JP2008238057A - Absorbent material of metal mercury in exhaust gas and method for removing metal mercury using it - Google Patents

Absorbent material of metal mercury in exhaust gas and method for removing metal mercury using it Download PDF

Info

Publication number
JP2008238057A
JP2008238057A JP2007082418A JP2007082418A JP2008238057A JP 2008238057 A JP2008238057 A JP 2008238057A JP 2007082418 A JP2007082418 A JP 2007082418A JP 2007082418 A JP2007082418 A JP 2007082418A JP 2008238057 A JP2008238057 A JP 2008238057A
Authority
JP
Japan
Prior art keywords
exhaust gas
mercury
adsorbent
metal mercury
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007082418A
Other languages
Japanese (ja)
Inventor
Keiichiro Kai
啓一郎 甲斐
Yasuyoshi Kato
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2007082418A priority Critical patent/JP2008238057A/en
Publication of JP2008238057A publication Critical patent/JP2008238057A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absorbent material suitable for absorbing and removing metal mercury in an exhaust gas. <P>SOLUTION: The absorbent material for absorbing the metal mercury in the exhaust gas is characterized by that molybdic anhydride or tungsten trioxide is deposited for 5atom% or more to an inactive carrier such as silica, titania, alumina or zirconia. Even under a condition that a Cl concentration is low, by bringing the exhaust gas containing the metal mercury into contact with a metal mercury absorbent material whose main component is molybdic anhydride or tungsten trioxide, the metal mercury concentration in the exhaust gas is reduced. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、排ガス中の金属水銀の吸着材とそれを用いた金属水銀の除去方法に係り、特に石炭火力発電所から排出される排ガス中の金属水銀の除去技術に関する。   The present invention relates to an adsorbent for metallic mercury in exhaust gas and a method for removing metallic mercury using the same, and more particularly to a technology for removing metallic mercury in exhaust gas discharged from a coal-fired power plant.

火力発電所などで用いられるボイラなどの燃焼装置で、石炭などの化石燃料を燃焼して生じる排ガス中には、有害物質である水銀が含まれている。水銀は、排ガス中で金属形態の水銀(Hg)もしくは酸化形態の水銀として存在していると考えられ、塩化水銀(HgCl)のような酸化形態の水銀として存在している場合は、水に容易に吸収されるために捕捉・除去することは比較的容易であるが、金属形態の水銀として存在する場合は水にほとんど吸収されないため除去が困難である。 Mercury, which is a harmful substance, is contained in exhaust gas generated by burning fossil fuels such as coal with a combustion apparatus such as a boiler used in a thermal power plant. Mercury is considered to exist in the exhaust gas as mercury in the metal form (Hg) or as oxidized form mercury, and in the presence of oxidized form mercury such as mercury chloride (HgCl 2 ) Since it is easily absorbed, it is relatively easy to capture and remove. However, when it exists as mercury in a metal form, it is hardly absorbed by water and is difficult to remove.

そのため、これまでの水銀の除去技術として、排ガス中へ活性炭などの吸着材を吹き込み、水銀を吸着後、吸着材ごとバグフィルタで回収する活性炭吸着法が知られている。しかし、活性炭吸着法は、高い水銀除去率を得ることができるが、大量の活性炭が必要となるため、運転費用が高くなることや集塵装置の寿命が短くなるという問題がある。   Therefore, as a conventional mercury removal technique, an activated carbon adsorption method is known in which an adsorbent such as activated carbon is blown into exhaust gas, and after adsorbing mercury, the adsorbent is recovered by a bag filter. However, the activated carbon adsorption method can obtain a high mercury removal rate, but it requires a large amount of activated carbon, and therefore has a problem that the operating cost is high and the life of the dust collector is shortened.

また、水銀の酸化機能を有する固体触媒を用い、金属形態の水銀(以下、金属水銀と呼ぶ。)を蒸気圧の低い酸化形態の水銀に酸化し、後流の除塵装置や脱硫装置などで除去する触媒酸化方式が知られている(例えば、特許文献1)。しかし、特許文献1に記載の触媒酸化方式は、排ガス中のCl濃度が低いと、触媒での酸化効率が低下するため、高い水銀除去率が得られ難い。   Also, using a solid catalyst that has an oxidation function of mercury, metal form mercury (hereinafter referred to as metal mercury) is oxidized to oxidation form mercury with a low vapor pressure and removed with a downstream dust removal device or desulfurization device. A catalytic oxidation method is known (for example, Patent Document 1). However, in the catalytic oxidation method described in Patent Document 1, when the Cl concentration in the exhaust gas is low, the oxidation efficiency at the catalyst is lowered, and thus it is difficult to obtain a high mercury removal rate.

そこで、HCl等のハロゲン化合物を触媒塔の前流側の煙道に注入して触媒塔での排ガス中水銀の酸化効率を向上させ、後流機器での水銀除去効率を高める方式が知られている(例えば、特許文献2)。しかし、ハロゲン化合物を注入すれば、触媒での酸化効率は高くなるが、ハロゲン化合物を継続的に添加する必要があるため、運転費用が高くなることや塩素化剤による配管類の腐食が問題となる。   Therefore, a method is known in which halogen compounds such as HCl are injected into the flue on the upstream side of the catalyst tower to improve the oxidation efficiency of mercury in the exhaust gas in the catalyst tower and increase the mercury removal efficiency in the downstream equipment. (For example, Patent Document 2). However, if a halogen compound is injected, the oxidation efficiency of the catalyst is increased, but it is necessary to continuously add the halogen compound, so that the operating cost is high and the piping is corroded by the chlorinating agent. Become.

一方、排ガス中の水銀除去ではないが、天然ガスコンデンセート中の水銀を除去する技術として、アルミナ等の担体にモリブデン等の硫化物を担持させた吸着材で吸着除去すること提案されている(例えば、特許文献3)。   On the other hand, it is not removal of mercury in exhaust gas, but as a technique for removing mercury in natural gas condensate, it has been proposed to adsorb and remove with an adsorbent in which a sulfide such as molybdenum is supported on a carrier such as alumina (for example, Patent Document 3).

また、吸着材の用途については具体的に記載されていないが、アルミナ含有の多孔性無機酸化物担体に活性金属成分として三酸化モリブデンを担持させた吸着材が提案されている(例えば、特許文献4)。   Further, although the use of the adsorbent is not specifically described, an adsorbent in which molybdenum trioxide is supported as an active metal component on an alumina-containing porous inorganic oxide support has been proposed (for example, Patent Documents). 4).

特開2005−125211JP-A-2005-125211 特開2001−198434JP 2001-198434 A 特開平2−2873JP-A-2-2873 特開2005−13930JP2005-13930

しかしながら、特許文献3には、モリブデンの硫化物が水銀の吸着に優れた活性を有していると記載されているが、モリブデンの酸化物は水銀を吸着しないと記載されている。   However, Patent Document 3 describes that molybdenum sulfide has excellent activity for adsorption of mercury, but describes that molybdenum oxide does not adsorb mercury.

ところで、排ガス中には、一般にSOが含まれているが、酸化活性の強い水銀の吸着材を用いると、SOが酸化されてSOになると腐食性が問題となるが、特許文献3、4に記載の吸着材は、排ガス中の水銀を吸着できる能力を有するか否か、及び、SOに対する酸化活性については何ら考慮されていない。 By the way, SO 2 is generally contained in exhaust gas. However, if a mercury adsorbent with strong oxidation activity is used, corrosivity becomes a problem when SO 2 is oxidized to SO 3 . No consideration is given to whether or not the adsorbent described in No. 4 has the ability to adsorb mercury in exhaust gas and the oxidation activity for SO 2 .

本発明は、排気ガス中の金属水銀を吸着除去するのに好適な吸着材を提供することを課題とする。   An object of the present invention is to provide an adsorbent suitable for adsorbing and removing metallic mercury in exhaust gas.

上記の課題を解決するため、本発明の排ガス中の金属水銀を吸着する吸着材は、シリカ、チタニア、アルミナ、ジルコニアなどの不活性担体に、三酸化モリブデン又は三酸化タングステンが5atom%以上担持されていることを特徴とする。
すなわち、本発明者等は、Cl濃度が低い条件においても排ガス中の金属水銀を効率良く除去できる方法を研究した結果、三酸化モリブデンや三酸化タングステンが金属水銀に対して高い吸着能力を有することを見出し、金属水銀を含有する排ガスを三酸化モリブデン又は三酸化タングステンを主成分とする金属水銀吸着材に接触させることにより、排ガス中の金属水銀濃度を低減する方法を採用するに至ったのである。
In order to solve the above problems, the adsorbent for adsorbing metallic mercury in the exhaust gas of the present invention has molybdenum trioxide or tungsten trioxide supported by 5 atom% or more on an inert carrier such as silica, titania, alumina, zirconia. It is characterized by.
That is, the present inventors have studied a method that can efficiently remove metallic mercury in exhaust gas even under low Cl concentration conditions. As a result, molybdenum trioxide and tungsten trioxide have a high adsorption capacity for metallic mercury. And came to adopt a method of reducing the concentration of metal mercury in the exhaust gas by contacting the exhaust gas containing metal mercury with a metal mercury adsorbent mainly composed of molybdenum trioxide or tungsten trioxide. .

ここで、三酸化モリブデンや三酸化タングステンへの金属水銀の吸着メカニズムは明らかではないが、次に記載するような化学吸着と物理吸着の両方が考えられる。
(A)排ガス中の金属水銀が、三酸化モリブデンや三酸化タングステン中に存在する二重結合性酸素と反応し、(1)式に示すように、Hg−O結合を形成する。
Hg+O=Mo→Hg−O−Mo (1)
(B)三酸化モリブデンや三酸化タングステン中の酸素、或いは排ガス中の酸素によって酸化された水銀が多層に吸着する。
Here, although the adsorption mechanism of metallic mercury on molybdenum trioxide or tungsten trioxide is not clear, both chemical adsorption and physical adsorption as described below are conceivable.
(A) Metallic mercury in the exhaust gas reacts with double-bonded oxygen present in molybdenum trioxide or tungsten trioxide to form Hg—O bonds as shown in formula (1).
Hg + O = Mo → Hg-O-Mo (1)
(B) Oxygen in molybdenum trioxide or tungsten trioxide or mercury oxidized by oxygen in exhaust gas is adsorbed in multiple layers.

したがって、シリカ、チタニア、アルミナ、ジルコニアなどの不活性担体を多孔体として吸着材の表面積を増加させれば、三酸化モリブデン、三酸化タングステンの吸着点数や吸着材の吸着容量が増加するため、金属水銀の吸着除去率や吸着材の使用期間を向上させることができる。   Therefore, if the surface area of the adsorbent is increased by using an inert carrier such as silica, titania, alumina, or zirconia as the porous body, the number of adsorption points of molybdenum trioxide and tungsten trioxide and the adsorption capacity of the adsorbent increase. Mercury adsorption removal rate and adsorbent usage period can be improved.

また、本発明の水銀吸着材を用いた金属水銀の除去方法では、活性炭やハロゲン化合物などの添加剤を必要としないため、運転費用が安価であり、且つ、金属水銀Cl濃度が低い排ガス中でも、金属水銀を効率的に吸着除去することが可能である。   Further, in the method for removing metallic mercury using the mercury adsorbing material of the present invention, since no additive such as activated carbon or halogen compound is required, the operating cost is low, and even in the exhaust gas having a low metallic mercury Cl concentration, It is possible to efficiently adsorb and remove metallic mercury.

また、排ガス中にSOが含まれる場合、酸化活性を有する吸着材を用いると、式(2)に示すように、紫煙・配管類の腐食の原因となるSOの生成反応が起こる。この点、本発明の金属水銀吸着材では、含有成分がシリカ、チタニア、アルミナ、ジルコニアなどの不活性成分と、SOに対する酸化活性が非常に低い三酸化モリブデン、三酸化タングステンのみであるため、本発明の金属水銀吸着材によれば、SOの発生は問題とならない。
SO+O→SO+O (2)
また、三酸化モリブデン又は三酸化タングステンの含有量は、5atom%以上担持されていることが好ましく、5〜20atom%担持されていることがより好ましい。5atom%以下では分散化の効果が小さく、20atom%以上では焼成時に三酸化モリブデンや三酸化タングステンの焼結による表面積の低下が大きくなるため、効果はそれほど上がらない。
Further, when SO 2 is contained in the exhaust gas, if an adsorbent having oxidation activity is used, as shown in the formula (2), SO 3 generation reaction that causes corrosion of purple smoke and piping occurs. In this regard, in the metal mercury adsorbent of the present invention, the contained components are only inert components such as silica, titania, alumina, zirconia, and molybdenum trioxide and tungsten trioxide having very low oxidation activity against SO 2 , According to the metal mercury adsorbent of the present invention, generation of SO 3 is not a problem.
SO 2 + O 3 → SO 3 + O 2 (2)
Further, the content of molybdenum trioxide or tungsten trioxide is preferably supported by 5 atom% or more, and more preferably 5 to 20 atom%. If it is 5 atom% or less, the effect of dispersion is small, and if it is 20 atom% or more, the surface area decreases due to sintering of molybdenum trioxide or tungsten trioxide at the time of firing, so the effect does not increase so much.

また、吸着材は、板状又はハニカム状に形成されることが好ましい、ダストが多い排ガスに対しては、吸着材の形状を板状にすることで、磨耗や目詰まりを防止することができ、ダストが少ない場合は、ハニカム状にすることで板状よりも表面積を大きく取ることができる。   In addition, the adsorbent is preferably formed in a plate shape or a honeycomb shape. For exhaust gas with a large amount of dust, wear and clogging can be prevented by making the shape of the adsorbent plate. When the amount of dust is small, the surface area can be made larger than that of the plate shape by forming the honeycomb shape.

さらに、一酸化窒素及び金属水銀を含有する排ガスを、脱硝装置内に導入して一酸化窒素濃度を低減した後、吸着材に接触させることで、金属水銀が吸着材に吸着するのを妨げる一酸化窒素及びアンモニアの濃度が低いため、高い金属水銀の除去率を得ることができる。   Further, after introducing exhaust gas containing nitrogen monoxide and metal mercury into the denitration device to reduce the concentration of nitrogen monoxide, the exhaust gas is brought into contact with the adsorbent, thereby preventing the metal mercury from adsorbing to the adsorbent. Since the concentrations of nitric oxide and ammonia are low, a high metal mercury removal rate can be obtained.

また、吸着材に接触される排ガスの温度は300〜400℃とすることが好ましい。この場合、吸着材の表面積を高く維持することができ、高い金属水銀の除去率を得ることができる。   Moreover, it is preferable that the temperature of the exhaust gas which contacts an adsorbent shall be 300-400 degreeC. In this case, the surface area of the adsorbent can be maintained high, and a high metal mercury removal rate can be obtained.

本発明によれば、排気ガス中の金属水銀を吸着除去するために好適な吸着材を提供することができる。   According to the present invention, an adsorbent suitable for adsorbing and removing metallic mercury in exhaust gas can be provided.

以下、本発明を実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on embodiments.

(実施形態1)
図1は、本発明の排ガス処理システムの一実施形態の系統構成を示す図である。図示のように、排ガス処理システムは、ボイラ1、脱硝装置2、熱交換器3、乾式電気集塵機4、湿式脱硫装置5、湿式電気集塵機6、煙突7、アンモニア注入装置8、吸着材充填層9を備えて構成され、各装置は排ガスダクトなどで接続されている。
(Embodiment 1)
FIG. 1 is a diagram showing a system configuration of an embodiment of an exhaust gas treatment system of the present invention. As shown in the figure, the exhaust gas treatment system includes a boiler 1, a denitration device 2, a heat exchanger 3, a dry electric dust collector 4, a wet desulfurization device 5, a wet electric dust collector 6, a chimney 7, an ammonia injection device 8, and an adsorbent packed bed 9. Each device is connected by an exhaust gas duct or the like.

ボイラ1から排出された石炭の燃焼排ガスは、アンモニア注入装置8によりNHが注入される。NHが注入された排ガスは、脱硝装置2に導入され、NHとNOとの反応が行われる。NOが除去された排ガスは、吸着材充填層9に導入され、ここにおいて排ガス中の水銀が吸着除去される。水銀が除去された排ガスは熱交換器3を経て、乾式電気集塵機4にて煤塵が除去された後、湿式脱硫装置5で排ガス中のSOが除去される。湿式電気集塵機6で煤塵を除去後、煙突7より大気に放出される。 The combustion exhaust gas of coal discharged from the boiler 1 is injected with NH 3 by an ammonia injection device 8. The exhaust gas into which NH 3 has been injected is introduced into the denitration apparatus 2 and the reaction between NH 3 and NO X is performed. The exhaust gas from which NO X has been removed is introduced into the adsorbent packed bed 9, where mercury in the exhaust gas is adsorbed and removed. The exhaust gas from which the mercury has been removed passes through the heat exchanger 3, the soot is removed by the dry electrostatic precipitator 4, and then the SO 2 in the exhaust gas is removed by the wet desulfurization device 5. After removing soot and dust with the wet electrostatic precipitator 6, it is discharged from the chimney 7 to the atmosphere.

本実施の形態において、吸着材充填層9は、充填箱に複数の水銀吸着材が並べて配置され、排ガスが吸着材充填層9を通過する過程で水銀吸着材に接触して、水銀が吸着除去される。水銀吸着材は、高表面積を有する不活性担体(例えば、シリカ、チタニア、アルミナ、ジルコニア)に、三酸化モリブデン又は三酸化タングステンを担持して形成されている。   In the present embodiment, the adsorbent packed layer 9 has a plurality of mercury adsorbents arranged side by side in a packed box, and the exhaust gas contacts the mercury adsorbent in the process of passing through the adsorbent packed layer 9 so that mercury is adsorbed and removed. Is done. The mercury adsorbent is formed by supporting molybdenum trioxide or tungsten trioxide on an inert carrier (for example, silica, titania, alumina, zirconia) having a high surface area.

三酸化モリブデンや三酸化タングステンへの金属水銀の吸着メカニズムは明らかではないが、前記(A)、(B)、及び(1)式で示したように、化学吸着と物理吸着の両方が考えられる。   Although the adsorption mechanism of metallic mercury on molybdenum trioxide and tungsten trioxide is not clear, both chemical adsorption and physical adsorption are conceivable as shown in the above formulas (A), (B), and (1). .

本実施の形態の吸着材の吸着成分として用いられる三酸化モリブデンの原料は、モリブデン酸アンモニウムやモリブデン酸ナトリウムなど一般的に良く知られているモリブデン酸アルカリの他、モリブデン酸や三酸化モリブデンそのものを使用することができる。ここで、モリブデン酸アルカリは、アルカリ成分が水銀吸着能に悪影響を及ぼす可能性があるため、モリブデン酸アンモニウムやモリブデン酸、三酸化モリブデンのいずれかを用いることが好ましい。また、三酸化タングステンの原料についても同様で、タングステン酸アンモニウムやタングステン酸や三酸化タングステンのいずれかを用いることが好ましい。   The raw material of molybdenum trioxide used as the adsorbing component of the adsorbent of the present embodiment is generally well-known alkali molybdate such as ammonium molybdate and sodium molybdate, as well as molybdic acid and molybdenum trioxide itself. Can be used. Here, as the alkali molybdate, it is preferable to use any of ammonium molybdate, molybdic acid, and molybdenum trioxide because the alkali component may adversely affect the mercury adsorption ability. The same applies to the raw material of tungsten trioxide, and it is preferable to use ammonium tungstate, tungstic acid, or tungsten trioxide.

三酸化モリブデンや三酸化タングステンを担持する担体は、不活性担体であればよく、特に限定されるものではないが、表面積が100m2/g以上である多孔質の不活性担体を用いると、吸着材の表面積を大きくできるので金属水銀の除去率を向上できる。 The carrier supporting molybdenum trioxide or tungsten trioxide is not particularly limited as long as it is an inert carrier. However, when a porous inert carrier having a surface area of 100 m 2 / g or more is used, adsorption is performed. Since the surface area of the material can be increased, the metal mercury removal rate can be improved.

水銀吸着材の調製方法は、上記したモリブデン原料又はタングステン原料と不活性担体それぞれの粉末を混練し、ペースト状にしたものを金網やメタルラスなどの網状物に塗布後、乾燥及び焼成する方法を用いることができる。また、モリブデン又はタングステンと不活性担体の混合スラリを、板状或いはハニカム状の不活性担体にコーティングした後、乾燥及び焼成する方法を用いてもよい。ここで、不活性担体としては、例えば、無機繊維シートをコルゲート加工したハニカム状担体、無機繊維製不織布シート、コージェライトやアルミナなどのセラミックハニカム担体、Eガラス繊維などの無機繊維ヤーンを網状に織った網状物、金網やメタルラスなどの網状物に無機繊維物を担持したものを用いることができる。   As a method for preparing the mercury adsorbent, a method is used in which the powders of the molybdenum raw material or tungsten raw material and the inert carrier are kneaded, and the paste is applied to a net-like material such as a wire net or a metal lath, and then dried and fired. be able to. Alternatively, a method may be used in which a mixed slurry of molybdenum or tungsten and an inert carrier is coated on a plate-like or honeycomb-like inert carrier, and then dried and fired. Here, as the inert carrier, for example, a honeycomb-like carrier obtained by corrugating an inorganic fiber sheet, a nonwoven fabric sheet made of inorganic fiber, a ceramic honeycomb carrier such as cordierite or alumina, and an inorganic fiber yarn such as E glass fiber are woven in a net shape. A net-like material, a net-like material such as a wire net or a metal lath carrying inorganic fibers can be used.

また、モリブデン原料又はタングステン原料を溶解した溶液を上記の板状或いはハニカム状の不活性担体に含浸して、モリブデン又はタングステンを担持し、これを乾燥及び焼成する方法を用いてもよい。   Further, a method of impregnating the above plate-like or honeycomb-like inert carrier with a solution in which molybdenum raw material or tungsten raw material is dissolved, carrying molybdenum or tungsten, and drying and firing the same may be used.

これらの調製方法における焼成温度は、いずれの場合でも300〜600℃に設定すると良いが、300〜400℃程度の低温側で焼成すると、吸着材の表面積を高く維持することができる。   The firing temperature in these preparation methods may be set to 300 to 600 ° C. in any case, but if the firing is performed on the low temperature side of about 300 to 400 ° C., the surface area of the adsorbent can be kept high.

また、シリカ、チタニア、アルミナ、ジルコニアなどの不活性担体に対して、三酸化モリブデン又は三酸化タングステン等の吸着成分が5atom%以上担持されていればよい。5atom%以下では分散化の効果が小さく、特に上限に制限は無いが、20atom%を超える量を担持すると、焼成時に三酸化モリブデンや三酸化タングステンの焼結による表面積の低下が大きくなるため、担持量は5〜20atom%とするのが好ましい。   Further, it is only necessary that an adsorption component such as molybdenum trioxide or tungsten trioxide is supported by 5 atom% or more on an inert carrier such as silica, titania, alumina, zirconia. If the amount is less than 5 atom%, the effect of dispersion is small, and the upper limit is not particularly limited. The amount is preferably 5 to 20 atom%.

煤塵などのダストが多い排ガスに対しては、水銀吸着材の形状を板状にすることで、磨耗や目詰まりを防止することができる。逆にダストが少ない場合は、ハニカム状にすることで板状よりも表面積を大きく取ることができる。   For exhaust gas with a lot of dust, such as soot, wear and clogging can be prevented by making the mercury adsorbent into a plate shape. On the other hand, when the amount of dust is small, the surface area can be made larger than the plate shape by forming the honeycomb shape.

吸着材充填層9の設置場所は、特に制限されないが、脱硝装置2の前流側或いは後流側のどちらに設置してもよく、特に、図1に示すように脱硝装置2の後流側に設置すると、吸着材に金属水銀が吸着するのを妨げる一酸化窒素及びアンモニアの濃度が低いため高い金属水銀の除去率を得ることができる。   Although the installation location of the adsorbent packed bed 9 is not particularly limited, it may be installed on either the upstream side or the downstream side of the denitration device 2, and in particular, the downstream side of the denitration device 2 as shown in FIG. If it is installed, the concentration of nitric oxide and ammonia, which prevent the metal mercury from adsorbing to the adsorbent, is low, so that a high metal mercury removal rate can be obtained.

また、吸着材充填層9を脱硝装置2の前流側に設置する場合は、アンモニアによる金属水銀の吸着阻害による金属水銀の除去率低下を防止するため、アンモニア注入装置8の前流側に吸着材充填層9を設置した方が好ましい。さらに、これらいずれの場合でも排ガス温度が300〜400℃付近であるとことが好ましい。   In addition, when the adsorbent packed bed 9 is installed on the upstream side of the denitration device 2, it is adsorbed on the upstream side of the ammonia injection device 8 in order to prevent a reduction in the removal rate of metallic mercury due to inhibition of adsorption of metallic mercury by ammonia. It is preferable to install the material filling layer 9. Furthermore, in any of these cases, the exhaust gas temperature is preferably in the vicinity of 300 to 400 ° C.

本実施の形態の吸着材を用いた金属水銀の除去方法では、活性炭やハロゲン化合物などの添加剤を必要としないため、運転費用が安価である。また、従来の触媒酸化方式では、排ガス中Cl濃度が低いと、触媒での金属水銀の酸化効率が低下し、金属水銀の除去率が低下していたが、本実施の形態では、Cl濃度が低い排ガス中でも、金属水銀を効率的に吸着除去することが可能である。   In the method for removing metallic mercury using the adsorbent according to the present embodiment, an additive such as activated carbon or a halogen compound is not required, so that the operating cost is low. Further, in the conventional catalytic oxidation method, when the Cl concentration in the exhaust gas is low, the oxidation efficiency of the metal mercury in the catalyst is reduced and the removal rate of the metal mercury is reduced, but in this embodiment, the Cl concentration is low. It is possible to efficiently adsorb and remove metallic mercury even in low exhaust gas.

また、排ガス中にSOが含まれる場合、前記式(2)で示したように、紫煙・配管類の腐食の原因となるSOの生成反応が起こるが、本実施の形態の水銀吸着材では、含有成分が、シリカ、チタニア、アルミナ、ジルコニアなどの不活性成分と、SOに対する酸化活性は非常に低い三酸化モリブデン、三酸化タングステンで構成されているため、SOの発生を心配する必要は無い。 Further, when SO 2 is contained in the exhaust gas, as shown in the above formula (2), the generation reaction of SO 3 that causes the corrosion of purple smoke and piping occurs, but the mercury adsorbent of the present embodiment so-containing component, silica, titania, alumina, and inactive ingredients, such as zirconia, oxidation activity is very low molybdenum trioxide for sO 2, because it is composed of tungsten trioxide, to worry about occurrence of sO 3 There is no need.

次に、本実施の形態を適用し、実験により分析を行った実施例及びその比較例について図1、表1、表2を用いて説明する。なお、本実施の形態を試験例1と呼ぶ。   Next, an example in which the present embodiment is applied and analysis was performed by experiment and a comparative example thereof will be described with reference to FIG. 1, Table 1, and Table 2. This embodiment is referred to as Test Example 1.

図1に示すように、試験例1では、脱硝装置2の後流側に吸着材充填層9を設置した場合を想定して実験を行った。このとき、吸着材充填層9に導入される排ガスは、脱硝処理後のガスであるので、本試験では、一酸化窒素及びアンモニアが存在しない条件(表1−試験例1)で行った。以下に示す実施例1〜7及び比較例1、2で調整した吸着材を吸着材充填層9に適用し、通ガスから5時間後のガス中金属水銀の除去率を測定した。その結果を表2に纏めて示した。   As shown in FIG. 1, in Test Example 1, an experiment was performed assuming that an adsorbent packed bed 9 was installed on the downstream side of the denitration apparatus 2. At this time, since the exhaust gas introduced into the adsorbent packed bed 9 is a gas after the denitration treatment, in this test, the test was performed under conditions in which nitrogen monoxide and ammonia do not exist (Table 1 Test Example 1). The adsorbents prepared in Examples 1 to 7 and Comparative Examples 1 and 2 shown below were applied to the adsorbent packed bed 9, and the removal rate of metallic mercury in the gas after 5 hours from passing gas was measured. The results are summarized in Table 2.

Figure 2008238057
Figure 2008238057

シリカ粉末、モリブデン酸アンモニウム、水とシリカ系無機繊維を加えてニーダを用いて混練し、組成がSi/Mo=95/5(原子比)である触媒ペーストを調製した。これとは別にSUS430製帯鋼をメタルラス加工して目開きが約3mmの網状基材を作成し、この基材に上記ペーストを置き、加圧ローラで通過させることにより、基材の網目間及び表面にペーストを圧着して厚さ0.7mmの板状物に成型した。この板状物を150℃で2時間乾燥後、大気中400℃で2時間焼成し、板状の吸着材を得た。   Silica powder, ammonium molybdate, water and silica-based inorganic fibers were added and kneaded using a kneader to prepare a catalyst paste having a composition of Si / Mo = 95/5 (atomic ratio). Separately, a SUS430 band steel is processed with a metal lath to create a reticulated base material having an opening of about 3 mm, and the paste is placed on this base material and passed through a pressure roller, thereby allowing the inter-mesh of the base material and The paste was pressure-bonded to the surface and molded into a plate-like product having a thickness of 0.7 mm. The plate-like material was dried at 150 ° C. for 2 hours and then fired in the atmosphere at 400 ° C. for 2 hours to obtain a plate-like adsorbent.

モリブデン酸アンモニウムをパラタングステン酸アンモニウムに変更した以外は実施例1と同様にして板状の吸着材を得た。   A plate-like adsorbent was obtained in the same manner as in Example 1 except that ammonium molybdate was changed to ammonium paratungstate.

シリカ粉末をチタニア粉末に変更した以外は実施例1と同様にして板状の吸着材を得た。   A plate-like adsorbent was obtained in the same manner as in Example 1 except that the silica powder was changed to titania powder.

モリブデン酸アンモニウムをパラタングステン酸アンモニウムに変更した以外は実施例3と同様にして板状の吸着材を得た。   A plate-like adsorbent was obtained in the same manner as in Example 3 except that ammonium molybdate was changed to ammonium paratungstate.

Ti/Mo=90/10に変更した以外は実施例3と同様にして板状の吸着材を得た。   A plate-like adsorbent was obtained in the same manner as in Example 3 except that Ti / Mo was changed to 90/10.

チタニア粉末、パラタングステン酸アンモニウム、水とシリカ系無機繊維を加えてニーダを用いて混練し、組成がTi/W=95/2.5(原子比)である触媒ペーストを調製した。これとは別にSUS430製帯鋼をメタルラス加工して目開きが約2mmの網状基材を作成し、この基材に上記ペーストを置き、加圧ローラで通過させることにより、基材の網目間及び表面にペーストを圧着して厚さ0.7mmの板状物に成型した。この板状物を150℃で2時間乾燥後、モリブデン酸アンモニウム溶液に含浸した。これを再び150℃で2時間乾燥した後、大気中400℃で2時間焼成し、組成がTi/Mo/W=95/2.5/2.5(原子比)の板状の吸着材を得た。   Titania powder, ammonium paratungstate, water and silica-based inorganic fibers were added and kneaded using a kneader to prepare a catalyst paste having a composition of Ti / W = 95 / 2.5 (atomic ratio). Separately, a SUS430 band steel is processed with a metal lath to create a reticulated base material having an opening of about 2 mm, and the paste is placed on this base material and passed through a pressure roller, thereby allowing the inter-mesh of the base material and The paste was pressure-bonded to the surface and molded into a plate-like product having a thickness of 0.7 mm. The plate was dried at 150 ° C. for 2 hours and then impregnated with an ammonium molybdate solution. This was dried again at 150 ° C. for 2 hours and then calcined at 400 ° C. in the atmosphere for 2 hours to obtain a plate-like adsorbent having a composition of Ti / Mo / W = 95 / 2.5 / 2.5 (atomic ratio). Obtained.

アルミナ及びシリカを主成分とする多孔質コージェライトハニカム担体に、モリブデン酸アンモニウム溶液を含浸した。これを150℃で2時間乾燥した後、大気中400℃で2時間焼成し、組成がTi/Mo=95/5(原子比)のハニカム状の吸着材を得た。
(比較例1)
A porous cordierite honeycomb carrier mainly composed of alumina and silica was impregnated with an ammonium molybdate solution. This was dried at 150 ° C. for 2 hours and then fired in the atmosphere at 400 ° C. for 2 hours to obtain a honeycomb-shaped adsorbent having a composition of Ti / Mo = 95/5 (atomic ratio).
(Comparative Example 1)

モリブデン酸アンモニウムを加えずに、以下実施例1と同様にして板状の吸着材を得た。
(比較例2)
A plate-like adsorbent was obtained in the same manner as in Example 1 without adding ammonium molybdate.
(Comparative Example 2)

モリブデン酸アンモニウムを加えずに、以下実施例3と同様にして板状の吸着材を得た。   A plate-like adsorbent was obtained in the same manner as in Example 3 below without adding ammonium molybdate.

Figure 2008238057
表2の結果より、三酸化モリブデン及び三酸化タングステンを吸着材として用いると、排ガス中の金属水銀を除去することが可能である。また、担体が同じである場合、三酸化モリブデンを吸着材としたときの金属水銀の除去率は三酸化タングステンより高い値を示した。また、吸着成分が同じ場合、チタニアを担体とした場合の金属水銀の除去率はシリカよりも高い値を示した。
Figure 2008238057
From the results in Table 2, it is possible to remove metallic mercury in the exhaust gas when molybdenum trioxide and tungsten trioxide are used as adsorbents. When the same carrier was used, the removal rate of metallic mercury when molybdenum trioxide was used as the adsorbent was higher than that of tungsten trioxide. Further, when the adsorbing components were the same, the removal rate of metallic mercury when titania was used as a carrier was higher than that of silica.

実施例6に示すように、三酸化モリブデン及び三酸化タングステンの吸着成分の比を1対1の割合で混合したものは、同じ成分量を有する三酸化モリブデン(実施例3)と三酸化タングステン(実施例4)金属水銀の除去率の中間の値を示した。さらに、吸着材成分量を増加させれば、金属水銀の除去率が大幅に向上した。   As shown in Example 6, a mixture of molybdenum trioxide and tungsten trioxide adsorbed components in a ratio of 1: 1 is composed of molybdenum trioxide (Example 3) and tungsten trioxide having the same component amount (Example 3). Example 4) An intermediate value of the removal rate of metallic mercury was shown. Furthermore, the removal rate of metallic mercury was greatly improved by increasing the amount of adsorbent components.

(実施形態2)
図2は本発明の他の一実施形態である排ガス処理システムの系統構成を示す図である。以下、試験例2と呼ぶ。
(Embodiment 2)
FIG. 2 is a diagram showing a system configuration of an exhaust gas treatment system according to another embodiment of the present invention. Hereinafter, it is called Test Example 2.

図示のように、本実施の形態が実施形態1と異なる点は、図2に示すように、アンモニア注入装置8及び脱硝装置2の前流側に吸着材充填層9を設置したことにある。このとき、吸着材充填層9に導入される排ガスは、未処理ガスであり、アンモニアが注入される前のガスであるので、本試験は、一酸化窒素のみ存在する条件(表1−試験例2)で行った。また、実施形態1の実施例1〜4の吸着材と同一のものを用いて、通ガスから5時間後のガス中金属水銀の除去率を測定した。その結果を表3に纏めて示した。   As shown in the figure, this embodiment differs from the first embodiment in that an adsorbent packed bed 9 is installed on the upstream side of the ammonia injection device 8 and the denitration device 2 as shown in FIG. At this time, since the exhaust gas introduced into the adsorbent packed bed 9 is an untreated gas and is a gas before ammonia is injected, this test is performed under conditions where only nitrogen monoxide exists (Table 1-Test Example). 2). Moreover, the removal rate of metallic mercury in the gas after 5 hours from the gas flow was measured using the same adsorbents of Examples 1 to 4 of Embodiment 1. The results are summarized in Table 3.

Figure 2008238057
表3の結果より、排ガス中の金属水銀の除去性能は、一酸化窒素が吸着材への金属水銀の吸着を妨げているため、試験例1の結果と比較すると少し低くなったが、吸着材による金属水銀の除去効果は認められた。
Figure 2008238057
From the results of Table 3, the removal performance of metallic mercury in the exhaust gas was slightly lower than that of Test Example 1 because nitrogen monoxide hindered the adsorption of metallic mercury on the adsorbent, but the adsorbent The removal effect of metal mercury was recognized.

(実施形態3)
図3は本発明の他の一実施形態である排ガス処理システムの系統構成を示す図である。以下、試験例3と呼ぶ。
(Embodiment 3)
FIG. 3 is a diagram showing a system configuration of an exhaust gas treatment system according to another embodiment of the present invention. Hereinafter, this is referred to as Test Example 3.

図示のように、本実施の形態が実施形態1と異なる点は、アンモニア注入装置8と脱硝装置2の間に吸着材充填層9を設置したことにある。このとき、吸着材充填層9に導入される排ガスは、アンモニア注入後の未処理ガスであるので、本試験は、一酸化窒素とアンモニア両方が存在する条件(表1−試験例3)で行った。実施形態1の実施例1〜4の吸着材と同一のものを用いて、通ガスから5時間後のガス中金属水銀の除去率を測定した。その結果を表4に纏めて示した。   As shown in the figure, the present embodiment is different from the first embodiment in that an adsorbent packed layer 9 is installed between the ammonia injection device 8 and the denitration device 2. At this time, since the exhaust gas introduced into the adsorbent packed bed 9 is an untreated gas after the ammonia injection, this test was performed under conditions where both nitrogen monoxide and ammonia exist (Table 1-Test Example 3). It was. Using the same adsorbent as in Examples 1 to 4 of Embodiment 1, the removal rate of metallic mercury in the gas after 5 hours from the gas flow was measured. The results are summarized in Table 4.

Figure 2008238057
金属水銀の除去性能は、一酸化窒素、アンモニア両方の影響を受けるため、試験例1、2の結果と比較すると最も低くなったが、吸着材による金属水銀の除去効果は認められた。この場所に吸着材充填層を設置する場合は、吸着材成分量を増加させて、金属水銀の除去性能を高める必要がある。
Figure 2008238057
The metal mercury removal performance was affected by both nitrogen monoxide and ammonia, and thus was the lowest compared with the results of Test Examples 1 and 2, but the metal mercury removal effect by the adsorbent was recognized. When an adsorbent packed bed is installed at this location, it is necessary to increase the amount of adsorbent components and improve the removal performance of metallic mercury.

試験例1から試験例3の結果より、一酸化窒素とアンモニアの両方の濃度が低い場合に、最も高い金属水銀の除去率が得られることが分かる。従って、水銀吸着材は、一酸化窒素やアンモニアをほとんど含まない脱硝装置出口に設置することが最も好ましい。   From the results of Test Example 1 to Test Example 3, it can be seen that the highest metal mercury removal rate can be obtained when both the concentrations of nitric oxide and ammonia are low. Therefore, it is most preferable to install the mercury adsorbent at the outlet of the denitration apparatus that hardly contains nitric oxide or ammonia.

本発明の排ガス処理システムの実施の形態の系統構成を示す図である。It is a figure which shows the system | strain structure of embodiment of the exhaust gas processing system of this invention. 本発明の他の一実施形態である排ガス処理システムの系統構成を示す図である。It is a figure which shows the system configuration | structure of the exhaust gas processing system which is other one Embodiment of this invention. 本発明の他の一実施形態である排ガス処理システムの系統構成を示す図である。It is a figure which shows the system configuration | structure of the exhaust gas processing system which is other one Embodiment of this invention.

符号の説明Explanation of symbols

1 ボイラ
2 脱硝装置
3 熱交換器
4 乾式電気集塵機
5 湿式脱硫装置
6 湿式電気集塵機
7 煙突
8 アンモニア注入装置
9 吸着材充填層
DESCRIPTION OF SYMBOLS 1 Boiler 2 Denitration device 3 Heat exchanger 4 Dry type electrostatic precipitator 5 Wet desulfurization device 6 Wet electrostatic precipitator 7 Chimney 8 Ammonia injection device 9 Adsorbent packed bed

Claims (5)

シリカ、チタニア、アルミナ、ジルコニアなどの不活性担体に、三酸化モリブデン又は三酸化タングステンが5atom%以上担持されている排ガス中の金属水銀の吸着材。   An adsorbent for metallic mercury in exhaust gas, in which molybdenum atom trioxide or tungsten trioxide is supported at 5 atom% or more on an inert carrier such as silica, titania, alumina, zirconia. 請求項1に記載の吸着材は、板状又はハニカム状に形成されてなることを特徴とする吸着材。   The adsorbent according to claim 1, wherein the adsorbent is formed in a plate shape or a honeycomb shape. 請求項1又は2に記載の吸着材に金属水銀を含有する排ガスを接触させ、排ガス中の金属水銀濃度を低減することを特徴とする排ガス中の金属水銀の除去方法。   A method for removing metallic mercury in exhaust gas, wherein the adsorbent according to claim 1 or 2 is brought into contact with exhaust gas containing metallic mercury to reduce the concentration of metallic mercury in the exhaust gas. 一酸化窒素及び金属水銀を含有する排ガスを、脱硝装置内に導入して一酸化窒素濃度を低減した後、請求項1又は2に記載の吸着材に接触させ、排ガス中の金属水銀濃度を低減することを特徴とする排ガス中の金属水銀の除去方法。   An exhaust gas containing nitrogen monoxide and metal mercury is introduced into the denitration device to reduce the concentration of nitric oxide, and then brought into contact with the adsorbent according to claim 1 or 2 to reduce the concentration of metal mercury in the exhaust gas. A method for removing metallic mercury in exhaust gas, characterized in that: 請求項3又は4に記載の排ガス中の金属水銀の除去方法において、吸着材に接触される排ガスの温度が300〜400℃であることを特徴とする排ガス中の金属水銀の除去方法。   5. The method for removing metallic mercury in exhaust gas according to claim 3 or 4, wherein the temperature of the exhaust gas in contact with the adsorbent is 300 to 400 ° C.
JP2007082418A 2007-03-27 2007-03-27 Absorbent material of metal mercury in exhaust gas and method for removing metal mercury using it Pending JP2008238057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007082418A JP2008238057A (en) 2007-03-27 2007-03-27 Absorbent material of metal mercury in exhaust gas and method for removing metal mercury using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007082418A JP2008238057A (en) 2007-03-27 2007-03-27 Absorbent material of metal mercury in exhaust gas and method for removing metal mercury using it

Publications (1)

Publication Number Publication Date
JP2008238057A true JP2008238057A (en) 2008-10-09

Family

ID=39910029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007082418A Pending JP2008238057A (en) 2007-03-27 2007-03-27 Absorbent material of metal mercury in exhaust gas and method for removing metal mercury using it

Country Status (1)

Country Link
JP (1) JP2008238057A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121036A (en) * 2009-12-14 2011-06-23 Babcock Hitachi Kk Mercury removing method for combustion exhaust gas and cleaning apparatus for combustion exhaust gas
JPWO2013027403A1 (en) * 2011-08-23 2015-03-05 株式会社東芝 Cation adsorbent and solution treatment method using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11104432A (en) * 1997-09-30 1999-04-20 Kawasaki Heavy Ind Ltd Method and apparatus for gas treatment
JP2004237244A (en) * 2003-02-07 2004-08-26 Mitsubishi Heavy Ind Ltd Method and system for removing mercury in exhaust gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11104432A (en) * 1997-09-30 1999-04-20 Kawasaki Heavy Ind Ltd Method and apparatus for gas treatment
JP2004237244A (en) * 2003-02-07 2004-08-26 Mitsubishi Heavy Ind Ltd Method and system for removing mercury in exhaust gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121036A (en) * 2009-12-14 2011-06-23 Babcock Hitachi Kk Mercury removing method for combustion exhaust gas and cleaning apparatus for combustion exhaust gas
WO2011074230A1 (en) * 2009-12-14 2011-06-23 バブコック日立株式会社 Method for removing mercury from combustion gas, and combustion gas cleaner
US8372363B2 (en) 2009-12-14 2013-02-12 Babcock-Hitachi Kabushiki Kaisha Method of mercury removal from combustion exhaust gas and combustion exhaust gas purification apparatus
JPWO2013027403A1 (en) * 2011-08-23 2015-03-05 株式会社東芝 Cation adsorbent and solution treatment method using the same
JP2016034639A (en) * 2011-08-23 2016-03-17 株式会社東芝 Production method of cation adsorbent
US9409144B2 (en) 2011-08-23 2016-08-09 Kabushiki Kaisha Toshiba Cation adsorbent for solution treatment
US10081850B2 (en) 2011-08-23 2018-09-25 Kabushiki Kaisha Toshiba Treatment method for solution containing metal ions using cation adsorbent

Similar Documents

Publication Publication Date Title
KR101298305B1 (en) Apparatus for removing of trace of toxic substance from exhaust gas and method of operating the same
JP5051977B2 (en) Device for removing trace harmful substances in exhaust gas and operation method thereof
JP5385114B2 (en) Combustion exhaust gas mercury removal method and combustion exhaust gas purification device.
JP4831801B2 (en) Method and apparatus for removing mercury from exhaust gas
JP5598421B2 (en) Method for desulfurization / denitration of exhaust gas from sintering furnace and method for producing carbon monoxide oxidation catalyst
WO2008035773A1 (en) Catalyst for oxidation of metal mercury
WO2011016412A1 (en) Method for processing exhaust gas of co2 collector
JP5636577B2 (en) Method for purifying exhaust gas containing metallic mercury and oxidation catalyst for metallic mercury in exhaust gas
CN109201041A (en) A kind of flue gas demercuration catalyst and preparation method thereof of Mn doping cerium zirconium sosoloid
CN103331140B (en) Demercuration adsorbent and preparation method thereof
JP4182325B2 (en) Low temperature denitration catalyst and exhaust gas low temperature denitration method
KR100973675B1 (en) Catalyst for reduction of nitrogen oxide and oxidation of mercury in exhaust gas and method for removing nitrogen oxide and mercury simultaneously using the catalyst
JP2015104725A (en) Method for oxidation treatment of metallic mercury in gas by using used denitration catalyst
JP2008238057A (en) Absorbent material of metal mercury in exhaust gas and method for removing metal mercury using it
JP2008030017A (en) Removal apparatus of trace harmful substance in exhaust gas and its operation method
EP1982763B1 (en) Catalyst for oxidizing mercury metal, exhaust gas purifying catalyst comprising catalyst for oxidizing mercury metal, and method for producing same
JP6400379B2 (en) Denitration method for combustion exhaust gas
JP2006314935A (en) Flue gas nox removal catalyst, its manufacturing method, and flue gas nox removal system
JP2018058028A (en) Mercury oxidation catalyst, and method for producing mercury oxidizing device including mercury oxidation catalyst
JP5716188B2 (en) Arsenic compound removal method and removal apparatus, and denitration catalyst regeneration method and regeneration apparatus
JP5186699B2 (en) Oxidation catalyst for metallic mercury in exhaust gas and method for oxidizing metallic mercury using the catalyst
JP2015116512A (en) Adsorbent for removing arsenic or phosphorus from flue gas and flue gas purification method using the same
JP2009226298A (en) Method for treating exhaust gas and exhaust gas treatment apparatus
JP2014200757A (en) Cumulative catalyst poison adsorbent, and combustion exhaust gas purification method
Qin et al. Experimental Research on Mercury Catalytic Oxidation over Ce Modified SCR Catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025