JP2008030017A - Removal apparatus of trace harmful substance in exhaust gas and its operation method - Google Patents

Removal apparatus of trace harmful substance in exhaust gas and its operation method Download PDF

Info

Publication number
JP2008030017A
JP2008030017A JP2006285761A JP2006285761A JP2008030017A JP 2008030017 A JP2008030017 A JP 2008030017A JP 2006285761 A JP2006285761 A JP 2006285761A JP 2006285761 A JP2006285761 A JP 2006285761A JP 2008030017 A JP2008030017 A JP 2008030017A
Authority
JP
Japan
Prior art keywords
exhaust gas
denitration
catalyst
mercury
denitration catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006285761A
Other languages
Japanese (ja)
Inventor
Yoshinori Nagai
良憲 永井
Toshio Katsube
利夫 勝部
Isato Morita
勇人 森田
Hirobumi Yoshikawa
博文 吉川
Yasuyoshi Kato
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2006/314744 external-priority patent/WO2008012878A1/en
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2006285761A priority Critical patent/JP2008030017A/en
Publication of JP2008030017A publication Critical patent/JP2008030017A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a long-term stable and highly reliable removal apparatus of trace harmful substances in exhaust gas, and its operation method. <P>SOLUTION: The removal apparatus of the trace harmful substances in the exhaust gas is constituted by arranging, in a flow channel of the exhaust gas discharged from a combustion facility in order from the upstream side, a denitration device equipped with a denitration catalyst layer having a function of removing nitrogen oxide in the exhaust gas to oxidize metallic mercury, an air preheater for heat-exchanging air for combustion of the combustion facility to the exhaust gas, a dust removal device having a bag filter containing oxidation catalysts for metallic mercury and a desulfurization device for removing sulfur oxide in the exhaust gas. The bag filter may be disposed in front of the desulfurization device. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は石油または石炭の燃焼排ガス中に含まれる微量有害物質として特に金属水銀化合物を除去する装置及びその運転方法に係わり、長時間使用後も安定して効率良く金属水銀化合物が除去できる排ガス中微量有害物質の除去装置及びその運転方法に関するものである。   The present invention relates to an apparatus for removing metallic mercury compounds as trace harmful substances contained in combustion exhaust gas of petroleum or coal and its operation method, and in exhaust gas capable of removing metallic mercury compounds stably and efficiently even after long-term use. The present invention relates to an apparatus for removing trace harmful substances and an operation method thereof.

石油または石炭などを使用するボイラ等の燃焼設備からの排出ガス中には、光化学スモッグや酸性雨の原因物質である窒素酸化物(NOx)や硫黄酸化物(SOx)のほかに微量有害物質として金属水銀等の重金属化合物が含まれている。NOxの効果的な除去方法としてはアンモニア(NH3)等を還元剤とした選択的接触還元による排煙脱硝法が火力発電所を中心に幅広く用いられている。触媒には、バナジウム(V)、モリブデン(Mo)またはタングステン(W)を活性成分として酸化チタン(TiO2)を担体としたものが主に使用されており、特に活性成分の1つとしてバナジウムを含むものは活性が高いだけでなく、排ガス中に含まれている不純物による劣化が小さいこと、より低温から使用できることなどから現在の脱硝触媒の主流になっている(特開昭50−128681号公報等)。また、その触媒成分は通常ハニカム状又は板状構造体に成形されて用いられ、そのための各種製造法が発明されてきた。 Exhaust gas from combustion facilities such as boilers that use oil or coal is a trace amount of harmful substances in addition to photochemical smog and acid rain causing nitrogen oxides (NOx) and sulfur oxides (SOx). Contains heavy metal compounds such as metallic mercury. As an effective method for removing NOx, a flue gas denitration method by selective catalytic reduction using ammonia (NH 3 ) or the like as a reducing agent is widely used mainly in thermal power plants. The catalyst mainly uses vanadium (V), molybdenum (Mo) or tungsten (W) as an active component and titanium oxide (TiO 2 ) as a carrier. In particular, vanadium is used as one of the active components. The inclusions are not only high in activity, but also are less prone to deterioration due to impurities contained in the exhaust gas, and can be used from a lower temperature. etc). Further, the catalyst component is usually used after being formed into a honeycomb-like or plate-like structure, and various production methods for that purpose have been invented.

一方、前記燃焼設備からの排出ガス中のSOxの除去に関しては、石灰石スラリを用いて排ガス中のSOxを吸収除去する湿式脱硫装置が高効率脱硫を達成することができるので、脱硫法の主流となっている。これとは別に石灰や水酸化マグネシウム(Mg(OH)2)を吸収剤に使用した半乾式の脱硫装置が提案されている。前記半乾式脱硫装置を用いる脱硫方法は、石灰石などの吸収剤を除塵装置上流側の排ガス流路内の排ガス中に直接噴霧して、噴霧後の排ガス流路内または除塵設備で所定時間の間、滞留させて排ガス中のSOxを除去する方法である。この方法は高効率脱硫には適さないが設備費が少なく経済的であるという利点がある。 On the other hand, regarding the removal of SOx in the exhaust gas from the combustion facility, a wet desulfurization apparatus that absorbs and removes SOx in exhaust gas using limestone slurry can achieve high-efficiency desulfurization. It has become. Apart from this, a semi-dry type desulfurization apparatus using lime or magnesium hydroxide (Mg (OH) 2 ) as an absorbent has been proposed. In the desulfurization method using the semi-dry desulfurization apparatus, an absorbent such as limestone is directly sprayed into the exhaust gas in the exhaust gas flow channel on the upstream side of the dust removal device, and the sprayed exhaust gas flow channel or the dust removal equipment for a predetermined time. This is a method for removing SOx in the exhaust gas by allowing it to stay. Although this method is not suitable for high-efficiency desulfurization, it has an advantage that it is economical with a low equipment cost.

他方、ここ数年、石油または石炭燃焼排ガス中に存在する金属水銀化合物の排出低減に関する動きが活発化している。金属水銀化合物は一旦大気中に排出されると食物連鎖により人体にも多大な影響を及ぼすとされている。石油または石炭によって持ち込まれる金属水銀等の微量有害物質は燃焼によって、その気化した成分が排ガス中に移行する。通常1500℃近傍の燃焼ゾーンで金属水銀はガス状金属水銀として排出されるといわれているが、排ガス流路の比較的低温域(300〜450℃域)で金属水銀は共存する塩化水素(HCl)により下式(1)のように塩化水銀(HgCl2)に部分的に酸化されることが確認されており、またこの反応は300℃から450℃程度の温度域に設置された脱硝触媒上で促進されることも知られている。なお、この反応は300℃以下の温度ではほぼ完全に右方向に進み、金属水銀が塩化水銀に酸化されることが知られている。 On the other hand, in recent years, movements related to emission reduction of metallic mercury compounds present in petroleum or coal combustion exhaust gas have become active. Metallic mercury compounds are said to have a great influence on the human body through the food chain once discharged into the atmosphere. A trace amount of harmful substances such as metallic mercury brought in by oil or coal is burned, and the vaporized components are transferred into exhaust gas. Normally, metal mercury is said to be discharged as gaseous metal mercury in the combustion zone near 1500 ° C, but metal mercury coexists in a relatively low temperature region (300-450 ° C region) of the exhaust gas flow path (HCl ) Has been confirmed to be partially oxidized to mercury chloride (HgCl 2 ) as shown in the following formula (1), and this reaction is performed on a denitration catalyst installed in a temperature range of about 300 ° C. to 450 ° C. It is also known to be promoted by. It is known that this reaction proceeds almost completely to the right at a temperature of 300 ° C. or lower, and metal mercury is oxidized to mercury chloride.

Hg+HCl+1/2O2=HgCl2+H2O (1)
上記反応式(1)で生成した塩化水銀(HgCl2)は、金属水銀に比して蒸気圧が低く、排ガス流路の下流側に配置された除塵装置でダストに吸着除去され、また、水に吸収され易いため、湿式脱硫装置の石灰石スラリなどの吸収液に吸収され、または半乾式脱硫装置の噴霧吸収剤によって吸収除去されることが知られている。
Hg + HCl + 1 / 2O 2 = HgCl 2 + H 2 O (1)
Mercury chloride (HgCl 2 ) generated by the above reaction formula (1) has a lower vapor pressure than metal mercury, and is adsorbed and removed by dust with a dust removing device disposed downstream of the exhaust gas flow path. It is known that it is absorbed by an absorbent such as limestone slurry of a wet desulfurization apparatus or absorbed by a spray absorbent of a semi-dry desulfurization apparatus.

しかしながら、酸化されない金属水銀の大部分はガス状(金属水銀蒸気)のまま煙突からそのまま排出されるおそれがある。   However, most of the metal mercury that is not oxidized may be discharged from the chimney as it is in the gaseous state (metal mercury vapor).

そこで、金属水銀の排出量を低減する技術として低温域に設置された除塵設備の上流側の排ガス流路中に活性炭を噴霧して活性炭の吸着効果や触媒効果で金属水銀を効果的に除去する方法(従来技術1)や、特開2003−53142号公報記載の発明のように上流側から脱硝触媒、空気予熱器、除塵装置及び熱交換器が順次配置される排ガス流路中熱交換器の下流側の低温域(300℃以下)に固体酸化触媒層を設置して金属水銀を酸化し、次いで湿式脱硫装置で吸収液に吸収除去する方法(従来技術2)、更には排ガス中に含まれる有害物質を除去するろ布に金属水銀吸着剤を保持させた排ガス処理用バグフィルタを用いる方法(特開平10−66814号公報;従来技術3)などが提案されている。
特開2003−53142号公報 特開平10−66814号公報
Therefore, as a technology to reduce metal mercury emissions, activated carbon is sprayed into the exhaust gas flow channel upstream of the dust removal equipment installed in the low temperature range, and metal mercury is effectively removed by the adsorption effect and catalytic effect of the activated carbon. Method (conventional technology 1), or a heat exchanger in an exhaust gas passage in which a denitration catalyst, an air preheater, a dust removal device, and a heat exchanger are sequentially arranged from the upstream side as in the invention described in JP-A-2003-53142 A method in which a solid oxidation catalyst layer is placed in a downstream low temperature region (300 ° C. or lower) to oxidize metallic mercury, and then absorbed and removed by an absorbent using a wet desulfurization apparatus (conventional technology 2), and further included in exhaust gas There has been proposed a method using a bag filter for exhaust gas treatment in which a metal mercury adsorbent is held on a filter cloth for removing harmful substances (Japanese Patent Laid-Open No. 10-66814; Prior Art 3).
JP 2003-53142 A Japanese Patent Laid-Open No. 10-66814

前記従来技術(1〜3)は下記のような問題点がある。
すなわち、従来技術1は、大規模な発電設備の燃焼設備に適用する場合には処理ガス量が膨大であるため、使用する活性炭の使用量が極めて多くなり、連続的に活性炭を使用することは経済的でなく、実用化は困難である。加えて除塵装置で捕集されたダスト中に多量の活性炭が混入するためダスト処理が困難になるという課題がある。
The prior arts (1 to 3) have the following problems.
That is, when the prior art 1 is applied to a combustion facility of a large-scale power generation facility, the amount of processing gas is enormous, so that the amount of activated carbon used is extremely large, and it is not possible to use activated carbon continuously. It is not economical and practical application is difficult. In addition, since a large amount of activated carbon is mixed in the dust collected by the dust remover, there is a problem that dust treatment becomes difficult.

また、従来技術2は、上記式(1)の触媒反応が低温で、より効果的に進行することに着目したものであるが、既設の排ガス処理装置に新たに酸化触媒層を追加する必要がある。このため酸化触媒層の設置用のスペースが必要となるため、既設の排ガス処理装置で対応することがコスト的にも不利であるばかりでなく、新たな酸化触媒層を設置すると、それが排ガス流路内の大幅な通風抵抗の増加になり、さらに誘引ファン等を排ガス流路に設置することが必要になる。また、排ガス中に多量のSOxが存在する場合には図3に示すように低温酸化触媒の経時劣化が著しく、長期安定性を欠く問題点がある。   Moreover, although the prior art 2 pays attention to the catalytic reaction of the said Formula (1) progressing more effectively at low temperature, it is necessary to add an oxidation catalyst layer newly to the existing exhaust gas treatment apparatus. is there. For this reason, since a space for installing the oxidation catalyst layer is required, it is not only disadvantageous in terms of cost to cope with the existing exhaust gas treatment apparatus, but when a new oxidation catalyst layer is installed, it becomes an exhaust gas flow. Ventilation resistance in the road will be greatly increased, and it will be necessary to install an induction fan in the exhaust gas flow path. Further, when a large amount of SOx is present in the exhaust gas, as shown in FIG. 3, there is a problem that the low-temperature oxidation catalyst is remarkably deteriorated with time and lacks long-term stability.

さらに、従来技術3は、ろ布に金属水銀吸着剤を保持する方法であるが、金属水銀を吸着処理する場合に吸着剤の吸着能力は使用時間と共に減少して吸着量が飽和するため、短時間で吸着剤の交換が必要となり、経済的でないばかりか、金属水銀化合物を多量に吸着したろ布の廃棄処理費用が莫大となる。   Furthermore, the prior art 3 is a method of holding a metal mercury adsorbent on a filter cloth, but when adsorbing metal mercury, the adsorption capacity of the adsorbent decreases with use time and the adsorption amount is saturated. The time required to replace the adsorbent, which is not economical, and the disposal cost of the filter cloth that adsorbs a large amount of the metal mercury compound becomes enormous.

本発明の課題は、上記従来技術の課題を克服し、長時間安定した信頼性の高い排ガス中の微量有害物質の除去装置及びその運転方法を提供することである。   An object of the present invention is to overcome the above-described problems of the prior art and to provide a device for removing a trace amount of harmful substances in exhaust gas that is stable for a long time and has high reliability, and a method for operating the apparatus.

請求項1記載の発明は、石油又は石炭を燃焼させる燃焼設備から排出する排ガス流路に上流側から順に、燃焼設備の燃焼用空気を排ガスと熱交換させる空気予熱器(6)、金属水銀の酸化触媒を担持したろ布を備えたバグフィルタを有する除塵装置(7)を配置した排ガス中微量有害物質の除去装置である。   The invention according to claim 1 is an air preheater (6) for exchanging heat of combustion air of a combustion facility with exhaust gas in order from an upstream side to an exhaust gas flow path for discharging from a combustion facility for burning oil or coal. It is an apparatus for removing trace harmful substances in exhaust gas in which a dust removing device (7) having a bag filter provided with a filter cloth carrying an oxidation catalyst is arranged.

石油または石炭を燃料とするボイラなどの燃焼設備(4)から排出される排ガス中に含まれる金属水銀成分は、前記燃料が1500℃前後の高温で燃焼する過程で燃料中に存在する金属水銀化合物が分解して生じる金属水銀である。前記排ガス中の金属水銀は、燃料性状にも依るがほとんどが金属水銀の蒸気として存在する。ボイラなどの燃焼設備(4)から排出された金属水銀の蒸気は、排ガス流路内で排ガス浄化処理される間に排ガス温度が低下し、その温度低下の過程で前記(1)式に示すように排ガス中に共存する塩化水素(HCl)により酸化されて塩化水銀(HgCl2)に一部変化する。 The metallic mercury component contained in the exhaust gas discharged from the combustion facility (4) such as a boiler using petroleum or coal as the fuel is a metallic mercury compound present in the fuel in the process of burning the fuel at a high temperature around 1500 ° C. Is a metallic mercury produced by decomposition. Most of the metallic mercury in the exhaust gas exists as vapor of metallic mercury, although it depends on the fuel properties. The vapor of metallic mercury discharged from the combustion equipment (4) such as a boiler is reduced in exhaust gas temperature during exhaust gas purification treatment in the exhaust gas flow path, and as shown in the above formula (1) in the course of the temperature decrease. It is oxidized by hydrogen chloride (HCl) coexisting in the exhaust gas and partially converted to mercury chloride (HgCl 2 ).

この反応は熱力学的平衡により温度が低いほど前記反応式(1)の右方向に進行し易く、60〜400℃雰囲気内での金属水銀の蒸気の滞留時間が大きく影響する。また、この反応は300〜400℃の温度条件で使用される排ガス処理装置の一構成機器である脱硝装置(5)の脱硝触媒により促進され、特に排ガス中のHCl濃度が高い場合に促進されることが分かっている。そのため、脱硝触媒で酸化されてHgCl2等に変換された金属水銀化合物は、その特性から排ガス流路において脱硝装置(5)の下流側に配置される排ガス処理装置の一構成機器である除塵装置(7)内でダスト表面に吸着し、かつ脱硫装置(8a,8b)で石灰スラリなどの吸収剤に吸収され易くなる。
したがって、脱硝装置(5)内の脱硝触媒により金属水銀を酸化し、脱硝装置(5)の下流側の機器で得られた酸化された金属水銀化合物を除去する排ガス処理システムは、排ガス中の金属水銀化合物を除去する有効な手段である。
This reaction is more likely to proceed to the right in the reaction formula (1) as the temperature is lower due to thermodynamic equilibrium, and the residence time of the vapor of metallic mercury in the atmosphere of 60 to 400 ° C. is greatly affected. In addition, this reaction is promoted by the denitration catalyst of the denitration device (5), which is a component device of the exhaust gas treatment device used under a temperature condition of 300 to 400 ° C., and particularly when the HCl concentration in the exhaust gas is high. I know that. Therefore, the metal mercury compound that has been oxidized by the denitration catalyst and converted to HgCl 2 or the like is a dust removal device that is a component device of the exhaust gas treatment device disposed on the downstream side of the denitration device (5) in the exhaust gas flow channel due to its characteristics. In (7), it adsorbs to the dust surface and is easily absorbed by an absorbent such as lime slurry by the desulfurization apparatus (8a, 8b).
Therefore, the exhaust gas treatment system that oxidizes metallic mercury by the denitration catalyst in the denitration device (5) and removes the oxidized metal mercury compound obtained by the equipment downstream of the denitration device (5) is the metal in the exhaust gas. It is an effective means for removing mercury compounds.

しかし、既設設備に脱硝触媒を用いる脱硝装置(5)が無くても触媒を担持したバグフィルタのみを燃焼設備の排ガス流路に設置することも有効な手段に成り得る。   However, even if there is no denitration device (5) using a denitration catalyst in the existing equipment, it can be an effective means to install only the bag filter carrying the catalyst in the exhaust gas passage of the combustion equipment.

請求項1記載の発明では、バグフィルタ自体に金属水銀の酸化機能が付与されており、当該バグフィルタ上で金属水銀が酸化されて塩化水銀等に変換された化合物がダスト粒子に吸着されやすく、かつ、ろ布には不織布を使用しているため、ガス流れが通常の固体酸化触媒ほど単純(層流)ではなく、乱れているため低濃度のHCl及び金属水銀でも、HCl及び金属水銀の接触効率が高いので、高効率な金属水銀の酸化反応が期待できる。   In the invention of claim 1, the bag filter itself is provided with an oxidation function of metallic mercury, and the compound in which metallic mercury is oxidized and converted into mercury chloride or the like on the bag filter is easily adsorbed by dust particles, In addition, since the filter cloth uses non-woven fabric, the gas flow is not as simple (laminar) as a normal solid oxidation catalyst, and because it is turbulent, contact with HCl and metal mercury even at low concentrations of HCl and metal mercury Since the efficiency is high, a highly efficient oxidation reaction of metallic mercury can be expected.

このように、請求項1記載の発明において、金属水銀の酸化触媒を担持したバグフィルタを有する除塵装置(7)は、空気予熱器(6)で熱交換されて比較的低温化した排ガスを接触効率よく低濃度の金属水銀を酸化するのに適した構造となっている。   Thus, in the invention according to claim 1, the dust removing device (7) having the bag filter carrying the oxidation catalyst of metallic mercury contacts the exhaust gas which has been subjected to heat exchange by the air preheater (6) and has a relatively low temperature. The structure is suitable for efficiently oxidizing low-concentration metallic mercury.

請求項1記載の発明の酸化触媒を担持したバグフィルタを備えた除塵装置(7)であれば、上流側に脱硝装置(5)が設置されていて、該脱硝装置(5)の経年劣化等により著しくNH3のリーク量が増加した場合でも、バグフィルタのろ布の表面に形成されたダストのケーキ層が低温で析出する酸性硫安等の細孔閉塞物質の析出を促進し、ろ布に含まれる金属水銀の酸化触媒の劣化を抑制することから長時間安定的な運用が可能となる(バグフィルタのろ布の表面に形成されるダストのケーキ層で酸性硫安が析出し、酸化触媒が付いているろ布に硫安が到達しないので、ろ布の細孔は硫安で閉塞されない)。 In the dust removing device (7) provided with the bag filter carrying the oxidation catalyst according to the first aspect of the invention, the denitration device (5) is installed on the upstream side, and the aging deterioration of the denitration device (5), etc. Even if the amount of NH 3 leakage increases significantly, the dust cake layer formed on the filter cloth surface of the bag filter accelerates the precipitation of pore clogging substances such as acidic ammonium sulfate that precipitates at low temperatures, Stable operation for a long time is possible by suppressing deterioration of the oxidation catalyst of the metal mercury contained (acid ammonium sulfate is deposited in the cake layer of dust formed on the filter cloth surface of the bag filter, and the oxidation catalyst Since ammonium sulfate does not reach the attached filter cloth, the pores of the filter cloth are not blocked by ammonium sulfate).

なお、従来技術3ではろ布に吸着された金属水銀は金属のままの状態であり、ろ布の使用時間が増加するとろ布の吸着能が減少してしまうが、請求項1記載の本発明ではバグフィルタに担持された酸化触媒で金属水銀は塩化水銀などに変換され、該塩化水銀などは容易にろ布から離脱するので、ろ布が閉塞されることはない。   In the prior art 3, the metal mercury adsorbed on the filter cloth remains in a metal state, and the filter cloth adsorbing capacity decreases as the use time of the filter cloth increases. Then, the mercury metal is converted into mercury chloride or the like by the oxidation catalyst supported on the bag filter, and the mercury chloride is easily detached from the filter cloth, so that the filter cloth is not blocked.

こうして請求項1記載の発明によれば、石油又は石炭焚きの燃焼設備(4)から排出する排ガス中に含まれる微量有害物質を長時間安定して酸化分解して効率よく除去処理することができる。   Thus, according to the first aspect of the present invention, a trace amount of harmful substances contained in the exhaust gas discharged from the oil or coal-fired combustion facility (4) can be stably oxidatively decomposed for a long time and efficiently removed. .

請求項2記載の発明は、前記空気予熱器(6)の前流側の排ガス流路に排ガス中の窒素酸化物を除去し、金属水銀を酸化する機能を有する脱硝触媒層を備えた脱硝装置(5)を配置し、前記除塵装置(7)の後流側の排ガス流路に吸収剤スラリ(石灰石スラリなどの吸収液を使用する)を噴霧して排ガス中の硫黄酸化物を除去する湿式脱硫装置(8a)を配置した請求項1記載の排ガス中微量有害物質の除去装置である。   According to a second aspect of the present invention, there is provided a denitration apparatus comprising a denitration catalyst layer having a function of removing nitrogen oxides in the exhaust gas and oxidizing metal mercury in the exhaust gas flow path on the upstream side of the air preheater (6). (5) is disposed, and the exhaust gas flow path on the downstream side of the dust removing device (7) is sprayed with an absorbent slurry (using an absorbing liquid such as limestone slurry) to remove sulfur oxides in the exhaust gas. The apparatus for removing trace amounts of harmful substances in exhaust gas according to claim 1, wherein a desulfurization apparatus (8a) is arranged.

請求項3記載の発明は、前記空気予熱器(6)の前流側の排ガス流路に排ガス中の窒素酸化物を除去し、金属水銀を酸化する機能を有する脱硝触媒層を備えた脱硝装置(5)を配置し、前記空気予熱器(6)と除塵装置(7)の間の排ガス流路に吸収剤スラリ(消石灰や水酸化マグネシウムなどを使用する)を排ガス流路内に噴霧して排ガス中の硫黄酸化物を除去する半乾式脱硫装置(8b)を配置した請求項1記載の排ガス中微量有害物質の除去装置である。
なお、上記請求項3記載の微量有害物質の除去装置では半乾式脱硫装置(8b)の下流側にさらに湿式脱流装置(8a)を設置しても良い。
According to a third aspect of the present invention, there is provided a denitration apparatus comprising a denitration catalyst layer having a function of removing nitrogen oxides in the exhaust gas and oxidizing metallic mercury in the exhaust gas flow path on the upstream side of the air preheater (6). (5) is disposed, and an absorbent slurry (using slaked lime, magnesium hydroxide, or the like) is sprayed into the exhaust gas passage between the air preheater (6) and the dust removing device (7). The apparatus for removing trace amounts of harmful substances in exhaust gas according to claim 1, wherein a semi-dry desulfurization apparatus (8b) for removing sulfur oxides in the exhaust gas is disposed.
In addition, in the trace amount harmful substance removal apparatus according to the third aspect, a wet desulfurization apparatus (8a) may be further installed downstream of the semi-dry desulfurization apparatus (8b).

ところで、米国などでは現在大きく2種類の石炭が使用されている。それは、EB炭(Eastern Bituminous)とPRB(Powder Rover Basin)炭である。特にPRB炭は埋蔵量も多く、安価であることから今後とも使用量が多くなると見込まれる。前記両方の石炭には以下の特徴がある。   By the way, in the United States and the like, two types of coal are currently used. They are EB charcoal (Eastern Bituminous) and PRB (Powder Rover Basin) charcoal. In particular, PRB charcoal has a large reserve and is cheap, so it is expected that the amount used will continue to increase. Both coals have the following characteristics.

EB炭には高濃度の硫黄と塩素が含まれるので、該石炭の燃焼排ガス中にもSOxとHClが高濃度で含まれるという特徴がある。また、PRB炭には極めて低い濃度の塩素が含まれるが、灰分濃度が高いので、ボイラ壁への付着が生じ易い特徴がある。   Since EB coal contains high concentrations of sulfur and chlorine, SOx and HCl are also contained at high concentrations in the combustion exhaust gas of the coal. Moreover, although PRB charcoal contains a very low concentration of chlorine, since it has a high ash concentration, there is a feature that it tends to adhere to the boiler wall.

したがって、前記両方の石炭の燃焼により生じる排ガス処理技術も一般的に以下のような手順で行われる。
EB炭;排ガス→脱硝→熱交換→除塵→湿式脱硫(高効率脱硫)→煙突 (a)
PRB炭;排ガス→脱硝→熱交換→半乾式脱硫(簡易脱硫)→除塵→煙突 (b)
なお、前記(b)のプロセスでは除塵工程の下流側に湿式脱硫工程をさらに組み込む場合がある。また前記(a)のプロセスが本発明の請求項2記載の発明に対応し、前記(b)のプロセスが本発明の請求項3記載の発明に対応する。
Therefore, the exhaust gas treatment technology generated by the combustion of both the coals is generally performed in the following procedure.
EB charcoal: exhaust gas → denitration → heat exchange → dust removal → wet desulfurization (high efficiency desulfurization) → chimney (a)
PRB charcoal: exhaust gas → denitration → heat exchange → semi-dry desulfurization (simple desulfurization) → dust removal → chimney (b)
In the process (b), a wet desulfurization process may be further incorporated on the downstream side of the dust removal process. The process (a) corresponds to the invention described in claim 2 of the present invention, and the process (b) corresponds to the invention described in claim 3 of the present invention.

前記ボイラ排ガス中の金属水銀の除去に関しては、前記(a)のプロセスでは排ガス中に高濃度のHClが存在するため、脱硝工程の脱硝触媒中に含まれる酸化触媒で比較的容易に塩化水銀として回収できるが、前記(b)のプロセスでは排ガス中のHCl濃度が低いので脱硝工程の酸化触媒による酸化反応が生じ難くなる。特に前記(b)のプロセスでは、いかに効果的に金属水銀を除去するかが一番の技術的な関心事である。   Regarding the removal of mercury metal in the boiler exhaust gas, in the process (a), high concentration of HCl is present in the exhaust gas. Therefore, the oxidation catalyst contained in the denitration catalyst in the denitration process can be converted to mercury chloride relatively easily. Although it can be recovered, in the process (b), since the HCl concentration in the exhaust gas is low, the oxidation reaction by the oxidation catalyst in the denitration process is difficult to occur. In particular, in the process (b), how to effectively remove metallic mercury is the primary technical concern.

本発明の請求項2と請求項3記載の発明では、以下のようにして排ガス中の金属水銀を除去する。
金属水銀は、その酸化により塩化水銀に変換されて、塩化水素をダスト粒子に吸着させることで除去されるが、請求項2に対応する前記(a)のプロセスでは、前述のように排ガス中のHCl濃度が比較的高く、温度条件も合致するので脱硝装置(5)内で前記(1)の右方向への反応が促進され、金属水銀の酸化生成物が前記(b)のプロセスに比較して多く得られる。そして、未反応の金属水銀は金属水銀の酸化触媒を担持したバグフィルタで酸化され、一部はバグフィルタで吸着除去され、さらにバグフィルタから排ガス流路の後流側に流れる金属水銀の酸化生成物は湿式脱硫装置(8a)内で吸収液に吸収させる方法で除去される。
In the second and third aspects of the present invention, metallic mercury in the exhaust gas is removed as follows.
Metallic mercury is converted to mercury chloride by its oxidation and removed by adsorbing hydrogen chloride to dust particles. In the process (a) corresponding to claim 2, as described above, Since the HCl concentration is relatively high and the temperature conditions are met, the reaction in the right direction of (1) is promoted in the denitration device (5), and the oxidation product of metallic mercury is compared with the process of (b). Many can be obtained. Unreacted metallic mercury is oxidized by a bag filter carrying a metallic mercury oxidation catalyst, and part of it is adsorbed and removed by the bag filter. Further, oxidation of metallic mercury flowing from the bag filter to the downstream side of the exhaust gas flow path is generated. A thing is removed by the method of making an absorption liquid absorb in a wet desulfurization apparatus (8a).

すなわち、前記(a)のプロセスでは、湿式脱硫装置(8a)を通る前の排ガスを脱硝装置(5)と除塵装置(7)で処理ができるので、排ガス中の高濃度HClを有効に利用して塩化水銀に酸化でき、湿式脱硫装置(8a)でHClが消費されない。   That is, in the process (a), since the exhaust gas before passing through the wet desulfurization device (8a) can be treated by the denitration device (5) and the dust removal device (7), the high concentration HCl in the exhaust gas is effectively used. Thus, it can be oxidized to mercury chloride and HCl is not consumed in the wet desulfurization apparatus (8a).

また請求項3に対応する前記(b)のプロセスでは、排ガス中のHCl濃度が比較的低いので、(a)のプロセスほど金属水銀の酸化は脱硝装置(5)内で起こらないが、比較的低温領域にある除塵装置(7)のバグフィルタ上で酸化触媒により金属水銀が酸化されて塩化水銀などとなった水銀成分が除塵装置(7)から回収除去できる。
前記プロセス(b)では、脱硝装置(5)の下流側の排ガス流路に配置される空気予熱器(6)により排ガスが降温され、脱硝装置(5)での反応温度より低温域にあるバクフィルタに担持された酸化触媒により、前記反応式(1)の反応が右方向に進行し易いので、金属水銀の酸化反応を行うことができ、低濃度のHClでも効果的に金属水銀が酸化されやすい。
Further, in the process (b) corresponding to claim 3, since the HCl concentration in the exhaust gas is relatively low, oxidation of metallic mercury does not occur in the denitration apparatus (5) as in the process (a). Mercury components, such as mercury chloride, which are oxidized from the metal mercury by the oxidation catalyst on the bag filter of the dust removal device (7) in the low temperature region, can be recovered and removed from the dust removal device (7).
In the process (b), the temperature of the exhaust gas is lowered by the air preheater (6) disposed in the exhaust gas flow path on the downstream side of the denitration device (5), and the vacuum is lower than the reaction temperature in the denitration device (5). Since the reaction of the reaction formula (1) easily proceeds in the right direction by the oxidation catalyst supported on the filter, the metal mercury oxidation reaction can be performed, and the metal mercury is effectively oxidized even with a low concentration of HCl. Cheap.

すなわち、前記プロセス(b)では排ガス中のHCl濃度が比較的低くても、除塵装置(7)のバグフィルタ上では酸化触媒により金属水銀が塩素以外に酸素により酸化(Hg+1/2O2=HgO)され、脱硝装置(5)の脱硝触媒層では十分な塩化水銀(HgCl2)まで変化しなくとも低温域で酸化触媒を担持したバグフィルタで効率よく塩化水銀にまで変換できる(HgO+2HCl=HgCl2+H2O)。 That is, in the process (b), even if the HCl concentration in the exhaust gas is relatively low, metal mercury is oxidized by oxygen in addition to chlorine by the oxidation catalyst on the bag filter of the dust removal device (7) (Hg + 1 / 2O 2 = HgO). Even if the denitration catalyst layer of the denitration device (5) does not change to a sufficient mercury chloride (HgCl 2 ), it can be efficiently converted to mercury chloride by a bag filter carrying an oxidation catalyst in a low temperature range (HgO + 2HCl = HgCl 2 + H). 2 O).

前記(a)、(b)のプロセス共に回収された塩化水銀などの金属水銀の酸化生成物を水層に移動させて浄化処理する。   The oxidation product of metallic mercury such as mercury chloride recovered in the processes (a) and (b) is transferred to the water layer for purification.

なお、前記(b)のプロセスは半乾式脱硫のステップでスラリ状の吸収剤は排ガス中に噴霧され、ドライアップされて除塵装置(7)で回収されるが、当該吸収剤はダストと一緒に除去する必要があるので、「半乾式脱硫→除塵」という順序は変更できない。前記(b)のプロセスでは、半乾式脱硫のステップでも、比較的上流側の脱硝装置(5)内で金属水銀が酸化されて塩化水銀などとなった水銀成分の一定量は除去可能であるが、その除去は十分ではない。その上、半乾式脱硫のステップである程度の排ガス中のHCl(金属水銀の酸化触媒により酸化を促進する作用がある)も除去されてしまう。そこで、平衡的に好ましい低温領域に設置した除塵ステップに設置されるバグフィルタに酸化触媒を担持させて、金属水銀の酸化とろ布捕集ダストへの塩化水銀の吸着を同時に行う。さらにろ布は不織布を使用しているのでガス流れが通常の固体酸化触媒ほど単純な層流ではなく、ろ布内を排ガスが通過する時に、ガス流れは乱れているため、排ガス中の低濃度のHClと金属水銀の接触効率が高くなり、高効率な金属水銀の酸化反応が生じる。   The process (b) is a semi-dry desulfurization step in which the slurry absorbent is sprayed into the exhaust gas, dried up and recovered by the dust removing device (7). Since it needs to be removed, the order of “semi-dry desulfurization → dust removal” cannot be changed. In the process (b), even in the semi-dry desulfurization step, it is possible to remove a certain amount of the mercury component that has been oxidized into mercury chloride by oxidation of metallic mercury in the denitration device (5) on the relatively upstream side. The removal is not enough. In addition, a certain amount of HCl in the exhaust gas (which has an effect of promoting oxidation by a metal mercury oxidation catalyst) is also removed in the semi-dry desulfurization step. Therefore, an oxidation catalyst is supported on a bag filter installed in a dust removal step installed in a balanced and preferable low temperature region, and oxidation of metallic mercury and adsorption of mercury chloride to filter cloth collecting dust are performed simultaneously. Furthermore, since the filter cloth uses a non-woven fabric, the gas flow is not as simple as that of a normal solid oxidation catalyst, and the exhaust gas passes through the filter cloth. The efficiency of contact between HCl and metal mercury increases, and a highly efficient metal mercury oxidation reaction occurs.

図2(a)のバグフィルタの側面図とその表面の拡大図である図2(b)に示す通り、排ガス中の金属水銀はバグフィルタ1のろ布表面の突出部1aに担持された酸化触媒で酸化されて塩化水銀に変換され、得られた粒子状の塩化水銀などの金属水銀化合物2はろ布の比較的内部にまで吸着されたダストとともに捕集され、その後、ろ布から払い落されるまでの間にダストに吸着するのに十分な時間(滞留時間)が確保されていることが酸化生成物である金属水銀化合物2の除去のために極めて効果的であることが本発明で明らかとなった。   As shown in FIG. 2B, which is a side view of the bag filter of FIG. 2A and an enlarged view of the surface thereof, the metal mercury in the exhaust gas is oxidized by the protrusion 1 a on the filter cloth surface of the bag filter 1. The metal mercury compound 2 such as particulate mercury chloride, which is oxidized by the catalyst and converted to mercury chloride, is collected together with the dust adsorbed relatively inside the filter cloth, and then removed from the filter cloth. It is clear in the present invention that a sufficient time (residence time) for adsorbing to the dust is extremely effective for removing the metal mercury compound 2 as an oxidation product. It became.

そのため、半乾式の脱硫装置(8b)を当該バグフィルタの上流に配備する必要がある前記(b)のプロセスの場合であっても、バグフィルタに担持された酸化触媒により塩化水銀の効果的な除去が可能となる。   Therefore, even in the case of the process (b) in which it is necessary to install a semi-dry type desulfurization apparatus (8b) upstream of the bag filter, the effective use of mercury chloride by the oxidation catalyst supported on the bag filter. Removal is possible.

このように、本発明では前記(a)のプロセスでも前記(b)のプロセスでも、効果的に金属水銀を酸化させて、得られる塩化水銀を高い除去率で回収することができる。   As described above, in the present invention, both the process (a) and the process (b) can effectively oxidize metallic mercury and recover the resulting mercury chloride with a high removal rate.

従来は金属水銀を塩化水銀などに酸化した後に、ダスト中の水銀酸化物を脱硫装置で回収、除去する必要があったので、金属水銀の酸化の後工程に脱硫ステップを設ける必要があったが、本発明では、たとえ半乾式の脱硫装置(8b)(金属水銀の酸化物である塩化水銀の回収率が湿式脱硫装置(8a)に比べてかなり低い)を用いる必要がある石炭を燃料とする排ガス処理装置であっても、半乾式の脱硫装置(8b)の下流側の排ガス流路に金属水銀の酸化触媒を担持したバグフィルタを配置することで金属水銀成分を高い除去率で排ガスから除くことができる。   Conventionally, it was necessary to collect and remove mercury oxide in dust with a desulfurizer after oxidizing metal mercury to mercury chloride, etc., so it was necessary to provide a desulfurization step after the oxidation of metal mercury. In the present invention, coal is required to use a semi-dry type desulfurization apparatus (8b) (recovery rate of mercury chloride, which is an oxide of metal mercury, is considerably lower than that of the wet desulfurization apparatus (8a)). Even if it is an exhaust gas treatment device, a metal mercury component is removed from the exhaust gas with a high removal rate by arranging a bag filter carrying a metal mercury oxidation catalyst in the exhaust gas flow path downstream of the semi-dry desulfurization device (8b). be able to.

このように、請求項2記載の発明(前記(a)のプロセスからなる発明)では、上流側の脱硝装置(5)とバグフィルタで生成した金属水銀の酸化物は、一部はバグフィルタで吸着除去され、さらに湿式脱硫装置(8a)内で吸収液に高い効率で吸収除去される。   Thus, in the invention according to claim 2 (invention comprising the process of (a)), the metal mercury oxide generated by the upstream denitration device (5) and the bag filter is partially a bag filter. It is adsorbed and removed, and further absorbed and removed by the absorbent in the wet desulfurization apparatus (8a) with high efficiency.

また、請求項3記載の発明(前記(b)のプロセスからなる発明)では、上流側の脱硝装置(5)で金属水銀が主に酸素により酸化された塩化水銀などの酸化生成物の一定量は半乾式脱硫装置(8b)で除去され、さらに低温領域に設置した酸化触媒を含むバグフィルタで金属水銀の酸化とろ布捕集ダストへの酸化生成物の吸着を同時に行うので、高い効率で金属水銀を除去できる。   In the invention according to claim 3 (invention comprising the process of (b) above), a certain amount of oxidation products such as mercury chloride in which metallic mercury is oxidized mainly by oxygen in the upstream denitration device (5). Is removed by the semi-dry desulfurization unit (8b), and the metal filter oxidizes the metal mercury and adsorbs the oxidized product to the filter cloth dust by a bag filter containing an oxidation catalyst installed in a low temperature region. Mercury can be removed.

請求項4記載の発明は、前記脱硝触媒層の脱硝触媒は酸化チタン(TiO2)、酸化ケイ素(SiO2)、酸化アルミニウム(Al23)から選択される二種類以上の化合物を第一成分として、モリブデン(Mo)、バナジウム(V)及びタングステン(W)から選択される二種類以上の金属又はその酸化物を第二成分とする請求項1ないし3のいずれかに記載の排ガス中微量有害物質の除去装置である。 According to a fourth aspect of the present invention, the denitration catalyst of the denitration catalyst layer is composed of two or more compounds selected from titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), and aluminum oxide (Al 2 O 3 ). The trace amount in exhaust gas in any one of Claim 1 thru | or 3 which uses two or more types of metals selected from molybdenum (Mo), vanadium (V), and tungsten (W) as a component, or its oxide. It is a device for removing harmful substances.

請求項4記載の発明によれば、前記脱硝触媒層の脱硝触媒はTiO2、SiO2、Al23から選択される二種類以上の化合物を第一成分として、Mo、V及びWから選択される二種類以上の金属又はその酸化物を第二成分としているが、第一成分は触媒の担体としての機能があり、第二成分は脱硝反応及び金属水銀の酸化作用がある。しかしながら、第一成分と第二成分の前記作用は単一的なものではなく、第一成分と第二成分で前記両方の作用が複合化していると考えられる。 According to a fourth aspect of the present invention, the denitration catalyst of the denitration catalyst layer is selected from Mo, V, and W, with two or more compounds selected from TiO 2 , SiO 2 , and Al 2 O 3 as the first component. Two or more kinds of metals or oxides thereof are used as the second component. The first component has a function as a catalyst carrier, and the second component has a denitration reaction and an oxidation action of metallic mercury. However, the actions of the first component and the second component are not single, and it is considered that both actions are combined by the first component and the second component.

請求項4記載の発明によれば、排ガス中に含まれるHCl又は酸素などにより脱硝触媒でHgがHgCl2やHgO2等への変換が促進される。また、得られたHgCl2等は除塵装置でダスト表面に吸着され、かつ脱硫装置で石灰スラリなどの吸収剤に吸収され易くなる。 According to the fourth aspect of the invention, conversion of Hg into HgCl 2 , HgO 2, etc. is promoted by the denitration catalyst by HCl or oxygen contained in the exhaust gas. Further, the obtained HgCl 2 or the like is adsorbed on the dust surface by the dust removing device and is easily absorbed by the absorbent such as lime slurry by the desulfurizing device.

ところで、ボイラなどの燃焼設備(4)からの排ガス処理を行うために設置された金属水銀を酸化する機能を有する脱硝装置(5)の脱硝触媒層は、目標とする脱硝率を達成するために複数の脱硝触媒層に分割されてガス流れ方向に複数段設置されるのが一般的であり、要求される脱硝性能に相応する量のNH3が供給されて排ガスの脱硝が行われる。排ガス中に供給されたNH3は脱硝触媒表面上の活性点へ吸着し、排ガス中のNOxと反応して無害な窒素(N2)に分解される。このNH3が脱硝触媒活性点へ吸着することにより金属水銀(Hg)が脱硝触媒活性点へ吸着することを抑制するため、金属水銀の酸化反応速度は低下する。 By the way, the denitration catalyst layer of the denitration device (5) having a function of oxidizing metal mercury installed for treating exhaust gas from the combustion facility (4) such as a boiler is used to achieve the target denitration rate. In general, it is divided into a plurality of denitration catalyst layers and installed in a plurality of stages in the gas flow direction, and an amount of NH 3 corresponding to the required denitration performance is supplied to perform denitration of exhaust gas. NH 3 supplied into the exhaust gas is adsorbed to active sites on the surface of the denitration catalyst, reacts with NOx in the exhaust gas, and is decomposed into harmless nitrogen (N 2 ). Since the NH 3 is adsorbed on the denitration catalyst active site to suppress the adsorption of metal mercury (Hg) on the denitration catalyst active site, the oxidation reaction rate of metal mercury is reduced.

すなわち、脱硝装置(5)内にはガス流れ方向に複数段の脱硝触媒層が設けられるが、その中の、比較的上流側の脱硝触媒層では排ガス中に供給されたNH3が高濃度で存在するので、Hgの酸化反応には比較的有効ではなく、脱硝反応によってNH3が消費された、比較的下流側の脱硝触媒層に近い領域で、ようやくHgが効果的に酸化される。しかも、排ガス中のHCl濃度が低い場合には更にHgの酸化反応の反応速度は低下するので、脱硝触媒層内のNH3濃度が高い前記上流側の脱硝触媒層は殆どHgの酸化反応に寄与しないと考えた方が良い。 That is, in the denitration device (5), a plurality of stages of denitration catalyst layers are provided in the gas flow direction, and in the denitration catalyst layer on the relatively upstream side, NH 3 supplied in the exhaust gas has a high concentration. Since it exists, it is not comparatively effective for the oxidation reaction of Hg, and finally Hg is effectively oxidized in the region near the denitration catalyst layer on the downstream side where NH 3 is consumed by the denitration reaction. In addition, when the HCl concentration in the exhaust gas is low, the reaction rate of the Hg oxidation reaction further decreases, so the upstream denitration catalyst layer with a high NH 3 concentration in the denitration catalyst layer contributes almost to the Hg oxidation reaction. It is better to think not.

したがって、所期の脱硝性能を得るために必要とされる脱硝触媒量では十分なHgの酸化が望めない場合がしばしばある。更に、石油または石炭の燃焼排ガスには触媒毒としてアルカリ、アルカリ土類金属、ヒ素(As)化合物及びリン(P)化合物等が多量に存在するため、長期間使用すると脱硝触媒は劣化するが、この場合は触媒表面に吸着した前記被毒成分により、脱硝触媒のNH3吸着量が大幅に低減し、高濃度のNH3が前記より下流側の脱硝触媒層にも供給される結果、Hg酸化速度はさらに大幅に低下する。排ガス中のHCl濃度が希薄な場合には、Hg酸化速度の低下度は顕著になる。 Accordingly, there are often cases where sufficient Hg oxidation cannot be expected with the amount of denitration catalyst required to obtain the desired denitration performance. Furthermore, since the combustion exhaust gas of petroleum or coal contains a large amount of alkali, alkaline earth metal, arsenic (As) compound, phosphorus (P) compound, etc. as catalyst poisons, the denitration catalyst deteriorates when used for a long time. In this case, the poisoning component adsorbed on the catalyst surface significantly reduces the amount of NH 3 adsorbed on the denitration catalyst, and a high concentration of NH 3 is also supplied to the downstream denitration catalyst layer, resulting in Hg oxidation. The speed is further greatly reduced. When the HCl concentration in the exhaust gas is dilute, the degree of decrease in the Hg oxidation rate becomes significant.

他方、上記のように脱硝触媒を使用して低温でHClの存在下で金属水銀(Hg)を酸化してHgCl2を生成させるためには、酸化するHgの濃度が極めて低いので通常の固体脱硝触媒を使用する場合には低濃度のHClと低濃度の金属水銀の接触効率を高める工夫が必要である。更に排ガス中に存在する硫黄酸化物(SOx)と上流側の脱硝触媒からリークするNH3との反応で酸性硫安(NH4HSO4)を生成し、脱硝触媒の酸化能が著しく低下するため、こうした酸性硫安の析出を極力抑える工夫が必要である。 On the other hand, in order to oxidize metallic mercury (Hg) in the presence of HCl at a low temperature to produce HgCl 2 using a denitration catalyst as described above, the concentration of Hg to be oxidized is extremely low, so that ordinary solid denitration is performed. In the case of using a catalyst, it is necessary to devise a technique for increasing the contact efficiency between low concentration HCl and low concentration metal mercury. Furthermore, the reaction of sulfur oxide (SOx) present in the exhaust gas and NH 3 leaking from the upstream denitration catalyst produces acidic ammonium sulfate (NH 4 HSO 4 ), and the denitration catalyst's oxidizing ability is significantly reduced. It is necessary to devise a technique to suppress such precipitation of acidic ammonium sulfate as much as possible.

また、石油または石炭焚き燃焼設備の排ガスは比較的高濃度のダストを含むため、固体脱硝触媒層を除塵後の排ガス流路内に設置する場合でも、ある一定の間隔(触媒間開口;ピッチ)を保って複数段の脱硝触媒層を設置する必要があるが、この隣接する触媒層間のピッチを大きくすると、微量成分である金属水銀の触媒表面への拡散吸着の速度を低下させる要因になる。そのため、前記触媒層間のピッチをできるだけ小さくなるように設計した脱硝触媒層を設けることが望ましいが、この場合にはダストによる触媒層内のガス流路の閉塞や無視できない圧力損失の増大を招き、発電プラントの発電効率を損ねることになる。また、金属水銀の酸化反応に対して必要なHClの濃度が、使用する燃料の種類によっては低くなることもあり、この場合には、低濃度HClと低濃度金属水銀との接触効率を高くする必要がある。   In addition, since the exhaust gas from petroleum or coal-fired combustion facilities contains a relatively high concentration of dust, even when a solid denitration catalyst layer is installed in the exhaust gas flow path after dust removal, a certain interval (inter-catalyst opening; pitch) However, if the pitch between the adjacent catalyst layers is increased, the rate of diffusion and adsorption of metallic mercury, which is a trace component, on the catalyst surface may be reduced. Therefore, it is desirable to provide a denitration catalyst layer designed to make the pitch between the catalyst layers as small as possible, but in this case, the gas flow path in the catalyst layer is blocked by dust and an increase in pressure loss that cannot be ignored, The power generation efficiency of the power plant will be impaired. In addition, the concentration of HCl required for the oxidation reaction of metallic mercury may be low depending on the type of fuel used. In this case, the contact efficiency between low-concentration HCl and low-concentration metallic mercury is increased. There is a need.

本発明の上記請求項5記載の発明はかかる事情に鑑み発明されたものである。
請求項5記載の発明は、前記脱硝装置内にガス流れ方向に複数段配置される脱硝触媒層の中の、比較的下流側の脱硝触媒層の脱硝触媒の第二成分の濃度を、比較的上流側の脱硝触媒層の脱硝触媒の第二成分の濃度より段階的に少なくする請求項1ないし4のいずれかに記載の排ガス中微量有害物質の除去装置である。
The invention according to claim 5 of the present invention has been invented in view of such circumstances.
According to the fifth aspect of the present invention, the concentration of the second component of the denitration catalyst in the denitration catalyst layer on the relatively downstream side in the denitration catalyst layer arranged in a plurality of stages in the gas flow direction in the denitration device is relatively The apparatus for removing trace harmful substances in exhaust gas according to any one of claims 1 to 4, wherein the concentration of the second component of the denitration catalyst in the upstream denitration catalyst layer is reduced stepwise.

所期の脱硝性能を維持するために、排ガス脱硝装置では、通常図5に示すように脱硝触媒層3をガス流れ方向に複数段(図5の脱硝触媒層3a,3b,・・・)設置するが、請求項5記載の発明によれば、脱硝触媒の第二成分を、ガス流れ方向に複数段設けた脱硝触媒層のうちの、比較的上流段側の脱硝触媒層(例えば脱硝触媒層3a)に高濃度で分散担持することを特徴としている。この場合、前記第二成分が高濃度で担持された、比較的上流段側の脱硝触媒層で効率よく窒素酸化物が脱硝されることになり、その結果、排ガス中に供給されたNH3は当該比較的上流段の脱硝触媒層で、その殆どが消費される。これにより、比較的下流段側の脱硝触媒層(例えば脱硝触媒層3b)では効率よく排ガス中の金属水銀を酸化することができる。この場合、それぞれの触媒層での脱硝触媒の脱硝性能は脱硝触媒層3の全体で満足な脱硝率が得られるように計画される。   In order to maintain the desired denitration performance, the exhaust gas denitration apparatus normally has a plurality of stages of denitration catalyst layers 3 in the gas flow direction (denitration catalyst layers 3a, 3b,... In FIG. 5) as shown in FIG. However, according to the invention described in claim 5, the denitration catalyst layer (for example, the denitration catalyst layer on the relatively upstream side of the denitration catalyst layer provided in a plurality of stages in the gas flow direction). 3a) is characterized by being dispersed and supported at a high concentration. In this case, nitrogen oxide is efficiently denitrated in the relatively upstream denitration catalyst layer in which the second component is supported at a high concentration. As a result, NH3 supplied into the exhaust gas Most of the denitration catalyst layer in the upstream stage is consumed. As a result, the mercury metal in the exhaust gas can be efficiently oxidized in the denitration catalyst layer (for example, the denitration catalyst layer 3b) on the relatively downstream stage side. In this case, the denitration performance of the denitration catalyst in each catalyst layer is planned so that a satisfactory denitration rate can be obtained in the entire denitration catalyst layer 3.

また、石油または石炭の燃焼排ガスには排ガス中には多量の硫黄酸化物(SOx)が存在し、SO2の酸化を抑えることが必要になるが、前記した比較的より下流段側の脱硝触媒層は酸化活性のある第二成分の担持量が低くなっているので脱硝触媒全体としてのSO2酸化率を抑えることができる可能である。 In addition, petroleum or coal combustion exhaust gas contains a large amount of sulfur oxide (SOx) in the exhaust gas, and it is necessary to suppress the oxidation of SO 2. Since the amount of the second component having oxidation activity in the layer is low, it is possible to suppress the SO 2 oxidation rate of the entire denitration catalyst.

これは、SO2酸化が下記のような化学式(2)で表され、排ガス中のSO3濃度との平衡関係にあるため、前記脱硝触媒の第二成分が多い比較的上流段側の脱硝触媒層でSO2酸化反応が進行すると、比較的下流側の脱硝触媒層ではSO3濃度が高くなり、化学平衡からSO2の酸化反応が起こり難くなり、触媒全体のSO2酸化を抑制する方向に働く。 This is because the SO 2 oxidation is represented by the following chemical formula (2) and is in an equilibrium relationship with the SO 3 concentration in the exhaust gas. As the SO 2 oxidation reaction proceeds in the catalyst layer, the SO 3 concentration in the denitration catalyst layer on the relatively downstream side increases, and the oxidation reaction of SO 2 hardly occurs from the chemical equilibrium, so that the SO 2 oxidation of the entire catalyst is suppressed. work.

SO2 +1/2O2 → SO3 (2)
請求項5記載の発明によれば、ガス流れ方向に複数段設置される脱硝触媒層の中で、ガス流れ方向に複数段の脱硝触媒層のうちの、比較的上流段側の脱硝触媒層に比較的高濃度で分散担持された酸化活性のある第二成分がアンモニアの存在下で効率よく排ガスを脱硝し、比較的下流段側の脱硝触媒層中の比較的低濃度で分散担持された第二成分が、酸化反応を阻害するアンモニア濃度が前記上流段側より低い下流側の脱硝触媒層で効率良く排ガス中の金属水銀を酸化することができる。また前記した、比較的下流段側の脱硝触媒層は酸化活性のある第二成分の担持濃度が低くなっているので脱硝触媒全体としてのSO2酸化率は抑えることができ、排ガス中のSO3濃度を低く抑得ることが可能となる。
SO 2 + 1 / 2O 2 → SO 3 (2)
According to the fifth aspect of the present invention, among the denitration catalyst layers installed in a plurality of stages in the gas flow direction, the denitration catalyst layer on the relatively upstream stage side of the plurality of denitration catalyst layers in the gas flow direction. The second component having an oxidation activity dispersed and supported at a relatively high concentration efficiently denitrifies the exhaust gas in the presence of ammonia, and the second component dispersed and supported at a relatively low concentration in the denitration catalyst layer on the relatively downstream stage side. The two components can oxidize metallic mercury in the exhaust gas efficiently in the denitration catalyst layer on the downstream side where the ammonia concentration inhibiting the oxidation reaction is lower than that on the upstream side. Further, since the denitration catalyst layer on the relatively downstream stage side has a low supporting concentration of the second component having oxidation activity, the SO 2 oxidation rate as a whole of the denitration catalyst can be suppressed, and SO 3 in the exhaust gas can be suppressed. It is possible to reduce the concentration.

請求項6記載の発明は、除塵装置(7)のバグフィルタで金属水銀の酸化触媒はチタン(Ti)とモリブデン(Mo)とバナジウム(V)の金属又はその酸化物からなる請求項1ないし5のいずれかに記載の排ガス中微量有害物質の除去装置である。   According to a sixth aspect of the present invention, in the dust filter (7), the metal mercury oxidation catalyst comprises titanium (Ti), molybdenum (Mo), vanadium (V) metal or an oxide thereof. The apparatus for removing trace amounts of harmful substances in exhaust gas according to any one of the above.

前記脱硝装置(5)の脱硝触媒層が、通常設置される温度域(300〜400℃)に酸化触媒を含む脱硝触媒を配備して金属水銀を塩化水銀に変換しても、温度が高く、特に排ガス中のHCl濃度が低い場合には金属水銀を酸化させることは難しい。   Even if the denitration catalyst layer of the denitration device (5) is provided with a denitration catalyst containing an oxidation catalyst in a temperature range (300 to 400 ° C.) that is normally installed to convert metallic mercury into mercury chloride, the temperature is high. In particular, it is difficult to oxidize metallic mercury when the HCl concentration in the exhaust gas is low.

そこで、排ガス浄化装置の一構成機器である空気予熱器(6)で熱交換後の低温域の排ガス中に酸化触媒を担持したバグフィルタを併設することで排ガス温度を下げた状態で排ガス中の金属水銀を酸化させることができる。   Therefore, the air preheater (6), which is a component device of the exhaust gas purification device, is equipped with a bag filter carrying an oxidation catalyst in the exhaust gas in the low temperature range after the heat exchange so that the exhaust gas temperature is lowered in a state where the exhaust gas temperature is lowered. Metallic mercury can be oxidized.

請求項6記載の発明によれば、除塵装置(7)のバグフィルタで用いられる金属水銀の酸化触媒はTi、Mo及びVの金属又はその酸化物からなるが、これらに前記脱硝触媒成分とほぼ同一の金属又は金属酸化物を、そのまま金属水銀の酸化触媒として使用することもできる。   According to the sixth aspect of the present invention, the metal mercury oxidation catalyst used in the bag filter of the dust removing device (7) is composed of Ti, Mo and V metals or oxides thereof, and these are substantially the same as the denitration catalyst component. The same metal or metal oxide can also be used as it is as an oxidation catalyst for metal mercury.

請求項6記載の発明によれば、除塵装置(7)のバグフィルタ中の酸化触媒で排ガス中に残存する金属水銀が酸化され、得られた塩化水銀などの水銀酸化物をバグフィルタで捕集することができる。   According to the invention described in claim 6, metal mercury remaining in the exhaust gas is oxidized by the oxidation catalyst in the bag filter of the dust removing device (7), and the resulting mercury oxide such as mercury chloride is collected by the bag filter. can do.

請求項7記載の発明は、除塵装置(7)のバグフィルタで使用する金属水銀の酸化触媒のろ布へ担持する量は脱硝装置(5)で使用する脱硝触媒中の酸化触媒の量以上とし、その使用量は100〜500g/m2である請求項1ないし6のいずれかに記載の排ガス中微量有害物質の除去装置である。 According to the seventh aspect of the present invention, the amount of the metal mercury oxidation catalyst used in the bag filter of the dust removal device (7) supported on the filter cloth is greater than the amount of the oxidation catalyst in the denitration catalyst used in the denitration device (5). , the amount used is the removal device of the exhaust gas in trace toxic substances according to any one of claims 1 is 100 to 500 g / m 2 6 of.

請求項7記載の発明によれば、脱硝装置(5)の脱硝触媒層より下流側の排ガス流路に設置される除塵装置(7)のバグフィルタ中の酸化触媒の濃度を脱硝装置(5)の脱硝触媒層の同一成分である第二成分の濃度より高くできるのは、バグフィルタ中の酸化触媒温度域で生じるSO2のSO3への酸化反応が低温下では極めて起こりにくいことに起因している。 According to the seventh aspect of the present invention, the concentration of the oxidation catalyst in the bag filter of the dust removal device (7) installed in the exhaust gas flow path downstream of the denitration catalyst layer of the denitration device (5) is determined. The concentration of the second component, which is the same component of the NOx removal catalyst layer, can be made higher because the oxidation reaction of SO 2 to SO 3 occurring in the oxidation catalyst temperature region in the bag filter is extremely unlikely to occur at low temperatures. ing.

酸化触媒を担持したバグフィルタは、図2に示すような断面構造をしており、前記バグフィルタ1の繊維質と該繊維質に担持された触媒の隙間を排ガスがすり抜けることができる構造であり、この構造は物質移動が促進される構造となっている。前述したように排ガス中の金属水銀は極微量であり、特に排ガス中のHCl濃度が低い場合には、バグフィルタ中の酸化触媒上での金属水銀とHClの反応を効果的に行こなえるように両者の接触効率を高める必要があるが、上記したように不織布の繊維は、ガス流れを乱すことで物質移動速度を増大させるので、金属水銀とHClの接触効率を高めるのに適している。また、当該バグフィルタ1では圧力損失を抑えるために通常は1m/min以下のろ布通過速度となるように設計されており、バグフィルタ1内で金属水銀とHClとの十分な接触時間が得られる。   The bag filter carrying the oxidation catalyst has a cross-sectional structure as shown in FIG. 2, and the exhaust gas can pass through the gap between the fiber of the bag filter 1 and the catalyst carried on the fiber. This structure is a structure that facilitates mass transfer. As described above, the amount of metallic mercury in the exhaust gas is extremely small. Especially when the HCl concentration in the exhaust gas is low, the reaction between metallic mercury and HCl on the oxidation catalyst in the bag filter can be effectively performed. Although it is necessary to increase the contact efficiency between the two, as described above, the non-woven fabric fibers are suitable for increasing the contact efficiency between metallic mercury and HCl because the mass transfer rate is increased by disturbing the gas flow. In addition, the bag filter 1 is usually designed to have a filter cloth passing speed of 1 m / min or less in order to suppress pressure loss, and a sufficient contact time between metallic mercury and HCl is obtained in the bag filter 1. It is done.

前記酸化触媒機能を含むバグフィルタ1で使用されるろ布は、石油または石炭の燃焼排ガスに適用可能な素材であれば問題なく、その材質として、例えばポリイミド、ポリアミド、ポリフェニレンスルフィド、ポリテトラフルオロエチレンまたはガラス繊維を用いて良い。ろ布に担持・使用される酸化触媒の使用量は、当該ろ布の面積あたり100g/m2〜500g/m2、好ましくは200〜400g/m2が好適である。これは、図4に示すように酸化触媒の使用量が少なすぎると十分な触媒効果が得られず、また多すぎるとシステムの圧力損失の増大や排ガス処理後のろ布の再生時にダストを十分払い落とすことができないためである。 The filter cloth used in the bag filter 1 including the oxidation catalyst function may be any material as long as it is applicable to petroleum or coal combustion exhaust gas. Examples of the material include polyimide, polyamide, polyphenylene sulfide, and polytetrafluoroethylene. Alternatively, glass fiber may be used. The amount of the oxidizing catalyst supported-used filter cloth, the filtrate area per 100g / m 2 ~500g / m 2 of fabric, preferably suitably 200 to 400 g / m 2. As shown in FIG. 4, if the amount of the oxidation catalyst used is too small, a sufficient catalytic effect cannot be obtained. If it is too large, the pressure loss of the system is increased and dust is sufficiently generated when the filter cloth is regenerated after exhaust gas treatment. This is because the payment cannot be made.

請求項7記載の発明によれば、酸化触媒を担持したバグフィルタの酸化触媒の濃度を脱硝装置(5)の脱硝触媒層の酸化活性のある第二成分の濃度より高くすることで、脱硝触媒層では排ガス中のSO2のSO3への酸化を抑制できる。その一方で、バグフィルタ上では酸化触媒が脱硝装置(5)の脱硝触媒層に比較して低温域にあるため、SO2からSO3への酸化反応が起こり難いため、SO2がSO3へ酸化されるおそれがなく、十分な量の酸化触媒により微量に含まれる金属水銀でも酸化させることができる。 According to the seventh aspect of the present invention, the concentration of the oxidation catalyst of the bag filter carrying the oxidation catalyst is made higher than the concentration of the second component having oxidation activity in the denitration catalyst layer of the denitration device (5), thereby removing the denitration catalyst. In the layer, oxidation of SO 2 in the exhaust gas to SO 3 can be suppressed. On the other hand, on the bag filter, since the oxidation catalyst is in a lower temperature region than the denitration catalyst layer of the denitration device (5), the oxidation reaction from SO 2 to SO 3 hardly occurs, so SO 2 changes to SO 3 . There is no fear of being oxidized, and even a mercury metal contained in a trace amount can be oxidized by a sufficient amount of the oxidation catalyst.

また、除塵装置(7)のバグフィルタで使用する金属水銀の酸化触媒のろ布へ担持する量を100〜500g/m2とすることで、十分な触媒効果が得られ、またバグフィルタでの排ガス通過時の圧力損失が大きくならず、ダスト払い落とし効果を損なわないで金属水銀の酸化を行うことができる。 In addition, by setting the amount of metal mercury oxidation catalyst used in the bag filter of the dust removal device (7) to be supported on the filter cloth of 100 to 500 g / m 2 , a sufficient catalytic effect can be obtained. Pressure loss during exhaust gas passage does not increase, and metal mercury can be oxidized without impairing the dust removal effect.

請求項8記載の発明は、前記脱硝装置(5)の運転温度を250℃〜450℃とし、除塵装置の金属水銀の酸化触媒を含むバグフィルタの運転温度を120℃〜250℃とする請求項1ないし7のいずれかに記載の排ガス中の微量有害物質除去装置に関する運転方法である。   The invention described in claim 8 is characterized in that the operating temperature of the denitration device (5) is 250 ° C to 450 ° C, and the operating temperature of the bag filter including the metal mercury oxidation catalyst of the dust removing device is 120 ° C to 250 ° C. It is the operating method regarding the trace harmful substance removal apparatus in exhaust gas in any one of 1 thru | or 7.

請求項8記載の発明によれば、脱硝触媒の活性のある250℃〜450℃で脱硝反応を促進させ、酸化触媒の活性のある120℃〜250℃で金属水銀を酸化できる。   According to the eighth aspect of the invention, the denitration reaction is promoted at 250 ° C. to 450 ° C. where the denitration catalyst is active, and metallic mercury can be oxidized at 120 ° C. to 250 ° C. where the oxidation catalyst is active.

通常脱硝触媒が設置される温度域(300〜400℃)に酸化触媒を担持した脱硝触媒を配備して金属水銀を塩化水銀に変換しても、温度が高く、特に排ガス中のHCl濃度が低い場合には金属水銀を酸化させることは難しい。   Even if a denitration catalyst carrying an oxidation catalyst is installed in the temperature range (300-400 ° C) where a normal denitration catalyst is installed and metal mercury is converted to mercury chloride, the temperature is high, especially the HCl concentration in the exhaust gas is low. In some cases it is difficult to oxidize metallic mercury.

そこで、排ガス浄化装置の一構成機器である空気予熱器(6)で熱交換後の低温域の排ガス中に酸化触媒を担持したバグフィルタを併設することで排ガス温度を下げた状態で排ガス中の金属水銀を酸化させることができる。   Therefore, the air preheater (6), which is a component device of the exhaust gas purifying device, is equipped with a bag filter carrying an oxidation catalyst in the exhaust gas in the low temperature region after heat exchange so that the exhaust gas temperature is lowered in a state where the exhaust gas temperature is lowered. Metallic mercury can be oxidized.

このように請求項8記載の発明によれば、脱硝触媒の活性のある温度範囲と酸化触媒の活性のある温度でそれぞれ排ガス脱硝と金属水銀の酸化ができる。   Thus, according to the eighth aspect of the present invention, exhaust gas denitration and metal mercury oxidation can be performed in the temperature range where the denitration catalyst is active and the temperature where the oxidation catalyst is active.

なお、本発明で使用される脱硝触媒は板状のほかハニカム形状のものでも同一の効果が得られ、その形状を限定するものではない。    The same effect can be obtained even if the denitration catalyst used in the present invention has a plate shape or a honeycomb shape, and the shape is not limited.

以下に本発明の実施例を説明する。
本発明の以下の実施例では図1(a)と図1(b)に示すフローに従ってボイラ排ガス処理が行われる。
Examples of the present invention will be described below.
In the following embodiments of the present invention, boiler exhaust gas treatment is performed according to the flow shown in FIGS. 1 (a) and 1 (b).

図1(a)に示すフローでは石油又は石炭を燃焼させるボイラ4から排出する排ガス流路に上流側から順に排ガス中の窒素酸化物をアンモニアの存在下に除去し、また金属水銀を酸化する機能を有する脱硝触媒層を備えた脱硝装置5と燃焼設備の燃焼用空気を排ガスと熱交換させる空気予熱器6と金属水銀の酸化触媒を含むバグフィルタを有する除塵装置7及び排ガス中の硫黄酸化物を石灰石スラリなどの吸収剤で除去する脱硫装置8と浄化された排ガスを大気中に排出するための煙突9が配置されている。   In the flow shown in FIG. 1 (a), a function of removing nitrogen oxides in the exhaust gas in the presence of ammonia in order from the upstream side in the exhaust gas flow path discharged from the boiler 4 for burning oil or coal, and oxidizing metal mercury. Denitration device 5 having a denitration catalyst layer having air, air preheater 6 for exchanging the combustion air of the combustion facility with exhaust gas, dust removal device 7 having a bag filter containing an oxidation catalyst for metallic mercury, and sulfur oxides in the exhaust gas A desulfurization device 8 for removing the waste gas with an absorbent such as limestone slurry and a chimney 9 for discharging the purified exhaust gas into the atmosphere are arranged.

また、図1(b)に示すフローは上流側から順に排ガス中の窒素酸化物をアンモニアの存在下に除去し、また金属水銀を酸化する機能を有する脱硝触媒層を備えた脱硝装置5と燃焼設備の燃焼用空気を排ガスと熱交換させる空気予熱器6と石灰石などの吸収剤を排ガス中に直接噴霧して排ガス中のSOxを除去する半乾式脱硫装置8bと金属水銀の酸化触媒を含むバグフィルタを有する除塵装置7と浄化された排ガスを大気中に排出するための煙突9が配置されている。   Further, the flow shown in FIG. 1 (b) is a combustion with a denitration device 5 having a denitration catalyst layer having a function of removing nitrogen oxides in exhaust gas in the presence of ammonia and oxidizing metal mercury in order from the upstream side. A bug that includes an air preheater 6 for exchanging heat of combustion air for the equipment with exhaust gas, a semi-dry desulfurization device 8b for removing SOx in the exhaust gas by directly spraying an absorbent such as limestone into the exhaust gas, and a metal mercury oxidation catalyst A dust removing device 7 having a filter and a chimney 9 for discharging the purified exhaust gas into the atmosphere are arranged.

バグフィルタに担持する金属水銀の酸化触媒として酸化チタン酸粉末(TiO2含有量:90wt%以上、SO4含有量:3wt%以下)85kgに、モリブデン酸アンモニウム((NH46・Mo724・4H2O)を10.7kg、メタバナジン酸アンモニウム(NH4VO3)9.9kg及び蓚酸12.8kgを加え水分を調整して混練、造粒、乾燥、焼成を順次行い、得られた粉末を適度な粒子径に粉砕して触媒原料粉末を得た。これに水分を加えて触媒スラリを得た。この触媒スラリにテファイヤ製ろ布を浸漬、触媒成分を担持処理後、150℃で乾燥処理し、金属水銀酸化触媒を担持したバグフィルタを得た。バグフィルタの触媒担持量は350g/m2である。 85 kg of titanic acid powder (TiO 2 content: 90 wt% or more, SO 4 content: 3 wt% or less) as an oxidation catalyst for metallic mercury supported on the bag filter, ammonium molybdate ((NH 4 ) 6 · Mo 7 O 24 · 4H 2 O) and 10.7 kg, of ammonium metavanadate (NH 4 VO 3) 9.9kg and oxalic acid 12.8kg was added kneaded by adjusting the water content, granulation, drying, firing sequentially performed, resulting The powder was pulverized to an appropriate particle size to obtain catalyst raw material powder. Moisture was added to this to obtain a catalyst slurry. A filter cloth made of tephia was immersed in this catalyst slurry, and after supporting the catalyst component, it was dried at 150 ° C. to obtain a bag filter supporting a metal mercury oxidation catalyst. The catalyst loading of the bag filter is 350 g / m 2 .

また、脱硝触媒の第一成分として酸化チタン粉末(TiO2含有量:90wt%以上、SO4含有量:3wt%以下)70kg、アルミニウム化合物粉末(Al23) 及びシリカゾル(SiO2)70kgを用い、第二成分として三酸化モリブデン(MoO3)7kg、メタバナジン酸アンモニウム(NH4VO3)1.6kgを加え、アルミナ/シリケート繊維を添加後、水分を調整して混練し得られた触媒ペーストを金属エキスパンドメタルに塗布して所定の形状にプレス加工して板状の脱硝触媒を得た。この板状触媒を500℃で焼成処理した。 As the first component of the denitration catalyst, 70 kg of titanium oxide powder (TiO 2 content: 90 wt% or more, SO 4 content: 3 wt% or less), aluminum compound powder (Al 2 O 3 ) and 70 kg of silica sol (SiO 2 ) are used. The catalyst paste obtained by adding 7 kg of molybdenum trioxide (MoO 3 ) and 1.6 kg of ammonium metavanadate (NH 4 VO 3 ) as the second component, adding alumina / silicate fiber, adjusting the moisture and kneading. Was applied to a metal expanded metal and pressed into a predetermined shape to obtain a plate-shaped denitration catalyst. The plate catalyst was calcined at 500 ° C.

石炭焚きボイラ試験設備に対して、上記の脱硝触媒を含む触媒層を設置し、その下流側に排ガス減温用の空気予熱器と酸化触媒を担持したバグフィルタを順次設置した。更にその下流には湿式脱硫装置(石灰石−石膏法)を配置した。   A catalyst layer containing the above denitration catalyst was installed in the coal fired boiler test facility, and an air preheater for exhaust gas temperature reduction and a bag filter carrying an oxidation catalyst were sequentially installed downstream of the catalyst layer. Further downstream, a wet desulfurization apparatus (limestone-gypsum method) was arranged.

実施例1と同様に金属水銀酸化触媒を担持したバグフィルタを調製し、さらに脱硝触媒の第一成分として酸化チタン粉末(TiO2含有量:90wt%以上、SO4含有量:3wt%以下)70kg、アルミニウム化合物粉末(Al23)0.9gを用い、第二成分として三酸化モリブデン(MoO3)7kg、メタバナジン酸アンモニウム(NH4VO3)1.6kgを加え、アルミナ/シリケート繊維を添加後、水分を調整して混練し得られた触媒ペーストを金属エキスパンドメタルに塗布して所定の形状にプレス加工して板状の脱硝触媒を得た。この板状触媒を500℃で焼成処理した。 A bag filter carrying a metal mercury oxidation catalyst was prepared in the same manner as in Example 1, and titanium oxide powder (TiO 2 content: 90 wt% or more, SO 4 content: 3 wt% or less) as a first component of the denitration catalyst was 70 kg. , an aluminum compound powder (Al 2 O 3) 0.9g, molybdenum trioxide as the second component (MoO 3) 7 kg, ammonium metavanadate (NH 4 VO 3) 1.6kg were added, the addition of alumina / silicate fibers Thereafter, a catalyst paste obtained by adjusting and kneading moisture was applied to a metal expanded metal and pressed into a predetermined shape to obtain a plate-shaped denitration catalyst. The plate catalyst was calcined at 500 ° C.

石炭焚きボイラ試験設備に対して、上記の脱硝触媒を含む触媒層を設置し、その下流側に空気予熱器と酸化触媒を担持したバグフィルタを順次設置した。更にその下流側に湿式脱硫装置(石灰石−石膏法)を配置した。   A catalyst layer containing the above denitration catalyst was installed in the coal fired boiler test facility, and an air preheater and a bag filter carrying an oxidation catalyst were sequentially installed on the downstream side. Further, a wet desulfurization apparatus (limestone-gypsum method) was disposed on the downstream side.

実施例1と同様に金属水銀酸化触媒を担持したバグフィルタを調製し、さらに脱硝触媒の第一成分として酸化チタン粉末(TiO2含有量:90wt%以上、SO4含有量:3wt%以下)70kg、アルミニウム化合物粉末(Al23)0.9kgを用い、第二成分としてメタタングステン酸アンモニウム(NH46[H21240]20kg、メタバナジン酸アンモニウム(NH4VO3)1.6kgを加え、アルミナ/シリケート繊維を添加後、水分を調整して混練し得られた触媒ペーストを金属エキスパンドメタルに塗布して所定の形状にプレス加工して板状の脱硝触媒を得た。この板状触媒を500℃で焼成処理した。 A bag filter carrying a metal mercury oxidation catalyst was prepared in the same manner as in Example 1, and titanium oxide powder (TiO 2 content: 90 wt% or more, SO 4 content: 3 wt% or less) as a first component of the denitration catalyst was 70 kg. 0.9 kg of aluminum compound powder (Al 2 O 3 ), 20 kg of ammonium metatungstate (NH 4 ) 6 [H 2 W 12 O 40 ] as the second component, ammonium metavanadate (NH 4 VO 3 ) After adding 6 kg and adding alumina / silicate fiber, the catalyst paste obtained by adjusting and kneading the moisture was applied to a metal expanded metal and pressed into a predetermined shape to obtain a plate-like denitration catalyst. The plate catalyst was calcined at 500 ° C.

石炭焚きボイラ試験設備に対して、上記の脱硝触媒を含む触媒層を設置し、その下流側に空気予熱器と酸化触媒を担持したバグフィルタを順次設置した。更にその下流側には湿式脱硫装置(石灰石−石膏法)を配置した。   A catalyst layer containing the above denitration catalyst was installed in the coal fired boiler test facility, and an air preheater and a bag filter carrying an oxidation catalyst were sequentially installed on the downstream side. Further, a wet desulfurization apparatus (limestone-gypsum method) was disposed on the downstream side.

実施例1と同様に脱硝触媒及び酸化触媒を担持したバグフィルタを調製したが、酸化触媒を担持したバグフィルタの触媒担持量を76g/m2とした。試験設備の配置は実施例1と同一である。 A bag filter carrying a denitration catalyst and an oxidation catalyst was prepared in the same manner as in Example 1. The amount of the catalyst carried by the bag filter carrying the oxidation catalyst was 76 g / m 2 . The arrangement of the test equipment is the same as in Example 1.

脱硝触媒の第一成分として酸化チタン酸粉末(TiO2含有量:90wt%以上、SO4含有量:3wt%以下)70kgに第二成分として三酸化モリブデン(MoO3)を7kg、メタバナジン酸アンモニウム(NH4VO3)3.2kg及びアルミニウム化合物粉末(Al23)0.9kgを加え、アルミナ/シリケート繊維及びシリカゾル(SiO2)14kgを添加後、水分調整して混練し得られた触媒ヘペーストを金属エキスパンドメタルに塗布して所定の形状にプレス加工して板状の脱硝触媒を得た。この板状触媒を500℃で焼成処理した。 70 kg of titanic acid powder (TiO 2 content: 90 wt% or more, SO 4 content: 3 wt% or less) as the first component of the denitration catalyst, 7 kg of molybdenum trioxide (MoO 3 ) as the second component, ammonium metavanadate ( NH 4 VO 3 ) (3.2 kg) and aluminum compound powder (Al 2 O 3 ) (0.9 kg), alumina / silicate fiber and silica sol (SiO 2 ) (14 kg) were added, and the moisture was adjusted and kneaded into the catalyst paste. Was applied to a metal expanded metal and pressed into a predetermined shape to obtain a plate-shaped denitration catalyst. The plate catalyst was calcined at 500 ° C.

この触媒を、比較的下流段の脱硝触媒層に用い、実施例1で調整した脱硝触媒を、比較的上流段側の脱硝触媒層に設置して脱硝装置とし、実施例1に記載の試験装置に設置した。なお、この場合の担持したバグフィルタは実施例1と同等である。   This catalyst is used in a relatively downstream stage denitration catalyst layer, and the denitration catalyst prepared in Example 1 is installed in a relatively upstream stage denitration catalyst layer to form a denitration apparatus. Installed. The bag filter carried in this case is the same as that of the first embodiment.

実施例1で使用した脱硝触媒及び酸化触媒を担持したバグフィルタを用いて 同じ試験設備に対して同様に脱硝触媒、空気予熱器を順次設置して、さらにその下流部に半乾式脱硫装置を設置した後、当該触媒を担持したバグフィルタを設置した。   Using the bag filter carrying the denitration catalyst and oxidation catalyst used in Example 1, a denitration catalyst and an air preheater were installed in the same manner in the same test equipment, and a semi-dry desulfurization device was installed downstream of the same. After that, a bag filter carrying the catalyst was installed.

実施例1で用いた脱硝触媒層は設置せず、空気予熱器で減温したのち、酸化触媒を担持したバグフィルタを設置し、その下流部に湿式脱硫装置を設置した。   The denitration catalyst layer used in Example 1 was not installed, and after the temperature was reduced by an air preheater, a bag filter carrying an oxidation catalyst was installed, and a wet desulfurization apparatus was installed downstream thereof.

比較例1Comparative Example 1

酸化活性の高いバナジウム成分の含有量を減らした他は実施例1のバグフィルタに担持する酸化触媒と同じ酸化触媒を用いて、実施例1と同じ試験設備の配置で実験を行った。   An experiment was conducted with the same test equipment arrangement as in Example 1, using the same oxidation catalyst as that supported on the bag filter of Example 1 except that the content of the vanadium component having high oxidation activity was reduced.

すなわち、バグフィルタに担持する金属水銀の酸化触媒として酸化チタン酸粉末(TiO2含有量:90wt%以上、SO4含有量:3wt%以下)85kgに、モリブデン酸アンモニウム((NH46・Mo724・4H2O)を10.1kg、メタバナジン酸アンモニウム(NH4VO3)2.0kg及び蓚酸2.6kgを加え水分を調整して混練、造粒、乾燥、焼成を順次行い、得られた粉末を適度な粒子径に粉砕して触媒原料粉末を得た。これに水分を加えて触媒スラリを得た。この触媒スラリにテファイヤ製ろ布を浸漬、触媒成分を担持処理後、150℃で乾燥処理し、金属水銀の酸化触媒を担持したバグフィルタを得た。バグフィルタの触媒担持量は350g/m2である。 That is, as an oxidation catalyst for metallic mercury supported on the bag filter, 85 kg of titanic acid powder (TiO 2 content: 90 wt% or more, SO 4 content: 3 wt% or less) is added to ammonium molybdate ((NH 4 ) 6 .Mo 7 O 24 · 4H 2 O) 10.1 kg, ammonium metavanadate (NH 4 VO 3 ) 2.0 kg and oxalic acid 2.6 kg are added to adjust the moisture, kneading, granulating, drying and firing in order. The obtained powder was pulverized to an appropriate particle size to obtain catalyst raw material powder. Moisture was added to this to obtain a catalyst slurry. A filter fabric made of tefay was immersed in this catalyst slurry, and after supporting the catalyst component, it was dried at 150 ° C. to obtain a bag filter supporting a metal mercury oxidation catalyst. The catalyst loading of the bag filter is 350 g / m 2 .

比較例2Comparative Example 2

実施例1の脱硝触媒層を配置し、さらに酸化触媒機能を有しない通常のバグフィルタを設置して、その下流部に湿式脱硫装置を設置した。試験設備の配置は実施例1と同一である。   The denitration catalyst layer of Example 1 was disposed, a normal bag filter having no oxidation catalyst function was disposed, and a wet desulfurization apparatus was disposed downstream thereof. The arrangement of the test equipment is the same as in Example 1.

なお、ここで使用した通常の酸化触媒機能を有しないバグフィルタとは、ろ布の材質として、ガラス繊維を試用しており、通過流速は0.8〜1.3m/minの範囲でパルスジェット方式で逆洗が行われるタイプのものである。   In addition, the normal bag filter which does not have an oxidation catalyst function used here uses glass fiber as a filter cloth material, and the flow velocity of the pulse jet is in the range of 0.8 to 1.3 m / min. This type is backwashed by the method.

前記実施例1〜7及び比較例1、2の構成で表1に示す条件で全体の排ガス浄化システムを模した前記試験設備でのHg除去性能を比較した。得られた結果を表2にまとめた。表2から明らかなように本発明の触媒構成でシステムを構築した場合に、全体でのHg除去性能が優れていることが分かる。

Figure 2008030017
The Hg removal performance in the test facility simulating the whole exhaust gas purification system was compared under the conditions shown in Table 1 with the configurations of Examples 1 to 7 and Comparative Examples 1 and 2. The results obtained are summarized in Table 2. As can be seen from Table 2, when the system is constructed with the catalyst configuration of the present invention, the overall Hg removal performance is excellent.
Figure 2008030017

Figure 2008030017
Figure 2008030017

本発明は石油または石炭の燃焼排ガス中に含まれる微量有害物質として特に金属水銀化合物を除去する装置及びその運転方法としてボイラ排ガス処理などに利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for an apparatus for removing a metal mercury compound as a trace harmful substance contained in a combustion exhaust gas of petroleum or coal and a boiler exhaust gas treatment as an operation method thereof.

本発明の実施例の排ガス処理システムのフロー図を示す。The flowchart of the waste gas processing system of the Example of this invention is shown. 酸化触媒を担持したバグフィルタの要部構造図を示す。The principal part structure figure of the bag filter which carry | supported the oxidation catalyst is shown. 低温でのSOx共存下での脱硝触媒機能変化を示す。The denitration catalyst function change in the presence of SOx at low temperature is shown. 脱硝触媒担持量と触媒機能の相関を示す。The correlation between the denitration catalyst loading and the catalyst function is shown. 脱硝装置における触媒層の配置構造を示す。The arrangement structure of the catalyst layer in the denitration apparatus is shown.

符号の説明Explanation of symbols

1 バグフィルタ 2 粒子状塩化水銀
3 脱硝触媒層 4 ボイラ
5 脱硝装置 6 空気予熱器
7 触媒機能付きバグフィルタ
8 脱硫装置 9 煙突
DESCRIPTION OF SYMBOLS 1 Bag filter 2 Particulate mercury chloride 3 Denitration catalyst layer 4 Boiler 5 Denitration device 6 Air preheater 7 Bag filter with catalyst function 8 Desulfurization device 9 Chimney

Claims (8)

石油又は石炭を燃焼させる燃焼設備から排出する排ガス流路に上流側から順に、燃焼設備の燃焼用空気を排ガスと熱交換させる空気予熱器、金属水銀の酸化触媒を担持したろ布を備えたバグフィルタを有する除塵装置を配置したことを特徴とする排ガス中微量有害物質の除去装置。   Bugs equipped with an air preheater that exchanges heat from the combustion facility's combustion air with the exhaust gas in order from the upstream side, and a filter cloth carrying a metal mercury oxidation catalyst in the exhaust gas flow path that discharges from the combustion facility that burns oil or coal An apparatus for removing trace harmful substances in exhaust gas, wherein a dust removing apparatus having a filter is arranged. 前記空気予熱器の前流側の排ガス流路に排ガス中の窒素酸化物を除去し、金属水銀を酸化する機能を有する脱硝触媒層を備えた脱硝装置を配置し、前記除塵装置の後流側の排ガス流路に吸収剤スラリ(石灰石スラリなどの吸収液を使用する)を噴霧して排ガス中の硫黄酸化物を除去する湿式脱硫装置を配置したことを特徴とする請求項1記載の排ガス中微量有害物質の除去装置。   A denitration device having a denitration catalyst layer having a function of removing nitrogen oxides in exhaust gas and oxidizing metal mercury is disposed in the exhaust gas flow path on the upstream side of the air preheater, and the downstream side of the dust removal device The exhaust gas passage according to claim 1, wherein a wet desulfurization device for spraying an absorbent slurry (using an absorbing liquid such as limestone slurry) to remove sulfur oxides in the exhaust gas is disposed in the exhaust gas flow path. Equipment for removing trace amounts of harmful substances. 前記空気予熱器の前流側の排ガス流路に排ガス中の窒素酸化物を除去し、金属水銀を酸化する機能を有する脱硝触媒層を備えた脱硝装置を配置し、前記空気予熱器と除塵装置の間の排ガス流路に吸収剤スラリ(消石灰や水酸化マグネシウムなどを使用する)を排ガス流路内に噴霧して排ガス中の硫黄酸化物を除去する半乾式脱硫装置を配置したことを特徴とする請求項1記載の排ガス中微量有害物質の除去装置。   A denitration device having a denitration catalyst layer having a function of removing nitrogen oxides in the exhaust gas and oxidizing metal mercury is disposed in the exhaust gas flow path on the upstream side of the air preheater, and the air preheater and the dust removal device A semi-dry type desulfurization device that removes sulfur oxide in exhaust gas by spraying absorbent slurry (using slaked lime, magnesium hydroxide, etc.) into the exhaust gas channel in the exhaust gas channel between The apparatus for removing trace amounts of harmful substances in exhaust gas according to claim 1. 前記脱硝触媒層の脱硝触媒は酸化チタン(TiO2)、酸化ケイ素(SiO2)、酸化アルミニウム(Al23)から選択される二種類以上の化合物を第一成分として、モリブデン(Mo)、バナジウム(V)及びタングステン(W)から選択される二種類以上の金属又はその酸化物を第二成分とすることを特徴とする請求項1ないし3のいずれかに記載の排ガス中微量有害物質の除去装置。 The denitration catalyst of the denitration catalyst layer is composed of two or more compounds selected from titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), and aluminum oxide (Al 2 O 3 ) as a first component, molybdenum (Mo), The trace amount of harmful substances in exhaust gas according to any one of claims 1 to 3, wherein the second component is two or more kinds of metals selected from vanadium (V) and tungsten (W) or oxides thereof. Removal device. 前記脱硝装置内にガス流れ方向に複数段配置される脱硝触媒層の中の、比較的下流側の脱硝触媒層の脱硝触媒の第二成分の濃度を、比較的上流側の脱硝触媒層の脱硝触媒の第二成分の濃度より段階的に少なくしたことを特徴とする請求項1ないし4のいずれかに記載の排ガス中微量有害物質の除去装置。   The concentration of the second component of the denitration catalyst in the denitration catalyst layer on the relatively downstream side in the denitration catalyst layer arranged in a plurality of stages in the gas flow direction in the denitration device is determined by denitration in the denitration catalyst layer on the relatively upstream side. The apparatus for removing trace amounts of harmful substances in exhaust gas according to any one of claims 1 to 4, wherein the concentration is reduced stepwise from the concentration of the second component of the catalyst. 前記除塵装置のバグフィルタで金属水銀の酸化触媒はチタン(Ti)とモリブデン(Mo)とバナジウム(V)の金属又はその酸化物からなることを特徴とする請求項1ないし5のいずれかに記載の排ガス中微量有害物質の除去装置。   6. The metal mercury oxidation catalyst in the dust filter bag filter is made of titanium (Ti), molybdenum (Mo), vanadium (V) metal or an oxide thereof. For removing trace amounts of toxic substances from exhaust gas. 前記除塵装置のバグフィルタで使用する金属水銀の酸化触媒のろ布へ担持する量は脱硝装置で使用する脱硝触媒中の酸化触媒の量以上とし、その使用量は100〜500g/m2であることを特徴とする請求項1ないし6のいずれかに記載の排ガス中微量有害物質の除去装置。 The amount of metal mercury oxidation catalyst used in the dust filter bug filter supported on the filter cloth is equal to or greater than the amount of oxidation catalyst in the denitration catalyst used in the denitration device, and the amount used is 100 to 500 g / m 2 . The device for removing trace harmful substances in exhaust gas according to any one of claims 1 to 6. 前記脱硝装置の運転温度を250℃〜450℃とし、除塵装置の金属水銀の酸化触媒を含むバグフィルタの運転温度を120℃〜250℃とすることを特徴とする請求項1ないし7のいずれかに記載排ガス中微量有害物質の除去装置の運転方法。   8. The operation temperature of the denitration device is 250 ° C. to 450 ° C., and the operation temperature of the bag filter including the metal mercury oxidation catalyst of the dust removal device is 120 ° C. to 250 ° C. The operation method of the removal apparatus of the trace amount harmful substance in waste gas described in 2.
JP2006285761A 2006-07-26 2006-10-20 Removal apparatus of trace harmful substance in exhaust gas and its operation method Pending JP2008030017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285761A JP2008030017A (en) 2006-07-26 2006-10-20 Removal apparatus of trace harmful substance in exhaust gas and its operation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/314744 WO2008012878A1 (en) 2006-07-26 2006-07-26 Apparatus for removing of trace of toxic substance from exhaust gas and method of operating the same
JP2006285761A JP2008030017A (en) 2006-07-26 2006-10-20 Removal apparatus of trace harmful substance in exhaust gas and its operation method

Publications (1)

Publication Number Publication Date
JP2008030017A true JP2008030017A (en) 2008-02-14

Family

ID=39119987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285761A Pending JP2008030017A (en) 2006-07-26 2006-10-20 Removal apparatus of trace harmful substance in exhaust gas and its operation method

Country Status (1)

Country Link
JP (1) JP2008030017A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115611A (en) * 2008-11-14 2010-05-27 Babcock Hitachi Kk Denitrification apparatus
CN102607031A (en) * 2012-03-30 2012-07-25 许名香 Garbage disposal method and mechanical upright kiln device without chimneys for garbage disposal
CN103111128A (en) * 2013-02-22 2013-05-22 广东电网公司电力科学研究院 Dust-removal mercury-removal filter bag for bag-type dust remover and preparation method of filter bag
CN104888599A (en) * 2015-05-28 2015-09-09 上海三融环保工程有限公司 Spray drying desulfurizer used for cement plant and process method

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614575B2 (en) * 1978-06-14 1986-02-12 Mitsubishi Heavy Ind Ltd
JPS62247826A (en) * 1986-04-18 1987-10-28 Mitsubishi Heavy Ind Ltd Method for removing acidic gas and mercury contained in combustion exhaust gas
JPH02253828A (en) * 1989-03-28 1990-10-12 Catalysts & Chem Ind Co Ltd Method for purifying exhaust gas and catalyst formed body used therefor
JPH07328378A (en) * 1994-05-31 1995-12-19 Unitika Ltd Treatment of exhaust gas
JPH08196830A (en) * 1995-01-31 1996-08-06 Babcock Hitachi Kk Bag filter medium
JPH1066814A (en) * 1996-08-28 1998-03-10 Babcock Hitachi Kk Bag filter for treating exhaust gas and its production
JPH10180038A (en) * 1996-12-25 1998-07-07 Babcock Hitachi Kk Waste gas simultaneous treating device and method thereof
JPH11342332A (en) * 1998-06-01 1999-12-14 Babcock Hitachi Kk Wear resistant nox removal catalyst
JP2000262854A (en) * 1999-03-16 2000-09-26 Nkk Corp Method and apparatus for treating exhaust gas
JP2001104728A (en) * 1999-10-12 2001-04-17 Mitsubishi Heavy Ind Ltd Bag filter and exhaust gas cleaning method
JP2003024799A (en) * 2001-07-11 2003-01-28 Babcock Hitachi Kk Method for producing catalyst for removing nitrogen oxide
JP2003053142A (en) * 2001-08-09 2003-02-25 Mitsubishi Heavy Ind Ltd Method and equipment for removing mercury in exhaust gas
JP2004237244A (en) * 2003-02-07 2004-08-26 Mitsubishi Heavy Ind Ltd Method and system for removing mercury in exhaust gas
JP2006029673A (en) * 2004-07-15 2006-02-02 Ishikawajima Harima Heavy Ind Co Ltd Method and device for removing gaseous mercury in exhaust gas
JP2006026525A (en) * 2004-07-15 2006-02-02 Babcock Hitachi Kk Exhaust gas treatment system
JP2006205128A (en) * 2005-01-31 2006-08-10 Babcock Hitachi Kk Removal apparatus of trace harmful substance in exhaust gas and its operation method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614575B2 (en) * 1978-06-14 1986-02-12 Mitsubishi Heavy Ind Ltd
JPS62247826A (en) * 1986-04-18 1987-10-28 Mitsubishi Heavy Ind Ltd Method for removing acidic gas and mercury contained in combustion exhaust gas
JPH02253828A (en) * 1989-03-28 1990-10-12 Catalysts & Chem Ind Co Ltd Method for purifying exhaust gas and catalyst formed body used therefor
JPH07328378A (en) * 1994-05-31 1995-12-19 Unitika Ltd Treatment of exhaust gas
JPH08196830A (en) * 1995-01-31 1996-08-06 Babcock Hitachi Kk Bag filter medium
JPH1066814A (en) * 1996-08-28 1998-03-10 Babcock Hitachi Kk Bag filter for treating exhaust gas and its production
JPH10180038A (en) * 1996-12-25 1998-07-07 Babcock Hitachi Kk Waste gas simultaneous treating device and method thereof
JPH11342332A (en) * 1998-06-01 1999-12-14 Babcock Hitachi Kk Wear resistant nox removal catalyst
JP2000262854A (en) * 1999-03-16 2000-09-26 Nkk Corp Method and apparatus for treating exhaust gas
JP2001104728A (en) * 1999-10-12 2001-04-17 Mitsubishi Heavy Ind Ltd Bag filter and exhaust gas cleaning method
JP2003024799A (en) * 2001-07-11 2003-01-28 Babcock Hitachi Kk Method for producing catalyst for removing nitrogen oxide
JP2003053142A (en) * 2001-08-09 2003-02-25 Mitsubishi Heavy Ind Ltd Method and equipment for removing mercury in exhaust gas
JP2004237244A (en) * 2003-02-07 2004-08-26 Mitsubishi Heavy Ind Ltd Method and system for removing mercury in exhaust gas
JP2006029673A (en) * 2004-07-15 2006-02-02 Ishikawajima Harima Heavy Ind Co Ltd Method and device for removing gaseous mercury in exhaust gas
JP2006026525A (en) * 2004-07-15 2006-02-02 Babcock Hitachi Kk Exhaust gas treatment system
JP2006205128A (en) * 2005-01-31 2006-08-10 Babcock Hitachi Kk Removal apparatus of trace harmful substance in exhaust gas and its operation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115611A (en) * 2008-11-14 2010-05-27 Babcock Hitachi Kk Denitrification apparatus
CN102607031A (en) * 2012-03-30 2012-07-25 许名香 Garbage disposal method and mechanical upright kiln device without chimneys for garbage disposal
CN102607031B (en) * 2012-03-30 2015-08-19 许名香 A kind of waste disposal method and the chimney-free boiler-turbine CCS device for garbage disposal
CN103111128A (en) * 2013-02-22 2013-05-22 广东电网公司电力科学研究院 Dust-removal mercury-removal filter bag for bag-type dust remover and preparation method of filter bag
CN104888599A (en) * 2015-05-28 2015-09-09 上海三融环保工程有限公司 Spray drying desulfurizer used for cement plant and process method

Similar Documents

Publication Publication Date Title
JP5051977B2 (en) Device for removing trace harmful substances in exhaust gas and operation method thereof
KR101298305B1 (en) Apparatus for removing of trace of toxic substance from exhaust gas and method of operating the same
Olson et al. The reduction of gas phase air toxics from combustion and incineration sources using the MET–Mitsui–BF activated coke process
JP6665011B2 (en) Exhaust gas treatment method and system
WO2009093576A1 (en) System for treating discharge gas from coal-fired boiler and method of operating the same
US9289720B2 (en) System and method for treating mercury in flue gas
JP3872677B2 (en) Mercury removal method and system
WO2009093574A1 (en) System and method for treating discharge gas from coal-fired boiler
JP2008000748A (en) Regeneration of nt-scr catalyst
CN111773915B (en) Flue gas dry desulfurization process
JP2017528315A (en) Method for oxidizing hydrogen sulfide to sulfur trioxide, including later removal of sulfur trioxide, and plant for performing the method
WO2018143000A1 (en) Exhaust-gas treatment system and exhaust-gas treatment method
CN110312563A (en) The method for the sulfur and nitrogen oxides for including in exhaust gas for removing industrial equipment
JP5636577B2 (en) Method for purifying exhaust gas containing metallic mercury and oxidation catalyst for metallic mercury in exhaust gas
WO2015051363A1 (en) Method and system for removing gaseous mercury in flue gases
JP4936002B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
JP2008030017A (en) Removal apparatus of trace harmful substance in exhaust gas and its operation method
CN210278800U (en) Low-temperature catalyst denitration dust removal equipment with pottery fine filter tube
KR100973675B1 (en) Catalyst for reduction of nitrogen oxide and oxidation of mercury in exhaust gas and method for removing nitrogen oxide and mercury simultaneously using the catalyst
CN103623682A (en) HC-LSCR/O-AS engineering system for fume cleaning
CN110711488A (en) Flue gas desulfurization, denitration and demercuration integrated method
JP6400379B2 (en) Denitration method for combustion exhaust gas
CN115957610A (en) Waste incineration flue gas treatment system and treatment method
WO2012029279A1 (en) Exhaust gas treatment device
JP2008238057A (en) Absorbent material of metal mercury in exhaust gas and method for removing metal mercury using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120328