JPH1066814A - Bag filter for treating exhaust gas and its production - Google Patents

Bag filter for treating exhaust gas and its production

Info

Publication number
JPH1066814A
JPH1066814A JP8226614A JP22661496A JPH1066814A JP H1066814 A JPH1066814 A JP H1066814A JP 8226614 A JP8226614 A JP 8226614A JP 22661496 A JP22661496 A JP 22661496A JP H1066814 A JPH1066814 A JP H1066814A
Authority
JP
Japan
Prior art keywords
filter cloth
exhaust gas
fine particles
filter
denitration catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8226614A
Other languages
Japanese (ja)
Inventor
Kazunori Fujita
一紀 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP8226614A priority Critical patent/JPH1066814A/en
Publication of JPH1066814A publication Critical patent/JPH1066814A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently remove a plurality of gaseous harmful substances contained in exhaust gas of a waste refuse incinerator and to obtain filter cloth uniformly holding fine particles efficiently removing a plurality of gaseous harmful substances. SOLUTION: Water is added to a mixed powder of titanium oixide and vanadium pentoxide with a particle size of 0.6-5μm being a denitration catalyst to prepare a slurry and bag-shaped filter cloth with a diameter of 10cm, a thickness of 3mm and a length of 1m is immersed in this slurry. The impregnated filter cloth is dried while rotated around its horizontal long axis so as to equally distribute titanium oxide and vanadium pentoxide. The support amt. of the denitration catalyst per a unit area of the filter cloth is 480g/m<2> .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ごみ焼却炉等の排
ガスに含まれる有害成分を除去する排ガス処理用バグフ
ィルタ及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas treatment bag filter for removing harmful components contained in exhaust gas from a refuse incinerator and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】ごみ焼却炉、特に都市ごみ焼却炉の排ガ
ス中の煤塵を除去する装置は、ダイオキシンの発生を抑
制するために電気集塵機からバグフィルタへ移行してい
る。ごみ焼却量の増大に伴い大量の排ガスが生成し、バ
グフィルタの能力も大きいものが要求され設置面積、設
置容積も極めて大きくなる。そこで都市ごみ焼却炉の煤
塵のみならずガス状有害物質も同時に除去するバグフィ
ルタが要求され、一部実用に供されている。都市ごみ焼
却炉の排ガス中の有害物質の一つである窒素酸化物(N
Ox)の除去技術としてバグフィルタの後流に触媒塔を
設けて脱硝する例や特公平4−36729号公報に記載
されているように脱硝触媒を濾布に担持して脱硝する例
はあるが、窒素酸化物を高い効率で除去するための濾布
に脱硝触媒を担持する製造技術は明らかにされていな
い。
2. Description of the Related Art Waste incinerators, in particular, devices for removing dust in exhaust gas from municipal waste incinerators have been shifted from electric dust collectors to bag filters in order to suppress the generation of dioxins. As the amount of waste incineration increases, a large amount of exhaust gas is generated, and a filter having a large capacity is required, and the installation area and the installation volume are extremely large. Therefore, a bag filter for simultaneously removing not only the dust of the municipal solid waste incinerator but also the gaseous harmful substances has been required, and some of them have been put to practical use. Nitrogen oxide (N) is one of the harmful substances in the exhaust gas from municipal solid waste incinerators.
As a technique for removing Ox), there is an example in which a catalyst tower is provided downstream of a bag filter for denitration, and as described in Japanese Patent Publication No. 4-36729, there is an example in which a denitration catalyst is supported on a filter cloth to denitrate. A production technique for supporting a denitration catalyst on a filter cloth for removing nitrogen oxides with high efficiency has not been disclosed.

【0003】[0003]

【発明が解決しようとする課題】都市ごみ焼却炉の排ガ
スのバグフィルタによる脱硝は、濾布を通過する排ガス
の線速度が比較的大きいので排ガスと担持した脱硝触媒
との接触時間は濾布のど部分においても等しくする必要
がある。従って濾布へ脱硝触媒を均一に担持することが
重要であるが従来の技術はこの点に配慮されておらずバ
グフィルタの脱硝性能に問題が有る。特に微粒子触媒を
不織布、織布製濾布に担持させた時の分布が均等ではな
く、高い脱硝効率を得るための脱硝触媒担持濾布の最適
化がなされていない。本発明の目的は、ごみ焼却炉排ガ
ス中に含まれる複数種のガス状有害物質を効率良く除去
することにある。また、複数種のガス状有害物質を効率
良く除去する微粒子を均一に保持した濾布を製造するこ
とにある。
In the denitration of exhaust gas from a municipal waste incinerator using a bag filter, the contact time between the exhaust gas and the supported denitration catalyst is longer than that of the filter cloth because the linear velocity of the exhaust gas passing through the filter cloth is relatively high. The parts also need to be equal. Therefore, it is important to uniformly support the denitration catalyst on the filter cloth, but the prior art does not take this point into consideration and has a problem in the denitration performance of the bag filter. In particular, the distribution when the particulate catalyst is supported on a nonwoven fabric or woven filter cloth is not uniform, and the filter cloth supporting the denitration catalyst for obtaining high denitration efficiency has not been optimized. An object of the present invention is to efficiently remove a plurality of gaseous harmful substances contained in waste gas from incinerators. Another object of the present invention is to produce a filter cloth which uniformly holds fine particles for efficiently removing a plurality of types of gaseous harmful substances.

【0004】[0004]

【課題を解決するための手段】上記目的は、排ガス中に
含まれる有害物質を除去する濾布を備えた排ガス処理用
バグフィルタにおいて、濾布が脱硝触媒、水銀吸着剤、
脱ダイオキシン触媒の微粒子を複数種保持することによ
り達成される。濾布はその面積1m2当りそれぞれの微
粒子を300g以上担持していることが望ましい。上記
目的は、排ガス中に含まれる有害物質を除去する微粒子
を濾布に担持する排ガス処理用バグフィルタの製造方法
において、微粒子のスラリを含浸した濾布の長軸を水平
にし長軸を中心に回転させながら乾燥することにより達
成される。上記構成によれば、微粒子を濾布に担持する
時に微粒子のスラリを含浸した濾布の軸を水平にして回
転させながら乾燥することにより、微粒子が特定の位置
に集中せず濾布の厚さ方向、円周方向、軸方向共に微粒
子を均等に分散して担持させることができる。上記構成
によれば、濾布に微粒子を均等に担持しているので、排
ガスが抵抗の小さい微粒子の担持層が薄い部分を高速で
通過して接触時間が短くなることによる吹き抜けが起ら
ず、ガス状有害物質の高い除去効率が得られる。上記構
成によれば、濾布へ微粒子を濾布の面積1m2当り30
0g以上担持すると高い除去効率が得られる。
An object of the present invention is to provide a bag filter for exhaust gas treatment provided with a filter cloth for removing harmful substances contained in exhaust gas, wherein the filter cloth is a denitration catalyst, a mercury adsorbent,
This is achieved by holding a plurality of types of fine particles of the dioxin removal catalyst. The filter cloth desirably carries 300 g or more of each fine particle per 1 m 2 of the area. The above object is to provide a method of manufacturing a bag filter for exhaust gas treatment in which fine particles for removing harmful substances contained in exhaust gas are supported on the filter cloth. This is achieved by drying while rotating. According to the above configuration, when the fine particles are carried on the filter cloth, by drying while rotating the axis of the filter cloth impregnated with the slurry of the fine particles horizontally, the fine particles are not concentrated at a specific position, and the thickness of the filter cloth is reduced. Fine particles can be uniformly dispersed and supported in all directions, circumferential directions and axial directions. According to the above configuration, the fine particles are uniformly supported on the filter cloth, so that the exhaust gas does not pass through the thin portion of the low-resistance fine particle supporting layer at a high speed and the contact time is short, so that blow-through does not occur. High removal efficiency of gaseous harmful substances can be obtained. According to the above configuration, the fine particles are added to the filter cloth in an amount of 30 / m < 2 >.
A high removal efficiency is obtained by supporting 0 g or more.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施の形態を図に
より説明する。本実施の形態のバグフィルタの基本的な
部材である濾布と微粒子について説明する。濾布は市販
のプラスチックの不織布で、その材質はポリイミド、ポ
リアミド、ポリフェニレンスルフィド、ポリテトラフル
オロエチレンであり、ガラス繊維の織布も用いられる。
そして濾布の物理的特性として面積1m2当り500g
以上の重量と厚さ2mm以上が望ましい。微粒子には先
に説明した脱硝触媒に加えて重金属、特に水銀を除去す
る活性炭等の吸着剤、脱ダイオキシン触媒若しくは吸着
剤が有り、微粒子の形状は破砕粒子のみならず球形粒子
でも良く、その粒径は濾布の空隙サイズに等しいかそれ
以下が望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. The filter cloth and the fine particles, which are basic members of the bag filter of the present embodiment, will be described. The filter cloth is a commercially available nonwoven fabric of plastic, and its material is polyimide, polyamide, polyphenylene sulfide, or polytetrafluoroethylene, and a woven glass fiber cloth is also used.
The area 1 m 2 per 500g as physical properties of the filter cloth
The above weight and thickness of 2 mm or more are desirable. The fine particles include, in addition to the denitration catalyst described above, an adsorbent such as activated carbon for removing heavy metals, particularly mercury, a de-dioxin catalyst or an adsorbent.The shape of the fine particles may be not only crushed particles but also spherical particles. The diameter is desirably equal to or less than the pore size of the filter cloth.

【0006】実施の形態1 まず、濾布へ微粒子を担持する方法について説明する。
脱硝触媒として粒径0.6〜5μmの酸化チタンと五酸
化バナジウムの混合粉末に水を添加してスラリとし、こ
のスラリにリティナに装着した直径10cm、厚さ3m
m、長さ1m、密度600g/m2の袋状ポリイミド製
不織布(東洋紡績製P84)の濾布を浸漬した。スラリ
を含浸させた濾布を酸化チタンと五酸化バナジウムが均
等に分布するように濾布の長軸を水平にし、この長軸を
中心に濾布を回転させながら乾燥させた。濾布の単位面
積当りの脱硝触媒担持量は480g/m2であった。次
に濾布に担持した微粒子の分布評価について説明する。
Embodiment 1 First, a method for supporting fine particles on a filter cloth will be described.
As a denitration catalyst, water is added to a mixed powder of titanium oxide and vanadium pentoxide having a particle size of 0.6 to 5 μm to form a slurry.
A filter cloth of bag-shaped polyimide nonwoven fabric (Toyobo P84) having a length of m, a length of 1 m and a density of 600 g / m 2 was dipped. The filter cloth impregnated with the slurry was dried such that the long axis of the filter cloth was horizontal so that titanium oxide and vanadium pentoxide were evenly distributed, and the filter cloth was rotated around the long axis. The carrying amount of the denitration catalyst per unit area of the filter cloth was 480 g / m 2 . Next, the distribution evaluation of the fine particles carried on the filter cloth will be described.

【0007】脱硝触媒を担持した濾布の一部を切断して
熱硬化性樹脂に埋め込み、X線マイクロアナライザ(X
MA)を用いてバナジウムの濾布の厚さ、円周、軸方向
の分布を測定した。図1は本発明の実施の形態の濾布に
担持したバナジウムの厚さ方向の分布を示す図表であ
る。本図の横軸は濾布の厚さを示し、縦軸はバナジウム
の相対濃度を示す。本図に示すように濾布の厚さ方向で
バナジウムは、ほぼ同じ濃度で担持されている。
[0007] A part of the filter cloth supporting the denitration catalyst is cut and embedded in a thermosetting resin, and the X-ray microanalyzer (X
MA) was used to measure the thickness, circumference and axial distribution of the vanadium filter cloth. FIG. 1 is a table showing the distribution of vanadium supported on the filter cloth according to the embodiment of the present invention in the thickness direction. The abscissa in this figure indicates the thickness of the filter cloth, and the ordinate indicates the relative concentration of vanadium. As shown in this figure, vanadium is carried at substantially the same concentration in the thickness direction of the filter cloth.

【0008】図2は本発明の実施の形態の袋状の濾布に
担持したバナジウムの円周方向の分布を示す図表であ
る。本図の横軸は濾布の円周位置を示し、縦軸はバナジ
ウムの相対濃度を示す。濾布を輪切りにし円周のそれぞ
れの位置のバナジウムの相対濃度を測定した。本図Aに
示すように濾布の円周方向でバナジウムは、ほぼ同じ濃
度で担持されている。
FIG. 2 is a chart showing a circumferential distribution of vanadium carried on a bag-shaped filter cloth according to the embodiment of the present invention. The abscissa in this figure indicates the circumferential position of the filter cloth, and the ordinate indicates the relative concentration of vanadium. The filter cloth was sliced, and the relative concentration of vanadium at each position on the circumference was measured. As shown in FIG. A, vanadium is carried at substantially the same concentration in the circumferential direction of the filter cloth.

【0009】図3は本発明の実施の形態の濾布に担持し
たバナジウムの長さ方向の分布を示す図表である。本図
の横軸はバナジウムの相対濃度を示し、縦軸は濾布の軸
方向長さを示す。濾布の一部を軸方向に切取りそれぞれ
の位置のバナジウムの相対濃度を測定した。本図に示す
ように濾布の軸方向でバナジウムは、ほぼ同じ濃度で担
持されている。これら濾布の厚さ、円周、軸方向の何れ
も同じバナジウム濃度であり、微粒子が均等に担持され
ていることが明らかになった。
FIG. 3 is a table showing the distribution in the length direction of vanadium supported on the filter cloth according to the embodiment of the present invention. The abscissa in this figure indicates the relative concentration of vanadium, and the ordinate indicates the axial length of the filter cloth. A part of the filter cloth was cut in the axial direction, and the relative concentration of vanadium at each position was measured. As shown in this figure, vanadium is carried at substantially the same concentration in the axial direction of the filter cloth. It was clarified that the thickness, circumferential direction and axial direction of these filter cloths were all the same, and the fine particles were uniformly supported.

【0010】次に濾布に担持した微粒子の耐剥離性評価
について説明する。脱硝触媒を担持した濾布を圧力3k
g/cm2のエアパルスジェットで逆洗し、逆洗回数と
脱硝触媒の相対重量の関係を求めた。図4は本発明の実
施の形態の濾布逆洗回数と脱硝触媒の相対重量との関係
を示す図表である。本図の横軸は逆洗回数を示し、縦軸
は脱硝触媒の相対重量を示す。逆洗の初期段階の50回
までに脱硝触媒は少し剥離したがそれ以降は剥離が見ら
れない。逆洗1700回後の濾布の厚さ方向のバナジウ
ム濃度を測定した。
Next, the evaluation of the peel resistance of the fine particles carried on the filter cloth will be described. The filter cloth supporting the denitration catalyst is pressed at a pressure of 3k.
Backwashing was performed with an air pulse jet of g / cm 2 , and the relationship between the number of backwashing and the relative weight of the denitration catalyst was determined. FIG. 4 is a table showing the relationship between the number of backwashing of the filter cloth and the relative weight of the denitration catalyst according to the embodiment of the present invention. The abscissa in this figure indicates the number of backwashing, and the ordinate indicates the relative weight of the denitration catalyst. The denitration catalyst was slightly peeled off by 50 times in the initial stage of backwashing, but no peeling was observed thereafter. After 1,700 times of backwashing, the vanadium concentration in the thickness direction of the filter cloth was measured.

【0011】図5は本発明の実施の形態の濾布逆洗後の
濾布に担持されたバナジウムの厚さ方向の分布を示す図
表である。本図の横軸は濾布の厚さを示し、縦軸はバナ
ジウムの相対濃度を示す。本図に示すように濾布の両面
の表面層200〜300μmで少しバナジウムの相対濃
度は低下しているが、内部はほぼ均等な状態にある。こ
の状態でガス状有害物質の除去に何ら支障は無く、均等
な担持とみなしても良い。
FIG. 5 is a table showing the distribution in the thickness direction of vanadium supported on the filter cloth after backwashing the filter cloth according to the embodiment of the present invention. The abscissa in this figure indicates the thickness of the filter cloth, and the ordinate indicates the relative concentration of vanadium. As shown in this figure, the relative concentration of vanadium is slightly reduced in the surface layers 200 to 300 μm on both sides of the filter cloth, but the inside is in a substantially uniform state. In this state, there is no hindrance to the removal of the gaseous harmful substance, and it may be considered that the carrier is uniformly loaded.

【0012】次に濾布に担持した微粒子の脱硝性能につ
いて説明する。排ガス温度220℃、排ガス中の水分1
8〜20vol%、NOx入口濃度130〜150pp
m、NH3/NOx比:1.2の条件下で濾布に担持し
た脱硝触媒の性能を求めた。図6は本発明の実施の形態
の脱硝性能を示す図表である。本図の横軸は排ガス流速
を示し、縦軸は脱硝率を示す。本図Cに示すように排ガ
ス流速1m/minで脱硝率は60%になった。また、
エアパルスジェットで2000回逆洗した後の脱硝率は
57〜60%であった。
Next, the denitration performance of the fine particles supported on the filter cloth will be described. Exhaust gas temperature 220 ° C, moisture 1 in exhaust gas
8 ~ 20vol%, NOx inlet concentration 130 ~ 150pp
m, the performance of the denitration catalyst supported on the filter cloth under the condition of NH 3 / NOx ratio: 1.2 was determined. FIG. 6 is a chart showing the denitration performance of the embodiment of the present invention. The horizontal axis of this figure indicates the exhaust gas flow rate, and the vertical axis indicates the denitration rate. As shown in FIG. C, the denitration rate became 60% at an exhaust gas flow rate of 1 m / min. Also,
The denitration rate after backwashing 2000 times with an air pulse jet was 57 to 60%.

【0013】比較の形態1 実施の形態1と同様に脱硝触媒に水を添加してスラリと
し、このスラリに濾布を浸漬した。スラリを含浸させた
濾布を回転させずに静置して乾燥させた。乾燥した濾布
の円周のそれぞれの位置のバナジウムの相対濃度を測定
した。図2のBに示すように濾布の円周方向でバナジウ
ムは、ほぼ同じ濃度で担持されず図の中央部で濃度が高
くなっている。この理由としては濾布を乾燥せる時に底
になった位置にスラリが集まりバナジウムの量も多くな
ったことが挙げられる。更に、実施の形態1と同様に脱
硝性能を測定した。図6のDに示すように排ガス流速1
m/minで脱硝率は43%になり、排ガス流速が大き
くなるにつれて脱硝率の低下する割合は著しい。
Comparative Embodiment 1 As in Embodiment 1, water was added to the denitration catalyst to form a slurry, and a filter cloth was immersed in the slurry. The filter cloth impregnated with the slurry was allowed to stand without rotating and dried. The relative concentration of vanadium at each location on the circumference of the dried filter cloth was measured. As shown in FIG. 2B, vanadium is not carried at substantially the same concentration in the circumferential direction of the filter cloth, and the concentration is high at the center of the figure. This is because the slurry gathered at the bottom position when the filter cloth was dried and the amount of vanadium increased. Further, the denitration performance was measured as in the first embodiment. As shown in FIG.
At a rate of m / min, the denitration rate was 43%, and the rate at which the denitration rate decreased as the exhaust gas flow rate increased was significant.

【0014】実施の形態2 実施の形態1と同様な脱硝触媒を用いスラリ濃度を変化
させて濾布の脱硝触媒担持量を変化させ、実施の形態1
と同様な条件で脱硝性能を測定した。図7は本発明の実
施の形態の脱硝触媒担持量と脱硝率との関係を示す図表
である。本図に示すように濾布へ脱硝触媒を濾布の面積
1m2当り300g以上担持すると脱硝率は、60%を
超えほぼ一定の値が得られる。
Embodiment 2 The same denitration catalyst as in Embodiment 1 is used to change the slurry concentration to change the carrying amount of the denitration catalyst on the filter cloth.
The denitration performance was measured under the same conditions as described above. FIG. 7 is a table showing the relationship between the denitration catalyst carrying amount and the denitration rate according to the embodiment of the present invention. As shown in this figure, when a denitration catalyst is supported on the filter cloth by 300 g or more per 1 m 2 of the area of the filter cloth, the denitration rate exceeds 60% and a substantially constant value is obtained.

【0015】実施の形態3 椰子殻活性炭の水溶液スラリに実施の形態1と同様な濾
布を浸漬し、スラリを含浸させた濾布を回転させスラリ
が垂れないように乾燥させた。この時の担持量は濾布の
面積1m2当り320gであった。この濾布を用いて排
ガス温度180℃、排ガス中の水分20vol%、水銀
入口濃度0.2mg/Nm3(HgCl2換算)、排ガス
流速1m/minの条件下で水銀除去性能を求めた。累
積処理排ガス量が105Nm3に達した段階で水銀出口濃
度は不検出であった。
Embodiment 3 A filter cloth similar to that of Embodiment 1 was immersed in an aqueous slurry of coconut shell activated carbon, and the filter cloth impregnated with the slurry was rotated to dry so that the slurry did not drip. At this time, the supported amount was 320 g per 1 m 2 of the area of the filter cloth. Using this filter cloth, the mercury removal performance was determined under the conditions of an exhaust gas temperature of 180 ° C., a moisture content of the exhaust gas of 20 vol%, a mercury inlet concentration of 0.2 mg / Nm 3 (in terms of HgCl 2 ), and an exhaust gas flow rate of 1 m / min. The mercury exit concentration was not detected when the cumulative amount of treated exhaust gas reached 10 5 Nm 3 .

【0016】実施の形態4 直径15cm、長さ1.2mの袋状ポリイミド製の濾布
に実施の形態1と同様な触媒を実施の形態1と同様な担
持方法で担持した。この濾布6本をごみ焼却炉に併設し
た試験装置のバグハウスに装填し、ごみ焼却炉の排ガス
を導き温度245℃、排ガス中の水分22vol%、ダ
イオキシン入口濃度32ngTEQ/Nm3、排ガス流
速1m/min、NH3添加無しの条件下でダイオキシ
ン除去性能を求めた。ダイオキシンのバグハウス出口濃
度は0.09ngTEQ/Nm3で、除去率は99%以
上であった。
Embodiment 4 A catalyst similar to that of Embodiment 1 was supported on a bag-like polyimide filter cloth having a diameter of 15 cm and a length of 1.2 m in the same manner as in Embodiment 1. Six of these filter cloths were loaded into a baghouse of a test device attached to a refuse incinerator, and the exhaust gas of the refuse incinerator was led to a temperature of 245 ° C., a water content of 22 vol% in the exhaust gas, a dioxin inlet concentration of 32 ng TEQ / Nm 3 , and an exhaust gas flow rate of 1 m. / Min, the dioxin removal performance was determined under the condition of no addition of NH 3 . The dioxin had a baghouse exit concentration of 0.09 ng TEQ / Nm 3 and a removal rate of 99% or more.

【0017】以上述べたように本実施の形態の濾布は既
設のごみ焼却炉に何ら問題無く適用でき、また、新設の
ごみ焼却炉に従来と同様に使用され排ガス処理装置の簡
略化が図れる。
As described above, the filter cloth of the present embodiment can be applied to an existing refuse incinerator without any problem, and can be used in a newly installed refuse incinerator in the same manner as the conventional one, thereby simplifying the exhaust gas treatment apparatus. .

【0018】[0018]

【発明の効果】本発明によれば、微粒子のスラリを含浸
した濾布を水平にして回転させながら乾燥することによ
り、濾布の円周方向、軸方向共に微粒子を均等に担持さ
せる効果が得られる。そして、濾布に微粒子を均等に担
持しているので、吹き抜けを起こす担持層が薄い部分が
できず、ガス状有害物質の高い除去効率が得られる。ま
た、微粒子を濾布面積1m2当り300g以上担持する
と高い除去効率が得られる。
According to the present invention, the filter cloth impregnated with the slurry of fine particles is dried while rotating horizontally while rotating, thereby obtaining an effect of uniformly supporting the fine particles in both the circumferential direction and the axial direction of the filter cloth. Can be And, since the fine particles are uniformly supported on the filter cloth, a thin portion of the support layer that causes blow-through is not formed, and high removal efficiency of gaseous harmful substances can be obtained. In addition, when 300 g or more of fine particles are supported per 1 m 2 of filter cloth area, high removal efficiency can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の濾布に担持したバナジウ
ムの濾布厚さ方向の分布を示す図表である。
FIG. 1 is a table showing distribution of vanadium supported on a filter cloth in an embodiment of the present invention in the thickness direction of the filter cloth.

【図2】本発明の実施の形態の袋状の濾布に担持したバ
ナジウムの濾布円周方向の分布を示す図表である。
FIG. 2 is a chart showing distribution of vanadium carried on a bag-shaped filter cloth in the circumferential direction of the filter cloth according to the embodiment of the present invention.

【図3】本発明の実施の形態の濾布に担持したバナジウ
ムの濾布長さ方向の分布を示す図表である。
FIG. 3 is a table showing distribution of vanadium supported on the filter cloth in the embodiment of the present invention in the filter cloth length direction.

【図4】本発明の実施の形態の濾布逆洗回数と濾布に担
持された脱硝触媒の相対重量との関係を示す図表であ
る。
FIG. 4 is a table showing the relationship between the number of backwashing of the filter cloth and the relative weight of the denitration catalyst supported on the filter cloth according to the embodiment of the present invention.

【図5】本発明の実施の形態の濾布逆洗後のバナジウム
の濾布厚さ方向の分布を示す図表である。
FIG. 5 is a table showing the distribution of vanadium in the thickness direction of the filter cloth after backwashing the filter cloth according to the embodiment of the present invention.

【図6】本発明の実施の形態の脱硝性能を示す図表であ
る。
FIG. 6 is a table showing the denitration performance of the embodiment of the present invention.

【図7】本発明の実施の形態の脱硝触媒担持量と脱硝率
との関係を示す図表である。
FIG. 7 is a table showing a relationship between a denitration catalyst carrying amount and a denitration rate according to the embodiment of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 排ガス中に含まれる有害物質を除去する
濾布を備えた排ガス処理用バグフィルタにおいて、前記
濾布が脱硝触媒、水銀吸着剤、脱ダイオキシン触媒の微
粒子を複数種保持することを特徴とする排ガス処理用バ
グフィルタ。
An exhaust gas treatment bag filter provided with a filter cloth for removing harmful substances contained in exhaust gas, wherein the filter cloth holds a plurality of fine particles of a denitration catalyst, a mercury adsorbent, and a dioxin catalyst. Characteristic bag filter for exhaust gas treatment.
【請求項2】 前記濾布がその面積1m2当りそれぞれ
の前記微粒子を300g以上担持したことを特徴とする
請求項1に記載の排ガス処理用バグフィルタ。
2. The bag filter for exhaust gas treatment according to claim 1, wherein the filter cloth carries 300 g or more of each of the fine particles per 1 m 2 of its area.
【請求項3】 排ガス中に含まれる有害物質を除去する
微粒子を濾布に担持する排ガス処理用バグフィルタの製
造方法において、 前記微粒子のスラリを含浸した濾布の長軸を水平にし該
長軸を中心に回転させながら乾燥することを特徴とする
排ガス処理用バグフィルタの製造方法。
3. A method for manufacturing a bag filter for exhaust gas treatment, wherein fine particles for removing harmful substances contained in exhaust gas are supported on the filter cloth, wherein a long axis of the filter cloth impregnated with the slurry of the fine particles is horizontal and the long axis is long. A method for producing a bag filter for exhaust gas treatment, characterized in that drying is performed while rotating about a center.
JP8226614A 1996-08-28 1996-08-28 Bag filter for treating exhaust gas and its production Pending JPH1066814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8226614A JPH1066814A (en) 1996-08-28 1996-08-28 Bag filter for treating exhaust gas and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8226614A JPH1066814A (en) 1996-08-28 1996-08-28 Bag filter for treating exhaust gas and its production

Publications (1)

Publication Number Publication Date
JPH1066814A true JPH1066814A (en) 1998-03-10

Family

ID=16847970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8226614A Pending JPH1066814A (en) 1996-08-28 1996-08-28 Bag filter for treating exhaust gas and its production

Country Status (1)

Country Link
JP (1) JPH1066814A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012878A1 (en) 2006-07-26 2008-01-31 Babcock-Hitachi Kabushiki Kaisha Apparatus for removing of trace of toxic substance from exhaust gas and method of operating the same
JP2008030017A (en) * 2006-07-26 2008-02-14 Babcock Hitachi Kk Removal apparatus of trace harmful substance in exhaust gas and its operation method
CN109759053A (en) * 2019-01-21 2019-05-17 北京工业大学 A kind of preparation method of filter cloth load vanadium titanium-based catalytic denitration material
JP2019155295A (en) * 2018-03-14 2019-09-19 三菱重工業株式会社 Filter cloth, bag filter, gas treatment equipment having this and manufacturing method of filter cloth
JP2019527126A (en) * 2016-07-15 2019-09-26 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG Method for preparing vanadium-based catalyst

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012878A1 (en) 2006-07-26 2008-01-31 Babcock-Hitachi Kabushiki Kaisha Apparatus for removing of trace of toxic substance from exhaust gas and method of operating the same
JP2008030017A (en) * 2006-07-26 2008-02-14 Babcock Hitachi Kk Removal apparatus of trace harmful substance in exhaust gas and its operation method
US8202482B2 (en) 2006-07-26 2012-06-19 Babcock-Hitachi Kabushiki Kaisha Apparatus for removing of trace of toxic substance from exhaust gas and method of operating the same
JP2019527126A (en) * 2016-07-15 2019-09-26 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG Method for preparing vanadium-based catalyst
JP2019155295A (en) * 2018-03-14 2019-09-19 三菱重工業株式会社 Filter cloth, bag filter, gas treatment equipment having this and manufacturing method of filter cloth
WO2019176617A1 (en) 2018-03-14 2019-09-19 三菱重工業株式会社 Filter cloth, bag filter, gas processing apparatus equipped with same, and method for producing filter cloth
CN111867701A (en) * 2018-03-14 2020-10-30 三菱重工业株式会社 Filter cloth, bag filter, gas treatment device provided with same, and method for manufacturing filter cloth
CN109759053A (en) * 2019-01-21 2019-05-17 北京工业大学 A kind of preparation method of filter cloth load vanadium titanium-based catalytic denitration material

Similar Documents

Publication Publication Date Title
US7022158B2 (en) Adsorption element and methods
US7442352B2 (en) Flue gas purification process using a sorbent polymer composite material
US3019127A (en) Filtering medium and method of making the same
US7731781B2 (en) Method and apparatus for the enhanced removal of aerosols and vapor phase contaminants from a gas stream
KR970001435B1 (en) Bag for removal of solid material from gases and for treatment of the said gases
US20100018396A1 (en) Method of Using Adsorptive Filter Element
US20070261557A1 (en) Activated carbon honeycomb catalyst beds and methods for the use thereof
JP2007317667A (en) Air filter assembly for low temperature catalyst process
JP2011131213A (en) Method and catalyst/adsorbent for treating exhaust gas containing sulfur compound
US20050229562A1 (en) Chemical filtration unit incorporating air transportation device
US7425521B2 (en) Structured adsorbent media for purifying contaminated air
JP2003509246A (en) Chemically active filter material
JPH07145723A (en) Purifier for noxious-substance containing exhaust gas by heterogeneous catalyst
JP3684471B2 (en) Bag filter material
CN101107053B (en) Method and apparatus for treatment of exhaust gas
CN111330640B (en) Piezoelectric catalytic membrane for air purifier and preparation method thereof
JPH1066814A (en) Bag filter for treating exhaust gas and its production
CN210079179U (en) V-shaped filtering and adsorbing device
KR101599781B1 (en) Method of fabricating bag filter for removing sulfur oxides and nitrogen oxide using foam coating or bead coating and bag filter fabricated by the same
CN208212846U (en) A kind of active carbon regenerating unit
JPH0290921A (en) Concentrator for fluorocarbon-containing gas
JP4454886B2 (en) Chemical filter
CN108159838A (en) A kind of active carbon regenerating unit
JP2950899B2 (en) Rotary gas processing equipment
JP4774573B2 (en) Exhaust gas treatment method and apparatus