustion gas and catalyst used in this method
JPS5913893B2 (en) Flue gas denitrification catalyst with low temperature activity
JPS5910244B2 (en) Nitrogen oxide decomposition method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees