JP5186699B2 - Oxidation catalyst for metallic mercury in exhaust gas and method for oxidizing metallic mercury using the catalyst - Google Patents

Oxidation catalyst for metallic mercury in exhaust gas and method for oxidizing metallic mercury using the catalyst Download PDF

Info

Publication number
JP5186699B2
JP5186699B2 JP2008259539A JP2008259539A JP5186699B2 JP 5186699 B2 JP5186699 B2 JP 5186699B2 JP 2008259539 A JP2008259539 A JP 2008259539A JP 2008259539 A JP2008259539 A JP 2008259539A JP 5186699 B2 JP5186699 B2 JP 5186699B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
oxidation
metallic mercury
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008259539A
Other languages
Japanese (ja)
Other versions
JP2010088984A (en
Inventor
啓一郎 甲斐
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2008259539A priority Critical patent/JP5186699B2/en
Publication of JP2010088984A publication Critical patent/JP2010088984A/en
Application granted granted Critical
Publication of JP5186699B2 publication Critical patent/JP5186699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は排ガス中の金属水銀の酸化触媒に係り、特に石炭火力発電所から排出される排ガス中の金属水銀の酸化触媒及び該触媒を用いた金属水銀の酸化処理方法に関する。   The present invention relates to an oxidation catalyst for metallic mercury in exhaust gas, and more particularly to an oxidation catalyst for metallic mercury in exhaust gas discharged from a coal-fired power plant and a method for oxidizing metallic mercury using the catalyst.

近年、石油の枯渇が懸念されており、今後の長期的なエネルギーの安定供給源として、可採埋蔵量が豊富で、かつ地域的偏在性の少ない石炭を燃料とした火力発電が重要な役割を担っていくものと期待されている。   In recent years, there has been a concern about the depletion of oil, and thermal power generation using coal as a fuel with abundant reserves and less localized unevenness will play an important role as a stable source of long-term energy in the future. It is expected to carry.

一方、石炭の燃焼に伴い発生する石炭中に含まれる、濃度0.1%以下の微量元素(水銀(Hg)、セレン(Se)、ヒ素(As)、カドミウム(Cd)、鉛(Pd)等)については、環境中での許容濃度を超えた場合に、生物に対し毒性を示すことが分かっている。特に蒸気圧の高い元素水銀は大気に放出され易く、微量であっても人体に暴露されると、神経障害や腎臓障害、心臓血管疾患を引き起こす。また、大気に放出された無機水銀が湖や海に吸収されると、無機水銀が有機水銀(メチル水銀)へと変化し、魚介類を経て人体に催奇障害をもたらす。このため、米国を中心に世界各国で水銀の排出に対して厳しい規制が課せられようとしている。   On the other hand, about trace elements (mercury (Hg), selenium (Se), arsenic (As), cadmium (Cd), lead (Pd), etc.) contained in coal generated by coal combustion at a concentration of 0.1% or less Is known to be toxic to living organisms when the permissible concentration in the environment is exceeded. In particular, elemental mercury with a high vapor pressure is easily released into the atmosphere, and even if it is a trace amount, exposure to the human body can cause neuropathy, kidney damage, and cardiovascular disease. Also, when inorganic mercury released into the atmosphere is absorbed by lakes and seas, inorganic mercury changes into organic mercury (methyl mercury), which causes teratogenic problems in the human body via seafood. For this reason, strict regulations on mercury emissions are being imposed around the world, particularly in the United States.

火力発電所からの排出される水銀は、金属形態と酸化形態が存在しており、これらのうち、金属形態の水銀は、煤煙及び他の粒子には固着せず、大気温度に近い温度であっても、気相中に残留するため、電気集塵装置やバグフィルタなどの除塵装置で除去することは困難である。一方、酸化形態の水銀、特に排ガス中の塩化水素または塩素と反応して生成される塩化水銀は、蒸気圧が低く、可溶性であり、灰中や脱硫装置の吸収液中に容易に固定化されるため、比較的容易に電気集塵機等の除塵装置や脱硫装置などで回収・除去することができる。   Mercury emitted from thermal power plants exists in metallic and oxidized forms. Of these, mercury in metallic form does not adhere to soot and other particles, and is close to atmospheric temperature. However, since it remains in the gas phase, it is difficult to remove it with a dust remover such as an electric dust collector or a bag filter. On the other hand, mercury in the oxidized form, especially mercury chloride produced by reaction with hydrogen chloride or chlorine in the exhaust gas, has a low vapor pressure and is soluble, and is easily immobilized in ash and in the absorbent of desulfurization equipment. Therefore, it can be recovered and removed with a dust removing device such as an electrostatic precipitator or a desulfurization device relatively easily.

そのため、水銀の酸化機能を有する固体触媒を用いて、金属水銀を固体触媒に接触させることにより、蒸気圧の低い酸化水銀に酸化し、後流の除塵装置や脱硫装置などで除去する実用研究が進められている。このような固体触媒としては、例えば、チタン(Ti)を主成分とし、これにバナジウム(V)、モリブデン(Mo)、タングステン(W)などの酸化物を添加した一般的な脱硝触媒(Ti-Mo-V系触媒またはTi-W-V系触媒)が良く知られている。これらの触媒は、ハロゲン化合物の存在下において、金属水銀を酸化水銀へ効率的に酸化することができる(特許文献1及び2)。また、Mo、W、V以外にも銅(Cu)やマンガン(Mn)、鉄(Fe)などが金属態水銀の酸化触媒成分として働くことが知られている(特許文献3〜5)。
特開2005-125211号公報 特開2003-53142号公報 特開平10-230137号公報 特開2006-29673号公報 特開2004-237244号公報
For this reason, there is a practical study of using a solid catalyst having a mercury oxidation function to oxidize metallic mercury to mercury oxide with a low vapor pressure by contacting it with a solid catalyst and removing it with a downstream dust removal device or desulfurization device. It is being advanced. As such a solid catalyst, for example, a general denitration catalyst (Ti--) having titanium (Ti) as a main component, and an oxide such as vanadium (V), molybdenum (Mo), tungsten (W) added thereto is added. Mo-V catalysts or Ti-WV catalysts) are well known. These catalysts can efficiently oxidize metallic mercury to mercury oxide in the presence of a halogen compound (Patent Documents 1 and 2). In addition to Mo, W, and V, copper (Cu), manganese (Mn), iron (Fe), and the like are known to act as oxidation catalyst components for metallic mercury (Patent Documents 3 to 5).
JP 2005-125211 A JP 2003-53142 A Japanese Patent Laid-Open No. 10-230137 JP 2006-29673 A JP 2004-237244 A

上記したようなTi-Mo-V触媒またはTi-W-V触媒を用いるHgの酸化方法においては、排ガスの温度が高い場合、排ガス中のハロゲン化合物濃度が低い場合、またはNHやSOなどの還元性ガスが存在する場合には、金属水銀の酸化効率が低下してしまうものが多かった。さらに、近年、炭質の低下に伴い排ガス中のSO濃度が3000ppmを越すものが多くなっているため、従来の脱硝触媒では、SOに加え、NH濃度も高くなる脱硝装置内で、 Hgを効率良く酸化処理することが困難であった。この問題の一般的な解決手段として、脱硝装置内の触媒充填量や活性成分であるバナジウムの担持量を増やし、金属水銀の酸化反応に寄与する触媒活性点の総数を増加させる方法が挙げられる。しかしながら、この方法では、脱硝装置における金属水銀の酸化活性を向上させることができる一方、触媒活性点の増加に伴ってSOの酸化活性をも増大させてしまうことが大きな問題となる。また、Cu、Mn、Fe等を金属水銀の酸化活性成分として用いた場合でも、排ガス中NHの共存による金属水銀の酸化効率の低下を大きく改善することはできなかった。 In the oxidation process of Hg using a Ti-Mo-V catalyst or Ti-WV catalyst as described above, when the temperature of the exhaust gas is high, when the low halogen compound concentration in the exhaust gas, or reducing such as NH 3 and SO 2 In the case where a reactive gas is present, the oxidation efficiency of metallic mercury often decreases. Furthermore, in recent years, the SO 2 concentration in the exhaust gas has exceeded 3000 ppm due to the deterioration of the carbon quality. Therefore, in the conventional denitration catalyst, in the denitration equipment in which the NH 3 concentration is increased in addition to SO 2 , Hg It was difficult to efficiently oxidize the material. As a general means for solving this problem, there is a method of increasing the total amount of catalyst active sites contributing to the oxidation reaction of metallic mercury by increasing the amount of catalyst loaded in the denitration apparatus and the amount of vanadium as an active component supported. However, this method can improve the oxidation activity of metallic mercury in the denitration apparatus, but increases the oxidation activity of SO 2 as the catalyst active point increases. Further, even when Cu, Mn, Fe, or the like is used as an oxidation active component of metallic mercury, the reduction in the oxidation efficiency of metallic mercury due to the coexistence of NH 3 in the exhaust gas cannot be greatly improved.

本発明の課題は、SO及びNHが存在する高温排ガス中において、高い脱硝活性及び低SO酸化性維持しつつ、高いHg酸化活性を有する触媒及び該触媒を用いた金属水銀の酸化処理方法を提供することにある。 An object of the present invention is to provide a catalyst having high Hg oxidation activity while maintaining high denitration activity and low SO 2 oxidation property in high-temperature exhaust gas in which SO 2 and NH 3 exist, and oxidation treatment of metallic mercury using the catalyst It is to provide a method.

本発明者らは、上記課題を解決するべく鋭意検討を行った結果、チタン(Ti)とバナジウム(V)を主成分とする触媒中に、イリジウム(Ir)を含有させた触媒を用いることによって、SO濃度の高い排ガス中でも、SO酸化率を上昇させること無く、高いHg酸化率を達成できることを見出し、本発明に到達した。すなわち、本願で特許請求される発明は以下のとおりである。 As a result of intensive studies to solve the above problems, the present inventors have used a catalyst containing iridium (Ir) in a catalyst mainly composed of titanium (Ti) and vanadium (V). The present inventors have found that a high Hg oxidation rate can be achieved without increasing the SO 2 oxidation rate even in exhaust gas with a high SO 2 concentration, and have reached the present invention. That is, the invention claimed in the present application is as follows.

(1)アンモニア(NH)及び二酸化イオウ(SO)が存在する排ガス中の金属水銀を酸化する触媒であって、チタン(Ti)、モリブデン(Mo)またはタングステン(W)、及びバナジウム(V)を主成分とする触媒中にイリジウム(Ir)を含有し、該イリジウムの濃度が触媒の全体重量に対して10から100ppmまでの範囲であることを特徴とする排ガス中の金属水銀の酸化触媒。
(2)(1)に記載の触媒を用い、排ガス中の金属水銀の酸化処理を行うことを特徴とする排ガス中の金属水銀の酸化処理方法。
(3)可溶性のイリジウム化合物を水に溶解し、このイリジウム化合物の水溶液と酸化チタン(TiO)とを予め混練した後、モリブデン化合物またはタングステン化合物と、バナジウム化合物を添加することを特徴とする(1)に記載の触媒の製造方法。
(1) A catalyst that oxidizes metallic mercury in exhaust gas in which ammonia (NH 3 ) and sulfur dioxide (SO 2 ) exist, and includes titanium (Ti), molybdenum (Mo) or tungsten (W), and vanadium (V ) Containing iridium (Ir) in the main component of the catalyst , and the concentration of the iridium is in the range of 10 to 100 ppm with respect to the total weight of the catalyst. .
(2) A method for oxidizing metal mercury in exhaust gas, characterized in that the metal mercury in exhaust gas is oxidized using the catalyst according to (1) .
(3) A soluble iridium compound is dissolved in water, an aqueous solution of the iridium compound and titanium oxide (TiO 2 ) are kneaded in advance, and then a molybdenum compound or a tungsten compound and a vanadium compound are added ( A method for producing a catalyst according to 1) .

[原理・作用]
下記(1)式は、HCl共存下における水銀酸化反応の一般的な平衡式である。
Hg + 2HCl + 1/2O2 ⇔ HgCl2 + H2O (1)
(1)式の平衡反応は、触媒を用いることにより平衡を右へ移動させることができ、金属水銀を酸化することが可能となる。ところが、ガス中にNHが共存すると、触媒中の活性点にNHが吸着し、HgとHClとが反応できる活性点が減少するため、触媒上で起こる(1)式の水銀酸化の反応速度は遅くなり、反応率は低下すると考えられている。
さらに、排ガス中にSOが存在すると、SOがHgClの還元性物質として働き、触媒で酸化生成したHgClがHgに還元されるため、SO濃度が高くなるほど、触媒のHg酸化性能が低下してしまうこととなる。
[Principle / Action]
The following equation (1) is a general equilibrium equation of mercury oxidation reaction in the presence of HCl.
Hg + 2HCl + 1 / 2O 2 ⇔ HgCl 2 + H 2 O (1)
The equilibrium reaction of equation (1) can be shifted to the right by using a catalyst, and metal mercury can be oxidized. However, when NH 3 coexists in the gas, NH 3 is adsorbed at the active site in the catalyst, and the active site where Hg and HCl can react decreases, so the mercury oxidation reaction of the formula (1) that occurs on the catalyst It is believed that the rate is reduced and the reaction rate is reduced.
Further, when SO 2 is present in the exhaust gas, it acts as a reducing substance SO 2 is HgCl 2, since the HgCl 2 produced oxidized in the catalyst is reduced to Hg, as SO 2 concentration increases, the catalytic Hg oxidation performance Will be reduced.

このような場合の一般的な対処方法として、触媒中の活性成分(例えばバナジウム)の含有量を高めること、または、排ガス量あたりの触媒使用量を増加させることによって、被処理ガス量に対する触媒活性点の総数を増やすことなどによって、Hgの酸化反応速度を高める方法が採られる。しかしながら、このような方法では、下記(2)式に示すようなSOの酸化反応(副反応)も促進してしまい、SOの発生による紫煙発生や配管類の腐食の原因となるSOが大量に生成してしまうという欠点がある。
SO2 + 1/2O2 → SO3 (2)
As a general countermeasure in such a case, the catalytic activity with respect to the amount of gas to be treated is increased by increasing the content of the active component (for example, vanadium) in the catalyst or by increasing the amount of catalyst used per amount of exhaust gas. A method of increasing the oxidation reaction rate of Hg by increasing the total number of points is employed. However, in such a method, the oxidation reaction (side reaction) of SO 2 as shown in the following formula (2) is also promoted, and SO 3 that generates purple smoke due to the generation of SO 3 and corrosion of piping is caused. Has the disadvantage of generating a large amount.
SO 2 + 1 / 2O 2 → SO 3 (2)

また、バナジウム化合物の代わりにCuやMn、Fe等をHg酸化活性成分として用いた場合でも、NHの活性点への吸着によるHg酸化反応の阻害やSOとの反応による活性成分の硫酸塩化によって、Hg酸化活性点が失活してしまうため、NHやSOの共存下においてHg酸化率の低下を改善することは困難であった。 Even when Cu, Mn, Fe or the like is used as the Hg oxidation active component instead of the vanadium compound, inhibition of the Hg oxidation reaction due to adsorption of NH 3 to the active site or sulfation of the active component due to the reaction with SO 2 Therefore, it is difficult to improve the decrease in the Hg oxidation rate in the presence of NH 3 or SO 2 .

そこで、本発明者らは、SOに対する酸化活性が低く、SOやNHの共存下においても高効率でHgを酸化できる触媒を探索した結果、チタン(Ti)、モリブデン(Mo)またはタングステン(W)、バナジウム(V)を主成分とする触媒と、イリジウム(Ir)とを組み合わせた触媒が、NHやSOの共存する系において高いHg酸化活性を示すことが分かり、本発明に到達した。 Accordingly, the present inventors have lower oxidation activity for SO 2, the result of searching a catalyst capable of oxidizing Hg in high efficiency in the presence of SO 2 and NH 3, titanium (Ti), molybdenum (Mo) or tungsten (W), a catalyst comprising a combination of vanadium (V) as a main component and iridium (Ir) shows a high Hg oxidation activity in a system in which NH 3 and SO 2 coexist. Reached.

本発明の触媒によれば、従来の脱硝触媒に比べ、高い脱硝活性及び低SO酸化性維持しつつ、高いHg酸化活性を達成することが可能となる。特に、SO濃度が高い排ガス中であっても、高いHg酸化活性を維持することができるため、S分含有量の多い低質の石炭を燃焼した排ガス中でも低SO酸化率で、高いHg酸化率を得ることができる。 According to the catalyst of the present invention, it is possible to achieve high Hg oxidation activity while maintaining high denitration activity and low SO 2 oxidation property compared to conventional denitration catalysts. In particular, even in exhaust gas with a high SO 2 concentration, high Hg oxidation activity can be maintained, so even in exhaust gas burned with low-quality coal with a high S content, high Hg oxidation with a low SO 2 oxidation rate. Rate can be obtained.

さらに、本発明の触媒は、高温の排ガス中であっても使用することができるため、350℃〜400℃付近で使用される脱硝装置内で、脱硝とHg酸化を同時に行うことが可能となる。このため、排ガス温度が低い煙道途中に新たにHg酸化用の触媒等を設置する必要が無くなり、ユーティリティコストの増加を抑えることができる。   Furthermore, since the catalyst of the present invention can be used even in high-temperature exhaust gas, it becomes possible to simultaneously perform denitration and Hg oxidation in a denitration apparatus used near 350 ° C to 400 ° C. . For this reason, it is not necessary to newly install a catalyst for Hg oxidation in the middle of the flue where the exhaust gas temperature is low, and an increase in utility cost can be suppressed.

本発明によれば、高濃度のS分を含む低質石炭を燃料とする排ガス中で使用した場合のHg酸化性能の低下を改善することができる。また、排ガス中のSO酸化率を低く維持することができるため、SOの酸化反応によって生成するSOに起因する紫煙や鉄骨材料の硫酸腐食などのトラブルを少なくすることができる。 ADVANTAGE OF THE INVENTION According to this invention, the fall of the Hg oxidation performance at the time of using in the waste gas which uses the low quality coal containing high concentration S content as a fuel can be improved. Moreover, since the SO 2 oxidation rate in the exhaust gas can be kept low, troubles such as purple smoke and sulfuric acid corrosion of the steel frame material caused by SO 3 generated by the oxidation reaction of SO 2 can be reduced.

本発明に用いられる触媒は、TiO、WOまたはMoO、及びVO5から成る金属酸化物とIrを組み合わせることによって得られる。添加するIr濃度が小さすぎると、Ir添加の効果が十分でなく、大きすぎるとIrの分散度が悪くなったり、Hg酸化活性だけでなく、SO酸化活性に働く寄与度が大きくなるため、高い初期活性が得られなくなったり、SO酸化率の上昇を招く。このため、Irの添加量は、全体の触媒重量に対して10から100ppmの範囲とすると好結果を得やすい。 The catalyst used in the present invention can be obtained by combining Ir with a metal oxide composed of TiO 2 , WO 3 or MoO 3 , and V 2 O 5 . If the Ir concentration to be added is too small, the effect of Ir addition is not sufficient, and if it is too large, the degree of dispersion of Ir deteriorates, and the contribution to not only Hg oxidation activity but also SO 2 oxidation activity increases. High initial activity cannot be obtained, and the SO 2 oxidation rate increases. Therefore, good results are easily obtained when the amount of Ir added is in the range of 10 to 100 ppm with respect to the total catalyst weight.

触媒調製に用いられる原料は、各成分の酸化物や塩類など、何れでも使用可能であるが、Irの原料に塩化イリジウムやイリジウム塩化物などの可溶性化合物を選ぶと、TiOの細孔内に高分散で担持することができ、初期活性を高くできるばかりか、排ガス中のSOに対する吸着被毒を抑制することができるため、好結果を得られ易い。 The raw material used for the catalyst preparation can be any of oxides and salts of each component, but if a soluble compound such as iridium chloride or iridium chloride is selected as the Ir raw material, it will be within the pores of TiO 2. It can be supported with high dispersion and can not only increase the initial activity, but also suppress adsorption and poisoning of SO 2 in the exhaust gas, so that good results are easily obtained.

このため、上記触媒の調製方法としては、塩化イリジウムやイリジウム塩化物を水に溶解し、このIr水溶液と酸化チタン(TiO)とを予め混練した後、モリブデン化合物またはタングステン化合物と、バナジウム化合物を添加して触媒調製するのが最も良い。
また、上記触媒の形状加工方法としては、上記触媒をペースト状にしたものを金網やメタルラスなどの網状物に塗布後、乾燥及び焼成する方法や、上記触媒のスラリを、板状またはハニカム状の不活性担体にコーティングした後、乾燥及び焼成する方法が挙げられる。このときの焼成温度は、いずれの場合でも400〜600℃に設定すればよい。
For this reason, as a method for preparing the catalyst, iridium chloride or iridium chloride is dissolved in water, the Ir aqueous solution and titanium oxide (TiO 2 ) are kneaded in advance, and then a molybdenum compound or a tungsten compound and a vanadium compound are mixed. It is best to prepare the catalyst by adding it.
In addition, as a method for processing the shape of the catalyst, a method in which the catalyst in paste form is applied to a net-like material such as a wire mesh or a metal lath and then dried and fired. The method of drying and baking after coating to an inert support | carrier is mentioned. What is necessary is just to set the calcination temperature at this time to 400-600 degreeC in any case.

上記調製方法のうち、それぞれの触媒原料を混練後、ペースト状にしたものを金網やメタルラスなどの網状物に塗布後、乾燥及び焼成する方法は、ペーストの水分量を変えるだけで、触媒の細孔容積を自由に選択できるため、触媒性能の確保が比較的容易になる。また、上記触媒のスラリ状物を、板状またはハニカム状の不活性担体にコーティングした後、乾燥及び焼成する方法は、排ガスが接触する触媒表面に活性成分を高濃度で局在化させることが可能となるため、Hg酸化反応をより促進することができ、好結果を得やすくなる。   Among the above preparation methods, the method of kneading each catalyst raw material, applying the paste into a net-like material such as a wire mesh or a metal lath, and drying and calcining it is just a matter of changing the water content of the paste, and finely adjusting the catalyst. Since the pore volume can be freely selected, it is relatively easy to ensure the catalyst performance. In addition, the method of drying and firing after coating the catalyst slurry on a plate-like or honeycomb-like inert carrier can localize the active component at a high concentration on the catalyst surface in contact with the exhaust gas. Therefore, the Hg oxidation reaction can be further promoted, and good results can be easily obtained.

以下、具体例を用いて本発明を詳細に説明する。
実施例1
酸化チタン(比表面積 約130m2/g)と四塩化イリジウム溶液を混合し、予め良く混練した後、メタタングステン酸アンモニウム及びメタバナジン酸アンモニウム、水、シリカゾル、シリカ系セラミック繊維を加えてニーダで十分混練して触媒ペーストを得た。得られたペーストを厚さ0.2mmのSUS430製鋼板をメタルラス加工した厚さ0.6 mmの基材の上に置き、加圧ローラに通過させることにより、触媒ペーストを基材の網目間及び表面に圧着塗布した。これを150℃で2時間乾燥後、大気中500℃で2時間焼成して板状の触媒を得た。本触媒の組成はTi/W/V=94.6/5/0.4原子比、触媒塗布量は700g/m2、Ir添加量は触媒塗布重量に対し10ppmである。
Hereinafter, the present invention will be described in detail using specific examples.
Example 1
Mix titanium oxide (specific surface area approx. 130m 2 / g) and iridium tetrachloride solution, knead well in advance, add ammonium metatungstate and ammonium metavanadate, water, silica sol, silica ceramic fiber and knead thoroughly with kneader Thus, a catalyst paste was obtained. Place the resulting paste on a 0.6 mm thick substrate made of metal lath processed SUS430 steel plate with a thickness of 0.2 mm and pass it through a pressure roller to crimp the catalyst paste between the mesh and the surface of the substrate Applied. This was dried at 150 ° C. for 2 hours and then calcined in the atmosphere at 500 ° C. for 2 hours to obtain a plate-like catalyst. The composition of this catalyst is Ti / W / V = 94.6 / 5 / 0.4 atomic ratio, the catalyst coating amount is 700 g / m 2 , and the Ir addition amount is 10 ppm with respect to the catalyst coating weight.

実施例2
実施例1の触媒におけるIrの添加量を増やし、他は同様にして触媒を得た。本触媒の組成はTi/W/V=94.6/5/0.4原子比、触媒塗布量は700g/m2、Ir添加量は触媒塗布重量に対し100ppmである。
Example 2
The amount of Ir added to the catalyst of Example 1 was increased, and the catalyst was obtained in the same manner as the others. The composition of this catalyst is Ti / W / V = 94.6 / 5 / 0.4 atomic ratio, the catalyst coating amount is 700 g / m 2 , and the Ir addition amount is 100 ppm with respect to the catalyst coating weight.

実施例3
実施例1の調製方法において、Ir、W、V原料を添加せずにTiOを主成分とする不活性な板状担体を得た(700g/m2)。これとは別に、実施例1の触媒ペーストを大気中500℃で2時間焼成・粉砕した後、この触媒粉末を水と混合し、28重量%の触媒スラリとした。この触媒スラリに前記板状担体を含浸・乾燥することにより、担体表面に触媒成分を約120g/m2コーティングした触媒を得た。
Example 3
In the preparation method of Example 1, an inert plate-like carrier mainly composed of TiO 2 was obtained without adding Ir, W and V raw materials (700 g / m 2 ). Separately, the catalyst paste of Example 1 was calcined and pulverized at 500 ° C. for 2 hours in the atmosphere, and then the catalyst powder was mixed with water to obtain a 28% by weight catalyst slurry. The catalyst slurry was impregnated with the plate carrier and dried to obtain a catalyst having a catalyst surface coated with about 120 g / m 2 of the catalyst component.

比較例1
実施例1の触媒調製において、四塩化イリジウムを添加せずに触媒を調製した。本触媒の組成はTi/W/V=94.6/5/0.4原子比、Ir添加量は0、触媒塗布量は700g/m2である。
比較例2
実施例1の触媒調製において、触媒組成がTi/W/V=94.6/5/0.4原子比、触媒塗布量が700g/m2、Ir添加量が触媒塗布重量に対し5ppmとなる触媒を調製した。
比較例3
実施例1の触媒調製において、触媒組成がTi/W/V=94.6/5/0.4原子比、触媒塗布量が700g/m2、Ir添加量が触媒塗布重量に対し200ppmとなる触媒を調製した。
Comparative Example 1
In the catalyst preparation of Example 1, the catalyst was prepared without adding iridium tetrachloride. The composition of this catalyst is Ti / W / V = 94.6 / 5 / 0.4 atomic ratio, the Ir addition amount is 0, and the catalyst coating amount is 700 g / m 2 .
Comparative Example 2
In the catalyst preparation of Example 1, a catalyst having a catalyst composition of Ti / W / V = 94.6 / 5 / 0.4 atomic ratio, a catalyst coating amount of 700 g / m 2 , and an Ir addition amount of 5 ppm with respect to the catalyst coating weight was prepared. .
Comparative Example 3
In the catalyst preparation of Example 1, a catalyst having a catalyst composition of Ti / W / V = 94.6 / 5 / 0.4 atomic ratio, a catalyst coating amount of 700 g / m 2 , and an Ir addition amount of 200 ppm with respect to the catalyst coating weight was prepared. .

試験例1
実施例1〜3及び比較例1〜3の触媒性能を比較するため、表1の条件で脱硝率とHg酸化率を測定し、表2の条件でSO酸化率を測定した。
これらの結果を表3に纏めて示した。本表から本願発明触媒の性能は、比較触媒と比べて、Hg酸化性能が高いことが分かる。また、比較例2のようにIr添加量が少なすぎるとHg酸化率の向上が無く、一方Irの添加量が多すぎるとSO酸化率が急増する結果となっている。このため、本発明の実施に際しては、請求項2に記載のIr添加量の範囲とすることが有効である。また、Ir含有触媒をTiOの不活性担体に表面コーティングした実施例3の触媒のHg酸化率はさらに高くなっている。これは、排ガスと接触しやすい触媒表面にIr成分が高濃度で存在しているため、排ガス中のHgが酸化されやすくなったためであると考えられる。
試験例2
高濃度のSOに対する本発明の触媒の効果を確かめるため、表1の条件において、SO濃度を3000ppmまで高めてHg酸化率を測定した。
Test example 1
In order to compare the catalyst performance of Examples 1 to 3 and Comparative Examples 1 to 3, the NOx removal rate and the Hg oxidation rate were measured under the conditions shown in Table 1, and the SO 2 oxidation rate was measured under the conditions shown in Table 2.
These results are summarized in Table 3. From this table, it can be seen that the performance of the catalyst of the present invention is higher in Hg oxidation performance than the comparative catalyst. Further, as in Comparative Example 2, when the amount of Ir added is too small, the Hg oxidation rate is not improved, while when the amount of Ir added is too large, the SO 2 oxidation rate increases rapidly. For this reason, in carrying out the present invention, it is effective to set the range of the Ir addition amount described in claim 2. Further, the Hg oxidation rate of the catalyst of Example 3 in which the Ir-containing catalyst was surface-coated on an inert support of TiO 2 was further increased. This is considered to be because Hg in the exhaust gas is easily oxidized because the Ir component is present at a high concentration on the catalyst surface that is easily in contact with the exhaust gas.
Test example 2
In order to confirm the effect of the catalyst of the present invention on high concentration of SO 2, the Hg oxidation rate was measured under the conditions of Table 1 with the SO 2 concentration increased to 3000 ppm.

その結果を表4に纏めて示した。本表から明らかであるように、本発明の触媒は、比較触媒に比べて、SO濃度が増加してもHg酸化率の低下が小さく、SO濃度が高いほど、Ir添加の効果が大きくなっていることが分かる。このため、本発明の触媒は、S分含有量の多い低質石炭を燃料とする排ガス中で大きな効果を発揮できる触媒であると言える。 The results are summarized in Table 4. As is clear from this table, the catalyst of the present invention has a smaller decrease in the Hg oxidation rate even when the SO 2 concentration is increased, and the effect of Ir addition increases as the SO 2 concentration increases. You can see that For this reason, it can be said that the catalyst of the present invention is a catalyst that can exert a great effect in exhaust gas using low quality coal having a high S content as fuel.

Figure 0005186699
Figure 0005186699

Figure 0005186699
Figure 0005186699

Figure 0005186699
Figure 0005186699

Figure 0005186699
Figure 0005186699

Claims (3)

アンモニア(NH)及び二酸化イオウ(SO)が存在する排ガス中の金属水銀を酸化する触媒であって、チタン(Ti)、モリブデン(Mo)またはタングステン(W)、及びバナジウム(V)を主成分とする触媒中にイリジウム(Ir)を含有し、該イリジウムの濃度が触媒の全体重量に対して10から100ppmまでの範囲であることを特徴とする排ガス中の金属水銀の酸化触媒。 A catalyst that oxidizes metallic mercury in exhaust gas in the presence of ammonia (NH 3 ) and sulfur dioxide (SO 2 ), mainly titanium (Ti), molybdenum (Mo) or tungsten (W), and vanadium (V). An oxidation catalyst for metallic mercury in exhaust gas, characterized in that the catalyst as a component contains iridium (Ir) and the concentration of the iridium is in the range of 10 to 100 ppm with respect to the total weight of the catalyst. 請求項1に記載の触媒を用い、排ガス中の金属水銀の酸化処理を行うことを特徴とする排ガス中の金属水銀の酸化処理方法。 An oxidation treatment method for metallic mercury in exhaust gas, characterized in that the metallic mercury in exhaust gas is oxidized using the catalyst according to claim 1 . 可溶性のイリジウム化合物を水に溶解し、このイリジウム化合物の水溶液と酸化チタン(TiO)とを予め混練した後、モリブデン化合物またはタングステン化合物と、バナジウム化合物を添加することを特徴とする請求項1に記載の触媒の製造方法。 Soluble iridium compound is dissolved in water, after previous mixing with an aqueous solution and the titanium oxide of the iridium compound (TiO 2), in claim 1, characterized in that the addition of a molybdenum compound or tungsten compound, a vanadium compound The manufacturing method of the catalyst of description.
JP2008259539A 2008-10-06 2008-10-06 Oxidation catalyst for metallic mercury in exhaust gas and method for oxidizing metallic mercury using the catalyst Active JP5186699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008259539A JP5186699B2 (en) 2008-10-06 2008-10-06 Oxidation catalyst for metallic mercury in exhaust gas and method for oxidizing metallic mercury using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008259539A JP5186699B2 (en) 2008-10-06 2008-10-06 Oxidation catalyst for metallic mercury in exhaust gas and method for oxidizing metallic mercury using the catalyst

Publications (2)

Publication Number Publication Date
JP2010088984A JP2010088984A (en) 2010-04-22
JP5186699B2 true JP5186699B2 (en) 2013-04-17

Family

ID=42252232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008259539A Active JP5186699B2 (en) 2008-10-06 2008-10-06 Oxidation catalyst for metallic mercury in exhaust gas and method for oxidizing metallic mercury using the catalyst

Country Status (1)

Country Link
JP (1) JP5186699B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10247414B2 (en) 2015-06-18 2019-04-02 Mitsubishi Hitachi Power Systems, Ltd. Coal-fired boiler exhaust gas treatment apparatus and coal-fired boiler exhaust gas treatment method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3935547B2 (en) * 1997-02-19 2007-06-27 三菱重工業株式会社 Exhaust gas treatment method and exhaust gas treatment apparatus
JP4831801B2 (en) * 2001-08-09 2011-12-07 三菱重工業株式会社 Method and apparatus for removing mercury from exhaust gas
JP4175465B2 (en) * 2003-02-07 2008-11-05 三菱重工業株式会社 Method and system for removing mercury from exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10247414B2 (en) 2015-06-18 2019-04-02 Mitsubishi Hitachi Power Systems, Ltd. Coal-fired boiler exhaust gas treatment apparatus and coal-fired boiler exhaust gas treatment method

Also Published As

Publication number Publication date
JP2010088984A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
JP5097709B2 (en) Metallic mercury oxidation catalyst
Khodayari et al. Regeneration of commercial TiO2-V2O5-WO3 SCR catalysts used in bio fuel plants
WO2018047381A1 (en) Regeneration method for denitration catalyst
JP5051977B2 (en) Device for removing trace harmful substances in exhaust gas and operation method thereof
WO2008012878A1 (en) Apparatus for removing of trace of toxic substance from exhaust gas and method of operating the same
JP2006136869A (en) Exhaust gas treating catalyst, exhaust gas treating method and exhaust gas treating apparatus
KR102183166B1 (en) Iron Ions-Exchanged Titanium Dioxide-Supported Vanadia-Tungsta Catalysts and Method of Removing NOx Using the Catalysts
JP5636577B2 (en) Method for purifying exhaust gas containing metallic mercury and oxidation catalyst for metallic mercury in exhaust gas
WO2015051363A1 (en) Method and system for removing gaseous mercury in flue gases
KR101717319B1 (en) Nox reduction catalyst for exhaust gas of biomass combustion and nox reduction method
JP2012035216A (en) Catalyst for treating exhaust gas, method for producing the same, and method for treating nitrogen oxide in exhaust gas
KR100973675B1 (en) Catalyst for reduction of nitrogen oxide and oxidation of mercury in exhaust gas and method for removing nitrogen oxide and mercury simultaneously using the catalyst
JP5186699B2 (en) Oxidation catalyst for metallic mercury in exhaust gas and method for oxidizing metallic mercury using the catalyst
TWI465285B (en) An exhaust gas purification catalyst capable of suppressing the influence of an iron compound, an exhaust gas purification method using the same, and a manufacturing method thereof
JP2009226238A (en) Method of treating exhaust gas and catalyst
JP2008030017A (en) Removal apparatus of trace harmful substance in exhaust gas and its operation method
JP6400379B2 (en) Denitration method for combustion exhaust gas
JP2008126124A (en) Cleaning apparatus for exhaust gas containing nitrogen oxide and metallic mercury
JP4277226B2 (en) Catalyst for oxidizing metal mercury, catalyst for purifying exhaust gas provided with catalyst for oxidizing metal mercury, and method for producing the same
JP2018058028A (en) Mercury oxidation catalyst, and method for producing mercury oxidizing device including mercury oxidation catalyst
JP2008238057A (en) Absorbent material of metal mercury in exhaust gas and method for removing metal mercury using it
JP2010088983A (en) Method and catalyst for oxidizing metal mercury in exhaust gas
KR20140102925A (en) Catalyst for selective oxidation of ammonia and method for catalyst improving effciency of selective oxidation using same
JP4511920B2 (en) Method for producing denitration catalyst
JP2009226298A (en) Method for treating exhaust gas and exhaust gas treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5186699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350