JP2000197822A - Catalyst for decomposing and removing nitrogen oxide and method for decomposing and removing nitrogen oxide - Google Patents

Catalyst for decomposing and removing nitrogen oxide and method for decomposing and removing nitrogen oxide

Info

Publication number
JP2000197822A
JP2000197822A JP11002643A JP264399A JP2000197822A JP 2000197822 A JP2000197822 A JP 2000197822A JP 11002643 A JP11002643 A JP 11002643A JP 264399 A JP264399 A JP 264399A JP 2000197822 A JP2000197822 A JP 2000197822A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
metal
oxygen
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11002643A
Other languages
Japanese (ja)
Inventor
Hiroshi Uchida
洋 内田
Isamu Yasuda
勇 安田
Taiji Yokoi
泰治 横井
Osamu Okada
治 岡田
Terumitsu Kakumoto
輝充 角本
Toshiro Nakayama
敏郎 中山
Tomoe Kurusu
知恵 来栖
Hirofumi Otsuka
浩文 大塚
Yasuhisa Nakamura
泰久 中村
Hidemasa Ishikawa
秀征 石川
Hideki Kimura
秀樹 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saibu Gas Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Saibu Gas Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saibu Gas Co Ltd, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Saibu Gas Co Ltd
Priority to JP11002643A priority Critical patent/JP2000197822A/en
Publication of JP2000197822A publication Critical patent/JP2000197822A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a highly active and practical decomposition catalyst for directly decomposing and removing NOX, especially NO, in a waste gas of all types of combustion apparatus without using a reducing agent and to provide a practical nitrogen oxide removal method using the catalyst for a waste gas containing oxygen and steam. SOLUTION: This nitrogen oxide decomposition catalyst to be used comprises catalytically active components containing at least one type of metal compounded oxide having a composition defined as the formula: AB1-XMXO3±Z (wherein A is an alkaline earth metal; B is a metal selected from titanium group metals; and M is a metal selected from iron group metals, copper group metals, and platinum group metals): and having a perovskite type crystal structure and a basic metal oxide such as rare earth metal oxides on which the catalytically active components are deposited. The active components are provided with especially excellent capability in the case they are produced from alkoxides. The catalyst has high durability to poisoning by oxygen and steam and a waste gas containing steam is brought into contact with the catalyst in the presence of or in the absence of oxygen at 200-900 deg.C without dehumidifying or drying the waste gas and without adding a reducing agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、工場或いは家庭等
の固定発生源または自動車等の移動発生源から排出され
る窒素酸化物NO、特に一酸化窒素NOを、還元剤な
しに直接分解して除去する触媒及びこの触媒の調製方
法、並びにこれを用いた窒素酸化物の分解除去方法に関
する。
The present invention relates to the plant or nitrogen oxides are discharged from stationary sources or mobile sources such as automobiles such as a home NO X, in particular nitrogen monoxide NO, it is decomposed directly without reducing agent The present invention relates to a catalyst to be removed by removal, a method for preparing the catalyst, and a method for decomposing and removing nitrogen oxides using the catalyst.

【0002】[0002]

【従来の技術】窒素酸化物の除去技術には、アンモニ
ア、炭化水素類等を還元剤として用いてNOを還元除去
する方法と、還元剤非存在下でNOを直接的にNとO
とに分解する直接分解法がある。前者の代表例として
はアンモニア選択的接触還元法(SCR)があり、工場
ボイラーの排煙等の固定発生源におけるNOx除去に実
用化されているが、移動発生源での脱硝方法としては実
用的ではない。
2. Description of the Related Art Nitrogen oxide removal techniques include a method of reducing and removing NO using ammonia, hydrocarbons and the like as a reducing agent, and a method of directly removing NO into N 2 and O in the absence of a reducing agent.
There is a direct decomposition method of decomposing into two . Ammonia selective catalytic reduction method as a representative example of the former may (SCR), has been commercialized in NO x removal in stationary sources such as flue gas plant boilers, utility as denitration method in a mobile sources Not a target.

【0003】また、空燃比(空気と燃料の重量比)を最
適に保ちながら燃焼するストイキ燃焼により、排ガス中
のNO、CO、未燃炭化水素類の3成分を同時に除去
する三元触媒法(TWC)も、COや炭化水素を還元剤
とする還元除去法であると考えられる。この方法では、
Rh−Pt系触媒を用いることにより高い脱硝率が得ら
れており、移動発生源を含めた広い範囲に適用されてい
る。しかし、ストイキ燃焼法は高効率、省エネルギー性
の点で不利である。他方、空燃比の大きい稀薄燃焼法
は、ストイキ燃焼に比べて燃焼効率が高く、省エネルギ
ー性の面で燃焼技術としては有利である。しかし、希薄
燃焼の排ガス中には大量のOが存在するためRh−P
t系触媒は脱硝性能を示さない。
Further, a three-way catalytic method for simultaneously removing three components of NO X , CO, and unburned hydrocarbons in exhaust gas by stoichiometric combustion in which the air-fuel ratio (weight ratio between air and fuel) is maintained at an optimum level. (TWC) is also considered to be a reduction removal method using CO or a hydrocarbon as a reducing agent. in this way,
A high denitration rate is obtained by using the Rh-Pt-based catalyst, and it is applied to a wide range including a moving source. However, the stoichiometric combustion method is disadvantageous in terms of high efficiency and energy saving. On the other hand, the lean combustion method having a large air-fuel ratio has higher combustion efficiency than stoichiometric combustion, and is advantageous as a combustion technique in terms of energy saving. However, since a large amount of O 2 exists in the exhaust gas of lean burn, Rh-P
The t-based catalyst does not show denitration performance.

【0004】酸素が存在する排ガス中のNOを還元除
去する方法については、従来アンモニアを還元剤として
用いる方法以外になかったが、近年炭化水素を還元剤と
する脱硝方法が、低い脱硝率ながらも実用化され始めて
いる。しかしながら、これらの還元脱硝法は、排ガス組
成(NO濃度、O濃度、還元剤量、その他)によっ
て脱硝性能が大きく変動するので、実用的な脱硝率を確
保するためには、還元剤の添加率や燃焼状態を制御する
ための設備を必要とする。
[0004] For a method of oxygen reduction remove NO X in the exhaust gas present, there was no other than the conventional method using ammonia as a reducing agent, in recent years denitration method for a hydrocarbon as a reducing agent, while low denitration ratio Has also begun to be put into practical use. However, these reducing denitration method, exhaust gas composition (NO X concentration, O X concentration, reducing agent amount, etc.) since denitration performance greatly varies, in order to ensure a practical denitration rate, the reducing agent Equipment for controlling the addition rate and combustion state is required.

【0005】還元剤の非存在下でNOを直接的にN
とOとに分解する直接分解法は、脱硝性能が排ガス組
成に依存しないため、簡単な脱硝システムを構成するこ
とが可能である。従って、排ガス発生源である燃焼器の
種類も特定のものに限られず適用範囲が広い。しかし、
酸素が10容量%程度も残存する稀薄燃焼ガソリンエン
ジンの排ガスやディーゼルエンジンの排ガスを浄化する
場合のような酸素存在下でのNOの直接分解は極めて
困難である。実験室レベルでは、ZSM−5ゼオライト
に銅、Ga、Ce等を添加した金属担持ゼオライト触媒
(例えば特公昭60−12909号公報)が提案されて
いるが、この触媒は酸素非存在下では高活性であっても
酸素存在下では著しく活性が低下する。
[0005] In the absence of a reducing agent, NO X is directly converted to N 2
O 2 and direct decomposition method decomposes in, because the denitration performance does not depend on the exhaust gas composition, it is possible to construct a simple denitration system. Therefore, the type of the combustor that is the exhaust gas generation source is not limited to a specific type but has a wide application range. But,
It is extremely difficult to directly decompose NO X in the presence of oxygen, such as when purifying exhaust gas of a lean burn gasoline engine or exhaust gas of a diesel engine in which about 10% by volume of oxygen remains. At the laboratory level, a metal-supported zeolite catalyst obtained by adding copper, Ga, Ce, etc. to ZSM-5 zeolite (for example, Japanese Patent Publication No. 60-12909) has been proposed, but this catalyst has a high activity in the absence of oxygen. Even in the presence of oxygen, the activity is significantly reduced.

【0006】別の直接分解触媒としてペロブスカイト型
金属酸化物が提案されており(寺岡靖剛、鹿川修一ら、
触媒33(2)73−76(1991))、これは60
0℃以上の高温でも活性及び耐久性が優れており、また
触媒単位重量当たりの活性が高いことが知られている。
中でも、組成がLa0.8Sr0.2CoOで示され
るペロブスカイト型金属酸化物は、最高の単位重量当た
りの活性を有することが知られている。また、KNi
型結晶構造を有するLa1.6Sr0.4 CuO
は、単位表面積当たりの活性が最高であることが知られ
ている(安田弘之、御園生誠ら、触媒33(2)69−
72(1991))。
[0006] Perovskite type as another direct cracking catalyst
Metal oxides have been proposed (Yasutake Teraoka, Shuichi Kagawa, etc.
catalyst33(2) 73-76 (1991)), which is 60
Excellent activity and durability even at high temperatures of 0 ° C or higher, and
It is known that the activity per unit weight of the catalyst is high.
Among them, the composition is La0.8Sr0.2CoO3Indicated by
Perovskite-type metal oxides have the highest unit weight
It is known that it has a high activity. Also, K2Ni
F4La having type crystal structure1.6Sr0.4 CuO4
Is known to have the highest activity per unit surface area
(Hiroyuki Yasuda, Makoto Misono et al., Catalyst33(2) 69-
72 (1991)).

【0007】しかし、従来知られているペロブスカイト
型酸化物の触媒活性は、未だ実用レベルに達していな
い。特に、技術的要請の高い酸素存在下でのNOの直接
分解に関しては、前記La0.8Sr0.2CoO
も、含有酸素5容量%の下で反応温度800℃で高々転
化率10%程度を示すに過ぎない。
However, the catalytic activity of conventionally known perovskite oxides has not yet reached a practical level. In particular, regarding the direct decomposition of NO in the presence of oxygen, which has a high technical demand, even the above-mentioned La 0.8 Sr 0.2 CoO 3 has a conversion rate of at most 10% at a reaction temperature of 800 ° C. under an oxygen content of 5% by volume. It only shows the degree.

【0008】本発明者らは、NOの直接分解におけるペ
ロブスカイト型金属酸化物の実用的触媒活性の向上につ
いて研究開発を重ね、先に幾つかの金属酸化物について
特許出願した(特願平10−004094、特願平10
−151720、及び特願平10−151841号等)
が、更に排ガス成分による被毒に対する耐久性の強い触
媒が求められている。
The present inventors have conducted research and development on the improvement of the practical catalytic activity of perovskite-type metal oxides in the direct decomposition of NO, and have previously applied for patents on some metal oxides (Japanese Patent Application No. Hei 10-1998). 004094, Japanese Patent Application No. 10
-15720 and Japanese Patent Application No. 10-151841)
However, there is a need for a catalyst having high durability against poisoning by exhaust gas components.

【0009】[0009]

【発明が解決しようとする課題】本発明は、全ての燃焼
機器の排ガス中のNO、特にNOを還元剤なしに直接
分解して除去できる実用的で高活性な触媒の提供を課題
とする。また本発明はこの触媒についてより高い被毒耐
久性を発現する触媒調製方法並びにこの触媒を用いた実
用的な排ガス脱硝方法の提供を課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a practical and highly active catalyst capable of directly decomposing and removing NO X , in particular, NO, in exhaust gas from all combustion equipment without a reducing agent. . Another object of the present invention is to provide a catalyst preparation method which exhibits higher poisoning durability of the catalyst, and a practical exhaust gas denitration method using the catalyst.

【0010】[0010]

【課題を解決するための手段】本発明によれば、ペロブ
スカイト型酸化物のTiサイトをFe、Cu若しくはP
tで部分的に置換した三元ペロブスカイト型複合酸化物
を希土類酸化物等に担持したものを用いて、上記課題が
解決される。
According to the present invention, the Ti site of a perovskite oxide is changed to Fe, Cu or P
The above problem is solved by using a ternary perovskite-type composite oxide partially substituted with t supported on a rare earth oxide or the like.

【0011】即ち本発明は、窒素酸化物分解触媒の活性
成分である金属複合酸化物のうち少なくとも1種類の組
成が、一般式AB1−X3+−Z(但しAはアル
カリ土類元素から選ばれた1種類の金属、Bはチタン族
元素から選ばれた1種類の金属、Mは鉄族、銅族または
白金族元素から選ばれた1種類の金属、0<x<1、Z
は常温大気圧時における金属酸化物の酸素欠陥数或いは
酸素過剰数) で表され、該金属複合酸化物のうち少な
くとも1種類がペロブスカイト型結晶構造を有し、且つ
該触媒活性成分を塩基性金属酸化物に担持してなること
を特徴とする分解触媒の発明である。
[0011] The present invention, at least one composition of the metal composite oxide, the active ingredient in a nitrogen oxide decomposing catalyst has the general formula AB 1-X M X O 3 + -Z ( where A is an alkaline earth One metal selected from elements, B is one metal selected from titanium group elements, M is one metal selected from iron group, copper group or platinum group elements, 0 <x <1, Z
Is the number of oxygen vacancies or excess oxygen in the metal oxide at normal temperature and atmospheric pressure), at least one of the metal composite oxides has a perovskite crystal structure, and the catalytically active component is a basic metal. An invention of a decomposition catalyst characterized by being supported on an oxide.

【0012】前記担体は、塩基性金属酸化物であれば通
常用いられるものでも良いが、特にマグネシア或は希土
類酸化物が好ましい。
The carrier may be a commonly used one as long as it is a basic metal oxide, but magnesia or a rare earth oxide is particularly preferred.

【0013】第2の本発明は前記触媒に関する調製方法
の発明であり、前記触媒活性成分である金属複合酸化物
を構成する金属のアルコキシドを用いて触媒活性成分を
調製することを特徴とするものである。
A second aspect of the present invention is an invention of a preparation method relating to the catalyst, characterized in that a catalytically active component is prepared using an alkoxide of a metal constituting the metal composite oxide as the catalytically active component. It is.

【0014】第3の本発明は、還元剤の非存在下で、窒
素酸化物を上記分解触媒と温度範囲200℃−900℃
で酸素の存在下または非存在下において接触させること
を特徴とする直接分解による窒素酸化物の除去方法の発
明である。
According to a third aspect of the present invention, a nitrogen oxide is reacted with the decomposition catalyst in a temperature range of 200 ° C. to 900 ° C. in the absence of a reducing agent.
The present invention relates to a method for removing nitrogen oxides by direct decomposition, wherein the contact is carried out in the presence or absence of oxygen.

【0015】また、第3の本発明において、還元剤の非
存在下で、窒素酸化物を上記分解触媒と温度範囲200
℃−900℃で酸素及び水蒸気の共存下で接触させるこ
とによっても窒素酸化物を直接に分解除去することがで
きる。
In the third aspect of the present invention, in the absence of a reducing agent, nitrogen oxides are reacted with the decomposition catalyst in a temperature range of 200
Nitrogen oxides can also be directly decomposed and removed by contacting at -900C in the presence of oxygen and water vapor.

【0016】本発明において、一般式中のAは、アルカ
リ土類元素から選ばれた1種類の金属、即ちCa、Sr
またはBaの何れかであり、Raはこの類に属するが放
射性を有する点で実用上好ましくない。アルカリ土類元
素に属する金属は、ペロブスカイト型結晶構造を生じ易
いイオン半径を有している。
In the present invention, A in the general formula is one kind of metal selected from alkaline earth elements, ie, Ca, Sr
Or Ra, which belongs to this class, but is not practically preferable in that it has radioactivity. A metal belonging to the alkaline earth element has an ionic radius that easily causes a perovskite crystal structure.

【0017】本発明において、一般式中のBはチタン族
元素から選ばれた1種類の金属、即ちTi、Zrまたは
Hfの何れかであり、化学的性質が互いに類似してい
る。
In the present invention, B in the general formula is one kind of metal selected from titanium group elements, that is, one of Ti, Zr and Hf, and their chemical properties are similar to each other.

【0018】本発明において、一般式中のMは、鉄族、
銅族若しくは白金族元素から選ばれた1種類の金属、即
ちFe、Co或はNi、またはCu、Ag或はAu、若
しくはRu、Rh、Pd、Os、Ir或はPtの何れか
であり、化学的性質が互いに類似している。
In the present invention, M in the general formula is an iron group,
A metal selected from the group consisting of copper and platinum group metals, that is, Fe, Co or Ni, or Cu, Ag or Au, or Ru, Rh, Pd, Os, Ir or Pt; Chemical properties are similar to each other.

【0019】本発明においてMは、結晶格子においてB
の一部を置換する関係にあり、置換の分率をxで表示す
る。従って0<x<1であり、x=0またはx=1では
充分な脱硝性能が得られない。
In the present invention, M represents B in the crystal lattice.
Are substituted, and the replacement fraction is indicated by x. Therefore, 0 <x <1, and if x = 0 or x = 1, sufficient denitration performance cannot be obtained.

【0020】本発明におけるペロブスカイト型構造は、
基本的な結晶構造としては灰チタン石( perovskite 、
CaTiO)で代表される化学式ABXの化合物が
有する立方晶系に属する結晶構造の一形式を意味する。
ただし、本発明ではそれぞれCa、またはTiの一部ま
たは全部を置換する金属の原子半径によって結晶格子に
多少の歪みが生じている結晶構造や構成金属或は酸素が
多少の過剰乃至欠損状態に在るものも含めて、ペロブス
カイト型構造の包括的名称として上記名称を用いる。
The perovskite structure of the present invention is as follows:
The basic crystal structure is perovskite (perovskite,
It means a type of crystal structure belonging to the cubic system possessed by the compound of the formula ABX 3 represented by CaTiO 3 ).
However, in the present invention, a crystal structure in which the crystal lattice has some distortion due to the atomic radius of the metal that partially or totally replaces Ca or Ti, a constituent metal or oxygen is present in a slightly excessive or defective state. The above names are used as generic names of perovskite-type structures, including those of the perovskite type.

【0021】一般にNOが直接的にNとOとに分解
する際に、分解で生成したO或いは排ガス中のO
よって触媒表面が被覆される傾向があるが、ペロブスカ
イト型酸化物は容易に吸着酸素の離脱を起こすため、こ
のような被覆が比較的起こり難い。
[0021] In general, NO is decomposed into N 2 and O 2 directly, there is a tendency that the catalyst surface is covered by O 2 in the O 2 or in the exhaust gas generated by the decomposition, the perovskite type oxide Such coating is relatively unlikely to occur because the adsorbed oxygen is easily released.

【0022】またペロブスカイト型複合酸化物では、含
有される遷移金属の酸化数が変動する酸化還元反応( r
edox 反応)が起こり易く、ペロブスカイト型酸化物は
酸化還元反応が迅速且つ定常的に進行するように作用す
る。
In the case of the perovskite-type composite oxide, the oxidation-reduction reaction (r
The edox reaction) easily occurs, and the perovskite-type oxide acts so that the oxidation-reduction reaction proceeds rapidly and constantly.

【0023】[0023]

【発明の実施の形態】本発明の担持触媒は、触媒活性成
分の調製方法に依らず、活性成分である金属複合酸化物
のうち少なくとも1種類の組成が、一般式AB1−X
3+−Z で表される遷移金属複合酸化物を活性成分
として含む触媒であり、中でもAがSr、BがTi、M
がFeである場合が特に好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The supported catalyst of the present invention has a catalytic activity
Metal oxides as active ingredients, regardless of the preparation method
Has at least one composition represented by general formula AB1-XM
XO3 + -Z An active ingredient comprising a transition metal composite oxide represented by
A is Sr, B is Ti, M
Is particularly preferably Fe.

【0024】活性成分の組成が上記一般式で表されるよ
うに調製された遷移金属複合酸化物は、事実上種々の結
晶構造を持つ酸化物の混合物として得られることが多い
が、少なくとも1種類の酸化物が前記の包括的意味のペ
ロブスカイト型構造を有するものが望ましい。X線回折
(以下XRDと略記)のピークに少なくともペロブスカ
イトのピークが存在し、これと共にペロブスカイト以外
の酸化物に由来するピークが混在しているものも活性を
有するが、中でもペロブスカイト相のみで構成されてい
る単相ペロブスカイトが特に活性が高い。但し、結晶構
造のみペロブスカイト型構造を有していても、組成が前
記一般式に該当する複合酸化物でなければ、本発明の課
題は達成されない。
The transition metal composite oxide prepared so that the composition of the active ingredient is represented by the above general formula is often obtained as a mixture of oxides having various crystal structures in practice, but at least one type of oxide is generally used. Is preferably an oxide having a perovskite structure in the above general meaning. X-ray diffraction (hereinafter abbreviated as XRD) peak has at least a perovskite peak, and a peak in which a peak derived from an oxide other than the perovskite is mixed also has an activity. Single-phase perovskites are particularly active. However, even if only the crystal structure has a perovskite structure, the object of the present invention cannot be achieved unless the composition is a composite oxide corresponding to the general formula.

【0025】本発明者等の研究では、前記一般式中Aが
Sr、BがTi、x=0に相当するSrTiO
3+−Z 、およびAがSr、MがFe、x=1に相当
するSrFeO3+−Zはペロブスカイト型構造を有す
ることが判っている。前記一般式で表される本発明の複
合酸化物は、ペロブスカイト型酸化物のTiサイトの一
部分がFeで置換された構造を有し、焼成その他の調製
条件を制御することによりペロブスカイト型構造をとる
ことができる。
According to the study of the present inventors, A is Sr, B is Ti, and SrTiO 2 corresponding to x = 0 in the above general formula.
It has been found that 3 + -Z and SrFeO 3 + -Z , in which A is Sr, M is Fe, and x = 1, have a perovskite structure. The composite oxide of the present invention represented by the general formula has a structure in which a part of the Ti site of the perovskite oxide is substituted with Fe, and has a perovskite structure by controlling firing and other preparation conditions. be able to.

【0026】一般的に本発明の触媒活性成分は、硝酸塩
など水溶性金属塩類或はハロゲン化物などアルコ−ル溶
解性金属塩類の加温溶液にリンゴ酸等の添加剤を添加し
たものを回転噴霧器(ロータリー・アトマイザー)或は
スプレードライヤー等を用いてミスト状態とし、例えば
電気炉内等の加熱空間を通過させることにより熱分解
し、得られた粉末を600℃−1000℃の高温におい
て焼成することにより調製することができる。
Generally, the catalytically active component of the present invention is obtained by adding an additive such as malic acid to a heated solution of a water-soluble metal salt such as a nitrate or an alcohol-soluble metal salt such as a halide. (Rotary atomizer) or mist state using a spray drier, for example, thermal decomposition by passing through a heating space such as in an electric furnace, and firing the obtained powder at a high temperature of 600 ° C to 1000 ° C Can be prepared.

【0027】このようにして調製した触媒活性成分を、
そのまま又は適当な粘結剤等の成形助剤と共にペレット
状に押出成形或は圧縮成形、またはハニカム状等に押出
成形して使用しても良いが、当業界周知の担体に担持さ
せると性能が向上する。
The thus prepared catalytically active component is
It may be used as it is or in the form of a pellet or extrusion with a suitable molding aid such as a binder, or may be extruded into a honeycomb or the like. improves.

【0028】担体としては塩基性金属酸化物が特に好ま
しく、特にマグネシア(MgO)或は軽希土類(セシウ
ム族)酸化物や重希土類(イットリウム族)酸化物、例
えば酸化スカンジウム、酸化イットリウム、酸化ランタ
ン、酸化セリウム、酸化プラセオジム、酸化ネオジム、
酸化サマリウム、酸化ユウロピウム、酸化ガドリニウ
ム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミ
ウム、酸化エルビウム、酸化イッテルビウム等が好まし
い。これ等の酸化物を、比表面積が大きい微粉末として
担体に使用する。
As the carrier, a basic metal oxide is particularly preferred. In particular, magnesia (MgO) or light rare earth (cesium group) oxide or heavy rare earth (yttrium group) oxide, such as scandium oxide, yttrium oxide, lanthanum oxide, Cerium oxide, praseodymium oxide, neodymium oxide,
Samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, ytterbium oxide, and the like are preferable. These oxides are used as fine powder having a large specific surface area as a carrier.

【0029】触媒活性成分を担体に担持させる方法は幾
つかあるが、一般的に、前記複合金属酸化物を構成する
金属を含有する塩類の溶液中に上記担体粉末を添加し、
溶液を蒸発乾固させ、その後に焼成する含浸担持法が良
く知られている。
There are several methods for supporting the catalytically active component on a carrier. Generally, the carrier powder is added to a solution of a salt containing a metal constituting the composite metal oxide,
An impregnation-supporting method in which a solution is evaporated to dryness and then calcined is well known.

【0030】上記金属塩類溶液の代わりに、触媒活性成
分を構成する金属のアルコキシドのアルコール溶液を用
いると、一層触媒性能が向上する。一般的に金属アルコ
キシドは金属水酸化物より強い塩基であり、上記含浸担
持法等の担持方法により、前記塩基性酸化物微粉に担持
させることにより触媒活性及び被毒特性の優れた触媒が
得られる。
If an alcohol solution of a metal alkoxide constituting the catalytically active component is used instead of the above-mentioned metal salt solution, the catalytic performance is further improved. Generally, a metal alkoxide is a stronger base than a metal hydroxide, and a catalyst having excellent catalytic activity and poisoning properties can be obtained by being supported on the basic oxide fine powder by a supporting method such as the impregnation supporting method. .

【0031】焼成温度は、酸化物がペロブスカイト型構
造を採るようにするため600℃以上が好ましい。また
焼成温度は、触媒の使用時の安定性、耐久性を保持する
ために、使用温度より高い温度であることが好ましい。
しかし脱硝すべき排ガスの排出源や排出状態により触媒
の使用温度が広範囲に亘るので、触媒の焼成温度は一概
に限定できない。
The firing temperature is preferably at least 600 ° C. so that the oxide has a perovskite structure. The firing temperature is preferably higher than the operating temperature in order to maintain stability and durability during use of the catalyst.
However, since the use temperature of the catalyst is wide depending on the discharge source and discharge state of the exhaust gas to be denitrated, the firing temperature of the catalyst cannot be limited unconditionally.

【0032】ペロブスカイト型構造を生じる所定の温度
以上で焼成すれば、ペロブスカイト型構造が変化するこ
とは少ない。しかし、焼成中に結晶内部の結晶欠陥に存
在する遷移金属が固相拡散等により表面へ移動してくる
ので、触媒表面の組成が微妙に変化する。従って、焼成
温度により活性が異なることがあり、1000℃を超え
ると概して活性が高いものを得難い。実施に当たって
は、排ガスの状態に応じて最適な焼成温度を実験により
選択する必要がある。
If baking is performed at a temperature higher than a predetermined temperature at which a perovskite structure is generated, the perovskite structure hardly changes. However, the transition metal present in the crystal defect inside the crystal moves to the surface during the sintering due to solid phase diffusion or the like, so that the composition of the catalyst surface slightly changes. Therefore, the activity may vary depending on the firing temperature, and if it exceeds 1000 ° C., it is generally difficult to obtain a material having high activity. In practice, it is necessary to experimentally select the optimum firing temperature according to the state of the exhaust gas.

【0033】本発明の触媒は、排ガスにアンモニアや炭
化水素等の還元剤を添加することなしに、排ガス中の窒
素酸化物を直接的に分解する。酸素の非存在下は勿論、
排ガス中に10容量%程度の酸素を含む場合であって
も、排ガスをそのまま本発明の触媒と接触させることに
より、排ガス中の窒素酸化物を効率良く除去することが
できる。また、排ガス中に酸素のみならず水蒸気を含む
場合も、窒素酸化物を効率良く除去することができる。
The catalyst of the present invention directly decomposes nitrogen oxides in exhaust gas without adding a reducing agent such as ammonia or hydrocarbon to the exhaust gas. In the absence of oxygen, of course,
Even when the exhaust gas contains about 10% by volume of oxygen, nitrogen oxides in the exhaust gas can be efficiently removed by directly contacting the exhaust gas with the catalyst of the present invention. Also, when the exhaust gas contains not only oxygen but also water vapor, nitrogen oxides can be efficiently removed.

【0034】分解触媒と排ガスとの接触は、当業界に周
知の充填層式或いは棚段式等の固定床流通型反応器、ま
たは本発明の触媒が単位重量当たりの活性が高い利点を
活用して流動床型反応器により行うことができる。ま
た、排出源の種類や規模に応じて種々の実用的形態を採
ることができ、本発明は接触の実施態様である脱硝反応
器の形式等には限定されない。
The contact between the cracking catalyst and the exhaust gas is carried out by utilizing a fixed bed flow type reactor such as a packed bed type or a tray type well known in the art, or an advantage that the catalyst of the present invention has high activity per unit weight. And a fluidized bed reactor. In addition, various practical forms can be adopted according to the type and scale of the discharge source, and the present invention is not limited to the type of the denitration reactor as an embodiment of the contact.

【0035】本発明の触媒と排ガスとの接触温度は広
く、200℃−900℃が好ましい。例えばバナジウム
−チタン系触媒による工場排ガスの処理温度が300℃
−400℃、ガソリンエンジン等の排ガス処理温度が4
00℃−450℃と比較的狭い範囲であるのに対して、
窒素酸化物の脱硝処理における本発明の触媒の作動温度
は低温から高温まで広範囲である点に特色がある。
The contact temperature between the catalyst of the present invention and the exhaust gas is wide, preferably from 200 ° C. to 900 ° C. For example, the processing temperature of factory exhaust gas with a vanadium-titanium catalyst is 300 ° C.
-400 ° C, exhaust gas processing temperature of gasoline engine etc. is 4
While it is a relatively narrow range of 00 ° C to 450 ° C,
It is characterized in that the operating temperature of the catalyst of the present invention in the denitration treatment of nitrogen oxides is wide from a low temperature to a high temperature.

【0036】本発明を更に具体的に説明するために実施
例を記載するが、本発明はこれにより限定されるもので
はない。なお、ここでガスの組成を示す%は全て容量%
であり、触媒及び原料、中間体の組成を示す%は全て重
量%である。また触媒の分解活性は、NOのNへの転
化率で表し、数式1により計算する。
The present invention will be described in more detail with reference to Examples, but it should not be construed that the present invention is limited thereto. Here, all the percentages indicating the gas composition are% by volume.
And the percentages indicating the compositions of the catalyst, the raw materials, and the intermediates are all percentages by weight. The cracking activity of the catalyst, expressed as conversion to N 2 NO, the calculated by Equation 1.

【0037】[0037]

【数1】分解率=2[N]out /[NO]in ここで[N]outは反応器出口ガスのN濃度 [NO]in は反応器入口ガスのNO濃度Decomposition rate = 2 [N 2 ] out / [NO] in where [N 2 ] out is the N 2 concentration of the gas at the outlet of the reactor [NO] in is the NO concentration of the gas at the inlet of the reactor

【0038】[実施例1]触媒の調製例1 チタンブトキシドTi(OC、 鉄イソプロ
ポキシドFe(OC 、及びストロンチウムイ
ソプロポキシドSr(OCO)を夫々溶剤1−
メトキシ−2−プロパノールに0.5Mの濃度で溶解し
た溶液を当量比で0.8:0.2:1の割合で用意し、
添加剤を加えて室温で混合した。理論量の触媒活性成分
SrTi0.8Fe0.2(以下STFOと略称)
を10重量部含有する上記溶液量に対し、マグネシアM
gO微粉末(宇部マテリアルズ社製、気相法高純度超微
粉グレード100、平均粒子径1.0−1.4μm、B
ET法比表面積120−168m/g)90重量部を
攪拌混合し、室温から昇温速度100℃/hrで500
℃まで昇温しつつアルコールを蒸発させ、乾燥固化し
た。得られた粉末を500℃で1時間仮焼し、次いで8
50℃で5時間焼成した。XRDにより、この粉末がペ
ロブスカイト型結晶構造を有することを確認した。次い
でこの粉末を500kgf/cmの圧縮力で等方圧成
形し、得られたペレットを粉砕し分級し、粒度0.31
mm−0.71mmの顆粒として、MgOに理論値とし
て10wt%のアルコキシド法STFOを担持した本発
明の触媒を得た。比表面積はBET法によりこの顆粒の
液体窒素温度でのN吸着量から測定し、120−16
0m/gであった。
[Example 1]Preparation example 1 of catalyst  Titanium butoxide Ti (OC4H9)4, Iron Isopro
Poxide Fe (OC3 H5)3, And strontium
Sopropoxide Sr (OC3H5O)2With solvent 1-
Dissolved in methoxy-2-propanol at a concentration of 0.5M
Prepared at a ratio of 0.8: 0.2: 1 in equivalent ratio,
Additives were added and mixed at room temperature. Theoretical amount of catalytically active component
SrTi0.8Fe0.2O3(Hereinafter abbreviated as STFO)
Of the above solution containing 10 parts by weight of magnesia M
gO fine powder (Ube Materials Co., Ltd.
Powder grade 100, average particle size 1.0-1.4 μm, B
ET method specific surface area 120-168m2/ G) 90 parts by weight
Stir and mix, 500 from room temperature at a rate of 100 ° C / hr.
Evaporate the alcohol while raising the temperature to
Was. The obtained powder is calcined at 500 ° C. for 1 hour,
It was baked at 50 ° C. for 5 hours. By XRD, this powder is
It was confirmed that it had a lobskite-type crystal structure. Next
500 kgf / cm3Isotropic compression with compression force
The resulting pellets are pulverized and classified to a particle size of 0.31
mm-0.71mm granules, the theoretical value of MgO
Bearing 10 wt% alkoxide method STFO
The light catalyst was obtained. The specific surface area of this granule is determined by the BET method.
N at liquid nitrogen temperature2Measured from the amount of adsorption, 120-16
0m2/ G.

【0039】触媒の調製例2 上記調製例1と同じアルコール溶液を用い、担体の種類
をSm、Gd 、Dy、Y、Y
、Tb、Er、 Ho (何
れも、信越化学工業社製、信越レア・アースBBタイ
プ、大比表面積粒子)に替えた以外は上記と同様に夫々
含浸担持して、表1の第2−9行に示す本発明の触媒で
ある希土類酸化物担持アルコキシド法STFOを調製し
た。
[0039]Preparation example 2 of catalyst  Using the same alcohol solution as in Preparation Example 1 above, the type of carrier
To Sm2O3, Gd2 O3, Dy2O3, Y2O3, Y
b2O3, Tb4O7, Er2O3, Ho2 O3(what
Remo, Shin-Etsu Chemical Co., Ltd., Shin-Etsu Rare Earth BB Thailand
, Large specific surface area particles)
Impregnated and supported by the catalyst of the present invention shown in lines 2-9 of Table 1.
A rare earth oxide-supported alkoxide method STFO was prepared.
Was.

【0040】触媒の調製例3 硝酸ストロンチウム2水塩SrCl・2HO、硝酸
鉄6水塩FeCl・6HO、三塩化チタンTiCl
の各0.4Mエタノール溶液を当量比で1:0.2:
0.8のの割合で用意し、添加剤を加えて室温で混合し
た。理論量のSTFOを10重量部含有する上記溶液量
に対し、調製例1と同じMgOを90重量部加え、攪拌
混合し、調製例1と同様に含浸担持して、表1の第10
行に示す本発明の触媒であるMgO担持硝酸塩法STF
Oを調製した。
[0040]Preparation example 3 of catalyst  Strontium nitrate dihydrate SrCl2・ 2H2O, nitric acid
Iron hexahydrate FeCl3・ 6H2O, titanium trichloride TiCl
3Of each 0.4 M ethanol solution in an equivalent ratio of 1: 0.2:
Prepare at a ratio of 0.8, add the additives and mix at room temperature
Was. The amount of the above solution containing 10 parts by weight of the theoretical amount of STFO
, 90 parts by weight of the same MgO as in Preparation Example 1 was added and stirred.
The mixture was mixed, and impregnated and supported in the same manner as in Preparation Example 1.
MgO supported nitrate method STF which is the catalyst of the present invention shown in the row
O was prepared.

【0041】分解活性の評価1 内径10mmの円筒形充填層型反応器に上記調製例1、
2、又は3で得た触媒5.0gを充填し、反応器外壁を
電熱により加熱して触媒層の温度を800℃に保ちなが
ら、含有率1%のNOを含むHeガス(即ち酸素非存在
下)を接触時間W/F=3.0g・sec/cm、W
/F=1.5、W/F=0.6、およびW/F=0.3
となる流量で流した。夫々の触媒について出口ガスのN
濃度をガスクロマトグラフ分析計により測定し、数式
1によりNOからNへの転化率として計算し、表1第
1―10行A欄に示した。なお、W/Fは触媒活性成分
の単位重量当たりの触媒活性を表わし、接触時間の次元
を持ち、数式2により計算される。
[0041]Evaluation of decomposition activity 1  Preparation Example 1 in a cylindrical packed-bed reactor having an inner diameter of 10 mm,
5.0 g of the catalyst obtained in 2 or 3 was charged, and the outer wall of the reactor was filled.
While heating with electric heat to keep the temperature of the catalyst layer at 800 ° C,
He gas containing 1% NO (ie, no oxygen present)
Lower) is the contact time W / F = 3.0 g · sec / cm3, W
/F=1.5, W / F = 0.6, and W / F = 0.3
The flow rate was N for the outlet gas for each catalyst
2The concentration is measured with a gas chromatograph analyzer and
NO to N by 12Calculated as the conversion rate to
It is shown in column 1-10, column A. W / F is the catalytically active component
Represents the catalytic activity per unit weight of
And is calculated by Equation 2.

【0042】[0042]

【数2】W/F=触媒活性成分重量(g)/反応器流入
ガス流速(cm/sec)=[g][sec]/[c
W / F = weight of catalytically active component (g) / flow rate of gas flowing into the reactor (cm 3 / sec) = [g] [sec] / [c
m 3 ]

【0043】分解活性の評価2 上記触媒調製例1、2又は3で得た触媒を用い、接触さ
せるガスをHe中に表2に示す含有率のNO、O、或
いはHOを含む混合ガス(即ち酸素共存下での評価)
に変更し、W/F=1.5とした以外は上記評価1と同
様にして分解活性を調べ、結果を表1第B、C、E欄に
示した。
[0043]Evaluation of decomposition activity 2  Using the catalyst obtained in Catalyst Preparation Example 1, 2 or 3,
The gas to be added is composed of NO and O in the content shown in Table 2 in He.2Or some
Ih H2Mixed gas containing O (that is, evaluation in the presence of oxygen)
And the same as Evaluation 1 above, except that W / F was 1.5.
The decomposition activity was examined in the same manner as described above, and the results were shown in columns B, C, and E of Table 1.
Indicated.

【0044】[実施例2]触媒の調製例4 上記触媒調製例3で得たものと同じ混合溶液を350℃
に加温しつつ回転噴霧器へ供給し、噴霧量を100cm
/分に調整したノズルから断熱的に120℃で酸素含
有率が爆発限界以下の窒素気流中へスプレーして、霧状
態で350℃に保持した電気炉の中を落下させ、生成し
た粉体を炉の下部に設けたサイクロンで捕集して原料粉
末を得た。この原料粉末を空気中において650℃で1
時間仮焼し、次いで850℃で5時間焼成し、硝酸塩を
原料とするSTFOに相当する触媒活性成分の粉末を得
た。この粉末10重量部に担体として90重量部のMg
O微粉末を適量の1−メトキシ−2−プロパノール中で
攪拌混合した後、アルコールを蒸発させ乾燥固化し、得
られた粉末を500kgf/cmの圧縮力で等方圧成
形し、得られたペレットを粉砕し分級し、粒度が0.3
1mm−0.71mmの顆粒状として、MgOに10w
t%のスプレー法STFOを担持した本発明の触媒を得
た。
[Embodiment 2]Preparation Example 4 of Catalyst  The same mixed solution as that obtained in the above catalyst preparation example 3 was heated at 350 ° C.
To the rotary sprayer while heating, and spray amount of 100cm
3/ Min at 120 ° C from the nozzle adjusted to
Spray into a nitrogen stream with a prevalence below the explosion limit to form a mist
In an electric furnace maintained at 350 ° C.
Powder collected by a cyclone provided at the bottom of the furnace
I got the end. This raw material powder is heated at 650 ° C. in air for 1 hour.
Calcined for an hour, then calcined at 850 ° C for 5 hours to remove nitrate
Obtain powder of catalytically active component corresponding to STFO as raw material
Was. 90 parts by weight of Mg as a carrier is added to 10 parts by weight of this powder.
O fine powder in an appropriate amount of 1-methoxy-2-propanol
After stirring and mixing, the alcohol is evaporated to dryness and solidified.
500 kgf / cm3Isotropic compression with compression force
The resulting pellets are pulverized and classified to a particle size of 0.3
As 1mm-0.71mm granules, MgO 10w
The catalyst of the present invention carrying t% of sprayed STFO was obtained.
Was.

【0045】分解活性の評価3 上記触媒調製例4で得た触媒を用い、実施例1と同様に
して分解活性を調べ、結果を表1第11行に示した。
[0045]Evaluation of decomposition activity 3  In the same manner as in Example 1 except that the catalyst obtained in Catalyst Preparation Example 4 was used.
Then, the decomposition activity was examined, and the results are shown in Table 1, line 11.

【0046】[比較例1]担体として、固体酸の一種で
あるアルミナAl(触媒化成工業社製、BET法
比表面積285m/g)を使用した以外は触媒調製例
1と全く同様に触媒を調製し、粒度0.31mm−0.
71mmの顆粒として、Alに10wt%のアル
コキシド法STFOを含漬担持してなる比較用触媒を得
た。これを用いて実施例1と同様に分解活性の評価を行
い表1第12行に併せて表示した。塩基性金属酸化物を
担体とする本発明の触媒に比べ、NO分解活性に明らか
な差が見られる。
[Comparative Example 1] Except for using alumina Al 2 O 3 (a specific surface area of 285 m 2 / g by BET method), which is a kind of solid acid, as a carrier, exactly the same as Catalyst Preparation Example 1 To prepare a catalyst having a particle size of 0.31 mm-0.
As a 71 mm granule, a catalyst for comparison was prepared by impregnating and supporting 10 wt% of an alkoxide STFO in Al 2 O 3 . This was used to evaluate the decomposition activity in the same manner as in Example 1, and the results are shown in Table 1, line 12. There is a clear difference in NO decomposition activity as compared with the catalyst of the present invention using a basic metal oxide as a carrier.

【0047】[比較例2]La硝酸塩、Sr硝酸塩、及
びCo硝酸塩の各0.4M水溶液を用いた以外は実施例
2と同様に調製して得られた比表面積4.9m/gを
有する既知のペロブスカイト型金属酸化物La0.8
0.2CoO(以下LSCOと略称)を実施例2と
同様にしてMgOに担持したものを用い、実施例1と同
様に活性評価を行い、結果を表1第13行に併せて示し
た。本発明の触媒と比べると、接触条件の緩やかな酸素
非存在下においてすら、活性に著しい差が見られる。
Comparative Example 2 A specific surface area of 4.9 m 2 / g was obtained in the same manner as in Example 2 except that 0.4 M aqueous solutions of La nitrate, Sr nitrate, and Co nitrate were used. Known perovskite-type metal oxide La 0.8 S
r 0.2 CoO 3 with those (hereinafter LSCO abbreviated) supported on MgO in the same manner as in Example 2, performed activity evaluated in the same manner as in Example 1. The results are also shown in line 13 in Table 1 Was. Compared to the catalyst of the present invention, there is a marked difference in activity even in the absence of mild contact conditions of oxygen.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【表2】 [Table 2]

【0050】[0050]

【発明の効果】本発明の触媒は、排ガスにアンモニアや
炭化水素等の還元剤を添加することなしに、排ガス中の
窒素酸化物を直接的に分解することができる。従って、
還元剤使用のランニングコストや還元剤添加制御装置等
の装備が不要であり、経済的に優れている。
The catalyst of the present invention can directly decompose nitrogen oxides in exhaust gas without adding a reducing agent such as ammonia or hydrocarbon to the exhaust gas. Therefore,
Eliminating the running cost of using a reducing agent and equipment such as a reducing agent addition control device is economical.

【0051】特に、排ガス中に10容量%程度の酸素を
含む場合であっても、従来知られている直接分解触媒に
比べて、酸素による触媒の被毒が格段に軽微であり、窒
素酸化物の分解率が高い。従って、排ガスから予め酸素
を除去すること無しに、或は空燃比の高いエンジン等か
ら排出される酸素含有率の高い排ガスを直接に本発明の
触媒と接触させることにより、排ガス中のNOを除去す
ることができる。
In particular, even when the exhaust gas contains about 10% by volume of oxygen, the poisoning of the catalyst by oxygen is remarkably light as compared with the conventionally known direct cracking catalyst, and nitrogen oxides Has a high decomposition rate. Therefore, NO in the exhaust gas is removed without previously removing oxygen from the exhaust gas or by directly contacting the exhaust gas having a high oxygen content discharged from an engine or the like having a high air-fuel ratio with the catalyst of the present invention. can do.

【0052】また、排ガス中に酸素のみならず水蒸気を
含む場合も、本発明の触媒と直接接触させることによ
り、排ガス中の窒素酸化物を効率良く除去することがで
きる。従来知られている直接分解触媒であるCu−ゼオ
ライト系触媒は水蒸気により被毒されて劣化するため、
予め脱湿により乾燥させた排ガスでなければこの触媒と
接触させることができない。また、従来知られているL
SCO触媒も水蒸気が存在すると僅かな脱硝性能を示す
にとどまった。しかし、本発明の触媒は水蒸気により被
毒しないため、水蒸気を含む排ガスを予め脱湿せずに直
接脱硝処理するのに適している。
In addition, even when the exhaust gas contains not only oxygen but also water vapor, nitrogen oxide in the exhaust gas can be efficiently removed by directly contacting the catalyst of the present invention. Cu-zeolite catalyst, which is a conventionally known direct cracking catalyst, is poisoned by steam and deteriorates,
Unless the exhaust gas has been dried by dehumidification in advance, it cannot be brought into contact with this catalyst. In addition, conventionally known L
The SCO catalyst also showed only a slight denitration performance in the presence of water vapor. However, since the catalyst of the present invention is not poisoned by steam, it is suitable for directly denitration treatment of exhaust gas containing steam without previously dehumidifying.

【0053】本発明による窒素酸化物の分解除去方法で
は、酸素及び水蒸気が共存する排ガスに還元剤を添加せ
ずに高温で接触させることができる触媒を用い、しかも
この触媒が水蒸気で劣化を起こさない。従って、本発明
の窒素酸化物分解除去方法を適用した排ガス処理装置
は、極めてコンパクトに構成することができ、実用的価
値が高く、広範囲な用途に適用される可能性が大きい。
In the method for decomposing and removing nitrogen oxides according to the present invention, a catalyst which can be brought into contact at a high temperature without adding a reducing agent to exhaust gas in which oxygen and water vapor coexist is used, and this catalyst is deteriorated by water vapor. Absent. Therefore, the exhaust gas treatment apparatus to which the method for decomposing and removing nitrogen oxides of the present invention is applied can be configured to be extremely compact, has high practical value, and is likely to be applied to a wide range of applications.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000196680 西部瓦斯株式会社 福岡県福岡市博多区千代1丁目17番1号 (72)発明者 内田 洋 神奈川県横浜市青葉区あざみ野3−2−15 −106 (72)発明者 安田 勇 埼玉県久喜市北1−12−4−311 (72)発明者 横井 泰治 千葉県柏市みどり台4−13−6 (72)発明者 岡田 治 大阪府大阪狭山市大野台4−17−7 (72)発明者 角本 輝充 滋賀県滋賀郡志賀町木戸1260−3 (72)発明者 中山 敏郎 兵庫県伊丹市伊丹3−2−10−404 (72)発明者 来栖 知恵 京都府京都市西京区御陵大枝山町5−32− 4 (72)発明者 大塚 浩文 兵庫県芦屋市竹園町4−23 (72)発明者 中村 泰久 愛知県名古屋市瑞穂区軍水町2−86 グラ ンドメゾン新瑞東D−4 (72)発明者 石川 秀征 愛知県西尾市新村町辻356 (72)発明者 木村 秀樹 福岡県福岡市中央区荒戸3−2−41−1006 Fターム(参考) 4G069 AA03 BA06A BA06B BA06C BA27C BB06A BC08A BC12A BC12B BC12C BC38A BC40C BC41C BC50A BC50B BC50C BC65A BC66A BC66B BC66C BC69A BD02A BD12C BE06C CA10 CA13 EC23 FB77  ──────────────────────────────────────────────────続 き Continuation of the front page (71) Applicant 000196680 Seibu Gas Co., Ltd. 1-17-1 Chiyo, Hakata-ku, Fukuoka, Fukuoka (72) Inventor Hiroshi Uchida 3-2-15 Azamino Aoba-ku, Yokohama-shi, Kanagawa- 106 (72) Inventor Isamu Yasuda 1-12-4-311 Kita, Kuki City, Saitama Prefecture (72) Inventor Taiji Yokoi 4-13-6, Midoridai, Kashiwa City, Chiba Prefecture (72) Inventor Osamu Okada Onodai, Osaka Sayama, Osaka 4-17-7 (72) Inventor Terumitsu Tsunomoto 1260-3 Kido, Shiga-cho, Shiga-gun, Shiga Prefecture (72) Inventor Toshiro Nakayama 3-2-10-404 Itami, Itami-shi, Hyogo (72) Inventor Tomoe Kurusu Kyoto (32) Inventor Hirofumi Otsuka 4-23 Takezono-cho, Ashiya-shi, Hyogo (72) Inventor Yasuhisa Nakamura 2-86 Gunmizu-cho, Mizuho-ku, Nagoya-shi, Aichi Prefecture Xin Rui East -4 (72) Inventor Hideyuki Ishikawa 356, Niimura-cho Tsuji, Nishio-shi, Aichi (72) Inventor Hideki Kimura 3-2-41-1006, Arato, Chuo-ku, Fukuoka, Fukuoka F-term (reference) 4G069 AA03 BA06A BA06B BA06C BA27C BB06A BC08A BC12A BC12B BC12C BC38A BC40C BC41C BC50A BC50B BC50C BC65A BC66A BC66B BC66C BC69A BD02A BD12C BE06C CA10 CA13 EC23 FB77

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 触媒活性成分である金属複合酸化物のう
ち少なくとも1種類の組成が一般式AB1−X
3+−X(但しAはアルカリ土類元素から選ばれた1種
類の金属、Bはチタン族元素から選ばれた1種類の金
属、Mは鉄族、銅族若しくは白金族元素から選ばれた1
種類の金属、0<x<1、zは常温大気圧時における金
属酸化物の酸素欠陥数或いは酸素過剰数)で表され、該
金属複合酸化物のうち少なくとも1種類がペロブスカイ
ト型結晶構造を有し、且つ塩基性金属酸化物に担持して
なることを特徴とする窒素酸化物分解触媒。
1. A least one composition formula of the metal composite oxide is a catalytically active component AB 1-X M X O
3 + -X (where A is one kind of metal selected from alkaline earth elements, B is one kind of metal selected from titanium group elements, M is one kind selected from iron group, copper group or platinum group element)
0 <x <1, z is the number of oxygen defects or excess oxygen in the metal oxide at normal temperature and atmospheric pressure), and at least one of the metal composite oxides has a perovskite crystal structure. And a nitrogen oxide decomposition catalyst supported on a basic metal oxide.
【請求項2】 前記塩基性金属酸化物は、マグネシア或
は希土類酸化物である請求項1記載の分解触媒。
2. The decomposition catalyst according to claim 1, wherein the basic metal oxide is magnesia or a rare earth oxide.
【請求項3】 前記触媒活性成分である金属複合酸化物
のうち少なくとも1種類の組成は、SrTi1−XFe
(但し、0<x<1)で表される請求項1または
2記載の分解触媒。
3. The composition of at least one of the metal composite oxides as the catalytically active component is SrTi 1-X Fe
The cracking catalyst according to claim 1, wherein the catalyst is represented by X O 3 (where 0 <x <1).
【請求項4】 前記触媒活性成分の調製は、前記金属複
合酸化物を構成する金属のアルコキシドを用いて行うこ
とを特徴とする請求項1、2または3記載の分解触媒の
調製方法。
4. The method according to claim 1, wherein the preparation of the catalytically active component is carried out using an alkoxide of a metal constituting the metal composite oxide.
【請求項5】 還元剤の非存在下で、窒素酸化物を温度
200℃−900℃において請求項1、2、3または4
記載の分解触媒と酸素の非存在下で接触させることを特
徴とする直接分解による窒素酸化物の除去方法。
5. The method of claim 1, 2, 3 or 4 wherein the nitrogen oxide is produced at a temperature of 200 ° C. to 900 ° C. in the absence of a reducing agent.
A method for removing nitrogen oxides by direct decomposition, comprising contacting the decomposition catalyst with the decomposition catalyst in the absence of oxygen.
【請求項6】 還元剤の非存在下で、窒素酸化物を温度
200℃−900℃において請求項1、2、3または4
記載の分解触媒と酸素の存在下で接触させることを特徴
とする直接分解による窒素酸化物の除去方法。
6. The method of claim 1, 2, 3 or 4 wherein the nitrogen oxide is heated at a temperature of 200 ° C. to 900 ° C. in the absence of a reducing agent.
A method for removing nitrogen oxides by direct decomposition, wherein the method is brought into contact with the decomposition catalyst described in the presence of oxygen.
【請求項7】 還元剤の非存在下で、窒素酸化物を温度
200℃−900℃において請求項1、2、3または4
記載の分解触媒と酸素及び水蒸気の共存下で接触させる
ことを特徴とする直接分解による窒素酸化物の除去方
法。
7. The method of claim 1, 2, 3 or 4 wherein the nitrogen oxide is heated at a temperature of 200 ° C. to 900 ° C. in the absence of a reducing agent.
A method for removing nitrogen oxides by direct decomposition, comprising bringing the decomposition catalyst into contact with the decomposition catalyst in the presence of oxygen and water vapor.
JP11002643A 1999-01-08 1999-01-08 Catalyst for decomposing and removing nitrogen oxide and method for decomposing and removing nitrogen oxide Pending JP2000197822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11002643A JP2000197822A (en) 1999-01-08 1999-01-08 Catalyst for decomposing and removing nitrogen oxide and method for decomposing and removing nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11002643A JP2000197822A (en) 1999-01-08 1999-01-08 Catalyst for decomposing and removing nitrogen oxide and method for decomposing and removing nitrogen oxide

Publications (1)

Publication Number Publication Date
JP2000197822A true JP2000197822A (en) 2000-07-18

Family

ID=11535059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11002643A Pending JP2000197822A (en) 1999-01-08 1999-01-08 Catalyst for decomposing and removing nitrogen oxide and method for decomposing and removing nitrogen oxide

Country Status (1)

Country Link
JP (1) JP2000197822A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297236A (en) * 2005-04-18 2006-11-02 Toyota Motor Corp Catalyst for cleaning exhaust gas and manufacturing method
US7608559B2 (en) 2005-04-18 2009-10-27 Toyota Jidosha Kabushiki Kaisha Method for producing heat-resisting compound oxides
US7678733B2 (en) 2005-04-18 2010-03-16 Toyota Jidosha Kabushiki Kaisha Method for producing heat-resisting compound oxides
US7758840B2 (en) 2005-04-18 2010-07-20 Toyota Jidosha Kabushiki Kaisha Method for producing compound
CN101800282B (en) * 2010-02-20 2012-07-25 同济大学 Application of strontium stannate titanate film
WO2018221692A1 (en) 2017-05-31 2018-12-06 国立大学法人北海道大学 Functional structure and production method for functional structure
JPWO2020179079A1 (en) * 2019-03-07 2020-09-10
JPWO2020179075A1 (en) * 2019-03-07 2020-09-10
JPWO2020179077A1 (en) * 2019-03-07 2020-09-10
US11161101B2 (en) 2017-05-31 2021-11-02 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure
US11547987B2 (en) 2017-05-31 2023-01-10 Furukawa Electric Co., Ltd. Structured catalyst for oxidation for exhaust gas purification, method for producing same, automobile exhaust gas treatment device, catalytic molding, and gas purification method
US11648542B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11648538B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11654422B2 (en) 2017-05-31 2023-05-23 Furukawa Electric Co., Ltd. Structured catalyst for catalytic cracking or hydrodesulfurization, catalytic cracking apparatus and hydrodesulfurization apparatus including the structured catalyst, and method for producing structured catalyst for catalytic cracking or hydrodesulfurization
US11655157B2 (en) 2017-05-31 2023-05-23 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11666894B2 (en) 2017-05-31 2023-06-06 Furukawa Electric Co., Ltd. Structured catalyst for CO shift or reverse shift and method for producing same, CO shift or reverse shift reactor, method for producing carbon dioxide and hydrogen, and method for producing carbon monoxide and water
US11680211B2 (en) 2017-05-31 2023-06-20 Furukawa Electric Co., Ltd. Structured catalyst for hydrodesulfurization, hydrodesulfurization device including the structured catalyst, and method for producing structured catalyst for hydrodesulfurization
US11684909B2 (en) 2017-05-31 2023-06-27 Furukawa Electric Co., Ltd. Structured catalyst for methanol reforming, methanol reforming device, method for producing structured catalyst for methanol reforming, and method for producing at least one of olefin or aromatic hydrocarbon

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297236A (en) * 2005-04-18 2006-11-02 Toyota Motor Corp Catalyst for cleaning exhaust gas and manufacturing method
US7608559B2 (en) 2005-04-18 2009-10-27 Toyota Jidosha Kabushiki Kaisha Method for producing heat-resisting compound oxides
US7678733B2 (en) 2005-04-18 2010-03-16 Toyota Jidosha Kabushiki Kaisha Method for producing heat-resisting compound oxides
US7758840B2 (en) 2005-04-18 2010-07-20 Toyota Jidosha Kabushiki Kaisha Method for producing compound
JP4687217B2 (en) * 2005-04-18 2011-05-25 トヨタ自動車株式会社 Exhaust gas purification catalyst and method for producing the same
CN101800282B (en) * 2010-02-20 2012-07-25 同济大学 Application of strontium stannate titanate film
US11904306B2 (en) 2017-05-31 2024-02-20 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure
WO2018221692A1 (en) 2017-05-31 2018-12-06 国立大学法人北海道大学 Functional structure and production method for functional structure
US11648543B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11684909B2 (en) 2017-05-31 2023-06-27 Furukawa Electric Co., Ltd. Structured catalyst for methanol reforming, methanol reforming device, method for producing structured catalyst for methanol reforming, and method for producing at least one of olefin or aromatic hydrocarbon
US11680211B2 (en) 2017-05-31 2023-06-20 Furukawa Electric Co., Ltd. Structured catalyst for hydrodesulfurization, hydrodesulfurization device including the structured catalyst, and method for producing structured catalyst for hydrodesulfurization
US11666894B2 (en) 2017-05-31 2023-06-06 Furukawa Electric Co., Ltd. Structured catalyst for CO shift or reverse shift and method for producing same, CO shift or reverse shift reactor, method for producing carbon dioxide and hydrogen, and method for producing carbon monoxide and water
US11655157B2 (en) 2017-05-31 2023-05-23 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11161101B2 (en) 2017-05-31 2021-11-02 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure
US11654422B2 (en) 2017-05-31 2023-05-23 Furukawa Electric Co., Ltd. Structured catalyst for catalytic cracking or hydrodesulfurization, catalytic cracking apparatus and hydrodesulfurization apparatus including the structured catalyst, and method for producing structured catalyst for catalytic cracking or hydrodesulfurization
US11648538B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11547987B2 (en) 2017-05-31 2023-01-10 Furukawa Electric Co., Ltd. Structured catalyst for oxidation for exhaust gas purification, method for producing same, automobile exhaust gas treatment device, catalytic molding, and gas purification method
US11648542B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
JPWO2020179079A1 (en) * 2019-03-07 2020-09-10
US11560819B2 (en) 2019-03-07 2023-01-24 The Chugoku Electric Power Co., Inc. Combustion system
US11434803B2 (en) 2019-03-07 2022-09-06 The Chugoku Electric Power Co., Inc. Combustion system
CN113631861A (en) * 2019-03-07 2021-11-09 中国电力株式会社 Combustion system
WO2020179077A1 (en) * 2019-03-07 2020-09-10 中国電力株式会社 Combustion system
WO2020179079A1 (en) * 2019-03-07 2020-09-10 中国電力株式会社 Combustion system
WO2020179075A1 (en) * 2019-03-07 2020-09-10 中国電力株式会社 Combustion system
JPWO2020179077A1 (en) * 2019-03-07 2020-09-10
JP7315921B2 (en) 2019-03-07 2023-07-27 中国電力株式会社 combustion system
JP7315922B2 (en) 2019-03-07 2023-07-27 中国電力株式会社 combustion system
JPWO2020179075A1 (en) * 2019-03-07 2020-09-10

Similar Documents

Publication Publication Date Title
JP5812987B2 (en) Catalyst for lean burn engine
JP4852035B2 (en) Nitrogen oxide storage catalyst made from nitrogen oxide storage material
JP2000197822A (en) Catalyst for decomposing and removing nitrogen oxide and method for decomposing and removing nitrogen oxide
US20090286680A1 (en) Exhaust Gas Purification Catalyst and Exhaust Gas Purification Catalyst Member
JP5864443B2 (en) Exhaust gas purification catalyst
JP5718269B2 (en) Compositions based on alumina, cerium and barium and / or strontium, in particular used for trapping nitrogen oxides (NOX)
US5821190A (en) Catalyst comprising iridium, alkaline metal, alkaline earth or rare earth metal, and metal carbide or metal nitride
WO2007072690A1 (en) Catalyst for exhaust gas clean-up
JP2007296518A (en) Catalyst and device for cleaning exhaust gas
US11383224B2 (en) Ceria-containing mixed oxides for oxygen storage
JPH09271672A (en) Exhaust gas purifying catalyst
US9006131B2 (en) Composite oxide for exhaust gas purification catalyst, method for manufacturing the same, coating material for exhaust gas purification catalyst, and filter for diesel exhaust gas purification
JP6676394B2 (en) Core-shell carrier and method for producing the same, catalyst for purifying exhaust gas using the core-shell carrier, method for producing the same, and method for purifying exhaust gas using the catalyst for purifying exhaust gas
WO2006134787A1 (en) Exhaust gas purifying catalyst
KR20090019792A (en) Exhaust gas purification catalyst, and catalytic honey-comb structure for exhaust gas purification
JPH11151440A (en) Catalyst for decomposing and removing nitrogen oxides and decomposing and removing method of nitrogen oxides
JP5196656B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH11342337A (en) Catalyst b and method for removal of nitrogen oxides by decomposition
JP2010221091A (en) Composite oxide for exhaust gas cleaning catalyst, coating material for exhaust gas cleaning catalyst and diesel exhaust gas cleaning filter
JP2001046870A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning system
JP2005169280A (en) Catalyst for cleaning exhaust gas
JPH08266900A (en) Exhaust gas purifying catalyst and its production
JP2007084391A (en) Exhaust gas purifying device for automobile and hydrogen producing catalyst
JP2001046835A (en) NOx ABSORBING AND CLEANING MATERIAL AND EXHAUST GAS CLEANING CATALYST USING THE SAME
JPH11342336A (en) Catalyst a for removal of nitrogen oxides by decomposition and method