JP2004290753A - Heat-resistant denitrification catalyst - Google Patents

Heat-resistant denitrification catalyst Download PDF

Info

Publication number
JP2004290753A
JP2004290753A JP2003084135A JP2003084135A JP2004290753A JP 2004290753 A JP2004290753 A JP 2004290753A JP 2003084135 A JP2003084135 A JP 2003084135A JP 2003084135 A JP2003084135 A JP 2003084135A JP 2004290753 A JP2004290753 A JP 2004290753A
Authority
JP
Japan
Prior art keywords
catalyst
raw material
heat
tio
material liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003084135A
Other languages
Japanese (ja)
Inventor
Kenichi Kiyono
健一 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Engineering Corp
Original Assignee
Mitsubishi Chemical Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Engineering Corp filed Critical Mitsubishi Chemical Engineering Corp
Priority to JP2003084135A priority Critical patent/JP2004290753A/en
Publication of JP2004290753A publication Critical patent/JP2004290753A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To produce a heat-resistant denitrification catalyst suppressed in the scattering of V<SB>2</SB>O<SB>5</SB>and kept in its capacity even if exposed to an exhaust gas having a high temperature of 500°C or above. <P>SOLUTION: Oxides of a Group III element, a Group XIII element, a lanthanoid element and at least one element selected from the group consisting of Mg, Nb, Cr, Fe, Co, Ni, Cu, Ag, B, Pb and Sn as additive components are added to a denitrification catalyst, which contains V<SB>2</SB>O<SB>5</SB>as an active component and at least TiO<SB>2</SB>as a carrier component. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱性脱硝触媒に関し、詳しくは、バナジウム系脱硝触媒であって、500℃以上の高温の排ガスが通過した際に起こり得るVのガス中への飛散による性能低下や環境汚染を抑制した耐熱性脱硝触媒に関する。
【0002】
【従来の技術】
バナジウム系脱硝触媒による排ガス中の窒素酸化物の除去方法(例えば特許文献1参照)は、各種の分野で実用化されている。
【0003】
【特許文献1】
特開昭50−51966号公報
【0004】
近年、火力発電などのボイラーに使用される燃料の質は、費用節減のため、低下している。そのため、燃え残る有機物量が増大している。通常、有機物はバナジウム系脱硝触媒層を通過する際、350℃程度の温度であれば燃焼反応が起こり、無害化される。ところが、低品位の燃料の使用により、ボイラーで燃え残る有機物量が増大した結果、脱硝触媒層での燃焼反応による発熱量が膨大になり、触媒表面の温度が500℃以上の高温になる。その結果、活性成分であるVの蒸気圧が発生し(Vの融点は690℃)、排ガスに同伴されて触媒系外に飛散し、煙道に堆積するというトラブルが発生する。また、触媒からのVの飛散は、触媒活性の低下および環境汚染という問題を発生させる。
【0005】
【発明が解決しようとする課題】
本発明は上記実情に鑑みなされたものであり、その目的は、500℃以上の高温の排ガスに曝されてもVの飛散が抑制され性能が維持される耐熱性脱硝触媒を提供することにある。
【0006】
【課題を解決するための手段】
本発明者は、上記課題を解決するため、種々検討を重ねた結果、バナジウム系脱硝触媒に特定元素の酸化物を含有させるならば、Vの飛散が起こる500℃以上の高温の排ガス処理においてもVの系外への飛散やそれに伴う脱硝性能低下が抑制されるとの知見を得た。
【0007】
本発明は、上記の知見に基づき完成されたものであり、その要旨は、活性成分としてVを含有し、担体成分として少なくともTiOを含有する脱硝触媒に、添加成分として、3族元素、13族元素、ランタノイド元素およびMg、Nb、Cr,Fe,Co,Ni、Cu、Ag、B、Pb、Snの群から選択される少なくとも一種の元素の酸化物を含有せしめて成ることを特徴とする耐熱性脱硝触媒に存する。
【0008】
【発明の実施の形態】
以下、本発明を詳細を説明する。
【0009】
本発明の耐熱性脱硝触媒は、活性成分としてVを含有し、担体成分として少なくともTiOを含有する。担体成分の具体例としては、TiO、TiO−WO、TiO−SiO、TiO−SiO−WO、TiO−SiO−WO等が挙げられる。
【0010】
本発明の耐熱性脱硝触媒は、添加成分として、3族元素、13族元素、ランタノイド元素およびMg、Nb、Cr,Fe,Co,Ni、Cu、Ag、B、Pb、Snの群から選択される少なくとも一種の元素の酸化物を含有する。
【0011】
3族元素としては、Sc、Y、Lu、Lrが挙げられ、好ましくはYである。13族元素としては、B、Al、Ga、In、Teが挙げられ、好ましくはBである。ランタノイド元素としては、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luが挙げられる。
【0012】
本発明の耐熱性脱硝触媒において、Vの含有量は、通常0.1〜30wt%であり、添加成分の含有量は、通常0.1〜30wt%、好ましくは0.1〜20wt%である。添加成分の割合が余りに少ない場合はVの飛散抑制効果が不十分となり、逆に、余りに多い場合は脱硝性能が低下することがある。なお、上記の含有量は、触媒全体の重量(活性成分、担体、添加成分の合計量)を基準とした値である。なお、上記の各成分の含有量の残余は担体の量である。
【0013】
本発明の耐熱性脱硝触媒におけるVの原料は、特に制限されないが、V又はNHVO(メタバナジン酸アンモニウム)が好適に使用される。これらの原料は、通常、シュウ酸水溶液またはモノメタノールアミン水溶液に溶解して原料液として使用される。
【0014】
添加成分の金属酸化物の原料は、特に制限されないが、上記のV原料と分子レベルで混合し得ることが好ましいとの観点から、水に溶解し易い原料が好適であり、具体的には硝酸塩や塩化物が好適に使用される。例えばイットリウム(Y)の場合は硝酸イットリウム6水和物を水に溶解して原料液を調製するのが好ましい。
【0015】
本発明の耐熱性脱硝触媒は、基本的には、前述の担体とVの原料液と金属酸化物の原料液とを混合して成形した後に焼成する方法、または、成形した担体基材にVの原料液と金属酸化物の原料液とを含浸させた後に焼成する方法により調製される。触媒の形状および大きさは、処理ガス量や、反応器の形状、大きさ等により適宜選択される。触媒の形状は、ハニカム状、円柱状、球状、板状などが挙げられる。
【0016】
ハニカム形状の触媒を製造する方法として、(A)担体成分とVの原料液と金属酸化物の原料液とを成形助剤と共に混練した後に押出成形法などによりハニカム状の形状に賦形する方法、(B)ハニカム形状の基材上に担体成分とVの原料液と金属酸化物の原料液を含浸・担持する方法を挙げることが出来る。添加成分として、イットリウムを含有するものを例として上述の製造方法(A)を例示すれば、以下のようになる。
【0017】
(1)メタバナジン酸アンモニウムを約10wt%モノエタノールアミン水溶液に溶解する。
(2)硝酸イットリウム6水塩を純水に溶解する。
(3)硫酸チタン溶液を加熱溶解してメタチタン酸スラリーを得る。
(4)メタチタン酸スラリーに15wt%アンモニア水を加えてpH調整した後に加熱還流処理を1時間以上行う。
(5)上記の(4)のスラリーにパラタングステン酸アンモニウムを加え、更に、加熱還流処理を1時間以上行う。
(6)得られたスラリーを濾過し、得られたケーキを50〜150℃の温度で3〜50時間乾燥した後、400℃〜650℃の温度で焼成し、冷却後に粉砕する。
(7)得られた粉末状のWO−TiO2元系複合酸化物担体と上記の(1)と(2)で調製した水溶液とをニーダーで混練する。
(8)上記の(7)で得られた混練物に、(i)更に必要に応じ、成形助剤を加えて混練した混練物を押出成形し、50〜150℃の温度で3〜50時間乾燥した後、SV100〜2000Hr−1の空気気流中、400〜650℃の温度で焼成する、または、(i i)混練物を50〜150℃の温度で3〜50時間乾燥し、400〜650℃の温度で焼成した後、成形助剤を加えて成形する。
【0018】
また、上述の製造方法(B)の一例として次の方法が例示される。すなわち、円柱状、球状、ハニカム状、板状など所望の形状の基材上に上記の(3)〜(5)で調製した担体成分をコーティングし、上記の(1)と(2)で調製した水溶液を塗布して活性成分を含浸させ、50〜150℃で3〜50時間乾燥した後、400〜650℃の温度で焼成する。
【0019】
混練・成形方法のように添加した原料すべてが活性成分となる場合は、それぞれの金属塩などの原料成分が対応する金属酸化物に変化したものとして触媒組成は添加量から推算する。また、含浸法で製造された場合は触媒をフッ化水素酸で処理した後、硫酸アンモニウムで融解してプラズマ発光分析法(ICP−AES分析法)によって触媒組成を測定する。
【0020】
本発明の耐熱性脱硝触媒は、排ガス中の窒素酸化物(NOx)を還元して除去する方法として、各種の排ガスの脱硝方法に適用される。還元剤としては、アンモニア及び/又は尿素液が好適である。
【0021】
特に、本発明の耐熱性脱硝触媒は、その優れた耐熱性を活かし、NOxと共に、炭素を1原子換算で0.2モル/hr・g−cat以上含有する排ガスの脱硝に好適に使用される。そして本発明の耐熱性脱硝触媒、触媒表面温度が一時的に500℃以上の高温になっても活性成分であるVの飛散は抑制される。排ガスは、水分と共に酸素を含有するが、その含有量は、通常0.5〜25vol%、好ましくは1〜21vol%である。なお、ボイラー排ガスの場合、必要に応じ、その前段にアルカリ洗浄塔などの塩酸除去設備やSOx除去設備、電気集塵機やバグフィルター等のダスト除去装置などの前処理工程があってもよい。
【0022】
触媒層の圧力は、ゲージ圧として、通常−0.05〜0.9MPa、好ましくは−0.01〜0.5MPaである。また、空間速度(SV)は、通常100〜100000Hr−1、好ましくは1000〜50000Hr−1である。
【0023】
【実施例】
以下、本発明を実施例により詳細に説明するが、本発明はその要旨を超えない限り以下の実施例により限定されるものではない。以下の諸例で得られた触媒のV飛散テスト、Vの定量および脱硝性能評価は次の方法で行った。
【0024】
(1)V飛散テスト:
石英ガラス製の反応管(内径30mm長さ600mm)中央部に試作した3mmφ長さ5〜15mmの円柱状触媒20mlをセットし、内径40mm、外径200mm、長さ450mmの管状加熱炉にセットした。ローターメータにより、180L/Hr(NTP)のNと20L/Hr(NTP)のOを触媒上に導入し、650℃で20時間加熱処理した。
【0025】
管状炉の外部に位置し、自然冷却される石英反応管最下部に飛散したVをトラップするためのトラップ材(SiOビーズ:富士シリシア社製「CARIACT Q−50」75〜500μm)を5cc充填して処理を実施し、処理後付着したV量を定量した。触媒層下流直後からトラップ材までのガラス管壁に付着したものは30g/Lシュウ酸水溶液に一晩浸漬し、シュウ酸水溶液中に溶解したV量を定量し、トラップ材のV量との合計量を飛散量とした。
【0026】
(2)V定量方法:
先ず、次の前処理を行った。すなわち、上記のシュウ酸水溶液は、濃縮後有機物を除去する目的で酸分解を実施し、更にSiを除去するためにHF処理し、評価サンプルを得た。トラップ材はそのままHF処理した後に酸分解し、評価サンプルを得た。次いで、評価サンプルについて、ICP−AES装置(堀場製作所製「JY−138U」)を使用し、検量線法で測定した。
【0027】
(3)脱硝性能評価方法:
石英ガラス製の反応管(内径30mm長さ600mm)の中央部に試作した3mmφ長さ5mm〜15mmの評価する円柱状触媒20mlをセットし、内径40mm、外径200mm、長さ450mmの管状加熱炉にセットした。O:10%、HO:6%、NH/NO=120ppm/100ppm、N:バランス量の組成のガスを200L/Hr(NTP)の流量で触媒上に導入し、200℃、250℃、300℃、350℃、400℃における脱硝性能を測定した。NOx計はヤナコ製「ECL−88A」を使用した。脱硝性能評価は、650℃・20時間加熱処理した触媒(V飛散テスト品)と未処理の触媒(Fresh品)とについて行った。
【0028】
実施例1
メタバナジン酸アンモニウム347gとパラタングステン酸アンモニウム943gを80℃に加温した10wt%モノエタノールアミン水溶液6000gに溶解して原料液(1)を調製した。さらに硝酸イットリウム(III)6水和物305gを80℃に加温した純水1000gに溶解して原料液(2)を調製した。TiO粉末(石原産業製「MC−90」)7830g、成形助剤として、カオリン(ミノセラミックス社製)1000g、ポリエチレンオキサイド(明和化学工業社製「アルコックス E−30」)500gおよび結晶性セルロース(旭化成社製「アビセルTG−101」)200gを双腕型ニーダーで2時間混合した後、原料液(1)と原料液(2)を上記の双腕型ニーダーに添加し、3時間混練した。得られた混練物を押出機より3mm直径の円柱状に成形した。得られた成型物を130℃の温度で24時間乾燥し、次いで空気流通下、SV100h−1、温度420℃の条件下で3時間焼成し、表1に示す触媒(A)を得た。得られた触媒についてのV飛散テスト及び脱硝性能評価の結果を表2及び表3に示す。
【0029】
実施例2
実施例1において、硝酸イットリウム(III)6水和物の量を91.6gにし、TiO粉末を7893gにした以外は、実施例1と同様に操作し、表1に示す触媒Bを調製して評価した。
【0030】
実施例3
実施例1において、硝酸ランタン(III)6水和物239gを80℃に加温した純水1000gに溶解し原料液(2)にした以外は、実施例1と同様に操作し、表1に示す触媒Cを調製して評価した。
【0031】
実施例4
実施例1において、硝酸セリウム(III)6水和物227gを80℃に加温した純水1000gに溶解し原料液(2)にした以外は、実施例1と同様に操作し、表1に示す触媒Dを調製して評価した。
【0032】
実施例5
実施例1において、硝酸サマリウム(III)6水和物229gを80℃に加温した純水1000gに溶解し原料液(2)にした以外は、実施例1と同様に操作し、表1に示す触媒Eを調製して評価した。
【0033】
実施例6
実施例1において、硝酸エルビウム(III)5水和物208gを80℃に加温した純水1000gに溶解し原料液(2)にした以外は、実施例1と同様に操作し、表1に示す触媒Fを調製して評価した。
【0034】
実施例7
実施例1において、硝酸プラセオジム(III)6水和物237gを80℃に加温した純水1000gに溶解し原料液(2)にした以外は、実施例1と同様に操作し、表1に示す触媒Gを調製して評価した。
【0035】
実施例8
実施例1において、硝酸イッテルビウム(III)4水和物197gを80℃に加温した純水1000gに溶解し原料液(2)にした以外は、実施例1と同様に操作し、表1に示す触媒Hを調製して評価した。
【0036】
実施例9
実施例1において、硝酸タリウム(III)3水和物175gを80℃に加温した純水1000gに溶解し原料液(2)にした以外は、実施例1と同様に操作し、表1に示す触媒Iを調製して評価した。
【0037】
実施例10
実施例1において、硝酸マグネシウム(II)6水和物915gを80℃に加温した純水2500gに溶解し原料液(2)にし、TiO粉末量を7776gにした以外は、実施例1と同様に操作し、表1に示す触媒Jを調製して評価した。
【0038】
実施例11
実施例1において、硝酸クロム(III)9水和物474gを80℃に加温した純水1000gに溶解し原料液(2)にした以外は、実施例1と同様に操作し、表1に示す触媒Kを調製して評価した。
【0039】
実施例12
実施例1において、硝酸第2鉄(III)9水和物455gを80℃に加温した純水1000gに溶解し原料液(2)にした以外は、実施例1と同様に操作し、表1に示す触媒Lを調製して評価した。
【0040】
実施例13
実施例1において、硝酸ニッケル(II)6水和物350gを80℃に加温した純水1000gに溶解し原料液(2)にした以外は、実施例1と同様に操作し、表1に示す触媒Mを調製して評価した。
【0041】
実施例14
実施例1において、硝酸コバルト(II)6水和物350gを80℃に加温した純水1000gに溶解し原料液(2)にした以外は、実施例1と同様に操作し、表1に示す触媒Nを調製して評価した。
【0042】
実施例15
実施例1において、硝酸銅(II)3水和物273gを80℃に加温した純水1000gに溶解し原料液(2)にした以外は、実施例1と同様に操作し、表1に示す触媒Oを調製して評価した。
【0043】
実施例16
実施例1において、硝酸銀(I)123gを80℃に加温した純水1000gに溶解し原料液(2)にした以外は、実施例1と同様に操作し、表1に示す触媒Pを調製して評価した。
【0044】
実施例17
実施例1において、ホウ酸160gを80℃に加温した純水1000gに溶解し原料液(2)にした以外は、実施例1と同様に操作し、表1に示す触媒Qを調製して評価した。
【0045】
実施例18
実施例1において、硝酸鉛(II)134gを80℃に加温した純水1000gに溶解し原料液(2)にした以外は、実施例1と同様に操作し、表1に示す触媒Rを調製して評価した。
【0046】
実施例19
実施例1において、塩化スズ(II)2水和物135gを80℃に加温し、6N塩酸を1ml加えた純水1000gに溶解し原料液(2)にした以外は、実施例1と同様に操作し、表1に示す触媒Sを調製して評価した。
【0047】
実施例20
実施例1において、シュウ酸ニオブアンモニウム(Nbとして25wt%品)360gを80℃に加温した純水3000gに溶解し原料液(2)にして、TiO粉末量を7020gにした以外は、実施例1と同様に操作し、表1に示す触媒Tを調製して評価した。
【0048】
比較例1
実施例1において、添加成分の原料液(2)を添加しない以外は、実施例1と同様に操作し、表1に示す触媒Uを調製して評価した。
【0049】
【表1】

Figure 2004290753
【0050】
【表2】
Figure 2004290753
【0051】
【表3】
Figure 2004290753
【0052】
【発明の効果】
以上説明した本発明によれば、排ガス中の未燃有機化合物の分解反応による発熱によるVの飛散も抑制された耐熱性脱硝触媒が提供され、本発明の工業的価値は顕著である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat-resistant denitration catalyst, and in particular, relates to a vanadium-based denitration catalyst, which is capable of scattering V 2 O 5 into a gas when high-temperature exhaust gas having a temperature of 500 ° C. or more passes through, and has a problem of environmental degradation. The present invention relates to a heat-resistant denitration catalyst with reduced pollution.
[0002]
[Prior art]
A method for removing nitrogen oxides from exhaust gas using a vanadium-based denitration catalyst (for example, see Patent Document 1) has been put to practical use in various fields.
[0003]
[Patent Document 1]
JP-A-50-51966
In recent years, the quality of fuel used in boilers, such as thermal power generation, has declined due to cost savings. Therefore, the amount of unburned organic matter is increasing. Usually, when an organic substance passes through a vanadium-based denitration catalyst layer, a combustion reaction occurs at a temperature of about 350 ° C., and the organic substance is rendered harmless. However, the use of low-grade fuel increases the amount of organic matter remaining in the boiler, resulting in an enormous amount of heat generated by the combustion reaction in the denitration catalyst layer, and the temperature of the catalyst surface becomes as high as 500 ° C. or higher. As a result, a vapor pressure of V 2 O 5 as an active component is generated (melting point of V 2 O 5 is 690 ° C.), and it is accompanied by the exhaust gas and scatters out of the catalyst system to cause a trouble of being deposited on a flue. I do. Further, the scattering of V 2 O 5 from the catalyst causes problems such as a decrease in catalytic activity and environmental pollution.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a heat-resistant denitration catalyst in which scattering of V 2 O 5 is suppressed and performance is maintained even when exposed to high-temperature exhaust gas of 500 ° C. or more. It is in.
[0006]
[Means for Solving the Problems]
The present inventor has conducted various studies in order to solve the above-mentioned problems. As a result, if a vanadium-based denitration catalyst contains an oxide of a specific element, high-temperature exhaust gas of 500 ° C. or more at which scattering of V 2 O 5 occurs. It has been found that also in the treatment, scattering of V 2 O 5 to the outside of the system and the accompanying decrease in denitration performance are suppressed.
[0007]
The present invention has been completed based on the above-mentioned findings, and the gist of the present invention is to provide a denitration catalyst containing V 2 O 5 as an active ingredient and at least TiO 2 as a carrier ingredient, and a Group III catalyst as an additional ingredient. Element, a group 13 element, a lanthanoid element and an oxide of at least one element selected from the group consisting of Mg, Nb, Cr, Fe, Co, Ni, Cu, Ag, B, Pb, and Sn. Exists in the characteristic heat-resistant denitration catalyst.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0009]
The heat-resistant denitration catalyst of the present invention contains V 2 O 5 as an active component and at least TiO 2 as a carrier component. Specific examples of the carrier component include TiO 2 , TiO 2 —WO 3 , TiO 2 —SiO 2 , TiO 2 —SiO 2 —WO 3 , TiO 2 —SiO 2 —WO 3, and the like.
[0010]
The heat-resistant denitration catalyst of the present invention is selected from the group consisting of Group III elements, Group XIII elements, lanthanoid elements and Mg, Nb, Cr, Fe, Co, Ni, Cu, Ag, B, Pb and Sn as additional components. At least one element oxide.
[0011]
Examples of Group 3 elements include Sc, Y, Lu, and Lr, and Y is preferable. Group 13 elements include B, Al, Ga, In, and Te, with B being preferred. Examples of the lanthanoid element include La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
[0012]
In the heat resistance denitration catalyst of the present invention, the content of V 2 O 5 is usually 0.1-30%, the content of the additive component is generally 0.1-30%, preferably 0.1~20wt %. If the proportion of the added component is too small, the effect of suppressing the scattering of V 2 O 5 becomes insufficient, and if it is too large, the denitration performance may be reduced. The above content is a value based on the weight of the entire catalyst (the total amount of the active component, the carrier, and the additional component). The balance of the contents of the above components is the amount of the carrier.
[0013]
Although the raw material of V 2 O 5 in the heat-resistant denitration catalyst of the present invention is not particularly limited, V 2 O 5 or NH 4 VO 3 (ammonium metavanadate) is preferably used. These raw materials are usually used as a raw material liquid by dissolving in an oxalic acid aqueous solution or an aqueous solution of monomethanolamine.
[0014]
The raw material of the metal oxide as an additional component is not particularly limited, but from the viewpoint that it is preferable to be able to be mixed with the above-mentioned V 2 O 5 raw material at the molecular level, a raw material that is easily dissolved in water is preferable. Nitrate and chloride are preferably used for the slag. For example, in the case of yttrium (Y), it is preferable to dissolve yttrium nitrate hexahydrate in water to prepare a raw material liquid.
[0015]
The heat-resistant denitration catalyst of the present invention is basically prepared by mixing the above-mentioned carrier, the raw material liquid of V 2 O 5 and the raw material liquid of the metal oxide, molding the mixture, and then calcining the mixture. It is prepared by a method in which a material is impregnated with a raw material liquid of V 2 O 5 and a raw material liquid of a metal oxide and then fired. The shape and size of the catalyst are appropriately selected depending on the processing gas amount, the shape and size of the reactor, and the like. Examples of the shape of the catalyst include a honeycomb shape, a column shape, a spherical shape, and a plate shape.
[0016]
As a method for producing a honeycomb-shaped catalyst, (A) a carrier component, a raw material liquid of V 2 O 5, and a raw material liquid of a metal oxide are kneaded together with a forming aid, and then the mixture is applied to a honeycomb shape by an extrusion molding method or the like. And (B) a method in which a carrier component, a raw material liquid of V 2 O 5, and a raw material liquid of a metal oxide are impregnated and supported on a honeycomb-shaped base material. The following is an example of the above-mentioned production method (A), taking as an example an additive containing yttrium.
[0017]
(1) Ammonium metavanadate is dissolved in an aqueous solution of about 10 wt% monoethanolamine.
(2) Dissolve yttrium nitrate hexahydrate in pure water.
(3) The titanium sulfate solution is heated and dissolved to obtain a metatitanic acid slurry.
(4) After adjusting the pH by adding 15 wt% aqueous ammonia to the metatitanic acid slurry, a heating and reflux treatment is performed for 1 hour or more.
(5) Ammonium paratungstate is added to the slurry of (4), and a heating and refluxing treatment is performed for 1 hour or more.
(6) The obtained slurry is filtered, and the obtained cake is dried at a temperature of 50 to 150 ° C. for 3 to 50 hours, calcined at a temperature of 400 ° C. to 650 ° C., and crushed after cooling.
(7) The resulting powdery WO 3 -TiO 2 2-element composite oxide support and the (1) and an aqueous solution prepared in (2) kneading in a kneader.
(8) To the kneaded product obtained in (7) above, (i) a kneaded product obtained by further kneading by adding a molding aid, if necessary, is extruded, and is subjected to extrusion at a temperature of 50 to 150 ° C for 3 to 50 hours. After drying, baking is performed at a temperature of 400 to 650 ° C. in an air stream of SV 100 to 2000 Hr −1 , or (ii) the kneaded material is dried at a temperature of 50 to 150 ° C. for 3 to 50 hours, and then dried. After baking at a temperature of ° C., a molding aid is added to mold.
[0018]
The following method is exemplified as an example of the above-described manufacturing method (B). That is, the carrier component prepared in the above (3) to (5) is coated on a substrate having a desired shape such as a columnar shape, a spherical shape, a honeycomb shape, and a plate shape, and prepared in the above (1) and (2). The resulting aqueous solution is applied to impregnate the active ingredient, dried at 50 to 150 ° C. for 3 to 50 hours, and fired at a temperature of 400 to 650 ° C.
[0019]
In the case where all the added raw materials become active components as in the kneading / forming method, the catalyst composition is estimated from the added amount on the assumption that the raw material components such as metal salts have changed into the corresponding metal oxides. When the catalyst is manufactured by the impregnation method, the catalyst is treated with hydrofluoric acid, melted with ammonium sulfate, and the catalyst composition is measured by a plasma emission analysis method (ICP-AES analysis method).
[0020]
The heat-resistant denitration catalyst of the present invention is applied to various types of exhaust gas denitration methods as a method for reducing and removing nitrogen oxides (NOx) in the exhaust gas. As the reducing agent, ammonia and / or urea liquid is suitable.
[0021]
In particular, the heat-resistant denitration catalyst of the present invention makes use of its excellent heat resistance and is suitably used for denitration of exhaust gas containing 0.2 mol / hr.g-cat or more of carbon per atom together with NOx. . And, even if the surface temperature of the heat-resistant denitration catalyst of the present invention temporarily rises to 500 ° C. or more, scattering of the active component V 2 O 5 is suppressed. The exhaust gas contains oxygen together with water, and the content is usually 0.5 to 25 vol%, preferably 1 to 21 vol%. In the case of boiler exhaust gas, if necessary, a pretreatment step such as a hydrochloric acid removing facility such as an alkali washing tower, a SOx removing facility, and a dust removing device such as an electric dust collector or a bag filter may be provided in the preceding stage.
[0022]
The pressure of the catalyst layer is usually -0.05 to 0.9 MPa, preferably -0.01 to 0.5 MPa as a gauge pressure. Also, the space velocity (SV) is usually 100~100000Hr -1, preferably 1000~50000Hr -1.
[0023]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention. The V 2 O 5 scattering test, V 2 O 5 quantification, and denitration performance evaluation of the catalysts obtained in the following examples were performed by the following methods.
[0024]
(1) V 2 O 5 scattering test:
At the center of a quartz glass reaction tube (inner diameter 30 mm, length 600 mm), 20 ml of a prototype 3 mmφ, 5 to 15 mm long cylindrical catalyst was set, and set in a tubular heating furnace having an inner diameter of 40 mm, an outer diameter of 200 mm, and a length of 450 mm. . 180 L / Hr (NTP) of N 2 and 20 L / Hr (NTP) of O 2 were introduced on the catalyst by a rotor meter, and heat treatment was performed at 650 ° C. for 20 hours.
[0025]
Located outside of the tubular furnace, naturally cooled is quartz reaction tube bottom trap for trapping V 2 O 5 scattered into material (SiO 2 beads: Fuji Silysia Chemical Ltd., "CARIACT Q-50" 75~500Myuemu) Was filled in 5 cc to carry out the treatment, and the amount of V 2 O 5 adhered after the treatment was quantified. What adhered to the glass tube wall from immediately downstream of the catalyst layer to the trap material was immersed in a 30 g / L oxalic acid aqueous solution overnight, the amount of V 2 O 5 dissolved in the oxalic acid aqueous solution was quantified, and the V 2 of the trap material was determined. the total amount of O 5 content was scattered amount.
[0026]
(2) V 2 O 5 determination method:
First, the following pretreatment was performed. That is, the oxalic acid aqueous solution was subjected to acid decomposition for the purpose of removing organic matter after concentration, and then subjected to HF treatment for removing Si, thereby obtaining an evaluation sample. The trap material was subjected to HF treatment as it was and then subjected to acid decomposition to obtain an evaluation sample. Next, the evaluation sample was measured by a calibration curve method using an ICP-AES device (“JY-138U” manufactured by Horiba, Ltd.).
[0027]
(3) Denitration performance evaluation method:
At the center of a quartz glass reaction tube (inner diameter 30 mm, length 600 mm), 20 ml of a prototype 3 mmφ 5 mm to 15 mm cylindrical catalyst to be evaluated was set, and a tubular heating furnace having an inner diameter of 40 mm, an outer diameter of 200 mm, and a length of 450 mm. Set to. O 2 : 10%, H 2 O: 6%, NH 3 / NO = 120 ppm / 100 ppm, N 2 : A gas having a composition of a balance amount is introduced onto the catalyst at a flow rate of 200 L / Hr (NTP), and the temperature is 200 ° C. The denitration performance at 250 ° C, 300 ° C, 350 ° C, and 400 ° C was measured. The NOx meter used was "ECL-88A" manufactured by Yanaco. The denitration performance evaluation was performed on a catalyst (V 2 O 5 scattering test product) heat-treated at 650 ° C. for 20 hours and an untreated catalyst (Fresh product).
[0028]
Example 1
A raw material liquid (1) was prepared by dissolving 347 g of ammonium metavanadate and 943 g of ammonium paratungstate in 6000 g of a 10 wt% aqueous monoethanolamine solution heated to 80 ° C. Further, 305 g of yttrium (III) nitrate hexahydrate was dissolved in 1000 g of pure water heated to 80 ° C. to prepare a raw material liquid (2). 7,830 g of TiO 2 powder (“MC-90” manufactured by Ishihara Sangyo), 1000 g of kaolin (manufactured by Mino Ceramics), 500 g of polyethylene oxide (“Alcox E-30” manufactured by Meiwa Chemical Industry Co., Ltd.) and 500 g of crystalline cellulose as molding aids After mixing 200 g of "Abicel TG-101" (manufactured by Asahi Kasei Corporation) with a double-arm kneader for 2 hours, the raw material liquid (1) and the raw material liquid (2) were added to the above-mentioned double-arm kneader and kneaded for 3 hours. . The obtained kneaded material was formed into a cylindrical shape having a diameter of 3 mm from an extruder. The obtained molded product was dried at a temperature of 130 ° C. for 24 hours, and then calcined for 3 hours under a condition of SV 100 h −1 and a temperature of 420 ° C. in an air flow to obtain a catalyst (A) shown in Table 1. Tables 2 and 3 show the results of the V 2 O 5 scattering test and the evaluation of the denitration performance of the obtained catalyst.
[0029]
Example 2
Catalyst B shown in Table 1 was prepared in the same manner as in Example 1 except that the amount of yttrium (III) nitrate hexahydrate was changed to 91.6 g and the amount of TiO 2 powder was changed to 7893 g. Was evaluated.
[0030]
Example 3
The procedure of Example 1 was repeated, except that 239 g of lanthanum (III) nitrate hexahydrate was dissolved in 1000 g of pure water heated to 80 ° C. to prepare a raw material liquid (2). The catalyst C shown was prepared and evaluated.
[0031]
Example 4
The procedure of Example 1 was repeated, except that 227 g of cerium (III) nitrate hexahydrate was dissolved in 1000 g of pure water heated to 80 ° C. to prepare a raw material liquid (2). The catalyst D shown was prepared and evaluated.
[0032]
Example 5
The procedure of Example 1 was repeated, except that 229 g of samarium (III) nitrate hexahydrate was dissolved in 1000 g of pure water heated to 80 ° C. to prepare a raw material liquid (2). The catalyst E shown was prepared and evaluated.
[0033]
Example 6
The procedure of Example 1 was repeated, except that 208 g of erbium (III) nitrate pentahydrate was dissolved in 1000 g of pure water heated to 80 ° C. to prepare a raw material liquid (2). The catalyst F shown was prepared and evaluated.
[0034]
Example 7
The procedure of Example 1 was repeated, except that 237 g of praseodymium (III) nitrate hexahydrate was dissolved in 1000 g of pure water heated to 80 ° C. to prepare a raw material liquid (2). The catalyst G shown was prepared and evaluated.
[0035]
Example 8
The procedure of Example 1 was repeated except that 197 g of ytterbium (III) nitrate tetrahydrate was dissolved in 1000 g of pure water heated to 80 ° C. to prepare a raw material liquid (2). The catalyst H shown was prepared and evaluated.
[0036]
Example 9
The procedure of Example 1 was repeated, except that 175 g of thallium (III) nitrate trihydrate was dissolved in 1000 g of pure water heated to 80 ° C. to prepare a raw material liquid (2). The catalyst I shown was prepared and evaluated.
[0037]
Example 10
Example 1 was repeated except that 915 g of magnesium (II) nitrate hexahydrate was dissolved in 2500 g of pure water heated to 80 ° C. to prepare a raw material liquid (2), and the amount of TiO 2 powder was changed to 7776 g. The same operation was performed to prepare and evaluate the catalyst J shown in Table 1.
[0038]
Example 11
The procedure of Example 1 was repeated, except that 474 g of chromium (III) nitrate nonahydrate was dissolved in 1000 g of pure water heated to 80 ° C. to prepare a raw material liquid (2). The catalyst K shown was prepared and evaluated.
[0039]
Example 12
The procedure of Example 1 was repeated, except that 455 g of ferric (III) nitrate nonahydrate was dissolved in 1000 g of pure water heated to 80 ° C. to prepare a raw material liquid (2). Catalyst L shown in No. 1 was prepared and evaluated.
[0040]
Example 13
The procedure of Example 1 was repeated, except that 350 g of nickel (II) nitrate hexahydrate was dissolved in 1000 g of pure water heated to 80 ° C. to prepare a raw material liquid (2). The indicated catalyst M was prepared and evaluated.
[0041]
Example 14
The procedure of Example 1 was repeated, except that 350 g of cobalt (II) nitrate hexahydrate was dissolved in 1000 g of pure water heated to 80 ° C. to prepare a raw material liquid (2). The catalyst N shown was prepared and evaluated.
[0042]
Example 15
The procedure of Example 1 was repeated, except that 273 g of copper (II) nitrate trihydrate was dissolved in 1000 g of pure water heated to 80 ° C. to prepare a raw material liquid (2). The catalyst O shown was prepared and evaluated.
[0043]
Example 16
Catalyst P shown in Table 1 was prepared in the same manner as in Example 1 except that 123 g of silver (I) nitrate was dissolved in 1000 g of pure water heated to 80 ° C. to prepare a raw material liquid (2). Was evaluated.
[0044]
Example 17
Catalyst Q shown in Table 1 was prepared in the same manner as in Example 1, except that 160 g of boric acid was dissolved in 1000 g of pure water heated to 80 ° C. to prepare a raw material liquid (2). evaluated.
[0045]
Example 18
Catalyst R shown in Table 1 was prepared in the same manner as in Example 1 except that 134 g of lead (II) nitrate was dissolved in 1000 g of pure water heated to 80 ° C. to prepare a raw material liquid (2). Prepared and evaluated.
[0046]
Example 19
In the same manner as in Example 1, except that 135 g of tin (II) chloride dihydrate was heated to 80 ° C. and dissolved in 1000 g of pure water to which 1 mL of 6N hydrochloric acid was added to prepare a raw material liquid (2). The catalyst S shown in Table 1 was prepared and evaluated.
[0047]
Example 20
In Example 1, except that 360 g of ammonium niobium oxalate (25 wt% as Nb 2 O 5 ) was dissolved in 3000 g of pure water heated to 80 ° C. to prepare a raw material liquid (2), and the amount of TiO 2 powder was changed to 7020 g. Was operated in the same manner as in Example 1 to prepare and evaluate the catalyst T shown in Table 1.
[0048]
Comparative Example 1
The procedure of Example 1 was repeated, except that the raw material liquid (2) of the additional component was not added, to prepare and evaluate the catalyst U shown in Table 1.
[0049]
[Table 1]
Figure 2004290753
[0050]
[Table 2]
Figure 2004290753
[0051]
[Table 3]
Figure 2004290753
[0052]
【The invention's effect】
According to the present invention described above, there is provided a heat-resistant denitration catalyst in which scattering of V 2 O 5 due to heat generated by a decomposition reaction of unburned organic compounds in exhaust gas is suppressed, and the industrial value of the present invention is remarkable. .

Claims (3)

活性成分としてVを含有し、担体成分として少なくともTiOを含有する脱硝触媒に、添加成分として、3族元素、13族元素、ランタノイド元素およびMg、Nb、Cr,Fe,Co,Ni、Cu、Ag、B、Pb、Snの群から選択される少なくとも一種の元素の酸化物を含有せしめて成ることを特徴とする耐熱性脱硝触媒。A denitration catalyst containing V 2 O 5 as an active component and at least TiO 2 as a carrier component, a group III element, a group 13 element, a lanthanoid element and Mg, Nb, Cr, Fe, Co, Ni as additional components , Cu, Ag, B, Pb, Sn. A heat-resistant denitration catalyst comprising an oxide of at least one element selected from the group consisting of Sn. の含有量が触媒全体の重量を基準として0.1〜30wt%であり、添加成分の含有量が触媒全体の重量を基準として0.1〜30wt%である請求項1記載の耐熱性脱硝触媒。Based content the weight of the entire catalyst V 2 O 5 is 0.1-30%, the content of additive component according to claim 1, wherein a 0.1-30% by weight of the total catalyst Heat resistant denitration catalyst. 担体として、TiO、TiO−WO、TiO−SiO、TiO−SiO−WO、TiO−SiO−WOの群から選択される金属酸化物を使用する請求項1又は2に記載の耐熱性脱硝触媒A metal oxide selected from the group consisting of TiO 2 , TiO 2 -WO 3 , TiO 2 -SiO 2 , TiO 2 -SiO 2 -WO 3 , and TiO 2 -SiO 2 -WO 3 as a carrier. Or the heat-resistant denitration catalyst according to 2.
JP2003084135A 2003-03-26 2003-03-26 Heat-resistant denitrification catalyst Pending JP2004290753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084135A JP2004290753A (en) 2003-03-26 2003-03-26 Heat-resistant denitrification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084135A JP2004290753A (en) 2003-03-26 2003-03-26 Heat-resistant denitrification catalyst

Publications (1)

Publication Number Publication Date
JP2004290753A true JP2004290753A (en) 2004-10-21

Family

ID=33399362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084135A Pending JP2004290753A (en) 2003-03-26 2003-03-26 Heat-resistant denitrification catalyst

Country Status (1)

Country Link
JP (1) JP2004290753A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101083307B1 (en) 2009-08-18 2011-11-15 한국전력공사 V2o6 based catalyst
JP2014522305A (en) * 2011-05-30 2014-09-04 バブコック・アンド・ウィルコックス・パワー・ジェネレイション・グループ・インコーポレイテッド Catalyst with improved poison resistance
EP3482824A1 (en) * 2017-11-14 2019-05-15 Umicore Ag & Co. Kg Scr catalytic converter
CN111939950A (en) * 2019-05-16 2020-11-17 新淳(上海)环保科技有限公司 Denitration catalyst for circulating fluidized bed boiler and preparation method thereof
US11135571B2 (en) 2017-11-14 2021-10-05 Umicore Ag & Co. Kg SCR catalyst
CN115814783A (en) * 2022-12-29 2023-03-21 华电电力科学研究院有限公司 Anti-potassium poisoning SCR denitration catalyst and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101083307B1 (en) 2009-08-18 2011-11-15 한국전력공사 V2o6 based catalyst
JP2014522305A (en) * 2011-05-30 2014-09-04 バブコック・アンド・ウィルコックス・パワー・ジェネレイション・グループ・インコーポレイテッド Catalyst with improved poison resistance
JP2021502893A (en) * 2017-11-14 2021-02-04 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG SCR catalyst
WO2019096786A1 (en) * 2017-11-14 2019-05-23 Umicore Ag & Co. Kg Scr catalyst
CN111356525A (en) * 2017-11-14 2020-06-30 优美科股份公司及两合公司 SCR catalyst
EP3482824A1 (en) * 2017-11-14 2019-05-15 Umicore Ag & Co. Kg Scr catalytic converter
US11135571B2 (en) 2017-11-14 2021-10-05 Umicore Ag & Co. Kg SCR catalyst
US11492945B2 (en) 2017-11-14 2022-11-08 Umicore Ag & Co. Kg SCR catalyst
US11498055B2 (en) 2017-11-14 2022-11-15 Umicore Ag & Co. Kg SCR catalyst
JP7323520B2 (en) 2017-11-14 2023-08-08 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト SCR catalyst
CN111356525B (en) * 2017-11-14 2023-09-15 优美科股份公司及两合公司 SCR catalyst
CN111939950A (en) * 2019-05-16 2020-11-17 新淳(上海)环保科技有限公司 Denitration catalyst for circulating fluidized bed boiler and preparation method thereof
CN115814783A (en) * 2022-12-29 2023-03-21 华电电力科学研究院有限公司 Anti-potassium poisoning SCR denitration catalyst and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6595088B2 (en) SCR catalyst for removing nitrogen oxides and method for producing the same
JP2001062292A (en) Catalyst for removal of organic halogen compound and method for removing organic halogen compound
JP2005342711A (en) Denitration method of diesel engine exhaust gas
JP2000197822A (en) Catalyst for decomposing and removing nitrogen oxide and method for decomposing and removing nitrogen oxide
JP2005342710A (en) Heat-resistant denitrifying catalyst
JP2008024565A (en) Modified titanium oxide particle and its manufacturing method and exhaust gas treating catalyst using the same
JP2005144299A (en) Nitrogen oxide removal catalyst and nitrogen oxide removal method
JP2005081189A (en) Catalyst for denitrifying high temperature waste gas
JP2004290753A (en) Heat-resistant denitrification catalyst
JP2004290754A (en) Method for denitrificating exhaust gas of diesel engine
JP2009202084A (en) Catalyst for treating exhaust gas
JP2000308832A (en) Exhaust gas cleaning catalyst compound, catalyst containing the same and manufacture of the same
JP2001286734A (en) Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
JP6663761B2 (en) Method for producing honeycomb type denitration catalyst
JP2001079346A (en) Method and device for treating gas and method for regenerating honeycomb activated carbon
JP3749078B2 (en) NOx removal catalyst and NOx removal method
JP3775815B2 (en) Nitrogen oxide removal method
JP2002292245A (en) Denitration catalyst and dioxin decomposing catalyst
JP2004081995A (en) Denitration catalyst and denitration method using the same
JP6261260B2 (en) Ship exhaust gas treatment catalyst and exhaust gas treatment method
JP6016572B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2004130179A (en) Catalyst and method for decomposing chlorinated organic compound
JP2001286729A (en) Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
JP5812789B2 (en) Nitrous oxide decomposition catalyst, method for producing nitrous oxide decomposition catalyst
JP6658770B2 (en) Mercury oxidation catalyst and mercury oxidation reactor, and exhaust gas treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090224