KR101083307B1 - V2o6 based catalyst - Google Patents

V2o6 based catalyst Download PDF

Info

Publication number
KR101083307B1
KR101083307B1 KR1020090075988A KR20090075988A KR101083307B1 KR 101083307 B1 KR101083307 B1 KR 101083307B1 KR 1020090075988 A KR1020090075988 A KR 1020090075988A KR 20090075988 A KR20090075988 A KR 20090075988A KR 101083307 B1 KR101083307 B1 KR 101083307B1
Authority
KR
South Korea
Prior art keywords
catalyst
scr
vanadium pentoxide
weight
elemental mercury
Prior art date
Application number
KR1020090075988A
Other languages
Korean (ko)
Other versions
KR20110018497A (en
Inventor
이정빈
이승민
함성원
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1020090075988A priority Critical patent/KR101083307B1/en
Publication of KR20110018497A publication Critical patent/KR20110018497A/en
Application granted granted Critical
Publication of KR101083307B1 publication Critical patent/KR101083307B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 오산화이바나듐계 촉매에 관한 것이다. 개시된 본 발명의 오산화이바나듐계 촉매는 질소산화물을 제거하기 위하여 이산화티타늄을 담체로 오산화이바나듐을 담지한 하니컴형 촉매로서, 삼산화항을 흡착제거하고 원소수은의 산화반응을 촉진하기 위하여, 촉매 원료 총합산 중량을 기준으로 0.1~1.0 중량%의 알칼리토금속염화물을 함유한다. 본 발명의 오산화이바나듐계 촉매는 질소산화물 제거 활성을 유지하면서, 삼산화항을 제거하고 원소수은의 산화를 촉진시킬 수 있다.The present invention relates to an vanadium pentoxide catalyst. The disclosed vanadium pentoxide-based catalyst of the present invention is a honeycomb type catalyst carrying vanadium pentoxide with titanium dioxide as a carrier to remove nitrogen oxides. In order to adsorb and remove the term trioxide and promote the oxidation reaction of elemental mercury, the total amount of catalyst raw materials is added. It contains 0.1 to 1.0% by weight of alkaline earth metal chlorides by weight. The vanadium pentoxide-based catalyst of the present invention can remove the term trioxide and promote the oxidation of elemental mercury while maintaining the nitrogen oxide removal activity.

Description

오산화이바나듐계 촉매{V2O6 BASED CATALYST}Ivanadium pentoxide-based catalyst {V2O6 BASED CATALYST}

본 발명은 오산화이바나듐계 촉매에 관한 것으로, 암모니아를 환원제로 이용하여 질소산화물을 제거하는 오산화이바나듐계 촉매에 관한 것이다.The present invention relates to an vanadium pentoxide-based catalyst, and relates to an vanadium pentoxide-based catalyst for removing nitrogen oxide using ammonia as a reducing agent.

일반적으로 질소 산화물(NOX)은 고온의 연소설비에서 연료 중의 질소가 산화되거나 과잉 공급된 연소용 공기 중의 질소와 산소가 반응하여 생성되며, 대기중으로 배출되는 경우 중 광화학 스모그와 산성비를 유발시키는 대기오염물질이다.In general, nitrogen oxides (NO X ) are produced by the reaction of nitrogen and oxygen in the combustion air that is oxidized or oversupplied in the fuel in a high temperature combustion facility, and the atmosphere causing photochemical smog and acid rain when discharged to the atmosphere. It is a pollutant.

현재 연소 과정 중에 질소 산화물을 제거하기 위하여, 촉매 존재하에 암모니아를 환원제로 질소 산화물을 질소와 물로 분해 제거하는 선택적 촉매 환원기술(SCR: Selective Catalytic Reduction)이 널리 이용되고 있다. 선택적 촉매 환원기술에서 촉매로는 귀금속, 금속산화물 등 다양한 촉매가 제안되고 있는데, 그 중 오산화바나듐계 촉매들이 매우 우수한 것으로 알려져 있다. 선택적 촉매 환원기술에서 사용되는 촉매를 발전소에서 실제로 적용하기 위해서는 촉매층에서 발생되는 압력손실을 줄이기 위하여 하니컴 형태로 제조하여 사용한다. In order to remove nitrogen oxides during the combustion process, selective catalytic reduction (SCR) is widely used to decompose and remove nitrogen oxides into nitrogen and water with ammonia as a reducing agent in the presence of a catalyst. In the selective catalytic reduction technology, various catalysts such as noble metals and metal oxides have been proposed. Among them, vanadium pentoxide-based catalysts are known to be excellent. In order to actually apply the catalyst used in the selective catalytic reduction technology in a power plant, it is manufactured and used in the form of honeycomb to reduce the pressure loss generated in the catalyst bed.

이러한 선택적 촉매 환원기술은 미국특허 제4,164,546호, 미국특허 제4,106,286호, 미국특허 제4,572,110호, 한국특허 제314,758호, 한국특허 제295,370호, 및 한국특허 제523,511호 등에 개시된 바 있다.Such selective catalytic reduction techniques have been disclosed in US Pat. No. 4,164,546, US Pat. No. 4,106,286, US Pat. No. 4,572,110, Korean Patent 314,758, Korean Patent 295,370, and Korean Patent 523,511.

한편 석탄 연소에 의해 발생하는 수은은 대부분 원소수은(Elemental Mercury) 형태로 존재하며 불용성의 성질에 기인하여 제거하기에 어려움이 있다. 또한, 발전소에서 배출되는 원소수은은 대기중에 잔류하여 인체에 유해한 환경을 조성하므로 집중적으로 관리되고 있으며, 미국을 비롯한 선진국에서는 원소수은을 제거하기 위한 많은 연구가 진행 중에 있다.On the other hand, most of the mercury generated by coal combustion exists in the form of elemental mercury, which is difficult to remove due to insoluble properties. In addition, the elemental mercury discharged from the power plant remains in the atmosphere to create a harmful environment for the human body is being managed intensively, a lot of research to remove the elemental mercury in the developed countries, including the United States.

수은을 제거하기 위한 기술 중 활성탄과 같은 흡착제를 사용하여 원소수은을 제거하는 기술은 고비용으로 인하여 현장 적용에 어려움이 있다. 또한 한국특허 제765,405호에 개시된 바와 같이, 종래 오산화바나듐 촉매에 중유 발전소 회분을 첨가시켜 원소수은을 산화수은으로 변화시킨 후 습식탈황설비에서 제거하는 기술은 수은 제거 효율이 높은 반면, 이산화항(SO2) 산화반응을 촉진시키는 문제점이 있다.Among the techniques for removing mercury, the technique of removing elemental mercury using an adsorbent such as activated carbon has difficulty in field application due to high cost. Also, Korea Patent No. As 765 405 disclosed in the conventional pentoxide was added to the oil-in-water power station ash vanadium catalyst after changing the source sosueun the sanhwasueun technique to remove in a wet desulfurization system is high mercury removal efficiency, while dioxide (SO 2 ) There is a problem of promoting the oxidation reaction.

국내에서는 발전소에 주로 오산화바나듐계 촉매를 배연탈질기술을 이용한 SCR 설비를 설치하여 사용하고 있는데, 이는 기존의 탈질 능력뿐 아니라 전세계적으로 규제가 강화되고 있는 발전소 배출 수은에 대한 산화 반응성으로 주목받고 있다. 그러나 SCR 조건에서 오산화이바나듐계 촉매의 원소수은 산화능력은 탈질 반응과의 경쟁으로 인하여 그리 높지 않다.In Korea, vanadium pentoxide-based catalysts are installed and used mainly in SCR facilities using flue gas denitrification technology, which is attracting attention not only for its existing denitrification capacity but also for its oxidative reactivity with respect to mercury emissions from power plants, which are being regulated around the world. . However, the elemental mercury oxidation capacity of the vanadium pentoxide catalyst under SCR conditions is not so high due to competition with the denitrification reaction.

따라서, 중유, 및 석탄 화력 발전소에 오산화바나듐계 촉매를 적용함에 있어 서 배기가스 성분 중 삼산화황(SO3)를 흡착하고 원소수은의 산화반응을 촉진시킬 수 있는 새로운 기술의 개발이 요구된다.Therefore, in the application of vanadium pentoxide-based catalysts to heavy oil and coal-fired power plants, it is required to develop new technologies capable of adsorbing sulfur trioxide (SO 3 ) in the exhaust gas components and promoting the oxidation reaction of elemental mercury.

본 발명은 상기와 같은 요구에 따라 안출된 것으로서, 오산화이바나듐계 촉매에 알칼리토금속계 염화물을 첨가하여 원소수은의 산화반응을 촉진하고 삼산화황을 흡착하는 오산화이바나듐계 촉매를 제공하는 것을 그 목적으로 한다.The present invention has been made in accordance with the above-described requirements, and an object thereof is to provide an vanadium pentoxide-based catalyst which promotes the oxidation reaction of elemental mercury by adsorbing alkaline earth metal chlorides to an vanadium pentoxide-based catalyst and adsorbs sulfur trioxide.

본 발명의 오산화이바나듐계 촉매는, 질소산화물을 제거하기 위하여 이산화티타늄을 담체로 오산화이바나듐을 담지한 하니컴형 촉매로서, 삼산화항을 흡착제거하고 원소수은의 산화반응을 촉진하기 위하여, 촉매 원료 총합산 중량을 기준으로 0.1~1.0 중량%의 알칼리토금속염화물을 함유한다.The vanadium pentoxide-based catalyst of the present invention is a honeycomb type catalyst in which vanadium pentoxide is supported on titanium dioxide as a carrier to remove nitrogen oxides, and the total amount of catalyst raw materials is added to adsorb and remove the term trioxide and promote the oxidation reaction of elemental mercury. It contains 0.1 to 1.0% by weight of alkaline earth metal chlorides by weight.

여기서, 상기 알칼리토금속염화물은,마그네슘, 칼슘 및 스트론튬 중 어느 하나를 포함한다.Here, the alkaline earth metal chloride includes any one of magnesium, calcium and strontium.

또한 상기 이산화티타늄은 촉매 원료 총합산 중량을 기준으로 50~53중량%인 것이 바람직하다.In addition, the titanium dioxide is preferably 50 to 53% by weight based on the total weight of the catalyst raw material.

또한 상기 오산화이바나듐은 촉매 원료 총합산 중량을 기준으로 0.1~1.0 중 량%인 것이 바람직하다.In addition, the vanadium pentoxide is preferably 0.1 to 1.0% by weight based on the total weight of the catalyst raw material.

본 발명의 오산화바나듐계 촉매는 상업용으로 널리 활용되고 있는 오산화이바나듐 배연탈질촉매에 소량의 알칼리토금속염화물을 첨가하여 제조될 수 있기 때문에, 별도의 특별한 추가 설비 없이 질소산화물 제거 활성을 유지하면서, 삼산화항을 제거하고 원소수은의 산화를 촉진시킬 수 있다.Since the vanadium pentoxide-based catalyst of the present invention can be prepared by adding a small amount of alkaline earth metal chloride to a vanadium pentoxide denitrification catalyst which is widely used for commercial use, it maintains the nitrogen oxide removal activity without additional equipment, Can remove and promote the oxidation of elemental mercury.

또한 본 발명의 오산화바나듐계 촉매에 포함된 알칼리토금속염화물이 삼산화항을 흡착하는 과정에서 발생된 HCL을 원소수은의 산화반응 촉진에 활용할 수 있기 때문에, 산화가스의 추가투입 없이도 원소수은을 산화시킬 수 있어 발전소에 수은 제거를 위한 추가 설비 없이 현장에 용이하게 적용할 수 있는 효과가 있다.In addition, since the alkaline earth metal chloride contained in the vanadium pentoxide-based catalyst of the present invention can utilize HCl generated in the process of adsorbing trioxide to promote the oxidation reaction of elemental mercury, elemental mercury can be oxidized without additional injection of oxidizing gas. There is an effect that can be easily applied to the site without additional equipment for mercury removal in the power plant.

본 발명의 오산화이바나듐계 촉매는 암모니아를 환원제로 이용하여 질소산화물을 제거하기 위해 압출 성형된 하니컴형 촉매로서, 이산화티타늄, 오산화이바나듐, 알칼리토금속염화물, 및 다른 첨가물을 포함한다. The vanadium pentoxide-based catalyst of the present invention is a honeycomb catalyst extruded to remove nitrogen oxides using ammonia as a reducing agent, and includes titanium dioxide, vanadium pentoxide, alkaline earth metal chlorides, and other additives.

상기 이산화티타늄(TiO2)은 촉매의 담체(擔體)로 사용되며, 촉매 원료의 총합산 중량을 기준으로 50~53 중량%인 것이 바람직하다. The titanium dioxide (TiO 2 ) is used as a carrier of the catalyst, it is preferably 50 to 53% by weight based on the total weight of the catalyst raw material.

상기 오산화이바나듐(V2O5)은 활성물질로서, 촉매 원료 총합산 중량을 기준 으로 0.1~1.0중량%, 보다 바람직하게는 0.5 중량%인 것이 바람직하다.The vanadium pentoxide (V 2 O 5 ) is an active material, it is preferably 0.1 to 1.0% by weight, more preferably 0.5% by weight based on the total weight of the catalyst raw material.

상기 알칼리토금속염화물은 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 베릴륨(Be) 등을 포함한다. 예를들면, 알칼리토금속염화물은 염화마그네슘, 염화칼슘, 염화스트론튬일 수 있다. 알칼리토금속염화물은 0.05~0.5 중량%, 보다 바람직하게는 0.1~1.0 중량%이다.The alkaline earth metal chloride includes magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), radium (Ra), beryllium (Be), and the like. For example, the alkaline earth metal chloride may be magnesium chloride, calcium chloride, strontium chloride. The alkaline earth metal chloride is 0.05 to 0.5% by weight, more preferably 0.1 to 1.0% by weight.

상기 다른 첨가물은 카오린, 전분, 실리카졸, 메틸셀룰로즈, 질산 및 물 등일 수 있다.The other additives may be kaolin, starch, silica sol, methylcellulose, nitric acid, water and the like.

이하, 본 발명의 바람직한 실시예 및 시험예에 대해 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나, 이들은 본 발명을 상세하게 설명하기 위해 제공되는 것일 뿐, 본 발명의 범위가 이들에 의해 제한되는 것은 아니다.Hereinafter, preferred embodiments and test examples of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention. However, these are provided only for describing the present invention in detail, and the scope of the present invention is not limited thereto.

<실시예 1-7> 알칼리토금속염화물을 첨가한 오산화이바나듐계 하니컴형 촉매 제조Example 1-7 Preparation of Ivanadium Pentaoxide-based Honeycomb Catalyst Added with Alkaline Earth Metal Chloride

촉매의 담체(擔體)로 사용된 이산화티타늄(TiO2)에 활성물질인 오산화이바나듐(V2O5)을 담지하기 위하여, 담지하고자 하는 오산화이바나듐의 담지량에 맞추어 0.1N 암모늄바나데이트(N4VO3)를 증류수에 녹이고 수용액의 pH가 2.4 ~ 3.0이 되도록 옥살산을 첨가한 후, 60~70 ℃ 정도로 가열한다.In order to support vanadium pentoxide (V 2 O 5 ), which is an active substance, in titanium dioxide (TiO 2 ) used as a carrier of the catalyst, 0.1N ammonium vanadate (N 4) in accordance with the amount of vanadium pentoxide to be supported VO 3 ) is dissolved in distilled water and oxalic acid is added so that the pH of the aqueous solution is 2.4 to 3.0, and then heated to about 60 ~ 70 ℃.

상기 수용액에 이산화티타늄을 넣고 2시간 이상 혼합한 후, 진공 증발기에서 물을 증발시키고 100 ℃의 온도에서 12시간 이상 건조시킨 후, 5시간 동안 공기 분위기하에서 소성한다.Titanium dioxide was added to the aqueous solution, followed by mixing for 2 hours or more, the water was evaporated in a vacuum evaporator, dried at a temperature of 100 ° C. for at least 12 hours, and calcined under an air atmosphere for 5 hours.

본 실시예에서 하니컴형 촉매는 촉매 원료의 총합산 중량을 기준으로, 이산화티타늄 함량은 50~53 중량%이며, 여기에 알칼리토금속염화물 0.1~1.0 중량%, 카오린 5 중량%, 전분 3 중량%, 실리카졸 6 중량%, 메틸셀롤로즈 3 중량%, 질산 0.5 중량%, 및 물 28.5~32.4 중량% 등의 첨가제를 혼합하는 과정을 거친다.In this embodiment, the honeycomb catalyst has a titanium dioxide content of 50 to 53% by weight based on the total combined weight of the catalyst raw materials, including 0.1 to 1.0% by weight of alkaline earth metal chlorides, 5% by weight of kaolin, 3% by weight of starch, Additives such as 6% by weight of silica sol, 3% by weight of methyl cellulose, 0.5% by weight of nitric acid, and 28.5 to 32.4% by weight of water are mixed.

혼합물은 혼련(混鍊)공정을 거치며 완벽하게 혼합이 이루어지며, 혼련물은 하니컴 형태의 성형을 위한 압출과정과 항온항습조건하(105 ℃, 상대습도 95%)에서 72시간 동안의 건조과정 및 500 ℃에서 5시간 동안 소성하는 과정을 통해 본 실시예에 따른 하니컴형 촉매가 제조된다.The mixture is thoroughly mixed by kneading process, and the kneaded product is extruded for honeycomb molding, dried for 72 hours under constant temperature and humidity conditions (105 ° C, 95% relative humidity) and A honeycomb catalyst according to the present embodiment is prepared by baking for 5 hours at 500 ° C.

실시예Example 촉매catalyst 이산화티타늄Titanium dioxide 오산화이바나듐
Ivanadium pentoxide
염화마그네슘
(1)
Magnesium chloride
(One)
염화칼슘
(2)
Calcium chloride
(2)
염화스트론튬(3)Strontium Chloride (3)
1One SCR_MC00SCR_MC00 52.0052.00 0.50.5 0.00.0 0.00.0 0.00.0 22 SCR_MC01SCR_MC01 51.9851.98 0.50.5 0.10.1 0.10.1 0.10.1 33 SCR_MC03SCR_MC03 51.9651.96 0.50.5 0.30.3 0.30.3 0.30.3 44 SCR_MC05SCR_MC05 51.9451.94 0.50.5 0.50.5 0.50.5 0.50.5 55 SCR_MC07SCR_MC07 51.9251.92 0.50.5 0.70.7 0.70.7 0.70.7 66 SCR_MC10SCR_MC10 51.9051.90 0.50.5 1.01.0 1.01.0 1.01.0 77 상용 SCRCommercial SCR --

상기 표1은 실시예 1~6에서 제조된 촉매의 배합비를 중량%로 나타낸 것으로서, 51.90~52.00 중량%의 이산화티타늄에 오산화이바나듐이 0.5 중량%로 담지되어 있다. 염화마그네슘(1), 염화칼슘(2), 염화스트론튬(3) 등 알칼리토금속염화물은 0.1~1.0 중량%의 비로 첨가되어 있다. 실시예 7은 비교실험을 위한 것으로서, 실시예 1~6과 동일한 형상을 갖는 하니컴 형태의 오산화바나듐계 상용촉매를 준비하였다.Table 1 shows the compounding ratio of the catalyst prepared in Examples 1 to 6 by weight, and 51.90 to 52.00% by weight of titanium dioxide was loaded with 0.5% by weight of vanadium pentoxide. Alkaline earth metal chlorides such as magnesium chloride (1), calcium chloride (2) and strontium chloride (3) are added at a ratio of 0.1 to 1.0% by weight. Example 7 is for a comparative experiment, and prepared a honeycomb-type vanadium pentoxide-based commercial catalyst having the same shape as in Examples 1 to 6.

<< 시험예Test Example 1-7> 질소산화물 제거율 측정 1-7> NOx removal rate measurement

실시예 1~7에 따라 준비된 촉매를 허니컴형 촉매 반응기에 장착하여, 실 연소계에서의 배기가스조성과 유사한 혼합가스를 분당 10L의 유량으로 주입하였다. 여기서 혼합가스는 산소농도 3.0%, 질소산화물 100ppm, 이산화황 300ppm, 암모니아 100ppm, 삼산화항 약 10ppn 및 밸런스 가스인 질소로 구성된다. 반응온도는 300℃에서 400℃까지 50℃의 간격으로 승온하였다.The catalyst prepared according to Examples 1 to 7 was mounted in a honeycomb type catalytic reactor, and a mixed gas similar to the exhaust gas composition in the actual combustion system was injected at a flow rate of 10 L per minute. Here, the mixed gas is composed of oxygen concentration 3.0%, nitrogen oxide 100ppm, sulfur dioxide 300ppm, ammonia 100ppm, trioxide about 10ppn and the balance gas nitrogen. The reaction temperature was elevated at intervals of 50 ° C. from 300 ° C. to 400 ° C.

표2는 반응온도에 따른 질소산화물 제거율(%)를 나타낸 것으로서, 질소산화물의 농도는 비분산적외선법을 사용하는 계측기를 사용하여 측정한 결과이다. Table 2 shows the nitrogen oxide removal rate (%) according to the reaction temperature, and the concentration of nitrogen oxide was measured using a non-dispersive infrared method.


시험예

Test Example

촉매

catalyst
질소산화물 제거율(%)NOx removal rate (%)
300℃300 ° C 350℃350 ℃ 400℃400 ° C (1)(One) (2)(2) (3)(3) (1)(One) (2)(2) (3)(3) (1)(One) (2)(2) (3)(3) 1One SCR_MC00SCR_MC00 85.085.0 85.085.0 85.085.0 87.087.0 87.087.0 87.087.0 84.584.5 84.584.5 84.584.5 22 SCR_MC01SCR_MC01 85.585.5 84.584.5 85.085.0 87.587.5 87.087.0 87.087.0 87.087.0 84.584.5 84.584.5 33 SCR_MC03SCR_MC03 86.586.5 85.585.5 86.086.0 88.088.0 87.087.0 87.087.0 88.088.0 87.587.5 87.087.0 44 SCR_MC05SCR_MC05 87.587.5 86.586.5 87.087.0 89.089.0 88.088.0 87.587.5 87.087.0 87.787.7 87.587.5 55 SCR_MC07SCR_MC07 87.587.5 87.087.0 87.087.0 90.090.0 88.588.5 88.088.0 87.087.0 87.887.8 87.387.3 66 SCR_MC10SCR_MC10 88.588.5 87.587.5 87.587.5 91.591.5 89.589.5 90.590.5 88.088.0 87.587.5 87.287.2 77 상용SCRCommercial SCR 85.085.0 85.085.0 85.085.0 89.089.0 89.089.0 89.089.0 88.588.5 88.588.5 88.588.5

상기 표2를 참조하면, 반응온도 350℃를 기준으로 알칼리토금속염화물 0.1~1.0 중량%인 SCR_MC01, SCR_MC03, SCR_MC05, SCR_MC07, SCR_MC10 촉매에서 모두 87% 이상의 질소산화물 제거율을 보였다.Referring to Table 2, the removal rate of nitrogen oxides of more than 87% in the SCR_MC01, SCR_MC03, SCR_MC05, SCR_MC07, SCR_MC10 catalyst of 0.1 to 1.0% by weight alkaline earth metal chloride based on the reaction temperature 350 ℃.

<< 시험예Test Example 8-14> 삼산화황( 8-14> sulfur trioxide ( SOSO 33 ) 흡착 제거율 측정) Adsorption removal rate measurement

실시예 1~7에 따라 준비된 촉매 및 시험예 1~7 조건에서 CCD(Controlled Condenstion Method) 방법을 이용하여 촉매에 의한 삼산화항(SO3) 농도 변화를 촉매 반응온도 400℃를 유지한 상태로 약 1시간을 황산(H2SO4)로 응축 포집하여 이온 크로마토그래피로 측정하였다.In the catalyst prepared according to Examples 1-7 and Test Example 1-7 under the conditions of using the CCD (Controlled Condenstion Method) method to change the concentration of trioxide (SO 3 ) by the catalyst at about 400 ℃ while maintaining the reaction temperature of the catalyst One hour was collected by condensation with sulfuric acid (H 2 SO 4 ) and measured by ion chromatography.

표3은 실시예 1~7에 따른 촉매 및 시험예 1~7 조건에 따른 삼산화항 제거율을 나타낸 것이다.Table 3 shows the removal rate of the trioxide according to the catalyst according to Examples 1-7 and the conditions of Test Examples 1-7.

시험예Test Example 촉매catalyst SO3 제거율(%)SO 3 removal rate (%) 88 SCR_MC00       SCR_MC00 - 5.5-5.5
9

9

SCR_MC01

SCR_MC01
(1)(One) 15.515.5
(2)(2) 13.213.2 (3)(3) 12.512.5
10

10

SCR_MC03

SCR_MC03
(1)(One) 25.525.5
(2)(2) 22.522.5 (3)(3) 23.523.5
11

11

SCR_MC05

SCR_MC05
(1)(One) 30.030.0
(2)(2) 27.527.5 (3)(3) 28.728.7
12

12

SCR_MC07

SCR_MC07
(1)(One) 32.532.5
(2)(2) 28.728.7 (3)(3) 29.529.5
13

13

SCR_MC10

SCR_MC10
(1)(One) 55.555.5
(2)(2) 50.550.5 (3)(3) 52.352.3 1414 상용 SCRCommercial SCR - 5.0-5.0

상기 표3에서 나타나는 바와 같이, 알칼리토금속염화물 0.1~1.0 중량%이 첨가된 SCR_MC01, SCR_MC03, SCR_MC05, SCR_MC07, SCR_MC10 촉매의 삼산화황 제거율은 10% 이상으로 상용 SCR 촉매에 대비하여 월등히 높았다. 표3에서 상용 SCR 촉매의 삼산화황 흡착 제거율이 부(-)의 값이 나오는 것은 촉매에 의한 산화가 발생하여 삼산화황의 농도가 증가한 결과이다.As shown in Table 3, the removal rate of sulfur trioxide of SCR_MC01, SCR_MC03, SCR_MC05, SCR_MC07, and SCR_MC10 catalyst to which 0.1-1.0 wt% of alkaline earth metal chloride was added was more than 10%, which was much higher than that of a commercial SCR catalyst. The negative value of the sulfur trioxide adsorption removal rate of the commercial SCR catalyst in Table 3 is a result of the oxidation of the catalyst to increase the concentration of sulfur trioxide.

<< 시험예Test Example 15~21>  15-21> HCLHCL 무첨가 원소수은의  Free of elemental mercury 산화율Oxidation rate (%)(%)

실시예 1~7에서 준비된 촉매와 시험예 1~7조건에, 촉매 산화제인 HCL의 첨가 없이 원소수은 발생장치를 통하여 발생된 원소수은 50 μg/m3을 밸런스가스인 질소로 희석시켜 공급하였다. 반응온도는 350℃로 유지한 상태에서 반응기 통과 전후의 원소수은과 산화수은의 농도는 수은 종별 분석기(Mercury/DM-6B, Nippon Instruments Corporation)를 사용 측정하여, 원소수은 산화율을 표4에 나타내었다.Under the conditions of the catalysts prepared in Examples 1-7 and Test Examples 1-7, 50 μg / m3 of elemental mercury generated through the elemental mercury generator without the addition of HCl as the catalytic oxidizer was diluted and supplied with nitrogen as a balance gas. The elemental mercury and mercury oxide concentrations before and after the passage of the reactor were measured using a mercury type analyzer (Mercury / DM-6B, Nippon Instruments Corporation) while maintaining the reaction temperature at 350 ° C.

시험예Test Example 촉매catalyst 원소수은 산화율(%)Elemental mercury oxidation rate (%) 1515 SCR_MC00       SCR_MC00 0.50.5
16

16

SCR_MC01

SCR_MC01
(1)(One) 3.53.5
(2)(2) 2.72.7 (3)(3) 3.33.3
17

17

SCR_MC03

SCR_MC03
(1)(One) 10.010.0
(2)(2) 9.59.5 (3)(3) 8.78.7
18

18

SCR_MC05

SCR_MC05
(1)(One) 25.025.0
(2)(2) 22.522.5 (3)(3) 21.721.7
19

19

SCR_MC07

SCR_MC07
(1)(One) 37.537.5
(2)(2) 33.533.5 (3)(3) 36.136.1
20

20

SCR_MC10

SCR_MC10
(1)(One) 55.055.0
(2)(2) 51.351.3 (3)(3) 53.953.9 2121 상용 SCR       Commercial SCR 0.00.0

상기 표4에서 나타나는 바와 같이, 상용 SCR 촉매의 경우 산화가 거의 발생되지 않는 것에 비하여, 첨가되는 알칼리토금속염화물의 중량%가 증가할수록 원소수은의 산화율이 높아지며, 알칼리토금속염화물 1.0중량%이 첨가된 SCR_MC10 촉매의 경우 원소수은의 산화율이 50% 이상으로 상용 SCR 촉매에 비하여 월등하였다.As shown in Table 4, in the case of commercially available SCR catalysts, almost no oxidation occurs, the oxidation rate of elemental mercury increases as the weight% of the alkaline earth metal chloride added increases, and SCR_MC10 to which 1.0 weight% of alkaline earth metal chloride is added. In the case of the catalyst, the oxidation rate of elemental mercury was 50% or more, which was superior to that of a commercial SCR catalyst.

<< 시험예Test Example 22~28>  22-28> HCLHCL 첨가 원소수은의  Of elemental mercury 산화율Oxidation rate (%)(%)

실시예 1~7에서 준비된 촉매와 시험예 1~7조건에, 촉매 산화제인 HCL을 20ppm 첨가하여 원소수은 발생장치를 통하여 발생된 원소수은 50 μg/m3을 밸런스가스인 질소로 희석시켜 공급하였다. 반응온도는 350℃로 유지한 상태에서 반응기 통과 전후의 원소수은과 산화수은의 농도는 수은 종별 분석기(Mercury/DM-6B, Nippon Instruments Corporation)를 사용 측정하여, 원소수은 산화율을 표5에 나타내었다.To the catalyst prepared in Examples 1 to 7 and the conditions of Test Examples 1 to 7, 20 ppm of HCl as a catalytic oxidant was added, and 50 μg / m 3 of elemental mercury generated through the elemental mercury generator was diluted and supplied with nitrogen as a balance gas. The concentration of elemental mercury and mercury oxide before and after the passage of the reactor was measured using a mercury type analyzer (Mercury / DM-6B, Nippon Instruments Corporation) while maintaining the reaction temperature at 350 ° C.

시험예Test Example 촉매catalyst 원소수은 산화율(%)Elemental mercury oxidation rate (%) 1515 SCR_MC00       SCR_MC00 28.528.5
16

16

SCR_MC01

SCR_MC01
(1)(One) 37.537.5
(2)(2) 35.535.5 (3)(3) 37.037.0
17

17

SCR_MC03

SCR_MC03
(1)(One) 45.545.5
(2)(2) 43.343.3 (3)(3) 43.743.7
18

18

SCR_MC05

SCR_MC05
(1)(One) 65.565.5
(2)(2) 55.755.7 (3)(3) 63.263.2
19

19

SCR_MC07

SCR_MC07
(1)(One) 78.778.7
(2)(2) 75.775.7 (3)(3) 77.377.3
20

20

SCR_MC10

SCR_MC10
(1)(One) 91.291.2
(2)(2) 90.390.3 (3)(3) 90.590.5 2121 상용 SCR       Commercial SCR 30.530.5

상기 표5에서 나타나는 바와 같이, 상용 SCR 촉매의 경우 원소수은 산화율이 30%인데 비하여, 알칼리토금속염화물 1.0중량%이 첨가된 SCR_MC10 촉매의 경우 원소수은의 산화율이 90% 이상으로 월등하였다.As shown in Table 5, the elemental mercury oxidation rate was 30% in the commercial SCR catalyst, while the oxidation rate of elemental mercury was superior to 90% or more in the SCR_MC10 catalyst to which 1.0 wt% of alkaline earth metal chloride was added.

알칼리토금속염화물, 예를들면, 염화마그네슘(MgCl2)이 삼산화황(SO3)을 흡착하여 제거하는 과정을 반응식으로 나타내면, 반응식 1과 같다.Alkaline earth metal chlorides, for example, magnesium chloride (MgCl 2 ) is the reaction scheme to remove the sulfur trioxide (SO 3 ) by the reaction scheme, as shown in Scheme 1.

Figure 112009050241443-pat00001
Figure 112009050241443-pat00001

상기 반응식1을 참조하면, 염화마그네슘이 삼산화항을 흡착하는 과정에서 HCL이 발생된다. HCL은 원소수은의 산화반응을 촉진시킬 수 있는 데 이를 반응식으로 나타내면 반응식 2와 같다.Referring to Scheme 1, HCl is generated while magnesium chloride adsorbs the trioxide. HCL can promote the oxidation reaction of elemental mercury, which is shown in Scheme 2.

Figure 112009050241443-pat00002
Figure 112009050241443-pat00002

석탄 연소에 의해 발생하는 수은은 대부분 원소수은 형태로 존재하는데, 원소수은은 불용성으로 제거하기 어려운 반면, 수용성인 산화수은은 발전소의 습식배연탈황성비 등에서 쉽게 제거될 수 있다.Most of the mercury generated by coal combustion is in the form of elemental mercury. Elemental mercury is difficult to remove due to insolubility, while water-soluble mercury oxide can be easily removed from the wet flue gas desulfurization ratio of a power plant.

이상에서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술분야에 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정하여져야만 할 것이다.Although the detailed description of the present invention described above has been described with reference to a preferred embodiment of the present invention, a person skilled in the art without departing from the spirit and scope of the present invention described in the claims to be described later It will be understood that various modifications and variations can be made in the present invention. Therefore, the technical scope of the present invention should not be limited to the contents described in the detailed description of the specification but should be defined by the claims.

Claims (4)

질소산화물을 제거하기 위하여 이산화티타늄을 담체로 오산화이바나듐을 담지한 하니컴형 촉매로서,As a honeycomb catalyst which carries vanadium pentoxide as a carrier to remove nitrogen oxides, 삼산화항을 흡착제거하고 원소수은의 산화반응을 촉진하기 위하여, 촉매 원료 총합산 중량을 기준으로 0.1~1.0 중량%의 알칼리토금속염화물을 함유하고,In order to adsorb and remove the trioxide port and promote the oxidation reaction of elemental mercury, it contains 0.1 to 1.0% by weight of alkaline earth metal chloride based on the total weight of the catalyst raw material, 카오린, 전분, 실리카졸, 메틸셀롤로즈, 질산 및 물을 포함하는 오산화이바나듐계 촉매.Ivanadium pentoxide-based catalyst comprising kaolin, starch, silica sol, methylcellulose, nitric acid and water. 제1항에 있어서, 상기 알칼리토금속염화물은,The method of claim 1, wherein the alkaline earth metal chloride, 마그네슘, 칼슘 및 스트론튬 중 어느 하나를 포함하는 오산화이바나듐계 촉매.Ivanadium pentoxide-based catalyst comprising any one of magnesium, calcium and strontium. 제1항에 있어서,The method of claim 1, 상기 이산화티타늄은 촉매 원료 총합산 중량을 기준으로 50~53중량%인 오산화이바나듐계 촉매.The titanium dioxide is vanadium pentoxide-based catalyst is 50 to 53% by weight based on the total weight of the catalyst raw material. 제1항에 있어서,The method of claim 1, 상기 오산화이바나듐은 촉매 원료 총합산 중량을 기준으로 0.1~1.0 중량%인 오산화이바나듐계 촉매.The vanadium pentoxide is an vanadium pentoxide-based catalyst of 0.1 to 1.0% by weight based on the total weight of the catalyst raw materials.
KR1020090075988A 2009-08-18 2009-08-18 V2o6 based catalyst KR101083307B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090075988A KR101083307B1 (en) 2009-08-18 2009-08-18 V2o6 based catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090075988A KR101083307B1 (en) 2009-08-18 2009-08-18 V2o6 based catalyst

Publications (2)

Publication Number Publication Date
KR20110018497A KR20110018497A (en) 2011-02-24
KR101083307B1 true KR101083307B1 (en) 2011-11-15

Family

ID=43776110

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090075988A KR101083307B1 (en) 2009-08-18 2009-08-18 V2o6 based catalyst

Country Status (1)

Country Link
KR (1) KR101083307B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026364A (en) 1998-05-22 2000-01-25 Consortium Elektrochem Ind Gmbh Production of acetic acid through vapor phase oxidation of mixture of saturated hydrocarbon having four carbon atoms with unsaturated hydrocarbon having four carbon atoms
JP2004290753A (en) 2003-03-26 2004-10-21 Mitsubishi Chemical Engineering Corp Heat-resistant denitrification catalyst
JP2005342711A (en) 2004-05-07 2005-12-15 Mitsubishi Chemical Engineering Corp Denitration method of diesel engine exhaust gas
KR100765405B1 (en) 2006-07-24 2007-10-12 한국전력공사 V2o5-based catalyst adding heavy oil fly ash for nox removal and elemental mercury oxidation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026364A (en) 1998-05-22 2000-01-25 Consortium Elektrochem Ind Gmbh Production of acetic acid through vapor phase oxidation of mixture of saturated hydrocarbon having four carbon atoms with unsaturated hydrocarbon having four carbon atoms
JP2004290753A (en) 2003-03-26 2004-10-21 Mitsubishi Chemical Engineering Corp Heat-resistant denitrification catalyst
JP2005342711A (en) 2004-05-07 2005-12-15 Mitsubishi Chemical Engineering Corp Denitration method of diesel engine exhaust gas
KR100765405B1 (en) 2006-07-24 2007-10-12 한국전력공사 V2o5-based catalyst adding heavy oil fly ash for nox removal and elemental mercury oxidation

Also Published As

Publication number Publication date
KR20110018497A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
CN106582606B (en) Non-vanadium low-temperature denitration catalyst and preparation method thereof
CN101979140A (en) Metal loaded catalyst used for selective catalytic oxidation of ammonia, preparation method and application thereof
WO2021246630A1 (en) Vanadium pentoxide-tungsten trioxide catalyst supported on iron ion-exchanged titanium dioxide support, and method for removing nitrogen oxide using same
CN107126949B (en) A kind of SCR denitration and preparation method thereof of anti-arsenic poisoning
KR100456185B1 (en) Eliminator For Removing Harmful Gases In Flue Gases And Method For Removing The Sames Thereby
TWI555569B (en) A method for purifying exhaust gas containing metallic mercury, an oxidation catalyst for metallic mercury in exhaust gas, and a method of manufacturing the same
CN105413708A (en) Method for preparing low-concentration air pollutant purifying materials
RU2429908C1 (en) Catalyst for treating exhaust gases
KR20160075928A (en) Fe-Cr/C complex catalyst for simultaneous removing NOx and SOx and fabrication method thereof
JP2005342710A (en) Heat-resistant denitrifying catalyst
ATE302062T1 (en) DENITOXICATION CATALYST, METHOD OF PRODUCTION THEREOF AND EXHAUST GAS PURIFICATION METHOD
KR101083307B1 (en) V2o6 based catalyst
JP5360834B2 (en) Exhaust gas purification catalyst that suppresses the influence of iron compounds
CN112169808A (en) Desulfurization and denitrification catalyst and preparation method thereof
KR101329828B1 (en) A tungsten/titania-based catalyst and a method of preparing the same
CN114887475A (en) Tail gas treatment method for lithium battery material production
KR102224335B1 (en) Selective oxidation catalyst for converting gaseous ammonia into nitrogen and its production method
CN110102299B (en) Desulfurization and denitrification double-effect catalyst and application thereof
KR101124705B1 (en) Method for removing element mercury using v2o6 based catalyst process
CN104492441B (en) Method for treating purge gas containing nitrogen oxide
KR100970337B1 (en) A catalyst for selective catalytic reduction of nitrogen oxides and A method for preparing the same
JP3944597B2 (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method
CN111774074B (en) Denitration catalyst suitable for high-content toxic component flue gas and preparation method thereof
JP5186699B2 (en) Oxidation catalyst for metallic mercury in exhaust gas and method for oxidizing metallic mercury using the catalyst
KR100963080B1 (en) DIVANADIUM PENTAOXIDE-BASED CATALYSTS WASHCOATING Ag FOR REDUCING SULFUR DIOXIDE OXIDATION

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141103

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151103

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161102

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181101

Year of fee payment: 8