WO2020179077A1 - Combustion system - Google Patents

Combustion system Download PDF

Info

Publication number
WO2020179077A1
WO2020179077A1 PCT/JP2019/009202 JP2019009202W WO2020179077A1 WO 2020179077 A1 WO2020179077 A1 WO 2020179077A1 JP 2019009202 W JP2019009202 W JP 2019009202W WO 2020179077 A1 WO2020179077 A1 WO 2020179077A1
Authority
WO
WIPO (PCT)
Prior art keywords
denitration
exhaust gas
denitration catalyst
exhaust
metal
Prior art date
Application number
PCT/JP2019/009202
Other languages
French (fr)
Japanese (ja)
Inventor
英嗣 清永
吉田 和広
啓一郎 盛田
徹 村山
春田 正毅
慎一 秦
雄介 猪股
Original Assignee
中国電力株式会社
公立大学法人首都大学東京
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社, 公立大学法人首都大学東京 filed Critical 中国電力株式会社
Priority to PCT/JP2019/009202 priority Critical patent/WO2020179077A1/en
Priority to JP2019538444A priority patent/JPWO2020179077A1/ja
Priority to JP2020549726A priority patent/JP7429012B2/en
Priority to SG11202109733U priority patent/SG11202109733UA/en
Priority to EP20767017.5A priority patent/EP3936706A4/en
Priority to JP2020549727A priority patent/JP7445925B2/en
Priority to US17/436,965 priority patent/US20220170403A1/en
Priority to US17/436,958 priority patent/US20220168712A1/en
Priority to CN202080019195.8A priority patent/CN113874109A/en
Priority to SG11202109743T priority patent/SG11202109743TA/en
Priority to PCT/JP2020/009542 priority patent/WO2020179891A1/en
Priority to PCT/JP2020/009543 priority patent/WO2020179892A1/en
Priority to CN202080019137.5A priority patent/CN113631804A/en
Priority to EP20766854.2A priority patent/EP3936230A4/en
Publication of WO2020179077A1 publication Critical patent/WO2020179077A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes

Definitions

  • the present invention relates to a combustion system. More specifically, the present invention relates to a combustion system that purifies exhaust gas generated by burning fuel by using a denitration catalyst.
  • Nitrogen oxides cause acid rain, ozone layer depletion, photochemical smog, etc., and have a serious impact on the environment and the human body, so their treatment has become an important issue.
  • a selective catalytic reduction reaction (NH 3 —SCR) using ammonia (NH 3 ) as a reducing agent is known.
  • a catalyst used for the selective catalytic reduction reaction a catalyst using titanium oxide as a carrier and supporting vanadium oxide is widely used. Titanium oxide is considered to be the best carrier because of its low activity against sulfur oxides and high stability.
  • vanadium oxide plays a major role in NH 3 —SCR, it oxidizes SO 2 to SO 3, and therefore vanadium oxide could not be supported by about 1 wt% or more.
  • the catalyst in which vanadium oxide is supported on the titanium oxide carrier hardly reacts at a low temperature, so that the catalyst must be used at a high temperature of 350 to 400°C.
  • the object of the present invention is to provide a combustion system using a catalyst that has a better denitration efficiency at low temperature than in the prior art in the selective catalytic reduction reaction using ammonia as a reducing agent.
  • the present invention provides a combustion device for burning fuel, an exhaust passage through which an exhaust gas generated by combustion of the fuel in the combustion device flows, and a dust collection disposed in the exhaust passage for collecting soot dust in the exhaust gas.
  • a denitration device which is disposed in the exhaust passage and removes nitrogen oxides from the exhaust gas by a denitration catalyst, wherein the denitration device is a downstream side of the dust collector in the exhaust passage.
  • the denitration catalyst is a denitration catalyst containing vanadium oxide as a main component, the oxide content of the second metal is 1 wt% or more and 40 wt% or less, and the second metal is Co , W, Mo, Nb, Ce, Sn, Ni, and Fe.
  • the combustion system is a denitration catalyst for at least one metal element selected from the group.
  • the combustion system further includes an air preheater disposed in the exhaust passage and recovering heat from the exhaust gas, and the air preheater is disposed upstream of the dust collector.
  • the present invention includes a combustion device that burns fuel, an exhaust passage through which exhaust gas generated by burning the fuel in the combustion device flows, and an air preheater that is arranged in the exhaust passage and recovers heat from the exhaust gas.
  • a combustion system including a denitration device arranged in the exhaust passage and removing nitrogen oxides from the exhaust gas by a denitration catalyst, wherein the denitration device is located downstream of the air preheater in the exhaust passage.
  • the denitration catalyst is a denitration catalyst containing vanadium oxide as a main component, and the oxide content of the second metal is 1 wt% or more and 40 wt% or less, and the second metal is Co.
  • the present invention relates to a combustion system which is a denitration catalyst of at least one metal element selected from the group consisting of W, Mo, Nb, Ce, Sn, Ni, and Fe.
  • the present invention comprises an internal combustion engine that burns fuel, an exhaust gas through which exhaust gas generated by combustion of the fuel in the internal combustion engine flows, and exhaust gas that is arranged in the exhaust passage and is discharged from the internal combustion engine.
  • a combustion system including an exhaust heat recovery device that recovers exhaust heat and a denitration device that is arranged in the exhaust passage and removes nitrogen oxides from the exhaust gas by a denitration catalyst.
  • the denitration device is in the exhaust passage.
  • the denitration catalyst which is arranged on the downstream side of the exhaust heat recovery device, is a denitration catalyst containing vanadium oxide as a main component, and has an oxide content of a second metal of 1 wt% or more and 40 wt% or less.
  • the second metal relates to a combustion system in which the denitration catalyst of at least one metal element selected from the group consisting of Co, W, Mo, Nb, Ce, Sn, Ni, and Fe.
  • the exhaust heat recovery device includes a turbine device and an exhaust gas economizer
  • the exhaust gas economizer generates steam by using the exhaust gas discharged from the internal combustion engine and the exhaust gas supplied from the turbine device as a heat source
  • the turbine device preferably generates power by using the exhaust gas discharged from the internal combustion engine and the steam supplied from the exhaust gas economizer.
  • the combustion system according to the present invention has a better denitration efficiency at low temperature than in the prior art in the selective catalytic reduction reaction using ammonia as a reducing agent.
  • the denitration catalyst of the present invention is a denitration catalyst containing vanadium oxide as a main component, wherein the content of the oxide of the second metal is 1 wt% or more and 40 wt% or less, and the second metal is Co or W. , Mo, Nb, Ce, Sn, Ni, and Fe, at least one metal element selected from the group.
  • a denitration catalyst can exhibit a higher denitration effect even in a low temperature environment as compared with a denitration catalyst such as a vanadium / titanium catalyst conventionally used.
  • the denitration catalyst of the present invention contains vanadium oxide as a main component.
  • This vanadium oxide is vanadium (II) oxide (VO), vanadium (III) trioxide (V 2 O 3 ), vanadium tetraoxide (IV) (V 2 O 4 ), vanadium pentoxide (V) (V 2 O). 5 ) is included, and the V element of vanadium pentoxide (V 2 O 5 ) may take a pentavalent, tetravalent, trivalent or divalent form during the denitration reaction.
  • This vanadium oxide is the main component of the denitration catalyst of the present invention, and may contain other substances within the range that does not impair the effects of the present invention.
  • vanadium pentoxide conversion it is preferable that the content is 50 wt% or more. More preferably, vanadium oxide is present in the denitration catalyst of the present invention in an amount of 60 wt% or more in terms of vanadium pentoxide.
  • the denitration catalyst of the present invention has a second metal oxide content of 1 wt% or more and 40 wt% or less, but it has been conventionally used by including such a second metal oxide.
  • a higher denitration effect can be exhibited even in a low temperature environment.
  • impurities enter into the denitration catalyst of the present invention an amorphous part is generated in the denitration catalyst, so that the crystal structure is not continuous, and the lines and planes in the crystal lattice are distorted, thereby exhibiting a high denitration effect.
  • the higher the amount of the oxide of the second metal as the impurity the higher the denitration effect will be exhibited.
  • the coexistence of water is present.
  • the NO conversion rate was 79% to 100%, and when it was in the presence of water, the NO conversion rate was 38% to 90%.
  • the selective catalytic reduction reaction at 200° C. or lower using a denitration catalyst having a cobalt oxide content of 0 wt% as the oxide of the second metal the NO conversion rate of 76% was obtained in the absence of water. However, only 32% NO conversion was shown in the presence of water.
  • a denitration catalyst having a tungsten oxide content of 62 wt% to 100 wt% as an oxide of the second metal, it is 3 to 69 in the absence of water. % NO conversion, only 0% to 29% NO conversion in the presence of water.
  • the denitration catalyst of the present invention has the second metal oxide content of 1 wt% or more and 40 wt% or less, but it is preferably 3 wt% or more and 38 wt% or less. Further, the content of the oxide of the second metal is more preferably 3 wt% or more and 10 wt% or less. Further, the content of the oxide of the second metal is more preferably 5 wt% or more and 10 wt% or less. Further, the content of the oxide of the second metal is more preferably 5 wt% or more and 8 wt% or less. The oxide content of the second metal is more preferably 6 wt% or more and 8 wt% or less. Further, the content of the oxide of the second metal is more preferably 6 wt% or more and 7 wt% or less.
  • the second metal is at least one metal element selected from the group consisting of Co, W, Mo, Nb, Ce, Sn, Ni and Fe.
  • the crystal structure of vanadium oxide is disturbed, and Lewis acidity can be enhanced.
  • Co, Mo, Ce, Sn, Ni, and Fe it accelerates the redox cycle of V 2 O 5 .
  • Co is known to have a strong oxidizing power.
  • W, Mo, and Nb functions as a solid acid and provides an adsorption site for ammonia, so that ammonia can efficiently contact and react with NO.
  • the selective catalytic reduction reaction at a reaction temperature of 200° C. or less using a denitration catalyst having a molybdenum oxide content of 5.4 wt% as the second metal oxide The NO conversion rate of 97% was shown without coexistence, and the NO conversion rate of 62% was shown without water coexistence.
  • the selective catalytic reduction reaction at a reaction temperature of 200 ° C. or lower using a denitration catalyst having a niobium pentoxide content of 5.0 wt% as the oxide of the second metal the water content is reduced.
  • the NO conversion rate of 96.7% was shown when not coexisting, and the NO conversion rate was 61.7% when not coexisting with water.
  • the NO conversion rate of 89.8% was shown when not coexisting, and the NO conversion rate was 52.9% when not coexisting with water.
  • in the embodiment of the present invention in the selective catalytic reduction reaction at a reaction temperature of 200° C.
  • the denitration catalyst of the present invention is preferably used for denitration at 300°C or lower. This is because the denitration catalyst of the present invention has a firing temperature of 300°C.
  • the denitration catalyst of the present invention exerted a high denitration effect in the selective catalytic reduction reaction at a reaction temperature of 200° C. or lower, so that the denitration catalyst of the present invention It can be used for denitration. Since oxidation of SO 2 to SO 3 does not occur at 200° C. or lower, as is also found in Patent Document 2 described above, during selective catalytic reduction reaction, oxidation of SO 2 to SO 3 is not accompanied.
  • the denitration catalyst of the present invention is preferably used for denitration at 300° C. or lower, but may be preferably used for denitration at 200° C. or lower, more preferably, the reaction temperature is It may be used for denitration at 100 to 200°C. More preferably, it may be used for denitration at a reaction temperature of 160-200 ° C. Alternatively, it may be used for denitration with a reaction temperature of 80-150 ° C.
  • the denitration catalyst of the present invention preferably further contains carbon.
  • the carbon content is preferably 0.05 wt% or more.
  • the carbon content may be 0.07 wt% or more. More preferably, the carbon content may be 0.11 wt% or more. More preferably, the carbon content may be 0.12 wt% or more. More preferably, the carbon content may be 0.14 wt% or more. More preferably, the carbon content may be 0.16 wt% or more. More preferably, the carbon content may be 0.17 wt% or more. More preferably, the carbon content may be 0.70 wt% or more.
  • a denitration catalyst containing vanadium oxide as a main component wherein the content of the oxide of the second metal is 1 wt% or more and 40 wt% or less, and the second metal is Co, W, Mo, Nb,
  • a method for producing a denitration catalyst that is at least one metal element selected from the group consisting of Ce, Sn, Ni, and Fe will be described.
  • the above method for producing a denitration catalyst includes a step of calcining a mixture of vanadate, a chelate compound, and a compound of a second metal.
  • vanadate for example, ammonium vanadate, magnesium vanadate, strontium vanadate, barium vanadate, zinc vanadate, lead vanadate, lithium vanadate, etc. may be used.
  • the chelate compound include those having a plurality of carboxyl groups such as oxalic acid and citric acid, those having a plurality of amino groups such as acetylacetonate and ethylenediamine, and those having a plurality of hydroxyl groups such as ethylene glycol. Etc. may be used.
  • the compound of the second metal may be a chelate complex, a hydrate, an ammonium compound or a phosphoric acid compound.
  • the chelate complex may be, for example, a complex such as oxalic acid or citric acid.
  • the hydrate for example, (NH 4) may be 10 W 12 O 41 ⁇ 5H 2 O and H 3 PW 12 O 40 ⁇ nH 2 O.
  • the ammonium compound for example, (NH 4) may be 10 W 12 O 41 ⁇ 5H 2 O.
  • Examples of the phosphoric acid compound may be, for example, H 3 PW 12 O 40 ⁇ nH 2 O.
  • the above mixture further contains ethylene glycol.
  • the denitration catalyst produced by these methods can exhibit a high denitration effect even in a low temperature environment as compared with denitration catalysts such as vanadium/titanium catalysts that have been conventionally used.
  • denitration catalysts such as vanadium/titanium catalysts that have been conventionally used.
  • the denitration catalyst prepared by the method of calcining a mixture of ammonium vanadate, oxalic acid, and an oxalic acid complex of a second metal has a denitration rate of 74.5 to 100% in the absence of water.
  • the NO conversion was 33.9 to 90% in the presence of water.
  • the denitration catalyst produced by the method in which the above mixture further contains ethylene glycol has a NO conversion rate of 100% in the absence of water and an NO conversion rate of 89% in the presence of water. Indicated.
  • a denitration catalyst manufactured by a method not including such a step for example, ammonium vanadate and oxalic acid are mixed, but a method of firing without mixing the oxide of the second metal is used.
  • the denitration catalyst thus obtained showed a NO conversion of 76% in the absence of water and a NO conversion of 32% in the presence of water.
  • the above-mentioned firing is preferably performed at a temperature of 270° C. or lower.
  • the structure of the vanadium pentoxide crystal contained in the denitration catalyst is locally disordered by firing at a temperature of 270° C. or lower, which is lower than the normal 300° C., Although a high denitration effect can be exerted, it is speculated that a high denitration effect is exerted particularly by the appearance of sites lacking oxygen atoms in the crystal structure of vanadium pentoxide. Note that the “site devoid of oxygen atoms” is also referred to as “oxygen defect site”.
  • the denitration catalyst prepared in this manner is a denitration catalyst containing vanadium oxide as a main component, wherein the content of the oxide of the second metal is 1 wt% or more and 40 wt% or less, and the second metal Is at least one metal element selected from the group consisting of Co, W, Mo, Nb, Ce, Sn, Ni, and Fe.
  • Example 1 4.96 g (42.4 mmol) of ammonium vanadate (NH 4 VO 3 ) and 11.5 g (127.6 mmol) of oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex.
  • a oxalic acid complex of cobalt (Co) which is a second metal, is added so that cobalt (Co) is 3.5 mol% in terms of metal atom, that is, Co 3 O in terms of metal oxide. 4 was added so as to be 3.1 wt %.
  • the resulting vanadium - 4 hours at a temperature of 300 ° C. by an electric furnace heterogeneous metal complex mixture, by firing twice, to obtain a denitration catalyst of vanadium pentoxide containing cobalt (Co) (V 2 O 5 ) ..
  • Example 2 4.96 g (42.4 mmol) of ammonium vanadate (NH 4 VO 3 ) and 11.5 g (127.6 mmol) of oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex.
  • the oxalic acid complex of tungsten (W) which is the second metal, is added so that the tungsten (W) is 3.5 mol% in terms of metal atom, that is, WO 3 is converted into metal oxide. It was added so as to be 8.4 wt%.
  • the resulting vanadium - 4 hours at a temperature of 300 ° C. by an electric furnace heterogeneous metal complex mixture, by firing twice, to obtain a denitration catalyst of vanadium pentoxide containing tungsten (W) (V 2 O 5 ) ..
  • Example 3 4.96 g (42.4 mmol) of ammonium vanadate (NH 4 VO 3 ) and 11.5 g (127.6 mmol) of oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex.
  • the oxalic acid complex of molybdenum (Mo) which is the second metal, has molybdenum (Mo) of 3.5 mol% in terms of metal atoms, that is, MoO 3 in terms of metal oxides. It was added so as to be 5.4 wt%.
  • the resulting vanadium - 4 hours at a temperature of 300 ° C. by an electric furnace heterogeneous metal complex mixture, by firing twice, to obtain a denitration catalyst of vanadium pentoxide containing molybdenum (Mo) (V 2 O 5 ) ..
  • Example 4 4.96 g (42.4 mmol) of ammonium vanadate (NH 4 VO 3 ) and 11.5 g (127.6 mmol) of oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex.
  • the obtained vanadium-different metal complex mixture was baked twice in an electric furnace at a temperature of 300° C. for 4 hours to obtain a vanadium pentoxide (V 2 O 5 ) denitration catalyst containing niobium (Nb). ..
  • Example 5 4.96 g (42.4 mmol) of ammonium vanadate (NH 4 VO 3 ) and 11.5 g (127.6 mmol) of oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. With respect to this precursor complex, an oxalic acid complex of cesium (Ce), which is the second metal, was added so that cesium (Ce) would be 3.5 mol% in terms of metal atom, that is, CeO 2 in terms of metal oxide. It was added so as to be 6.4 wt%. The vanadium-dissimilar metal complex mixture thus obtained was calcined twice in an electric furnace at a temperature of 300° C. for 4 hours to obtain a vanadium pentoxide (V 2 O 5 ) denitration catalyst containing cesium (Ce). ..
  • V 2 O 5 vanadium pentoxide
  • Example 6 4.96 g (42.4 mmol) of ammonium vanadate (NH 4 VO 3 ) and 11.5 g (127.6 mmol) of oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex.
  • the oxalic acid complex of the second metal tin (Sn) is added to the precursor complex so that tin (Sn) is 3.5 mol% in terms of metal atom, that is, SnO 2 is in terms of metal oxide. It was added so as to be 5.6 wt%.
  • the resulting vanadium - 4 hours at a temperature of 300 ° C. by an electric furnace heterogeneous metal complex mixture, by firing twice, to obtain a denitration catalyst of vanadium pentoxide containing tin (Sn) (V 2 O 5 ) ..
  • Example 7 4.96 g (42.4 mmol) of ammonium vanadate (NH 4 VO 3 ) and 11.5 g (127.6 mmol) of oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex.
  • 0.113 g of nickel (Ni) as a second metal as nickel carbonate and 3.5 mol% of nickel (Ni) in terms of metal atoms, that is, NiO in terms of metal oxides. was added so as to be 2.9 wt %.
  • the vanadium-different metal complex mixture thus obtained was calcined twice in an electric furnace at a temperature of 300° C. for 4 hours to obtain a vanadium pentoxide (V 2 O 5 ) denitration catalyst containing nickel (Ni). ..
  • Example 8 4.96 g (42.4 mmol) of ammonium vanadate (NH 4 VO 3 ) and 11.5 g (127.6 mmol) of oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex.
  • the oxalic acid complex of iron (Fe) which is the second metal, is added so that iron (Fe) is 3.5 mol% in terms of metal atom, that is, Fe 2 O in terms of metal oxide. 3 was added so as to be 3.1 wt %.
  • the resulting vanadium - 4 hours at a temperature of 300 ° C. by an electric furnace heterogeneous metal complex mixture, by firing twice, to obtain a denitration catalyst of vanadium pentoxide containing iron (Fe) (V 2 O 5 ) ..
  • NO conversion rate was calculated by the following formula (1). Note that NO in is the NO concentration at the reaction tube inlet, and NO out is the NO concentration at the reaction tube outlet.
  • Table 2 shows the NO conversion rates of each vanadium pentoxide catalyst in both the case where water does not coexist and the case where water coexists.
  • FIG. 1 is a graph of this Table 2.
  • the denitration catalyst of the example In both the case where water did not coexist and the case where water coexisted, the denitration catalyst of the example generally showed a higher NO conversion rate than the denitration catalyst of the comparative example.
  • the denitration catalyst obtained by adding cobalt, tungsten, molybdenum, and niobium to ammonium vanadate and firing showed a high NO conversion rate.
  • Example 3 adding molybdenum
  • Example 1 adding cobalt
  • Example 1 (adding cobalt) showed the highest NO conversion rate, so the amount of cobalt added was changed. As a result, vanadium catalysts according to the following examples were produced.
  • Example 9 Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. An oxalic acid complex of the second metal, cobalt (Co), was added to this precursor complex such that Co 3 O 4 was 1 wt% in terms of metal oxide. The resulting vanadium - 4 hours at a temperature of 300 ° C. The cobalt complex mixture by an electric furnace and fired twice to obtain a denitration catalyst of vanadium pentoxide containing cobalt (Co) (V 2 O 5 ).
  • Co vanadium pentoxide containing cobalt
  • Example 10 Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. An oxalic acid complex of cobalt (Co), which is the second metal, was added to this precursor complex such that Co 3 O 4 was 3 wt% in terms of metal oxide. The resulting vanadium - 4 hours at a temperature of 300 ° C. The cobalt complex mixture by an electric furnace and fired twice to obtain a denitration catalyst of vanadium pentoxide containing cobalt (Co) (V 2 O 5 ).
  • Co cobalt
  • Example 11 Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. An oxalic acid complex of cobalt (Co), which is the second metal, was added to this precursor complex such that Co 3 O 4 was 5 wt% in terms of metal oxide. The resulting vanadium - 4 hours at a temperature of 300 ° C. The cobalt complex mixture by an electric furnace and fired twice to obtain a denitration catalyst of vanadium pentoxide containing cobalt (Co) (V 2 O 5 ).
  • Co cobalt
  • Example 12 Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. To this precursor complex, an oxalic acid complex of the second metal, cobalt (Co), was added so that Co 3 O 4 was 6 wt% in terms of metal oxide. The resulting vanadium - 4 hours at a temperature of 300 ° C. The cobalt complex mixture by an electric furnace and fired twice to obtain a denitration catalyst of vanadium pentoxide containing cobalt (Co) (V 2 O 5 ).
  • Co vanadium pentoxide containing cobalt
  • Example 13 Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. An oxalic acid complex of the second metal, cobalt (Co), was added to this precursor complex such that Co 3 O 4 was 7 wt% in terms of metal oxide. The resulting vanadium - 4 hours at a temperature of 300 ° C. The cobalt complex mixture by an electric furnace and fired twice to obtain a denitration catalyst of vanadium pentoxide containing cobalt (Co) (V 2 O 5 ).
  • Co cobalt
  • Example 14 Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. An oxalic acid complex of the second metal, cobalt (Co), was added to this precursor complex so that Co 3 O 4 was 8 wt% in terms of metal oxide. The resulting vanadium - 4 hours at a temperature of 300 ° C. The cobalt complex mixture by an electric furnace and fired twice to obtain a denitration catalyst of vanadium pentoxide containing cobalt (Co) (V 2 O 5 ).
  • Co cobalt
  • Example 15 Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex.
  • a oxalic acid complex which is a precursor of cobalt (Co), which is a second metal, was added so that Co 3 O 4 was 10 wt% in terms of metal oxide.
  • the cobalt complex mixture by an electric furnace and fired twice to obtain a denitration catalyst of vanadium pentoxide containing cobalt (Co) (V 2 O 5 ).
  • Table 3 shows the charged amount of the precursor in Example 9 to Example 15 when cobalt was introduced.
  • the NH 3- SCR reaction was carried out at a reaction temperature of 150 ° C. using a fixed-bed flow catalytic reactor.
  • NO was analyzed by Jasco FT-IR-4700. Further, the NO conversion rate was calculated by the above equation (1).
  • Table 4 shows the NO conversion of each vanadium oxide catalyst both in the absence of water and in the presence of water.
  • FIG. 2 is a graph of this Table 4.
  • the denitration catalysts of the examples all showed higher NO conversion than the denitration catalysts of the comparative examples both in the absence of water and in the presence of water. Particularly, in the case where water does not coexist, Example 12 (6 wt%) and Example 13 (7 wt%) show the highest NO conversion, and in the case where water coexists, Example 14 (8 wt%). The highest NO conversion was shown.
  • Powder X-ray diffraction> (Diffraction method) As the powder X-ray diffraction, a measurement was performed using Cu—K ⁇ by Rigaku smart lab.
  • FIG. 3 shows powder XRD of Example 9 (1 wt %), Example 10 (3 wt %), Example 12 (6 wt %), Example 15 (10 wt %), and Comparative Example 1 (None: 0 wt %).
  • X-Ray Diffraction pattern is shown. It was shown that V 2 O 5, which is a stable phase, is present as a main component, and that when the addition rate of Co is increased, a Co 3 O 4 phase also appears.
  • Raman spectra were measured by Raman spectroscopy to analyze the crystal structure of each vanadium pentoxide catalyst. More specifically, a small amount of each catalyst sample was placed on a slide glass, and the Raman spectrum was measured by a Raman spectroscope. A NRS-4100 Raman spectrophotometer manufactured by JASCO Corporation was used as a measuring instrument.
  • FIG. 4 shows the Raman spectrum of each catalyst. It was shown that when the amount of Co added was increased, the crystal structure of V 2 O 5 collapsed and the pattern strength weakened.
  • Example 9 ⁇ 2.2.4 X-ray photoelectron spectrum (XPS) measurement> (Measuring method) To analyze the electronic state of Example 9 (1 wt%), Example 10 (3 wt%), Example 12 (6 wt%), Example 15 (10 wt%), and Comparative Example 1 (None: 0 wt%). , X-ray photoelectron spectrum (XPS: X-Ray Photoelectron Spectrom) was measured. More specifically, powder samples of the catalysts of Examples and Comparative Examples were fixed to a sample holder using a carbon tape, and X-ray photoelectron spectra were measured. As a measuring device, a JPS-9010MX photoelectron spectrometer manufactured by JEOL Ltd. was used.
  • FIG. 5A shows an XPS spectrum in the V2p region.
  • FIG. 5B shows an XPS spectrum in the Co2p region. It was shown that increasing the added amount of Co increased the V 4+ and Co 2+ components.
  • Example 2 in the case where water coexists, Example 2 (adding tungsten) showed the second highest NO conversion rate, so the amount of tungsten added was changed.
  • a vanadium catalyst according to each of the following examples was produced. It should be noted that not only the amount of tungsten added is changed, but also when K 2 WO 4 is used as the precursor and when H 3 PW 12 O 40 ⁇ nH 2 O is used as a precursor, tungsten is used as described later. The amount added was changed.
  • Example 16 To a mixture of ammonium vanadate (NH 4 VO 3 ), 43.9 mmol of K 2 WO 4 and 20 ml of pure water, 11.9 g (131.7 mmol) of oxalic acid ((COOH) 2 ) was added, and the mixture was cooled to room temperature. After stirring for 10 minutes at 70° C. for 12 hours. By firing this precursor sample at 300° C. for 4 hours, a denitration catalyst of vanadium pentoxide (V 2 O 5 ) containing tungsten (W) was obtained. The amount of ammonium vanadate as a raw material was adjusted so that the total weight ratio of WO 3 in the produced denitration catalyst was 4.9 wt%.
  • V 2 O 5 vanadium pentoxide
  • Example 17 To a mixture of ammonium vanadate (NH 4 VO 3 ), 43.9 mmol of K 2 WO 4 and 20 ml of pure water, 11.9 g (131.7 mmol) of oxalic acid ((COOH) 2 ) was added, and the mixture was cooled to room temperature. After stirring for 10 minutes at 70° C. for 12 hours. By firing this precursor sample at 300° C. for 4 hours, a denitration catalyst of vanadium pentoxide (V 2 O 5 ) containing tungsten (W) was obtained. The amount of ammonium vanadate as a raw material was adjusted so that the total weight ratio of WO 3 in the produced denitration catalyst was 11.8 wt %.
  • V 2 O 5 vanadium pentoxide
  • Example 18 11.9 g (131.7 mmol) of oxalic acid was added to a mixture of ammonium vanadate (NH 4 VO 3 ), 43.9 mmol of K 2 WO 4 and 20 ml of pure water, and the mixture was stirred at room temperature for 10 minutes. , 70 ° C. for 12 hours. By firing this precursor sample at 300° C. for 4 hours, a denitration catalyst of vanadium pentoxide (V 2 O 5 ) containing tungsten (W) was obtained. The amount of ammonium vanadate as a raw material was adjusted so that the total weight ratio of WO 3 in the produced denitration catalyst was 22.1 wt%.
  • V 2 O 5 vanadium pentoxide
  • Table 5 shows the amount of the precursor charged at the time of introducing tungsten in Examples 16 to 18 and Comparative Example 2.
  • Example 19 Ammonium vanadate (NH 4 VO 3), and H 3 PW 12 O 40 ⁇ nH 2 O, a mixture of pure water 20 ml, oxalic acid ((COOH) 2) a 11.9g (131.7mmol) was added The mixture was stirred at room temperature for 10 minutes and then at 70° C. for 12 hours. By firing this precursor sample at 300° C. for 4 hours, a denitration catalyst of vanadium pentoxide (V 2 O 5 ) containing tungsten (W) was obtained. Incidentally, the total weight ratio of WO 3 in the denitration catalyst to be generated, so that the 38.4Wt%, and adjust the amount of ammonium vanadate and H 3 PW 12 O 40 ⁇ nH 2 O as raw materials.
  • V 2 O 5 vanadium pentoxide
  • W tungsten
  • Table 6 shows the amount of precursor charged at the time of introducing tungsten in Example 19 and Comparative Examples 3 to 6. ⁇ 3.2 Evaluation> ⁇ 3.2.1 Outline> Under the conditions shown in Table 1 above, the NH 3- SCR reaction was carried out at a reaction temperature of approximately 150 ° C. using a fixed bed flow type catalytic reaction apparatus. Of the gas that passed through the catalyst layer, NO was analyzed by Jasco FT-IR-4700. Further, the NO conversion rate was calculated by the above equation (1).
  • Table 7 shows the NO conversion rates of each vanadium pentoxide catalyst in both the case where water does not coexist and the case where water coexists.
  • FIG. 6 is a graph of Table 7.
  • Comparative Example 1 having a tungsten content of 0 wt% and Comparative Examples 2-5 and 7 having a tungsten content of 39 wt% to 100 wt% both in the case where water does not coexist and in the case where water coexists.
  • the addition amount of tungsten between 10 and 38 wt% is effective.
  • FIG. 7 shows Example 16 (4.9 wt %), Example 17 (11.8 wt %), Example 18 (22.1 wt %), Comparative Example 1 (0 wt %), and Comparative Example 2 (100 wt %).
  • 3 shows a powder XRD pattern.
  • FIG. 8 shows the percentage (%) of the tungsten element when the horizontal axis represents mol% of K 2 WO 4 .
  • Table 8 shows the NO conversion rates of each vanadium pentoxide catalyst in both the case where water does not coexist and the case where water coexists.
  • FIG. 9 is a graph of this Table 6.
  • Powder X-ray diffraction and elemental analysis> Measured method
  • a measurement was performed using Cu—K ⁇ by Rigaku smart lab.
  • elemental analysis by SEM-EDS was performed.
  • FIG. 10 shows Example 19 (38.4 wt %), Comparative Example 4 (61.7 wt %), Comparative Example 5 (77.3 wt %), Comparative Example 6 (84.4 wt %), Comparative Example 7 (100 wt %).
  • FIG. 11 shows the proportion (%) of the tungsten element when the horizontal axis is mol% of H 3 PW 12 O 40 ⁇ nH 2 O.
  • Table 9 shows the NO conversion rates of each vanadium pentoxide catalyst in both the case where water does not coexist and the case where water coexists.
  • FIG. 12 is a graph of this Table 9.
  • Example 4 shows the second highest NO conversion rate, and water coexists.
  • the vanadium catalyst according to each of the following examples was produced by changing the addition amount of niobium.
  • Example 20 Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex.
  • a oxalic acid complex of niobium (Nb) which is a second metal, was added so that Nb 2 O 5 was 1.8 wt% in terms of metal oxide.
  • Example 21 Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex.
  • a oxalic acid complex of niobium (Nb) which is a second metal, was added so that Nb 2 O 5 was 5.2 wt% in terms of metal oxide.
  • Example 22 Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex.
  • a oxalic acid complex of niobium (Nb) which is a second metal, was added so that Nb 2 O 5 was 8.5 wt% in terms of metal oxide.
  • the cobalt complex mixture by an electric furnace and fired twice to obtain a denitration catalyst of vanadium pentoxide containing cobalt (Co) (V 2 O 5 ).
  • Example 23 Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex.
  • a oxalic acid complex of niobium (Nb) which is a second metal, was added so that Nb 2 O 5 was 11.7 wt% in terms of metal oxide.
  • Example 24 Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex.
  • a oxalic acid complex of niobium (Nb) which is a second metal, was added so that Nb 2 O 5 was 16.2 wt% in terms of metal oxide.
  • Table 10 shows the amount of the precursor charged at the time of introducing niobium in Examples 20 to 24.
  • ⁇ 4.2 Evaluation> ⁇ 4.2.1 NO conversion> (Measuring method) Under the conditions shown in Table 1 above, the NH 3- SCR reaction was carried out at a reaction temperature of 150 ° C. using a fixed-bed flow catalytic reactor. Of the gas that passed through the catalyst layer, NO was analyzed by Jasco FT-IR-4700. Further, the NO conversion rate was calculated by the above equation (1).
  • Table 11 shows the NO conversion of each vanadium oxide catalyst both in the absence of water and in the presence of water.
  • FIG. 13 is a graph of this table 11.
  • the denitration catalysts of the examples all showed higher NO conversion than the denitration catalysts of the comparative examples both in the absence of water and in the presence of water.
  • Example 22 9 wt%) showed the highest NO conversion
  • Example 21 5 wt%) showed the highest NO conversion. ..
  • Example 25 Ammonium vanadate (NH 4 VO 3 ) and oxalic acid were dissolved in pure water to synthesize a precursor complex. To this precursor complex, ethylene glycol and an oxalic acid complex which is a precursor of cobalt (Co) which is the second metal were added so that Co 3 O 4 was 6 wt% in terms of metal oxide. The obtained catalyst skeleton was fired in an electric furnace at a temperature of 270° C. for 2 hours to obtain a vanadium oxide denitration catalyst containing carbon and cobalt (Co). In addition, Table 12 below shows the charged amount of the precursor when cobalt was introduced in Example 25.
  • each vanadium pentoxide catalyst When measuring the carbon content of each vanadium pentoxide catalyst, the carbon content was quantified by elemental analysis of C (carbon), H (hydrogen), and N (nitrogen). More specifically, each denitration catalyst is completely combusted and decomposed in a high-temperature reaction tube inside the CE-440F manufactured by Starbucks Analytical Co., and C, H, and N, which are main constituent elements, are CO 2 , H 2 O, After conversion to N 2 , these three components were sequentially quantified by three thermal conductivity detectors, and the contents of C, H, and N in the constituent elements were measured.
  • Table 13 shows the NO conversion rates of the vanadium pentoxide catalysts of Comparative Example 1, Example 12, and Example 25 in both the case where water does not coexist and the case where water coexists.
  • FIG. 14 is a graph of this table 13.
  • the denitration catalyst of Example 25 showed the highest NO conversion rate both in the absence of water and in the presence of water.
  • FIG. 15 is a figure which shows the structure of the combustion system 1 which concerns on a 1st application example.
  • the combustion system 1 is a combustion system using pulverized coal as fuel.
  • the combustion system 1 is assumed to be a thermal power generation system as an example, and includes a boiler 10 as a combustion device, a pulverized coal machine 20, an exhaust passage L1, an air preheater 30, and heat recovery.
  • a gas heater 40 as a vessel, a dust collector 50, an induced draft fan 60, a desulfurization apparatus 70, a gas heater 80 as a heater, a denitration apparatus 90, and a chimney 100 are provided.
  • the boiler 10 burns pulverized coal as fuel with air. Exhaust gas is generated by burning pulverized coal in the boiler 10. The combustion of pulverized coal produces coal ash such as clinker ash and fly ash. The clinker ash generated in the boiler 10 is discharged to the clinker hopper 11 arranged below the boiler 10 and then conveyed to a coal ash recovery silo (not shown).
  • the boiler 10 is formed in a substantially inverted U shape as a whole.
  • the exhaust gas generated in the boiler 10 moves in an inverted U shape along the shape of the boiler 10.
  • the temperature of the exhaust gas in the vicinity of the exhaust gas outlet of the boiler 10 is, for example, 300 to 400°C.
  • the pulverized coal machine 20 pulverizes coal supplied from a coal bunker (not shown) to a fine particle size to form pulverized coal.
  • the pulverized coal machine 20 preheats and dries the pulverized coal by mixing the pulverized coal and air.
  • the pulverized coal formed in the pulverized coal machine 20 is supplied to the boiler 10 by blowing air.
  • the upstream side of the exhaust passage L1 is connected to the boiler 10.
  • the exhaust passage L1 is a passage through which exhaust gas generated in the boiler 10 flows.
  • the air preheater 30 is arranged in the exhaust path L1.
  • the air preheater 30 performs heat exchange between the exhaust gas and the combustion air sent from a push-type fan (not shown) to recover heat from the exhaust gas.
  • the combustion air is heated in the air preheater 30 and then supplied to the boiler 10.
  • the gas heater 40 is arranged downstream of the air preheater 30 in the exhaust passage L1.
  • the gas heater 40 is supplied with the exhaust gas whose heat is recovered in the air preheater 30.
  • the gas heater 40 further recovers heat from the exhaust gas.
  • the dust collector 50 is arranged on the downstream side of the gas heater 40 in the exhaust passage L1.
  • the dust collector 50 is supplied with the exhaust gas heat-recovered by the gas heater 40.
  • the dust collector 50 is a device that collects soot dust such as coal ash (fly ash) in the exhaust gas by applying a voltage to the electrodes.
  • the fly ash collected by the dust collector 50 is transported to a coal ash recovery silo (not shown).
  • the temperature of the exhaust gas in the dust collector 50 is, for example, 80 to 120 ° C.
  • the attraction ventilator 60 is arranged on the downstream side of the dust collector 50 in the exhaust passage L1.
  • the draft fan 60 takes in the exhaust gas from which the fly ash has been removed in the dust collector 50 from the primary side and sends it to the secondary side.
  • the desulfurization device 70 is arranged on the downstream side of the induction ventilator 60 in the exhaust passage L1.
  • the exhaust gas sent from the induction ventilator 60 is supplied to the desulfurization apparatus 70.
  • the desulfurization device 70 removes sulfur oxides from the exhaust gas. Specifically, the desulfurization device 70 removes the sulfur oxides from the exhaust gas by spraying the mixed liquid (limestone slurry) of limestone and water onto the exhaust gas so that the mixed liquid absorbs the sulfur oxides contained in the exhaust gas.
  • the temperature of the exhaust gas in the desulfurization apparatus 70 is, for example, 50 to 120 ° C.
  • the gas heater 80 is arranged on the downstream side of the desulfurization apparatus 70 in the exhaust passage L1. Exhaust gas from which sulfur oxides have been removed in the desulfurization apparatus 70 is supplied to the gas heater 80.
  • the gas heater 80 heats the exhaust gas.
  • the gas heater 40 and the gas heater 80 are disposed between the exhaust gas flowing between the air preheater 30 and the dust collector 50 and the exhaust gas flowing between the desulfurization device 70 and a denitration device 90 described later in the exhaust passage L1. It may be configured as a gas gas heater that performs heat exchange with.
  • the gas heater 80 heats the exhaust gas to a temperature suitable for the denitration reaction in the subsequent denitration device 90.
  • the denitration device 90 is arranged downstream of the gas heater 80 in the exhaust passage L1.
  • the exhaust gas heated by the gas heater 80 is supplied to the denitration device 90.
  • the denitration device 90 removes nitrogen oxides from the exhaust gas by a denitration catalyst.
  • the denitration catalyst containing vanadium oxide as a main component, the oxide content of the second metal is 1 wt% or more and 40 wt% or less, and the second metal is Co, W, Mo.
  • the denitration catalyst described above which is at least one metal element selected from the group consisting of Nb, Ce, Sn, Ni, and Fe, is used.
  • the temperature of the exhaust gas in the denitration device 90 is, for example, 130 to 200 ° C.
  • nitrogen oxides are removed from the exhaust gas by the selective catalytic reduction method.
  • nitrogen oxides can be efficiently removed from the exhaust gas by producing nitrogen and water from the nitrogen oxides by the reducing agent and the denitration catalyst.
  • the reducing agent used in the selective catalytic reduction method contains at least one of ammonia and urea. When ammonia is used as the reducing agent, ammonia in any state of ammonia gas, liquid ammonia, and aqueous ammonia solution may be used.
  • the denitration device 90 can be configured to inject ammonia gas into the introduced exhaust gas and then bring the mixed gas into contact with the denitration catalyst.
  • the denitration device 90 includes, for example, one or a plurality of denitration catalyst layers, and the denitration catalyst layer includes a plurality of casings, a plurality of honeycomb catalysts housed in the plurality of casings, and a seal member. You may.
  • the casing is composed of a rectangular tubular metal member having one end and the other end opened, and the one end and the other end opened are opposed to the exhaust gas flow path in the denitration reactor, that is, the casing.
  • the exhaust gas may be arranged so as to circulate inside.
  • the plurality of casings may be connected and arranged in a state of being in contact with each other so as to block the flow path of the exhaust gas.
  • the honeycomb catalyst may be formed in a long shape (a rectangular parallelepiped shape) in which a plurality of exhaust gas circulation holes extending in the longitudinal direction are formed, and the exhaust gas circulation holes may be arranged so that the extending direction is along the exhaust gas passage.
  • the chimney 100 is connected to the downstream side of the exhaust passage L1. Exhaust gas from which nitrogen oxides are removed by the denitration device 90 is introduced into the chimney 100. Since the exhaust gas introduced into the chimney 100 is heated by the gas heater 80, it is effectively discharged from the upper part of the chimney 100 by the chimney effect. Further, by heating the exhaust gas in the gas heater 80, it is possible to prevent water vapor from condensing above the chimney 100 to generate white smoke.
  • the temperature of the exhaust gas near the outlet of the chimney 100 is, for example, 110 ° C.
  • FIG. 16 is a diagram showing the configuration of the combustion system 1A according to the second application example. Similar to the combustion system 1, the combustion system 1A is a combustion system using pulverized coal as fuel. In the combustion system 1A, the same reference numerals are used for the same components as the combustion system 1, and the description of their functions will be omitted.
  • the combustion system 1A differs from the combustion system 1 in that the denitration device 90 is installed immediately after the dust collector 50. Further, a ventilator 60, a desulfurization device 70, and a gas heater 80 are provided downstream of the denitration device 90 in this order from the upstream.
  • the gas heater 80 in the combustion system 1 heats the exhaust gas to a temperature suitable for the denitration reaction in the denitration device 90 in the subsequent stage.
  • the gas heater 80 in the combustion system 1A heats the exhaust gas to a suitable temperature until it diffuses from the chimney 100 in the subsequent stage.
  • the temperature of the exhaust gas in the denitration device 90 can be set to 130 to 200° C. without providing a gas heater in front of the denitration device 90.
  • FIG. 17 is a figure which shows the structure of the combustion system 1B which concerns on a 3rd application example.
  • the combustion system 1B is a combustion system that uses natural gas as fuel, unlike the combustion systems 1 and 1A.
  • the same reference numerals are used for the same components as those of the combustion system 1 and the combustion system 1A, and the description of their functions will be omitted.
  • the combustion system 1B includes a boiler 10 as a combustion device, a natural gas vaporizer 15, an exhaust passage L1, an air preheater 30, a denitration device 90, an induction ventilator 60, and the like. And a chimney 100.
  • the dust collector and the desulfurizer are not essential components.
  • the vaporizer 15 vaporizes natural gas supplied from an LNG tank (not shown) and supplies it to the boiler 10.
  • a method of using seawater (open rack method), a method of producing hot water with a gas burner and heating (submerged combustion method), or an intermediate medium for several steps A method of performing heat exchange may be used.
  • the denitration device 90 is arranged on the downstream side of the air preheater 30 in the exhaust passage L1.
  • the exhaust gas cooled in the air preheater 30 is supplied to the denitration device 90.
  • the denitration device 90 removes nitrogen oxides from the exhaust gas by a denitration catalyst.
  • the temperature of the exhaust gas in the denitration device 90 is, for example, 130 to 200 ° C.
  • the downstream side of the exhaust passage L1 is connected to the chimney 100.
  • Exhaust gas from which nitrogen oxides are removed by the denitration device 90 is introduced into the chimney 100. Since the temperature of the exhaust gas in the denitration device 90 is, for example, 130 to 200° C., the exhaust gas introduced into the stack 100 is effectively discharged from the upper part of the stack 100 due to the stack effect.
  • the temperature of the exhaust gas near the exit of the chimney 100 is 110° C., for example.
  • the denitration device 90 By arranging the denitration device 90 on the downstream side of the air preheater 30, the temperature of the exhaust gas denitrated by the denitration catalyst becomes low, and the deterioration of the denitration catalyst can be reduced.
  • FIG. 18 is a diagram showing the configuration of a combustion system 1C according to the fourth application example.
  • the combustion system 1C is a combustion system used for propulsion of a ship, and includes a fuel supply device 110, an internal combustion engine 120 as a combustion device, a dust collector 130, and an exhaust heat recovery device. 140, a denitration device 150, a chimney 160, an energizing motor 170, a fuel path R1, exhaust paths R2 and R3, a steam path R4, and a power path R5.
  • the fuel supply device 110 supplies fuel to the internal combustion engine 120 using the fuel passage R1.
  • the fuel for example, petroleum-based fuel such as light oil and heavy oil can be used.
  • the upstream side of the fuel passage R1 is connected to the fuel supply device 110, and the downstream side is connected to the internal combustion engine 120.
  • the fuel passage R1 is a flow path through which fuel is transported from the fuel supply device 110 to the internal combustion engine 120.
  • the internal combustion engine 120 burns petroleum fuel with air.
  • exhaust gas is generated by burning petroleum-based fuel.
  • the generated exhaust gas is discharged to the dust collector 130 via the exhaust path R2.
  • the internal combustion engine 120 may be, for example, a 2-stroke low-speed diesel engine used in a large ship, or a 4-stroke medium-speed diesel engine used in a ferry or the like, and used in a high-speed boat or small boat. It may be a 4-stroke high-speed diesel engine.
  • the upstream side of the exhaust passage R2 is connected to the internal combustion engine 120.
  • the exhaust passage R2 is a passage through which exhaust gas generated in the internal combustion engine 120 flows.
  • the dust collector 130 is arranged on the downstream side of the internal combustion engine 120 in the exhaust passage R2, and the exhaust gas discharged from the internal combustion engine 120 is supplied.
  • the dust collector 130 is a device that collects soot and dust in the exhaust gas.
  • a method for collecting soot and dust for example, a method may be used in which a voltage is applied to the electrodes to charge the soot and dust and the soot and dust are collected by using Coulomb force.
  • a soot absorbing liquid is supplied to the Venturi part, the soot and dust absorbing liquid is miniaturized by the exhaust gas speeded up in the Venturi part, and the soot is collected by gas-liquid contact. May be used.
  • the exhaust heat recovery device 140 is arranged in the exhaust passage on the downstream side of the dust collector 130, and the exhaust gas from which the dust has been removed by the dust collector 130 is supplied.
  • the exhaust heat recovery device 140 recovers exhaust heat from the exhaust gas supplied from the dust collector 130. More specifically, the exhaust heat recovery device 140 includes a turbine device 141 and an exhaust gas economizer 145.
  • the turbine device 141 includes a gas turbine 142, a steam turbine 143, and a generator 144.
  • the gas turbine 142 and the generator 144, and the steam turbine 143 and the generator 144 are connected to each other.
  • the gas turbine 142 is driven by the exhaust gas supplied from the dust collector 130 via the exhaust path R3.
  • the generator 144 connected to the gas turbine 142 is also driven in conjunction with it to generate power.
  • the steam turbine 143 is driven by steam supplied from the exhaust gas economizer 145, which will be described later, via the steam passage R4.
  • the generator 144 connected to the steam turbine 143 also generates electricity in conjunction with it.
  • the electric power generated by the generator 144 is supplied to the biasing motor 170 via the electric power line R5.
  • the exhaust gas economizer 145 uses a water supply tank (not shown) as a heat source of the exhaust gas supplied from the dust collector 130 via the exhaust passage R2 and the exhaust gas supplied from the gas turbine 142 via the exhaust passage R3. Generate steam from the water stored in etc. The steam generated by the exhaust gas economizer 145 is supplied to the steam turbine 143 via the steam passage R4.
  • the exhaust passage R3 is an exhaust passage different from the exhaust passage R2, and the upstream side is connected to the dust collector 130 and the downstream side is connected to the exhaust gas economizer 145, and the exhaust passage R3 passes through the gas turbine 142 on the way.
  • the exhaust path R3 is a flow path for circulating the exhaust gas supplied from the dust collector 130 to the exhaust gas economizer 145 via the gas turbine 142.
  • the upstream side of the steam passage R4 is connected to the exhaust gas economizer 145, and the downstream side is connected to the steam turbine 143.
  • the steam passage R4 is a flow path through which steam generated by the exhaust gas economizer 145 flows.
  • the power path R5 is connected to the generator 144 on the upstream side and to the boosting motor 170 on the downstream side.
  • the electric power path is a flow path through which electric power generated by the generator 144 flows.
  • the denitration device 150 is arranged in the exhaust passage R2 on the downstream side of the exhaust heat recovery device 140, and the exhaust gas from which the exhaust heat is recovered is supplied.
  • the denitration device 150 removes nitrogen oxides from the exhaust gas with a denitration catalyst.
  • the denitration catalyst containing vanadium oxide as a main component, the oxide content of the second metal is 1 wt% or more and 40 wt% or less, and the second metal is Co, W,
  • the above denitration catalyst which is at least one metal element selected from the group consisting of Mo, Nb, Ce, Sn, Ni, and Fe, is used. Since the denitration device 150 is installed on the downstream side of the exhaust heat recovery device 140, the temperature of the exhaust gas in the denitration device 150 is, for example, 130 to 200°C.
  • nitrogen oxides are removed from the exhaust gas by the selective catalytic reduction method.
  • nitrogen oxides can be efficiently removed from exhaust gas by producing nitrogen and water from nitrogen oxides with a reducing agent and a denitration catalyst.
  • the reducing agent used in the selective catalytic reduction method contains at least one of ammonia and urea. When ammonia is used as the reducing agent, ammonia in any state of ammonia gas, liquid ammonia, and aqueous ammonia solution may be used.
  • the denitration device 150 can be configured to inject ammonia gas into the introduced exhaust gas and then bring the mixed gas into contact with the denitration catalyst.
  • the chimney 160 is connected to the downstream side of the exhaust passage R2. Exhaust gas from which nitrogen oxides have been removed by the denitration device 150 is introduced into the chimney 160.
  • the exhaust gas introduced into the chimney 160 is effectively discharged from the upper portion of the chimney 160 due to the chimney effect because the temperature of the exhaust gas in the denitration device 150 is, for example, 130 to 200°C.
  • the temperature of the exhaust gas near the outlet of the chimney 160 is, for example, 110 ° C.
  • the energizing motor 170 is installed on the downstream side of the generator 144 in the electric power line R5, and drives so as to energize the rotation of the internal combustion engine 120 around the propeller shaft. Electric power is supplied to the energizing motor 170 from the generator 144 via the electric power path R5, and by using this electric power, the motive power generated by the internal combustion engine 120 is energized.
  • a denitration catalyst containing vanadium oxide as a main component, wherein the content of the oxide of the second metal is 1 wt% or more and 40 wt% or less A denitration device provided in a combustion system for incinerating raw garbage, etc., using the above denitration catalyst in which the metal is at least one metal element selected from the group consisting of Co, W, Mo, Nb, Ce, Sn, Ni, and Fe. May be used in.
  • the temperature of the exhaust gas may be 150 ° C or lower, but the above denitration catalyst can be used for denitration with a reaction temperature of 80-150 ° C. Because it is possible, it is also useful for such combustion systems.
  • the above denitration catalyst is basically in the form of powder.
  • a catalyst is formed on a honeycomb-shaped substrate.
  • Honeycomb type catalysts coated with components may be used.
  • the substrate can be coated with the above-mentioned denitration catalyst as a catalyst component.
  • any substrate can be used as long as it is not deformed at a temperature of 200 ° C. or higher.
  • a metal such as ceramic, pottery, or titanium may be used as the base.
  • a corrugated honeycomb filter made of ceramic fiber paper, glass fiber paper, flame-retardant paper, activated carbon paper, deodorizing paper, honeycomb filter non-woven fabric, felt, or plastic sheet may be used as the base.
  • a new catalyst or a used catalyst may be further coated with the catalyst component of the present invention.
  • the substrate can have any shape, for example, plate-shaped, pellet-shaped, fluid-shaped, cylindrical, star-shaped, ring-shaped, extruded, spherical, flake-shaped, pastil-shaped, rib-extruded. , Or rib ring shape.
  • the corrugated type honeycomb filter can take any form such as a block type, a rotor type, an oblique type, a deformed block, a strip type, and a mini pleats.
  • a catalyst block such as a honeycomb catalyst may be used in a denitration device provided in a coal-fired power generation facility.
  • a catalyst block containing the above denitration catalyst it is possible to manufacture a catalyst block containing the above denitration catalyst as a catalyst component.
  • CMC carboxymethyl cellulose
  • PVA polyvinyl alcohol
  • the catalyst block can have any shape, for example, plate shape, pellet shape, fluid shape, columnar shape, star shape, ring shape, extrusion type, spherical shape, flake shape, honeycomb shape, pastille shape, rib.
  • An extrusion type or rib ring type can be used.
  • the honeycomb surface may have a polygonal shape such as a triangle, a quadrangle, a pentagon, a hexagon, or a circle.
  • the denitration device 90 is arranged on the downstream side of the dust collecting device 50 in the exhaust passage L1 through which the exhaust gas generated in the boiler (combustion device) 10 flows. .. Further, in the above-described embodiment, in the denitration device 90, the denitration catalyst containing vanadium oxide as a main component, the content of the oxide of the second metal is 1 wt% or more and 40 wt% or less, and the second metal is , Co, W, Mo, Nb, Ce, Sn, Ni, and Fe, a denitration catalyst of at least one metal element selected from the group was used.
  • the denitration efficiency at a low temperature is lower than that of the prior art in the selective catalytic reduction reaction of 200° C. or less using ammonia as a reducing agent. The effect of being even higher can be exhibited.
  • the combustion system 1A according to the application example further includes the air preheater 30 that recovers heat from the exhaust gas, and the air preheater 30 is arranged on the upstream side of the dust collector 50.
  • the air preheater 30 that recovers heat from the exhaust gas
  • the air preheater 30 is arranged on the upstream side of the dust collector 50.
  • the denitration device 90 is arranged on the downstream side of the air preheater 30 in the exhaust passage L1 through which the exhaust gas generated in the boiler (combustion device) 10 flows. Further, in the above-described embodiment, in the denitration device 90, the denitration catalyst containing vanadium oxide as a main component, the content of the oxide of the second metal is 1 wt% or more and 40 wt% or less, and the second metal is A denitration catalyst of at least one metal element selected from the group consisting of Co, W, Mo, Nb, Ce, Sn, Ni, and Fe was used.
  • the denitration efficiency at a low temperature is improved in the selective catalytic reduction reaction at a temperature of 200° C. or less using ammonia as a reducing agent, as compared with the conventional technique.
  • the effect of being even higher can be exhibited.
  • the dust collector and the desulfurization device are not essential components. Therefore, the installation cost can be reduced by simplifying the configuration of the combustion system 1B.
  • the combustion system 1C includes an exhaust passage R2 through which exhaust gas generated by combustion of fuel in the internal combustion engine 120 flows, and exhaust gas disposed in the exhaust passage R2 and discharged from the internal combustion engine 120.
  • a combustion system 1C including an exhaust heat recovery device 140 that recovers exhaust heat and a denitration device 150 that is disposed in the exhaust passage R2 and that removes nitrogen oxides from exhaust gas by a denitration catalyst.
  • the denitration catalyst arranged on the downstream side of the exhaust heat recovery apparatus 140 in R2 is a denitration catalyst containing vanadium oxide as a main component, and the content of the oxide of the second metal is 1 wt% or more and 40 wt% or less.
  • the second metal is a denitration catalyst of at least one metal element selected from the group consisting of Co, W, Mo, Nb, Ce, Sn, Ni, and Fe.
  • the combustion system 1C of the above-described embodiment can have a compact structure because a heater for heating exhaust gas is not essential. As a result, it becomes possible to install the combustion system with the denitration device even in a narrow space such as a ship.
  • the exhaust heat recovery device 140 includes the turbine device 141 and the exhaust gas economizer 145, and the exhaust gas economizer 145 collects the exhaust gas discharged from the internal combustion engine 120 and the exhaust gas supplied from the turbine device 141. It is preferable that steam is generated as a heat source, and the turbine device 141 uses the exhaust gas discharged from the exhaust gas engine 120 and the steam supplied from the exhaust gas economizer 145 to generate power.
  • the exhaust heat recovery device 140 in the above-described embodiment includes the turbine device 141 and the exhaust gas economizer 145, so that the thermal energy generated by the combustion of the fuel in the internal combustion engine 120 can be more effectively utilized. ..

Abstract

Provided is a combustion system using a catalyst with a more satisfactory denitration efficiency at low temperatures during a selective catalytic reduction reaction having ammonia as the reductant, compared to prior art techniques. The combustion system is equipped with a combustion device for combusting a fuel, an exhaust route for flowing therethrough an exhaust gas generated by the fuel being combusted in the combustion device, a dust collection device disposed in the exhaust route and collecting the soot present in the exhaust gas, and a denitration device disposed in the exhaust route and eliminating nitrogen oxide from the exhaust gas by means of a denitration catalyst. The denitration device is disposed on the downstream side of the dust collection device in the exhaust route. The denitration catalyst has vanadium oxide as the main component. The denitration catalyst has a second metal oxide content of 1% to 40% by weight. In the denitration catalyst, the second metal is at least one metal element selected from the group consisting of Co, W, Mo, Nb, Ce, Sn, Ni, and Fe.

Description

燃焼システムCombustion system
 本発明は、燃焼システムに関する。より詳しくは、本発明は、燃料が燃焼することによって発生する排ガスを、脱硝触媒を用いて浄化する燃焼システムに関する。 The present invention relates to a combustion system. More specifically, the present invention relates to a combustion system that purifies exhaust gas generated by burning fuel by using a denitration catalyst.
 燃料の燃焼により大気中に排出される汚染物質の一つとして、窒素酸化物(NO,NO,NO,NO,N,N,N)が挙げられる。窒素酸化物は、酸性雨、オゾン層破壊、光化学スモッグ等を引き起こし、環境や人体に深刻な影響を与えるため、その処理が重要な課題となっている。 One of the pollutants emitted into the atmosphere by the combustion of fuel, like nitrogen oxides (NO, NO 2, NO 3 , N 2 O, N 2 O 3, N 2 O 4, N 2 O 5) is To be Nitrogen oxides cause acid rain, ozone layer depletion, photochemical smog, etc., and have a serious impact on the environment and the human body, so their treatment has become an important issue.
 上記の窒素酸化物を取り除く技術として、アンモニア(NH)を還元剤とする選択的触媒還元反応(NH-SCR)が知られている。特許文献1に記載のように、選択的触媒還元反応に用いられる触媒としては、酸化チタンを担体とし、酸化バナジウムを担持した触媒が広く使用されている。酸化チタンは硫黄酸化物に対して活性が低く、また安定性が高いため最も良い担体とされている。 As a technique for removing the above nitrogen oxides, a selective catalytic reduction reaction (NH 3 —SCR) using ammonia (NH 3 ) as a reducing agent is known. As described in Patent Document 1, as a catalyst used for the selective catalytic reduction reaction, a catalyst using titanium oxide as a carrier and supporting vanadium oxide is widely used. Titanium oxide is considered to be the best carrier because of its low activity against sulfur oxides and high stability.
 一方で、酸化バナジウムはNH-SCRにおいて主要な役割を果たすものの、SOをSOに酸化するので、酸化バナジウムを1wt%程度以上担持できなかった。また、従来のNH-SCRでは、酸化チタン担体に酸化バナジウムを担持させた触媒が低温ではほとんど反応しないので,350-400℃という高温で使用せざるを得なかった。
 しかし、NH-SCRを実施する装置や設備の設計の自由度を高め、効率化するためには、低温でも高い窒素酸化物還元率活性を示す触媒の開発が求められていた。
On the other hand, although vanadium oxide plays a major role in NH 3 —SCR, it oxidizes SO 2 to SO 3, and therefore vanadium oxide could not be supported by about 1 wt% or more. Further, in the conventional NH 3 -SCR, the catalyst in which vanadium oxide is supported on the titanium oxide carrier hardly reacts at a low temperature, so that the catalyst must be used at a high temperature of 350 to 400°C.
However, in order to increase the degree of freedom in designing the apparatus and equipment for carrying out NH 3 -SCR and increase the efficiency, it has been required to develop a catalyst that exhibits a high nitrogen oxide reduction rate activity even at low temperatures.
 その後、本発明者らは、五酸化バナジウムが43wt%以上存在し、BET比表面積が30m/g以上であり、200℃以下での脱硝に用いられる脱硝触媒を見出した(特許文献2)。 After that, the present inventors have found a denitration catalyst having vanadium pentoxide of 43 wt% or more, a BET specific surface area of 30 m 2 /g or more, and used for denitration at 200° C. or lower (Patent Document 2).
特開2004-275852号公報Japanese Unexamined Patent Publication No. 2004-275852 特許第6093101号公報Japanese Patent No. 6093101
 本発明者らは、上記特許文献2の更なる改良を試みて鋭意検討した結果、更に優れた窒素酸化物の還元率活性を示す脱硝触媒を見出した。 As a result of diligent studies in an attempt to further improve Patent Document 2, the present inventors have found a denitration catalyst that exhibits a more excellent reduction rate activity of nitrogen oxides.
 本発明は、アンモニアを還元剤とする選択的触媒還元反応の際、従来技術に比較して、低温での脱硝効率が更に良い触媒を用いた燃焼システムを提供することを目的とする。 The object of the present invention is to provide a combustion system using a catalyst that has a better denitration efficiency at low temperature than in the prior art in the selective catalytic reduction reaction using ammonia as a reducing agent.
 本発明は、燃料を燃焼させる燃焼装置と、前記燃焼装置において前記燃料が燃焼することによって発生する排ガスが流通する排気路と、前記排気路に配置され且つ前記排ガス中の煤塵を収集する集塵装置と、前記排気路に配置され且つ脱硝触媒によって前記排ガスから窒素酸化物を除去する脱硝装置と、を備える燃焼システムであって、前記脱硝装置は、前記排気路における前記集塵装置の下流側に配置され、前記脱硝触媒は、酸化バナジウムを主成分とする脱硝触媒であって、第2の金属の酸化物の含有量が1wt%以上40wt%以下であり、前記第2の金属が、Co、W、Mo、Nb、Ce、Sn、Ni、及びFeからなる群から選ばれる少なくとも一つの金属元素の脱硝触媒である燃焼システムに関する。 The present invention provides a combustion device for burning fuel, an exhaust passage through which an exhaust gas generated by combustion of the fuel in the combustion device flows, and a dust collection disposed in the exhaust passage for collecting soot dust in the exhaust gas. A denitration device, which is disposed in the exhaust passage and removes nitrogen oxides from the exhaust gas by a denitration catalyst, wherein the denitration device is a downstream side of the dust collector in the exhaust passage. The denitration catalyst is a denitration catalyst containing vanadium oxide as a main component, the oxide content of the second metal is 1 wt% or more and 40 wt% or less, and the second metal is Co , W, Mo, Nb, Ce, Sn, Ni, and Fe. The combustion system is a denitration catalyst for at least one metal element selected from the group.
 また、前記燃焼システムは、前記排気路に配置され且つ前記排ガスから熱回収する空気予熱器を更に備え、前記空気予熱器は、前記集塵装置の上流側に配置されることが好ましい。 Further, it is preferable that the combustion system further includes an air preheater disposed in the exhaust passage and recovering heat from the exhaust gas, and the air preheater is disposed upstream of the dust collector.
 また本発明は、燃料を燃焼させる燃焼装置と、前記燃焼装置において前記燃料が燃焼することによって発生する排ガスが流通する排気路と、前記排気路に配置され且つ前記排ガスから熱回収する空気予熱器と、前記排気路に配置され且つ脱硝触媒によって前記排ガスから窒素酸化物を除去する脱硝装置と、を備える燃焼システムであって、前記脱硝装置は、前記排気路における前記空気予熱器の下流側に配置され、前記脱硝触媒は、酸化バナジウムを主成分とする脱硝触媒であって、第2の金属の酸化物の含有量が1wt%以上40wt%以下であり、前記第2の金属が、Co、W、Mo、Nb、Ce、Sn、Ni、及びFeからなる群から選ばれる少なくとも一つの金属元素の脱硝触媒である燃焼システムに関する。 Further, the present invention includes a combustion device that burns fuel, an exhaust passage through which exhaust gas generated by burning the fuel in the combustion device flows, and an air preheater that is arranged in the exhaust passage and recovers heat from the exhaust gas. A combustion system including a denitration device arranged in the exhaust passage and removing nitrogen oxides from the exhaust gas by a denitration catalyst, wherein the denitration device is located downstream of the air preheater in the exhaust passage. The denitration catalyst is a denitration catalyst containing vanadium oxide as a main component, and the oxide content of the second metal is 1 wt% or more and 40 wt% or less, and the second metal is Co. The present invention relates to a combustion system which is a denitration catalyst of at least one metal element selected from the group consisting of W, Mo, Nb, Ce, Sn, Ni, and Fe.
 また本発明は、燃料を燃焼させる内燃機関と、前記内燃機関において前記燃料が燃焼することによって発生する排ガスが流通する排気路と、前記排気路に配置され且つ前記内燃機関から排出される排ガスから排熱を回収する排熱回収装置と、前記排気路に配置され且つ脱硝触媒によって前記排ガスから窒素酸化物を除去する脱硝装置とを備える燃焼システムであって、前記脱硝装置は、前記排気路における前記排熱回収装置の下流側に配置され、前記脱硝触媒は、酸化バナジウムを主成分とする脱硝触媒であって、第2の金属の酸化物の含有量が1wt%以上40wt%以下であり、前記第2の金属が、Co、W、Mo、Nb、Ce、Sn、Ni、及びFeからなる群から選ばれる少なくとも一つの金属元素の脱硝触媒である燃焼システムに関する。 Further, the present invention comprises an internal combustion engine that burns fuel, an exhaust gas through which exhaust gas generated by combustion of the fuel in the internal combustion engine flows, and exhaust gas that is arranged in the exhaust passage and is discharged from the internal combustion engine. A combustion system including an exhaust heat recovery device that recovers exhaust heat and a denitration device that is arranged in the exhaust passage and removes nitrogen oxides from the exhaust gas by a denitration catalyst. The denitration device is in the exhaust passage. The denitration catalyst, which is arranged on the downstream side of the exhaust heat recovery device, is a denitration catalyst containing vanadium oxide as a main component, and has an oxide content of a second metal of 1 wt% or more and 40 wt% or less. The second metal relates to a combustion system in which the denitration catalyst of at least one metal element selected from the group consisting of Co, W, Mo, Nb, Ce, Sn, Ni, and Fe.
 また、前記排熱回収装置は、タービン装置と排ガスエコノマイザとを備え、前記排ガスエコノマイザは、前記内燃機関から排出される排ガスと前記タービン装置から供給される排ガスとを熱源として蒸気を発生させ、前記タービン装置は、前記内燃機関から排出される排ガスと、前記排ガスエコノマイザから供給される蒸気とを用いて発電をすることが好ましい。 Further, the exhaust heat recovery device includes a turbine device and an exhaust gas economizer, the exhaust gas economizer generates steam by using the exhaust gas discharged from the internal combustion engine and the exhaust gas supplied from the turbine device as a heat source, The turbine device preferably generates power by using the exhaust gas discharged from the internal combustion engine and the steam supplied from the exhaust gas economizer.
 本発明に係る燃焼システムは、アンモニアを還元剤とする選択的触媒還元反応の際、従来技術に比較して、低温での脱硝効率が更に良い。 The combustion system according to the present invention has a better denitration efficiency at low temperature than in the prior art in the selective catalytic reduction reaction using ammonia as a reducing agent.
各実施例に係る第2の金属を含有するバナジウム触媒と含有しないバナジウム触媒のNO転化率を示すグラフである。It is a graph which shows the NO conversion rate of the vanadium catalyst which does not contain the vanadium catalyst which contains the 2nd metal which concerns on each Example. 各実施例に係る、コバルトを含有するバナジウム触媒と含有しないバナジウム触媒のNO転化率を示すグラフである。It is a graph which shows the NO conversion rate of the vanadium catalyst which does not contain the vanadium catalyst which contains cobalt which concerns on each Example. 各実施例及び比較例に係る、コバルトを含有するバナジウム触媒の粉末XRDパターンを示すグラフである。It is a graph which shows the powder XRD pattern of the vanadium catalyst containing cobalt which concerns on each Example and comparative example. 各実施例に係る、コバルトを含有するバナジウム触媒のラマンスペクトルを示すグラフである。It is a graph which shows the Raman spectrum of the vanadium catalyst containing cobalt which concerns on each Example. 各実施例及び比較例に係る、コバルトを含有するバナジウム触媒のV2p領域におけるXPSスペクトルを示すグラフである。It is a graph which shows the XPS spectrum in the V2p area|region of the vanadium catalyst containing cobalt which concerns on each Example and a comparative example. 各実施例及び比較例に係る、コバルトを含有するバナジウム触媒のCo2p領域におけるXPSスペクトルを示すグラフである。It is a graph which shows the XPS spectrum in the Co2p area|region of the vanadium catalyst containing cobalt which concerns on each Example and a comparative example. 各実施例に係る、タングステンを含有するバナジウム触媒と含有しないバナジウム触媒のNO転化率を示すグラフである。It is a graph which shows the NO conversion rate of the vanadium catalyst containing tungsten and the vanadium catalyst not containing according to each example. 各実施例及び比較例に係る、タングステンを含有するバナジウム触媒の粉末XRDパターンを示すグラフである。It is a graph which shows the powder XRD pattern of the vanadium catalyst containing tungsten which concerns on each Example and comparative example. 各実施例及び比較例に係る、タングステンを含有するバナジウム触媒のタングステン元素の割合を示すグラフである。It is a graph which shows the ratio of the tungsten element of the vanadium catalyst containing tungsten which concerns on each Example and comparative example. 本発明の実施例に係る、タングステンを含有するバナジウム触媒と含有しないバナジウム触媒のNO転化率を示すグラフである。3 is a graph showing NO conversion rates of vanadium catalyst containing tungsten and vanadium catalyst not containing tungsten according to an example of the present invention. 各実施例及び比較例に係る、タングステンを含有するバナジウム触媒の粉末XRDパターンを示すグラフである。It is a graph which shows the powder XRD pattern of the vanadium catalyst containing tungsten which concerns on each Example and comparative example. 各実施例及び比較例に係る、タングステンを含有するバナジウム触媒のタングステン元素の割合を示すグラフである。It is a graph which shows the ratio of the tungsten element of the vanadium catalyst containing tungsten which concerns on each Example and comparative example. 本発明の実施例に係る、タングステンを含有するバナジウム触媒と含有しないバナジウム触媒のNO転化率を示すグラフである。3 is a graph showing NO conversion rates of vanadium catalyst containing tungsten and vanadium catalyst not containing tungsten according to an example of the present invention. 本発明の実施例に係る、ニオブを含有するバナジウム触媒と含有しないバナジウム触媒のNO転化率を示すグラフである。3 is a graph showing NO conversion rates of a vanadium catalyst containing niobium and a vanadium catalyst not containing niobium according to an example of the present invention. 本発明の実施例に係る炭素とコバルトとを含有するバナジウム触媒と、比較例に係るバナジウム触媒のNO転化率を示すグラフである。It is a graph which shows the NO conversion rate of the vanadium catalyst containing carbon and cobalt which concerns on the Example of this invention, and the vanadium catalyst which concerns on a comparative example. 本発明の第1の適用例に係る燃焼システムの構成を示す図である。It is a figure which shows the structure of the combustion system which concerns on the 1st application example of this invention. 本発明の第2の適用例に係る燃焼システムの構成を示す図である。It is a figure which shows the structure of the combustion system which concerns on the 2nd application example of this invention. 本発明の第3の適用例に係る燃焼システムの構成を示す図である。It is a figure which shows the structure of the combustion system which concerns on the 3rd application example of this invention. 本発明の第4の適用例に係る燃焼システムの構成を示す図である。It is a figure which shows the structure of the combustion system which concerns on the 4th application example of this invention.
 以下、本発明の実施形態に係る脱硝触媒について説明する。 Hereinafter, the denitration catalyst according to the embodiment of the present invention will be described.
 本発明の脱硝触媒は、酸化バナジウムを主成分とする脱硝触媒であって、第2の金属の酸化物の含有量が1wt%以上40wt%以下であり、前記第2の金属が、Co、W、Mo、Nb、Ce、Sn、Ni、及びFeからなる群から選ばれる少なくとも一つの金属元素である。このような脱硝触媒は、従来用いられているバナジウム/チタン触媒等の脱硝触媒に比べて、低温環境下でも高い脱硝効果を発揮できる。 The denitration catalyst of the present invention is a denitration catalyst containing vanadium oxide as a main component, wherein the content of the oxide of the second metal is 1 wt% or more and 40 wt% or less, and the second metal is Co or W. , Mo, Nb, Ce, Sn, Ni, and Fe, at least one metal element selected from the group. Such a denitration catalyst can exhibit a higher denitration effect even in a low temperature environment as compared with a denitration catalyst such as a vanadium / titanium catalyst conventionally used.
 第1に、本発明の脱硝触媒は、酸化バナジウムを主成分とする。この酸化バナジウムは、酸化バナジウム(II)(VO)、三酸化バナジウム(III)(V)、四酸化バナジウム(IV)(V)、五酸化バナジウム(V)(V)を含み、脱硝反応中、五酸化バナジウム(V)のV元素は、5価、4価、3価、2価の形態を取ってもよい。
 なお、この酸化バナジウムは、本発明の脱硝触媒の主成分であり、本発明の効果を阻害しない範囲内で他の物質を含んでいても良いが、本発明の脱硝触媒中、五酸化バナジウム換算で50wt%以上存在することが好ましい。更に好ましくは、酸化バナジウムが、本発明の脱硝触媒中、五酸化バナジウム換算で60wt%以上存在することが好ましい。
First, the denitration catalyst of the present invention contains vanadium oxide as a main component. This vanadium oxide is vanadium (II) oxide (VO), vanadium (III) trioxide (V 2 O 3 ), vanadium tetraoxide (IV) (V 2 O 4 ), vanadium pentoxide (V) (V 2 O). 5 ) is included, and the V element of vanadium pentoxide (V 2 O 5 ) may take a pentavalent, tetravalent, trivalent or divalent form during the denitration reaction.
This vanadium oxide is the main component of the denitration catalyst of the present invention, and may contain other substances within the range that does not impair the effects of the present invention. However, in the denitration catalyst of the present invention, vanadium pentoxide conversion It is preferable that the content is 50 wt% or more. More preferably, vanadium oxide is present in the denitration catalyst of the present invention in an amount of 60 wt% or more in terms of vanadium pentoxide.
 第2に、本発明の脱硝触媒は、第2の金属の酸化物の含有量が1wt%以上40wt%以下であるが、このような第2の金属の酸化物を含むことにより、従来用いられているバナジウム/チタン触媒等の脱硝触媒に比べて、低温環境下でも高い脱硝効果を発揮できる。本発明の脱硝触媒中に不純物が入り込むと、脱硝触媒中にアモルファスの部分が生成されるために結晶構造が連続せず、結晶格子中の線や面がひずむことにより高い脱硝効果が発揮されるが、この不純物としての第2の金属の酸化物が多く存在するほど、高い脱硝効果が発揮されることが推察される。 Secondly, the denitration catalyst of the present invention has a second metal oxide content of 1 wt% or more and 40 wt% or less, but it has been conventionally used by including such a second metal oxide. Compared with denitration catalysts such as vanadium / titanium catalysts, a higher denitration effect can be exhibited even in a low temperature environment. When impurities enter into the denitration catalyst of the present invention, an amorphous part is generated in the denitration catalyst, so that the crystal structure is not continuous, and the lines and planes in the crystal lattice are distorted, thereby exhibiting a high denitration effect. However, it is presumed that the higher the amount of the oxide of the second metal as the impurity, the higher the denitration effect will be exhibited.
 本発明の実施形態において、第2の金属の酸化物として、酸化コバルトの含有量が1wt%~10wt%の脱硝触媒を用いた反応温度200℃以下の選択的触媒還元反応においては、水分の共存下でない場合で79%~100%のNO転化率を、水分の共存下の場合で38%~90%のNO転化率を示した。
 一方、第2の金属の酸化物として、酸化コバルトの含有量が0wt%の脱硝触媒を用いた200℃以下の選択的触媒還元反応においては、水分の共存下でない場合で76%のNO転化率、水分の共存下の場合で32%のNO転化率しか示されなかった。
In the embodiment of the present invention, in the selective catalytic reduction reaction at a reaction temperature of 200° C. or lower using a denitration catalyst having a cobalt oxide content of 1 wt% to 10 wt% as the second metal oxide, the coexistence of water is present. When it was not below, the NO conversion rate was 79% to 100%, and when it was in the presence of water, the NO conversion rate was 38% to 90%.
On the other hand, in the selective catalytic reduction reaction at 200° C. or lower using a denitration catalyst having a cobalt oxide content of 0 wt% as the oxide of the second metal, the NO conversion rate of 76% was obtained in the absence of water. However, only 32% NO conversion was shown in the presence of water.
 また、第2の金属の酸化物として、酸化タングステンの含有量が12wt%~38wt%の脱硝触媒を用いた反応温度200℃以下の選択的触媒還元反応においては、水分の共存下でない場合で83%~96%のNO転化率を、水分の共存下の場合で50%~55%のNO転化率を示した。
 一方、第2の金属の酸化物として、酸化タングステンの含有量が0wt%の脱硝触媒を用いた200℃以下の選択的触媒還元反応においては、水分の共存下でない場合で76%のNO転化率、水分の共存下の場合で32%のNO転化率しか示されなかった。
 また、第2の金属の酸化物として、酸化タングステンの含有量が62wt%~100wt%の脱硝触媒を用いた200℃以下の選択的触媒還元反応においては、水分の共存下でない場合で3~69%のNO転化率、水分の共存下の場合で0%~29%のNO転化率しか示されなかった。
In a selective catalytic reduction reaction at a reaction temperature of 200° C. or less using a denitration catalyst having a tungsten oxide content of 12 wt% to 38 wt% as an oxide of the second metal, it is possible to obtain 83 % NO conversion of 96% and 96% NO conversion of 50% to 55% in the presence of water.
On the other hand, in the selective catalytic reduction reaction at 200° C. or lower using a denitration catalyst having a tungsten oxide content of 0 wt% as the oxide of the second metal, the NO conversion rate of 76% was obtained in the absence of water. However, only 32% NO conversion was shown in the presence of water.
Further, in a selective catalytic reduction reaction at 200° C. or lower using a denitration catalyst having a tungsten oxide content of 62 wt% to 100 wt% as an oxide of the second metal, it is 3 to 69 in the absence of water. % NO conversion, only 0% to 29% NO conversion in the presence of water.
 また、第2の金属の酸化物として、酸化ニオブの含有量が2wt%~16wt%の脱硝触媒を用いた選択触媒還元反応においては、水分の共存下でない場合で76wt%~97%のNO転化率、水分の共存化の場合で32%~73%のNO転化率を示した。 Further, in a selective catalytic reduction reaction using a denitration catalyst having a niobium oxide content of 2 wt% to 16 wt% as an oxide of the second metal, NO conversion of 76 wt% to 97% was performed in the absence of water. %, the NO conversion rate of 32% to 73% was shown in the case of coexistence of water.
 また、上述の記載では、本発明の脱硝触媒は、第2の金属の酸化物の含有量が1wt%以上40wt%以下であるとしたが、3wt%以上38wt%以下とすると好ましい。また、第2の金属の酸化物の含有量は、3wt%以上10wt%以下とするとより好ましい。また、第2の金属の酸化物の含有量は、5wt%以上10wt%以下とするとより好ましい。また、第2の金属の酸化物の含有量は、5wt%以上8wt%以下とするとより好ましい。また、第2の金属の酸化物の含有量は、6wt%以上8wt%以下とするとより好ましい。また、第2の金属の酸化物の含有量は、6wt%以上7wt%以下とするとより好ましい。 Further, in the above description, the denitration catalyst of the present invention has the second metal oxide content of 1 wt% or more and 40 wt% or less, but it is preferably 3 wt% or more and 38 wt% or less. Further, the content of the oxide of the second metal is more preferably 3 wt% or more and 10 wt% or less. Further, the content of the oxide of the second metal is more preferably 5 wt% or more and 10 wt% or less. Further, the content of the oxide of the second metal is more preferably 5 wt% or more and 8 wt% or less. The oxide content of the second metal is more preferably 6 wt% or more and 8 wt% or less. Further, the content of the oxide of the second metal is more preferably 6 wt% or more and 7 wt% or less.
 第3に、第2の金属は、Co、W、Mo、Nb、Ce、Sn、Ni、Feからなる群から選ばれる少なくとも一つの金属元素である。これにより、酸化バナジウムの結晶構造を乱し、ルイス酸性を高めることができる。とりわけ、Co、Mo、Ce、Sn、Ni、Feの場合は、Vの酸化還元サイクルを促進する。また、これらの元素のうち、Coは、酸化力が強いことが知られている。W、Mo、Nbは、いずれも固体酸として機能すると共に、アンモニアの吸着サイトを提供することで、アンモニアが効率的にNOと接触し反応することが可能となる。 Thirdly, the second metal is at least one metal element selected from the group consisting of Co, W, Mo, Nb, Ce, Sn, Ni and Fe. Thereby, the crystal structure of vanadium oxide is disturbed, and Lewis acidity can be enhanced. In particular, in the case of Co, Mo, Ce, Sn, Ni, and Fe, it accelerates the redox cycle of V 2 O 5 . In addition, among these elements, Co is known to have a strong oxidizing power. Each of W, Mo, and Nb functions as a solid acid and provides an adsorption site for ammonia, so that ammonia can efficiently contact and react with NO.
 本発明の実施形態において、第2の金属の酸化物として、酸化コバルトの含有量が3.1wt%の脱硝触媒を用いた反応温度200℃以下の選択的触媒還元反応においては、水分の共存下でない場合で94.6%のNO転化率を、水分の共存下の場合で69.4%のNO転化率を示した。
 また、本発明の実施形態において、第2の金属の酸化物として、酸化タングステンの含有量が8.4wt%の脱硝触媒を用いた反応温度200℃以下の選択的触媒還元反応においては、水分の共存下でない場合で92%のNO転化率を、水分の共存下の場合で64%のNO転化率を示した。
 また、本発明の実施形態において、第2の金属の酸化物として、酸化モリブデンの含有量が5.4wt%の脱硝触媒を用いた反応温度200℃以下の選択的触媒還元反応においては、水分の共存下でない場合で97%のNO転化率を、水分の共存下の場合で62%のNO転化率を示した。
 また、本発明の実施形態において、第2の金属の酸化物として、酸化ニオブの含有量が5.0wt%の脱硝触媒を用いた反応温度200℃以下の選択的触媒還元反応においては、水分の共存下でない場合で96.7%のNO転化率を、水分の共存下の場合で61.7%のNO転化率を示した。
 また、本発明の実施形態において、第2の金属の酸化物として、酸化セシウムの含有量が6.4wt%の脱硝触媒を用いた反応温度200℃以下の選択的触媒還元反応においては、水分の共存下でない場合で89.8%のNO転化率を、水分の共存下の場合で52.9%のNO転化率を示した。
 また、本発明の実施形態において、第2の金属の酸化物として、酸化スズの含有量が5.6wt%の脱硝触媒を用いた反応温度200℃以下の選択的触媒還元反応においては、水分の共存下でない場合で88.1%のNO転化率を、水分の共存下の場合で45.5%のNO転化率を示した。
 また、本発明の実施形態において、第2の金属の酸化物として、酸化ニッケルの含有量が2.9wt%の脱硝触媒を用いた反応温度200℃以下の選択的触媒還元反応においては、水分の共存下でない場合で81.9%のNO転化率を、水分の共存下の場合で37.9%のNO転化率を示した。
 また、本発明の実施形態において、第2の金属の酸化物として、酸化鉄の含有量が3.1wt%の脱硝触媒を用いた反応温度200℃以下の選択的触媒還元反応においては、水分の共存下でない場合で74.5%のNO転化率を、水分の共存下の場合で33.9%のNO転化率を示した。
 一方、第2の金属の酸化物を含有しない脱硝触媒を用いた200℃以下の選択的触媒還元反応においては、水分の共存下でない場合で75.5%のNO転化率を、水分の共存下の場合で32%のNO転化率しか示されなかった。
In the embodiment of the present invention, in a selective catalytic reduction reaction at a reaction temperature of 200° C. or lower using a denitration catalyst having a cobalt oxide content of 3.1 wt% as the second metal oxide, coexistence of water is performed. When it was not, the NO conversion rate was 94.6%, and when it was not, the NO conversion rate was 69.4% in the presence of water.
Further, in the embodiment of the present invention, in the selective catalytic reduction reaction at a reaction temperature of 200° C. or less using a denitration catalyst having a tungsten oxide content of 8.4 wt% as the second metal oxide, The NO conversion rate was 92% in the absence of coexistence, and the NO conversion rate of 64% in the presence of water.
Further, in the embodiment of the present invention, in the selective catalytic reduction reaction at a reaction temperature of 200° C. or less using a denitration catalyst having a molybdenum oxide content of 5.4 wt% as the second metal oxide, The NO conversion rate of 97% was shown without coexistence, and the NO conversion rate of 62% was shown without water coexistence.
Further, in the embodiment of the present invention, in the selective catalytic reduction reaction at a reaction temperature of 200 ° C. or lower using a denitration catalyst having a niobium pentoxide content of 5.0 wt% as the oxide of the second metal, the water content is reduced. The NO conversion rate of 96.7% was shown when not coexisting, and the NO conversion rate was 61.7% when not coexisting with water.
Further, in the embodiment of the present invention, in the selective catalytic reduction reaction at a reaction temperature of 200° C. or lower using a denitration catalyst having a cesium oxide content of 6.4 wt% as the second metal oxide, The NO conversion rate of 89.8% was shown when not coexisting, and the NO conversion rate was 52.9% when not coexisting with water.
Further, in the embodiment of the present invention, in the selective catalytic reduction reaction at a reaction temperature of 200° C. or lower using a denitration catalyst having a tin oxide content of 5.6 wt% as the second metal oxide, The NO conversion rate was 88.1% when not coexisting, and the NO conversion rate was 45.5% when water was coexisting.
In addition, in the embodiment of the present invention, in the selective catalytic reduction reaction at a reaction temperature of 200° C. or less using a denitration catalyst having a nickel oxide content of 2.9 wt% as the second metal oxide, The NO conversion rate of 81.9% was shown when not coexisting, and the NO conversion rate was 37.9% when not coexisting with water.
In addition, in the embodiment of the present invention, in the selective catalytic reduction reaction at a reaction temperature of 200° C. or less using a denitration catalyst having an iron oxide content of 3.1 wt% as the second metal oxide, The NO conversion rate of 74.5% was shown when not coexisting, and the NO conversion rate was 33.9% when not coexisting with water.
On the other hand, in the selective catalytic reduction reaction at 200° C. or lower using the denitration catalyst containing no second metal oxide, the NO conversion rate of 75.5% was obtained in the presence of water in the absence of water. In this case, only 32% NO conversion rate was shown.
 また、本発明の脱硝触媒は、300℃以下での脱硝に用いられることが好ましい。これは、本発明の脱硝触媒の焼成温度が300℃であることに由来する。一方で、後述の実施例において、本発明の脱硝触媒は、反応温度200℃以下での選択的触媒還元反応において、高い脱硝効果を発揮したことから、本発明の脱硝触媒は、200℃以下での脱硝に用いることが可能である。200℃以下ではSOからSOへの酸化が発生しないため、上記の特許文献2でも知見が得られたように、選択的触媒還元反応時には、SOのSOへの酸化が伴わない。 Further, the denitration catalyst of the present invention is preferably used for denitration at 300°C or lower. This is because the denitration catalyst of the present invention has a firing temperature of 300°C. On the other hand, in the examples described below, the denitration catalyst of the present invention exerted a high denitration effect in the selective catalytic reduction reaction at a reaction temperature of 200° C. or lower, so that the denitration catalyst of the present invention It can be used for denitration. Since oxidation of SO 2 to SO 3 does not occur at 200° C. or lower, as is also found in Patent Document 2 described above, during selective catalytic reduction reaction, oxidation of SO 2 to SO 3 is not accompanied.
 また、上述の記載では、本発明の脱硝触媒は、300℃以下の脱硝に用いられることが好ましいとしたが、好ましくは200℃以下の脱硝に用いられてもよい、更に好ましくは、反応温度が100―200℃の脱硝に用いられてもよい。更に好ましくは、反応温度160-200℃の脱硝に用いられてもよい。あるいは、反応温度が80-150℃の脱硝に用いられてもよい。 Further, in the above description, the denitration catalyst of the present invention is preferably used for denitration at 300° C. or lower, but may be preferably used for denitration at 200° C. or lower, more preferably, the reaction temperature is It may be used for denitration at 100 to 200°C. More preferably, it may be used for denitration at a reaction temperature of 160-200 ° C. Alternatively, it may be used for denitration with a reaction temperature of 80-150 ° C.
 また、本発明の脱硝触媒は、更に炭素を含有することが好ましい。とりわけ炭素含有率が0.05wt%以上であることが好ましい。なお好ましくは、炭素含有率が0.07wt%以上であってもよい。更に好ましくは、炭素含有率が0.11wt%以上であってもよい。更に好ましくは、炭素含有率が0.12wt%以上であってもよい。更に好ましくは、炭素含有率が0.14wt%以上であってもよい。更に好ましくは、炭素含有率が0.16wt%以上であってもよい。更に好ましくは、炭素含有率が0.17wt%以上であってもよい。更に好ましくは、炭素含有率が0.70wt%以上であってもよい。
 炭素を含むことにより、従来用いられているバナジウム/チタン触媒等の脱硝触媒に比べて、低温環境下でも高い脱硝効果を発揮できる。本発明の脱硝触媒中に不純物が入り込むと、脱硝触媒中にアモルファスの部分が生成されるために結晶構造が連続せず、結晶格子中の線や面がひずむことにより高い脱硝効果が発揮されるが、この不純物としての炭素が存在することにより、高い脱硝効果が発揮されることが推察される。
Further, the denitration catalyst of the present invention preferably further contains carbon. Particularly, the carbon content is preferably 0.05 wt% or more. In addition, preferably, the carbon content may be 0.07 wt% or more. More preferably, the carbon content may be 0.11 wt% or more. More preferably, the carbon content may be 0.12 wt% or more. More preferably, the carbon content may be 0.14 wt% or more. More preferably, the carbon content may be 0.16 wt% or more. More preferably, the carbon content may be 0.17 wt% or more. More preferably, the carbon content may be 0.70 wt% or more.
By containing carbon, a higher denitration effect can be exhibited even in a low temperature environment as compared with the conventionally used denitration catalysts such as vanadium / titanium catalysts. When impurities enter into the denitration catalyst of the present invention, an amorphous part is generated in the denitration catalyst, so that the crystal structure is not continuous, and the lines and planes in the crystal lattice are distorted, thereby exhibiting a high denitration effect. However, it is speculated that the presence of carbon as an impurity exerts a high denitration effect.
 以下、酸化バナジウムを主成分とする脱硝触媒であって、第2の金属の酸化物の含有量が1wt%以上40wt%以下であり、前記第2の金属が、Co、W、Mo、Nb、Ce、Sn、Ni、及びFeからなる群から選ばれる少なくとも一つの金属元素である脱硝触媒を作製する方法を示す。 Hereinafter, a denitration catalyst containing vanadium oxide as a main component, wherein the content of the oxide of the second metal is 1 wt% or more and 40 wt% or less, and the second metal is Co, W, Mo, Nb, A method for producing a denitration catalyst that is at least one metal element selected from the group consisting of Ce, Sn, Ni, and Fe will be described.
 上記の脱硝触媒の作製方法は、バナジン酸塩、キレート化合物、及び第2の金属の化合物の混合物を焼成する工程を備える。
 バナジン酸塩としては、例えば、バナジン酸アンモニウム、バナジン酸マグネシウム、バナジン酸ストロンチウム、バナジン酸バリウム、バナジン酸亜鉛、バナジン酸鉛、バナジン酸リチウム等を用いてもよい。
 また、キレート化合物としては、例えば、シュウ酸やクエン酸等の複数のカルボキシル基を有するもの、アセチルアセトナート、エチレンジアミン等の複数のアミノ基を有するもの、エチレングリコール等の複数のヒドロキシル基を有するもの等を用いてもよい。
 また、第2の金属の化合物としては、キレート錯体、水和物、アンモニウム化合物、リン酸化合物であってよい。キレート錯体としては、例えば、シュウ酸やクエン酸等の錯体であってよい。水和物としては、例えば(NH101241・5HOやHPW1240・nHOであってよい。アンモニウム化合物としては、例えば(NH101241・5HOであってよい。リン酸化合物としては、例えばHPW1240・nHOであってよい。
The above method for producing a denitration catalyst includes a step of calcining a mixture of vanadate, a chelate compound, and a compound of a second metal.
As the vanadate, for example, ammonium vanadate, magnesium vanadate, strontium vanadate, barium vanadate, zinc vanadate, lead vanadate, lithium vanadate, etc. may be used.
Examples of the chelate compound include those having a plurality of carboxyl groups such as oxalic acid and citric acid, those having a plurality of amino groups such as acetylacetonate and ethylenediamine, and those having a plurality of hydroxyl groups such as ethylene glycol. Etc. may be used.
The compound of the second metal may be a chelate complex, a hydrate, an ammonium compound or a phosphoric acid compound. The chelate complex may be, for example, a complex such as oxalic acid or citric acid. The hydrate, for example, (NH 4) may be 10 W 12 O 41 · 5H 2 O and H 3 PW 12 O 40 · nH 2 O. The ammonium compound, for example, (NH 4) may be 10 W 12 O 41 · 5H 2 O. Examples of the phosphoric acid compound may be, for example, H 3 PW 12 O 40 · nH 2 O.
 また、上記の混合物には、更にエチレングリコールが含まれることが好ましい。 Further, it is preferable that the above mixture further contains ethylene glycol.
 これらの方法で製造された脱硝触媒は、従来用いられているバナジウム/チタン触媒等の脱硝触媒に比べて、低温環境下でも高い脱硝効果を発揮できる。本発明の脱硝触媒中に不純物が入り込むと、脱硝触媒中にアモルファスの部分が生成されるために結晶構造が連続せず、結晶格子中の線や面がひずむことにより高い脱硝効果が発揮されるが、この不純物としての炭素が多く存在するほど、高い脱硝効果が発揮されることが推察される。 The denitration catalyst produced by these methods can exhibit a high denitration effect even in a low temperature environment as compared with denitration catalysts such as vanadium/titanium catalysts that have been conventionally used. When impurities enter into the denitration catalyst of the present invention, an amorphous part is generated in the denitration catalyst, so that the crystal structure is not continuous, and the lines and planes in the crystal lattice are distorted, thereby exhibiting a high denitration effect. However, it is presumed that the more carbon as an impurity is present, the higher the denitration effect is exhibited.
 本発明の実施形態において、バナジン酸アンモニウム、シュウ酸、第2の金属のシュウ酸錯体の混合物を焼成する方法によって製造された脱硝触媒は、水分の共存下でない場合で74.5~100%のNO転化率を、水分の共存下の場合で33.9~90%のNO転化率を示した。
 また、上記の混合物に更にエチレングリコールが含まれる方法によって製造された脱硝触媒は、水分の共存下でない場合で100%のNO転化率を、水分の共存下の場合で89%のNO転化率を示した。
 一方、このような工程を含まない方法で製造された脱硝触媒として、例えば、バナジン酸アンモニウムとシュウ酸とを混合するが、第2の金属の酸化物を混合せずに、焼成する方法で製造された脱硝触媒は、水分の共存下でない場合で76%のNO転化率、水分の共存下の場合で32%のNO転化率しか示さなかった。
In an embodiment of the present invention, the denitration catalyst prepared by the method of calcining a mixture of ammonium vanadate, oxalic acid, and an oxalic acid complex of a second metal has a denitration rate of 74.5 to 100% in the absence of water. The NO conversion was 33.9 to 90% in the presence of water.
In addition, the denitration catalyst produced by the method in which the above mixture further contains ethylene glycol has a NO conversion rate of 100% in the absence of water and an NO conversion rate of 89% in the presence of water. Indicated.
On the other hand, as a denitration catalyst manufactured by a method not including such a step, for example, ammonium vanadate and oxalic acid are mixed, but a method of firing without mixing the oxide of the second metal is used. The denitration catalyst thus obtained showed a NO conversion of 76% in the absence of water and a NO conversion of 32% in the presence of water.
 また、上記の焼成は270℃以下の温度で行われることが好ましい。
 本実施形態に係る脱硝触媒の生成時に、通常の300℃に比較して低温の270℃以下の温度で焼成することにより、当該脱硝触媒に含まれる五酸化バナジウム結晶の構造が局所的に乱れ、高い脱硝効果を発揮できるが、とりわけ五酸化バナジウムの結晶構造中に酸素原子が欠乏しているサイトが出現することで高い脱硝効果が発揮されることが推察される。なお、「酸素原子が欠乏しているサイト」のことを「酸素欠陥サイト」とも呼称する。
Further, the above-mentioned firing is preferably performed at a temperature of 270° C. or lower.
When the denitration catalyst according to the present embodiment is produced, the structure of the vanadium pentoxide crystal contained in the denitration catalyst is locally disordered by firing at a temperature of 270° C. or lower, which is lower than the normal 300° C., Although a high denitration effect can be exerted, it is speculated that a high denitration effect is exerted particularly by the appearance of sites lacking oxygen atoms in the crystal structure of vanadium pentoxide. Note that the “site devoid of oxygen atoms” is also referred to as “oxygen defect site”.
 このようにして調製される脱硝触媒においては、酸化バナジウムを主成分とする脱硝触媒であって、第2の金属の酸化物の含有量が1wt%以上40wt%以下であり、前記第2の金属が、Co、W、Mo、Nb、Ce、Sn、Ni、及びFeからなる群から選ばれる少なくとも一つの金属元素である。 The denitration catalyst prepared in this manner is a denitration catalyst containing vanadium oxide as a main component, wherein the content of the oxide of the second metal is 1 wt% or more and 40 wt% or less, and the second metal Is at least one metal element selected from the group consisting of Co, W, Mo, Nb, Ce, Sn, Ni, and Fe.
 なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。 It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within the scope of achieving the object of the present invention are included in the present invention.
 以下、本発明の実施例を比較例と共に、具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。 Hereinafter, examples of the present invention will be specifically described with comparative examples. The present invention is not limited to these examples.
<1 第2の金属として各種金属を含有するバナジウム触媒>
<1.1 各実施例と比較例>
<1 Vanadium catalyst containing various metals as second metal>
<1.1 Examples and Comparative Examples>
[実施例1]
 バナジン酸アンモニウム(NHVO)4.96g(42.4mmol)とシュウ酸((COOH))11.5g(127.6mmol)とを純水に溶解させ、前駆体錯体を合成した。この前駆体錯体に対し、第2の金属であるコバルト(Co)のシュウ酸錯体を、金属原子換算でコバルト(Co)が3.5mol%となるように、すなわち金属酸化物換算でCoが3.1wt%となるように添加した。得られたバナジウム-異種金属錯体混合物を電気炉によって300℃の温度で4時間、2回焼成することにより、コバルト(Co)を含有する五酸化バナジウム(V)の脱硝触媒を得た。
[Example 1]
4.96 g (42.4 mmol) of ammonium vanadate (NH 4 VO 3 ) and 11.5 g (127.6 mmol) of oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. With respect to this precursor complex, a oxalic acid complex of cobalt (Co), which is a second metal, is added so that cobalt (Co) is 3.5 mol% in terms of metal atom, that is, Co 3 O in terms of metal oxide. 4 was added so as to be 3.1 wt %. The resulting vanadium - 4 hours at a temperature of 300 ° C. by an electric furnace heterogeneous metal complex mixture, by firing twice, to obtain a denitration catalyst of vanadium pentoxide containing cobalt (Co) (V 2 O 5 ) ..
[実施例2]
 バナジン酸アンモニウム(NHVO)4.96g(42.4mmol)とシュウ酸((COOH))11.5g(127.6mmol)とを純水に溶解させ、前駆体錯体を合成した。この前駆体錯体に対し、第2の金属であるタングステン(W)のシュウ酸錯体を、金属原子換算でタングステン(W)が3.5mol%となるように、すなわち金属酸化物換算でWOが8.4wt%となるように添加した。得られたバナジウム-異種金属錯体混合物を電気炉によって300℃の温度で4時間、2回焼成することにより、タングステン(W)を含有する五酸化バナジウム(V)の脱硝触媒を得た。
[Example 2]
4.96 g (42.4 mmol) of ammonium vanadate (NH 4 VO 3 ) and 11.5 g (127.6 mmol) of oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. With respect to this precursor complex, the oxalic acid complex of tungsten (W), which is the second metal, is added so that the tungsten (W) is 3.5 mol% in terms of metal atom, that is, WO 3 is converted into metal oxide. It was added so as to be 8.4 wt%. The resulting vanadium - 4 hours at a temperature of 300 ° C. by an electric furnace heterogeneous metal complex mixture, by firing twice, to obtain a denitration catalyst of vanadium pentoxide containing tungsten (W) (V 2 O 5 ) ..
[実施例3]
 バナジン酸アンモニウム(NHVO)4.96g(42.4mmol)とシュウ酸((COOH))11.5g(127.6mmol)とを純水に溶解させ、前駆体錯体を合成した。この前駆体錯体に対し、第2の金属であるモリブデン(Mo)のシュウ酸錯体を、金属原子換算でモリブデン(Mo)が3.5mol%となるように、すなわち金属酸化物換算でMoOが5.4wt%となるように添加した。得られたバナジウム-異種金属錯体混合物を電気炉によって300℃の温度で4時間、2回焼成することにより、モリブデン(Mo)を含有する五酸化バナジウム(V)の脱硝触媒を得た。
[Example 3]
4.96 g (42.4 mmol) of ammonium vanadate (NH 4 VO 3 ) and 11.5 g (127.6 mmol) of oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. With respect to this precursor complex, the oxalic acid complex of molybdenum (Mo), which is the second metal, has molybdenum (Mo) of 3.5 mol% in terms of metal atoms, that is, MoO 3 in terms of metal oxides. It was added so as to be 5.4 wt%. The resulting vanadium - 4 hours at a temperature of 300 ° C. by an electric furnace heterogeneous metal complex mixture, by firing twice, to obtain a denitration catalyst of vanadium pentoxide containing molybdenum (Mo) (V 2 O 5 ) ..
[実施例4]
 バナジン酸アンモニウム(NHVO)4.96g(42.4mmol)とシュウ酸((COOH))11.5g(127.6mmol)とを純水に溶解させ、前駆体錯体を合成した。この前駆体錯体に対し、第2の金属であるニオブ(Nb)のシュウ酸錯体を、金属原子換算でニオブ(Nb)が3.5mol%となるように、すなわち金属酸化物換算でNbが5.0wt%となるように添加した。得られたバナジウム-異種金属錯体混合物を電気炉によって300℃の温度で4時間、2回焼成することにより、ニオブ(Nb)を含有する五酸化バナジウム(V)の脱硝触媒を得た。
[Example 4]
4.96 g (42.4 mmol) of ammonium vanadate (NH 4 VO 3 ) and 11.5 g (127.6 mmol) of oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. An oxalic acid complex of niobium (Nb), which is the second metal, is added to the precursor complex so that niobium (Nb) is 3.5 mol% in terms of metal atom, that is, Nb 2 O in terms of metal oxide. 5 was added so as to be 5.0 wt%. The obtained vanadium-different metal complex mixture was baked twice in an electric furnace at a temperature of 300° C. for 4 hours to obtain a vanadium pentoxide (V 2 O 5 ) denitration catalyst containing niobium (Nb). ..
[実施例5]
 バナジン酸アンモニウム(NHVO)4.96g(42.4mmol)とシュウ酸((COOH))11.5g(127.6mmol)とを純水に溶解させ、前駆体錯体を合成した。この前駆体錯体に対し、第2の金属であるセシウム(Ce)のシュウ酸錯体を、金属原子換算でセシウム(Ce)が3.5mol%となるように、すなわち金属酸化物換算でCeOが6.4wt%となるように添加した。得られたバナジウム-異種金属錯体混合物を電気炉によって300℃の温度で4時間、2回焼成することにより、セシウム(Ce)を含有する五酸化バナジウム(V)の脱硝触媒を得た。
[Example 5]
4.96 g (42.4 mmol) of ammonium vanadate (NH 4 VO 3 ) and 11.5 g (127.6 mmol) of oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. With respect to this precursor complex, an oxalic acid complex of cesium (Ce), which is the second metal, was added so that cesium (Ce) would be 3.5 mol% in terms of metal atom, that is, CeO 2 in terms of metal oxide. It was added so as to be 6.4 wt%. The vanadium-dissimilar metal complex mixture thus obtained was calcined twice in an electric furnace at a temperature of 300° C. for 4 hours to obtain a vanadium pentoxide (V 2 O 5 ) denitration catalyst containing cesium (Ce). ..
[実施例6]
 バナジン酸アンモニウム(NHVO)4.96g(42.4mmol)とシュウ酸((COOH))11.5g(127.6mmol)とを純水に溶解させ、前駆体錯体を合成した。この前駆体錯体に対し、第2の金属であるスズ(Sn)のシュウ酸錯体を、金属原子換算でスズ(Sn)が3.5mol%となるように、すなわち金属酸化物換算でSnOが5.6wt%となるように添加した。得られたバナジウム-異種金属錯体混合物を電気炉によって300℃の温度で4時間、2回焼成することにより、スズ(Sn)を含有する五酸化バナジウム(V)の脱硝触媒を得た。
[Example 6]
4.96 g (42.4 mmol) of ammonium vanadate (NH 4 VO 3 ) and 11.5 g (127.6 mmol) of oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. The oxalic acid complex of the second metal tin (Sn) is added to the precursor complex so that tin (Sn) is 3.5 mol% in terms of metal atom, that is, SnO 2 is in terms of metal oxide. It was added so as to be 5.6 wt%. The resulting vanadium - 4 hours at a temperature of 300 ° C. by an electric furnace heterogeneous metal complex mixture, by firing twice, to obtain a denitration catalyst of vanadium pentoxide containing tin (Sn) (V 2 O 5 ) ..
[実施例7]
 バナジン酸アンモニウム(NHVO)4.96g(42.4mmol)とシュウ酸((COOH))11.5g(127.6mmol)とを純水に溶解させ、前駆体錯体を合成した。この前駆体錯体に対し、第2の金属であるニッケル(Ni)を炭酸ニッケルとして0.113g、金属原子換算でニッケル(Ni)が3.5mol%となるように、すなわち金属酸化物換算でNiOが2.9wt%となるように添加した。得られたバナジウム-異種金属錯体混合物を電気炉によって300℃の温度で4時間、2回焼成することにより、ニッケル(Ni)を含有する五酸化バナジウム(V)の脱硝触媒を得た。
[Example 7]
4.96 g (42.4 mmol) of ammonium vanadate (NH 4 VO 3 ) and 11.5 g (127.6 mmol) of oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. With respect to this precursor complex, 0.113 g of nickel (Ni) as a second metal as nickel carbonate and 3.5 mol% of nickel (Ni) in terms of metal atoms, that is, NiO in terms of metal oxides. Was added so as to be 2.9 wt %. The vanadium-different metal complex mixture thus obtained was calcined twice in an electric furnace at a temperature of 300° C. for 4 hours to obtain a vanadium pentoxide (V 2 O 5 ) denitration catalyst containing nickel (Ni). ..
[実施例8]
 バナジン酸アンモニウム(NHVO)4.96g(42.4mmol)とシュウ酸((COOH))11.5g(127.6mmol)とを純水に溶解させ、前駆体錯体を合成した。この前駆体錯体に対し、第2の金属である鉄(Fe)のシュウ酸錯体を、金属原子換算で鉄(Fe)が3.5mol%となるように、すなわち金属酸化物換算でFeが3.1wt%となるように添加した。得られたバナジウム-異種金属錯体混合物を電気炉によって300℃の温度で4時間、2回焼成することにより、鉄(Fe)を含有する五酸化バナジウム(V)の脱硝触媒を得た。
[Example 8]
4.96 g (42.4 mmol) of ammonium vanadate (NH 4 VO 3 ) and 11.5 g (127.6 mmol) of oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. With respect to this precursor complex, the oxalic acid complex of iron (Fe), which is the second metal, is added so that iron (Fe) is 3.5 mol% in terms of metal atom, that is, Fe 2 O in terms of metal oxide. 3 was added so as to be 3.1 wt %. The resulting vanadium - 4 hours at a temperature of 300 ° C. by an electric furnace heterogeneous metal complex mixture, by firing twice, to obtain a denitration catalyst of vanadium pentoxide containing iron (Fe) (V 2 O 5 ) ..
[比較例1]
 バナジン酸アンモニウム(NHVO)4.96g(42.4mmol)とシュウ酸((COOH))11.5g(127.6mmol)とを純水に溶解させ、前駆体錯体を合成した。この前駆体錯体を電気炉によって300℃の温度で4時間、2回焼成することにより、第2の金属を含有しない五酸化バナジウム(V)の脱硝触媒を得た。
[Comparative Example 1]
4.96 g (42.4 mmol) of ammonium vanadate (NH 4 VO 3 ) and 11.5 g (127.6 mmol) of oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. 4 hours at a temperature of 300 ° C. The precursor complex by an electric furnace and fired twice to obtain a denitration catalyst of vanadium pentoxide containing no second metal (V 2 O 5).
<1.2 評価>
<1.2.1 NO転化率>
 以下の表1の条件の下、反応温度150℃で、固定床流通式触媒反応装置を用いてNH-SCR反応を行った。触媒層を通過したガスのうち、NOをJasco FT-IR-4700で分析した。
<1.2 Evaluation>
<1.2.1 NO conversion rate>
Under the conditions shown in Table 1 below, the NH 3- SCR reaction was carried out at a reaction temperature of 150 ° C. using a fixed bed flow type catalytic reactor. Of the gas that passed through the catalyst layer, NO was analyzed by Jasco FT-IR-4700.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、NO転化率を、下記の式(1)により算出した。なお、NOinは反応管入口のNO濃度、NOoutは反応管出口のNO濃度である。
Figure JPOXMLDOC01-appb-M000002
Further, the NO conversion rate was calculated by the following formula (1). Note that NO in is the NO concentration at the reaction tube inlet, and NO out is the NO concentration at the reaction tube outlet.
Figure JPOXMLDOC01-appb-M000002
(測定結果)
 表2に各五酸化バナジウム触媒の、水分が共存しない場合と水分の共存下の場合との双方のNO転化率を示す。図1は、この表2をグラフ化したものである。
Figure JPOXMLDOC01-appb-T000003
(Measurement result)
Table 2 shows the NO conversion rates of each vanadium pentoxide catalyst in both the case where water does not coexist and the case where water coexists. FIG. 1 is a graph of this Table 2.
Figure JPOXMLDOC01-appb-T000003
 水分が共存しない場合と水分の共存下の場合との双方で、実施例の脱硝触媒は、概ね、比較例の脱硝触媒よりも高いNO転化率を示した。とりわけ、バナジン酸アンモニウムに対し、コバルト、タングステン、モリブデン、ニオブを添加し焼成した脱硝触媒が高いNO転化率を示した。中でも、水分が共存しない場合においては、実施例3(モリブデンを添加)、水分が共存する場合においては、実施例1(コバルトを添加)が、最も高いNO転化率を示した。 In both the case where water did not coexist and the case where water coexisted, the denitration catalyst of the example generally showed a higher NO conversion rate than the denitration catalyst of the comparative example. In particular, the denitration catalyst obtained by adding cobalt, tungsten, molybdenum, and niobium to ammonium vanadate and firing showed a high NO conversion rate. Above all, in the case where water does not coexist, Example 3 (adding molybdenum) and in the case where water coexists, Example 1 (adding cobalt) showed the highest NO conversion rate.
<2 第2の金属としてコバルトを含有するバナジウム触媒>
<2.1 各実施例>
<2 Vanadium catalyst containing cobalt as second metal>
<2.1 Examples>
 上記のように、実施例1~実施例8のバナジウム触媒において、水分が共存する場合では、実施例1(コバルトを添加)が、最も高いNO転化率を示したため、コバルトの添加量を変化させることにより、以下の各実施例に係るバナジウム触媒を生成した。 As described above, in the vanadium catalysts of Examples 1 to 8, when water coexists, Example 1 (adding cobalt) showed the highest NO conversion rate, so the amount of cobalt added was changed. As a result, vanadium catalysts according to the following examples were produced.
[実施例9]
 バナジン酸アンモニウム(NHVO)とシュウ酸((COOH))とを純水に溶解させ、前駆体錯体を合成した。この前駆体錯体に対し、第2の金属であるコバルト(Co)のシュウ酸錯体を、金属酸化物換算でCoが1wt%となるように添加した。得られたバナジウム-コバルト錯体混合物を電気炉によって300℃の温度で4時間、2回焼成することにより、コバルト(Co)を含有する五酸化バナジウム(V)の脱硝触媒を得た。
[Example 9]
Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. An oxalic acid complex of the second metal, cobalt (Co), was added to this precursor complex such that Co 3 O 4 was 1 wt% in terms of metal oxide. The resulting vanadium - 4 hours at a temperature of 300 ° C. The cobalt complex mixture by an electric furnace and fired twice to obtain a denitration catalyst of vanadium pentoxide containing cobalt (Co) (V 2 O 5 ).
[実施例10]
 バナジン酸アンモニウム(NHVO)とシュウ酸((COOH))とを純水に溶解させ、前駆体錯体を合成した。この前駆体錯体に対し、第2の金属であるコバルト(Co)のシュウ酸錯体を、金属酸化物換算でCoが3wt%となるように添加した。得られたバナジウム-コバルト錯体混合物を電気炉によって300℃の温度で4時間、2回焼成することにより、コバルト(Co)を含有する五酸化バナジウム(V)の脱硝触媒を得た。
[Example 10]
Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. An oxalic acid complex of cobalt (Co), which is the second metal, was added to this precursor complex such that Co 3 O 4 was 3 wt% in terms of metal oxide. The resulting vanadium - 4 hours at a temperature of 300 ° C. The cobalt complex mixture by an electric furnace and fired twice to obtain a denitration catalyst of vanadium pentoxide containing cobalt (Co) (V 2 O 5 ).
[実施例11]
 バナジン酸アンモニウム(NHVO)とシュウ酸((COOH))とを純水に溶解させ、前駆体錯体を合成した。この前駆体錯体に対し、第2の金属であるコバルト(Co)のシュウ酸錯体を、金属酸化物換算でCoが5wt%となるように添加した。得られたバナジウム-コバルト錯体混合物を電気炉によって300℃の温度で4時間、2回焼成することにより、コバルト(Co)を含有する五酸化バナジウム(V)の脱硝触媒を得た。
[Example 11]
Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. An oxalic acid complex of cobalt (Co), which is the second metal, was added to this precursor complex such that Co 3 O 4 was 5 wt% in terms of metal oxide. The resulting vanadium - 4 hours at a temperature of 300 ° C. The cobalt complex mixture by an electric furnace and fired twice to obtain a denitration catalyst of vanadium pentoxide containing cobalt (Co) (V 2 O 5 ).
[実施例12]
 バナジン酸アンモニウム(NHVO)とシュウ酸((COOH))とを純水に溶解させ、前駆体錯体を合成した。この前駆体錯体に対し、第2の金属であるコバルト(Co)のシュウ酸錯体を、金属酸化物換算でCoが6wt%となるように添加した。得られたバナジウム-コバルト錯体混合物を電気炉によって300℃の温度で4時間、2回焼成することにより、コバルト(Co)を含有する五酸化バナジウム(V)の脱硝触媒を得た。
[Example 12]
Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. To this precursor complex, an oxalic acid complex of the second metal, cobalt (Co), was added so that Co 3 O 4 was 6 wt% in terms of metal oxide. The resulting vanadium - 4 hours at a temperature of 300 ° C. The cobalt complex mixture by an electric furnace and fired twice to obtain a denitration catalyst of vanadium pentoxide containing cobalt (Co) (V 2 O 5 ).
[実施例13]
 バナジン酸アンモニウム(NHVO)とシュウ酸((COOH))とを純水に溶解させ、前駆体錯体を合成した。この前駆体錯体に対し、第2の金属であるコバルト(Co)のシュウ酸錯体を、金属酸化物換算でCoが7wt%となるように添加した。得られたバナジウム-コバルト錯体混合物を電気炉によって300℃の温度で4時間、2回焼成することにより、コバルト(Co)を含有する五酸化バナジウム(V)の脱硝触媒を得た。
[Example 13]
Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. An oxalic acid complex of the second metal, cobalt (Co), was added to this precursor complex such that Co 3 O 4 was 7 wt% in terms of metal oxide. The resulting vanadium - 4 hours at a temperature of 300 ° C. The cobalt complex mixture by an electric furnace and fired twice to obtain a denitration catalyst of vanadium pentoxide containing cobalt (Co) (V 2 O 5 ).
[実施例14]
 バナジン酸アンモニウム(NHVO)とシュウ酸((COOH))とを純水に溶解させ、前駆体錯体を合成した。この前駆体錯体に対し、第2の金属であるコバルト(Co)のシュウ酸錯体を、金属酸化物換算でCoが8wt%となるように添加した。得られたバナジウム-コバルト錯体混合物を電気炉によって300℃の温度で4時間、2回焼成することにより、コバルト(Co)を含有する五酸化バナジウム(V)の脱硝触媒を得た。
[Example 14]
Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. An oxalic acid complex of the second metal, cobalt (Co), was added to this precursor complex so that Co 3 O 4 was 8 wt% in terms of metal oxide. The resulting vanadium - 4 hours at a temperature of 300 ° C. The cobalt complex mixture by an electric furnace and fired twice to obtain a denitration catalyst of vanadium pentoxide containing cobalt (Co) (V 2 O 5 ).
[実施例15]
 バナジン酸アンモニウム(NHVO)とシュウ酸((COOH))とを純水に溶解させ、前駆体錯体を合成した。この前駆体錯体に対し、第2の金属であるコバルト(Co)の前駆体であるシュウ酸錯体を、金属酸化物換算でCoが10wt%となるように添加した。得られたバナジウム-コバルト錯体混合物を電気炉によって300℃の温度で4時間、2回焼成することにより、コバルト(Co)を含有する五酸化バナジウム(V)の脱硝触媒を得た。
[Example 15]
Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. To this precursor complex, a oxalic acid complex which is a precursor of cobalt (Co), which is a second metal, was added so that Co 3 O 4 was 10 wt% in terms of metal oxide. The resulting vanadium - 4 hours at a temperature of 300 ° C. The cobalt complex mixture by an electric furnace and fired twice to obtain a denitration catalyst of vanadium pentoxide containing cobalt (Co) (V 2 O 5 ).
 なお、以下の表3は、実施例9~実施例15における、コバルト導入時の前駆体の仕込み量を示す。
Figure JPOXMLDOC01-appb-T000004
<2.2 評価>
<2.2.1 NO転化率>
(測定方法)
 上記の表1の条件の下、反応温度150℃で、固定床流通式触媒反応装置を用いてNH-SCR反応を行った。触媒層を通過したガスのうち、NOをJasco FT-IR-4700で分析した。
 また、NO転化率を、上記の式(1)により算出した。
In addition, Table 3 below shows the charged amount of the precursor in Example 9 to Example 15 when cobalt was introduced.
Figure JPOXMLDOC01-appb-T000004
<2.2 Evaluation>
<2.2.1 NO conversion rate>
(Measuring method)
Under the conditions shown in Table 1 above, the NH 3- SCR reaction was carried out at a reaction temperature of 150 ° C. using a fixed-bed flow catalytic reactor. Of the gas that passed through the catalyst layer, NO was analyzed by Jasco FT-IR-4700.
Further, the NO conversion rate was calculated by the above equation (1).
(測定結果)
 表4に各酸化バナジウム触媒の、水分が共存しない場合と水分の共存下の場合との双方のNO転化率を示す。図2は、この表4をグラフ化したものである。
Figure JPOXMLDOC01-appb-T000005
(Measurement result)
Table 4 shows the NO conversion of each vanadium oxide catalyst both in the absence of water and in the presence of water. FIG. 2 is a graph of this Table 4.
Figure JPOXMLDOC01-appb-T000005
 水分が共存しない場合と水分の共存下の場合との双方で、実施例の脱硝触媒は、全て、比較例の脱硝触媒よりも高いNO転化率を示した。とりわけ、水分が共存しない場合においては、実施例12(6wt%)、実施例13(7wt%)が最も高いNO転化率を示し、水分が共存する場合においては、実施例14(8wt%)が最も高いNO転化率を示した。 The denitration catalysts of the examples all showed higher NO conversion than the denitration catalysts of the comparative examples both in the absence of water and in the presence of water. Particularly, in the case where water does not coexist, Example 12 (6 wt%) and Example 13 (7 wt%) show the highest NO conversion, and in the case where water coexists, Example 14 (8 wt%). The highest NO conversion was shown.
<2.2.2 粉末X線回折>
(回折方法)
 粉末X線回折としては、Rigaku smart labにより、Cu-Kαを用いて測定を行った。
<2.2.2 Powder X-ray diffraction>
(Diffraction method)
As the powder X-ray diffraction, a measurement was performed using Cu—Kα by Rigaku smart lab.
(回折結果)
 図3は、実施例9(1wt%)、実施例10(3wt%)、実施例12(6wt%)、実施例15(10wt%)、及び比較例1(None:0wt%)の粉末XRD(X-Ray Diffraction)パターンを示す。
 安定相であるVが主成分として存在すると共に、Coの添加率を上げると、Co相も出現することが示された。
(Diffraction result)
FIG. 3 shows powder XRD of Example 9 (1 wt %), Example 10 (3 wt %), Example 12 (6 wt %), Example 15 (10 wt %), and Comparative Example 1 (None: 0 wt %). X-Ray Diffraction) pattern is shown.
It was shown that V 2 O 5, which is a stable phase, is present as a main component, and that when the addition rate of Co is increased, a Co 3 O 4 phase also appears.
<2.2.3 ラマンスペクトル>
(測定方法)
 各五酸化バナジウム触媒の結晶構造について分析するため、ラマン分光法によりラマンスペクトルを測定した。より詳細には、スライドガラス上に、各触媒のサンプルを少量置き、ラマン分光装置によってラマンスペクトルを測定した。測定機器としては、日本分光製NRS-4100ラマン分光光度計を用いた。
<2.2.3 Raman spectrum>
(Measuring method)
Raman spectra were measured by Raman spectroscopy to analyze the crystal structure of each vanadium pentoxide catalyst. More specifically, a small amount of each catalyst sample was placed on a slide glass, and the Raman spectrum was measured by a Raman spectroscope. A NRS-4100 Raman spectrophotometer manufactured by JASCO Corporation was used as a measuring instrument.
(測定結果)
 図4は、各触媒のラマンスペクトルを示す。Coの添加量を上げると、Vの結晶構造が崩れ、パターン強度が弱くなることが示された。
(Measurement result)
FIG. 4 shows the Raman spectrum of each catalyst. It was shown that when the amount of Co added was increased, the crystal structure of V 2 O 5 collapsed and the pattern strength weakened.
<2.2.4 X線光電子スペクトル(XPS)測定>
(測定方法)
 実施例9(1wt%)、実施例10(3wt%)、実施例12(6wt%)、実施例15(10wt%)、及び比較例1(None:0wt%)につき、電子状態について分析するため、X線光電子スペクトル(XPS:X-Ray Photoelectron Spectrum)を測定した。より詳細には、各実施例及び比較例の触媒の粉末試料を、カーボンテープを用いてサンプルホルダーに固定し、X線光電子スペクトルを測定した。測定装置としては、日本電子製JPS-9010MX光電子分光計を用いた。
<2.2.4 X-ray photoelectron spectrum (XPS) measurement>
(Measuring method)
To analyze the electronic state of Example 9 (1 wt%), Example 10 (3 wt%), Example 12 (6 wt%), Example 15 (10 wt%), and Comparative Example 1 (None: 0 wt%). , X-ray photoelectron spectrum (XPS: X-Ray Photoelectron Spectrom) was measured. More specifically, powder samples of the catalysts of Examples and Comparative Examples were fixed to a sample holder using a carbon tape, and X-ray photoelectron spectra were measured. As a measuring device, a JPS-9010MX photoelectron spectrometer manufactured by JEOL Ltd. was used.
(測定結果)
 図5Aは、V2p領域におけるXPSスペクトルを示す。図5Bは、Co2p領域におけるXPSスペクトルを示す。Coの添加量を上げると、V4+及びCo2+成分が増大することが示された。
(Measurement result)
FIG. 5A shows an XPS spectrum in the V2p region. FIG. 5B shows an XPS spectrum in the Co2p region. It was shown that increasing the added amount of Co increased the V 4+ and Co 2+ components.
<3 第2の金属としてタングステンを含有するバナジウム触媒>
<3.1 各実施例>
 上記のように、実施例1~実施例8のバナジウム触媒において、水分が共存する場合では、実施例2(タングステンを添加)が2番目に高いNO転化率を示したため、タングステンの添加量を変化させることにより、以下の各実施例に係るバナジウム触媒を生成した。なお、単にタングステンの添加量を変化させるのみならず、後述のように、前駆体として、KWOを用いる場合と、HPW1240・nHOを用いる場合のそれぞれにおいて、タングステンの添加量を変化させた。
<3 Vanadium catalyst containing tungsten as second metal>
<3.1 Examples>
As described above, in the vanadium catalysts of Examples 1 to 8, in the case where water coexists, Example 2 (adding tungsten) showed the second highest NO conversion rate, so the amount of tungsten added was changed. By doing so, a vanadium catalyst according to each of the following examples was produced. It should be noted that not only the amount of tungsten added is changed, but also when K 2 WO 4 is used as the precursor and when H 3 PW 12 O 40 · nH 2 O is used as a precursor, tungsten is used as described later. The amount added was changed.
[実施例16]
 バナジン酸アンモニウム(NHVO)と、43.9mmolのKWOと、20mlの純水の混合物に、シュウ酸((COOH))を11.9g(131.7mmol)添加し、室温で10分間攪拌した後、70℃で12時間攪拌した。この前駆体試料を、300℃で4時間焼成することにより、タングステン(W)を含有する五酸化バナジウム(V)の脱硝触媒を得た。なお、生成される脱硝触媒中のWOの全重量比が、4.9wt%となるように、原料としてのバナジン酸アンモニウムの量を調整した。
[Example 16]
To a mixture of ammonium vanadate (NH 4 VO 3 ), 43.9 mmol of K 2 WO 4 and 20 ml of pure water, 11.9 g (131.7 mmol) of oxalic acid ((COOH) 2 ) was added, and the mixture was cooled to room temperature. After stirring for 10 minutes at 70° C. for 12 hours. By firing this precursor sample at 300° C. for 4 hours, a denitration catalyst of vanadium pentoxide (V 2 O 5 ) containing tungsten (W) was obtained. The amount of ammonium vanadate as a raw material was adjusted so that the total weight ratio of WO 3 in the produced denitration catalyst was 4.9 wt%.
[実施例17]
 バナジン酸アンモニウム(NHVO)と、43.9mmolのKWOと、20mlの純水の混合物に、シュウ酸((COOH))を11.9g(131.7mmol)添加し、室温で10分間攪拌した後、70℃で12時間攪拌した。この前駆体試料を、300℃で4時間焼成することにより、タングステン(W)を含有する五酸化バナジウム(V)の脱硝触媒を得た。なお、生成される脱硝触媒中のWOの全重量比が、11.8wt%となるように、原料としてのバナジン酸アンモニウムの量を調整した。
[Example 17]
To a mixture of ammonium vanadate (NH 4 VO 3 ), 43.9 mmol of K 2 WO 4 and 20 ml of pure water, 11.9 g (131.7 mmol) of oxalic acid ((COOH) 2 ) was added, and the mixture was cooled to room temperature. After stirring for 10 minutes at 70° C. for 12 hours. By firing this precursor sample at 300° C. for 4 hours, a denitration catalyst of vanadium pentoxide (V 2 O 5 ) containing tungsten (W) was obtained. The amount of ammonium vanadate as a raw material was adjusted so that the total weight ratio of WO 3 in the produced denitration catalyst was 11.8 wt %.
[実施例18]
 バナジン酸アンモニウム(NHVO)と、43.9mmolのKWOと、20mlの純水の混合物に、シュウ酸を11.9g(131.7mmol)添加し、室温で10分間攪拌した後、70℃で12時間攪拌した。この前駆体試料を、300℃で4時間焼成することにより、タングステン(W)を含有する五酸化バナジウム(V)の脱硝触媒を得た。なお、生成される脱硝触媒中のWOの全重量比が、22.1wt%となるように、原料としてのバナジン酸アンモニウムの量を調整した。
[Example 18]
11.9 g (131.7 mmol) of oxalic acid was added to a mixture of ammonium vanadate (NH 4 VO 3 ), 43.9 mmol of K 2 WO 4 and 20 ml of pure water, and the mixture was stirred at room temperature for 10 minutes. , 70 ° C. for 12 hours. By firing this precursor sample at 300° C. for 4 hours, a denitration catalyst of vanadium pentoxide (V 2 O 5 ) containing tungsten (W) was obtained. The amount of ammonium vanadate as a raw material was adjusted so that the total weight ratio of WO 3 in the produced denitration catalyst was 22.1 wt%.
[比較例2]
 バナジン酸アンモニウム(NHVO)と、43.9mmolのKWOと、20mlの純水の混合物に、シュウ酸((COOH))を11.9g(131.7mmol)添加し、室温で10分間攪拌した後、70℃で12時間攪拌した。この前駆体試料を、300℃で4時間焼成することにより、タングステン(W)を含有する五酸化バナジウム(V)の脱硝触媒を得た。なお、生成される脱硝触媒中のWOの全重量比が、略100wt%となるように、原料としてのバナジン酸アンモニウムの量を調整した。
[Comparative Example 2]
To a mixture of ammonium vanadate (NH 4 VO 3 ), 43.9 mmol of K 2 WO 4 and 20 ml of pure water, 11.9 g (131.7 mmol) of oxalic acid ((COOH) 2 ) was added, and the mixture was cooled to room temperature. After stirring for 10 minutes at 70° C. for 12 hours. By firing this precursor sample at 300° C. for 4 hours, a denitration catalyst of vanadium pentoxide (V 2 O 5 ) containing tungsten (W) was obtained. The amount of ammonium vanadate as a raw material was adjusted so that the total weight ratio of WO 3 in the produced denitration catalyst was approximately 100 wt%.
 なお、以下の表5は、実施例16~実施例18、及び比較例2における、タングステン導入時の前駆体の仕込み量を示す。
Figure JPOXMLDOC01-appb-T000006
 
In addition, Table 5 below shows the amount of the precursor charged at the time of introducing tungsten in Examples 16 to 18 and Comparative Example 2.
Figure JPOXMLDOC01-appb-T000006
[実施例19]
 バナジン酸アンモニウム(NHVO)と、HPW1240・nHOと、20mlの純水の混合物に、シュウ酸((COOH))を11.9g(131.7mmol)添加し、室温で10分間攪拌した後、70℃で12時間攪拌した。この前駆体試料を、300℃で4時間焼成することにより、タングステン(W)を含有する五酸化バナジウム(V)の脱硝触媒を得た。なお、生成される脱硝触媒中のWOの全重量比が、38.4wt%となるように、原料としてのバナジン酸アンモニウム及びHPW1240・nHOの量を調整した。
[Example 19]
Ammonium vanadate (NH 4 VO 3), and H 3 PW 12 O 40 · nH 2 O, a mixture of pure water 20 ml, oxalic acid ((COOH) 2) a 11.9g (131.7mmol) was added The mixture was stirred at room temperature for 10 minutes and then at 70° C. for 12 hours. By firing this precursor sample at 300° C. for 4 hours, a denitration catalyst of vanadium pentoxide (V 2 O 5 ) containing tungsten (W) was obtained. Incidentally, the total weight ratio of WO 3 in the denitration catalyst to be generated, so that the 38.4Wt%, and adjust the amount of ammonium vanadate and H 3 PW 12 O 40 · nH 2 O as raw materials.
[比較例3]
 バナジン酸アンモニウム(NHVO)と、HPW1240・nHOと、20mlの純水の混合物に、シュウ酸((COOH))を11.9g(131.7mmol)添加し、室温で10分間攪拌した後、70℃で12時間攪拌した。この前駆体試料を、300℃で4時間焼成することにより、タングステン(W)を含有する五酸化バナジウム(V)の脱硝触媒を得た。なお、生成される脱硝触媒中のWOの全重量比が、61.7wt%となるように、原料としてのバナジン酸アンモニウム及びHPW1240・nHOの量を調整した。
[Comparative Example 3]
Ammonium vanadate (NH 4 VO 3), and H 3 PW 12 O 40 · nH 2 O, a mixture of pure water 20 ml, oxalic acid ((COOH) 2) a 11.9g (131.7mmol) was added The mixture was stirred at room temperature for 10 minutes and then at 70° C. for 12 hours. By firing this precursor sample at 300° C. for 4 hours, a denitration catalyst of vanadium pentoxide (V 2 O 5 ) containing tungsten (W) was obtained. Incidentally, the total weight ratio of WO 3 in the denitration catalyst to be generated, so that the 61.7Wt%, and adjust the amount of ammonium vanadate and H 3 PW 12 O 40 · nH 2 O as raw materials.
[比較例4]
 バナジン酸アンモニウム(NHVO)と、HPW1240・nHOと、20mlの純水の混合物に、シュウ酸((COOH))を11.9g(131.7mmol)添加し、室温で10分間攪拌した後、70℃で12時間攪拌した。この前駆体試料を、300℃で4時間焼成することにより、タングステン(W)を含有する五酸化バナジウム(V)の脱硝触媒を得た。なお、生成される脱硝触媒中のWOの全重量比が、77.3wt%となるように、原料としてのバナジン酸アンモニウム及びHPW1240・nHOの量を調整した。
[Comparative Example 4]
Ammonium vanadate (NH 4 VO 3), and H 3 PW 12 O 40 · nH 2 O, a mixture of pure water 20 ml, oxalic acid ((COOH) 2) a 11.9g (131.7mmol) was added The mixture was stirred at room temperature for 10 minutes and then at 70° C. for 12 hours. By firing this precursor sample at 300° C. for 4 hours, a denitration catalyst of vanadium pentoxide (V 2 O 5 ) containing tungsten (W) was obtained. Incidentally, the total weight ratio of WO 3 in the denitration catalyst to be generated, so that the 77.3Wt%, and adjust the amount of ammonium vanadate and H 3 PW 12 O 40 · nH 2 O as raw materials.
[比較例5]
 バナジン酸アンモニウム(NHVO)と、HPW1240・nHOと、20mlの純水の混合物に、シュウ酸((COOH))を11.9g(131.7mmol)添加し、室温で10分間攪拌した後、70℃で12時間攪拌した。この前駆体試料を、300℃で4時間焼成することにより、タングステン(W)を含有する五酸化バナジウム(V)の脱硝触媒を得た。なお、生成される脱硝触媒中のWOの全重量比が、84.4wt%となるように、原料としてのバナジン酸アンモニウム及びHPW1240・nHOの量を調整した。
[Comparative Example 5]
Ammonium vanadate (NH 4 VO 3), and H 3 PW 12 O 40 · nH 2 O, a mixture of pure water 20 ml, oxalic acid ((COOH) 2) a 11.9g (131.7mmol) was added The mixture was stirred at room temperature for 10 minutes and then at 70° C. for 12 hours. By firing this precursor sample at 300° C. for 4 hours, a denitration catalyst of vanadium pentoxide (V 2 O 5 ) containing tungsten (W) was obtained. The amounts of ammonium vanadate and H 3 PW 12 O 40 .nH 2 O as raw materials were adjusted so that the total weight ratio of WO 3 in the produced denitration catalyst was 84.4 wt %.
[比較例6]
 バナジン酸アンモニウム(NHVO)と、HPW1240・nHOと、20mlの純水の混合物に、シュウ酸((COOH))を11.9g(131.7mmol)添加し、室温で10分間攪拌した後、70℃で12時間攪拌した。この前駆体試料を、300℃で4時間焼成することにより、タングステン(W)を含有する五酸化バナジウム(V)の脱硝触媒を得た。なお、生成される脱硝触媒中のWOの全重量比が、略100wt%となるように、原料としてのバナジン酸アンモニウム及びHPW1240・nHOの量を調整した。
[Comparative Example 6]
Ammonium vanadate (NH 4 VO 3), and H 3 PW 12 O 40 · nH 2 O, a mixture of pure water 20 ml, oxalic acid ((COOH) 2) a 11.9g (131.7mmol) was added The mixture was stirred at room temperature for 10 minutes and then at 70° C. for 12 hours. By firing this precursor sample at 300° C. for 4 hours, a denitration catalyst of vanadium pentoxide (V 2 O 5 ) containing tungsten (W) was obtained. Incidentally, the total weight ratio of WO 3 in the denitration catalyst to be generated, so as to be substantially 100 wt%, and adjust the amount of ammonium vanadate and H 3 PW 12 O 40 · nH 2 O as raw materials.
 なお、以下の表6は、実施例19、及び比較例3~比較例6における、タングステン導入時の前駆体の仕込み量を示す。
Figure JPOXMLDOC01-appb-T000007
<3.2 評価>
<3.2.1 概略>
 上記の表1の条件の下、反応温度略150℃で、固定床流通式触媒反応装置を用いてNH-SCR反応を行った。触媒層を通過したガスのうち、NOをJasco FT-IR-4700で分析した。
 また、NO転化率を、上記の式(1)により算出した。
In addition, Table 6 below shows the amount of precursor charged at the time of introducing tungsten in Example 19 and Comparative Examples 3 to 6.
Figure JPOXMLDOC01-appb-T000007
<3.2 Evaluation>
<3.2.1 Outline>
Under the conditions shown in Table 1 above, the NH 3- SCR reaction was carried out at a reaction temperature of approximately 150 ° C. using a fixed bed flow type catalytic reaction apparatus. Of the gas that passed through the catalyst layer, NO was analyzed by Jasco FT-IR-4700.
Further, the NO conversion rate was calculated by the above equation (1).
(測定結果)
 表7に各五酸化バナジウム触媒の、水分が共存しない場合と水分の共存下の場合との双方のNO転化率を示す。図6は、この表7をグラフ化したものである。
Figure JPOXMLDOC01-appb-T000008
(Measurement result)
Table 7 shows the NO conversion rates of each vanadium pentoxide catalyst in both the case where water does not coexist and the case where water coexists. FIG. 6 is a graph of Table 7.
Figure JPOXMLDOC01-appb-T000008
 水分が共存しない場合と水分の共存下の場合との双方で、タングステン含有量が0wt%の比較例1、及びタングステン含有量が39wt%~100wt%の比較例2~5及び7に比較すると、概して、タングステンの添加量が10~38wt%の間の添加が有効であることが示された。 Comparing with Comparative Example 1 having a tungsten content of 0 wt% and Comparative Examples 2-5 and 7 having a tungsten content of 39 wt% to 100 wt% both in the case where water does not coexist and in the case where water coexists. In general, it has been shown that the addition amount of tungsten between 10 and 38 wt% is effective.
 以下、前駆体として、KWOを用いる場合と、HPW1240・nHOを用いる場合のそれぞれについて、粉末X線回折及びSEM-EDSによる元素分析を実施すると共に、各々の場合における、タングステン含有率毎のNO転化率をグラフ化した。 Hereinafter, elemental analysis by powder X-ray diffraction and SEM-EDS is performed for each of the case of using K 2 WO 4 and the case of using H 3 PW 12 O 40 .nH 2 O as precursors, and In the case, the NO conversion rate for each tungsten content rate was graphed.
<3.2.2 前駆体としてKWOを用いる場合>
<3.2.2.1 粉末X線回折及び元素分析>
(測定方法)
 粉末X線回折としては、Rigaku smart labにより、Cu-Kαを用いて測定を行った。また、SEM-EDSによる元素分析を行った。
<3.2.2 When K 2 WO 4 is used as a precursor>
<3.2.2.1 Powder X-ray diffraction and elemental analysis>
(Measuring method)
As the powder X-ray diffraction, a measurement was performed using Cu—Kα by Rigaku smart lab. In addition, elemental analysis by SEM-EDS was performed.
(測定結果)
 図7は、実施例16(4.9wt%)、実施例17(11.8wt%)、実施例18(22.1wt%)、比較例1(0wt%)、比較例2(100wt%)の粉末XRDパターンを示す。
 また、図8は、横軸をKWOのmol%とした場合の、タングステン元素の割合(%)を示す。
(Measurement result)
FIG. 7 shows Example 16 (4.9 wt %), Example 17 (11.8 wt %), Example 18 (22.1 wt %), Comparative Example 1 (0 wt %), and Comparative Example 2 (100 wt %). 3 shows a powder XRD pattern.
In addition, FIG. 8 shows the percentage (%) of the tungsten element when the horizontal axis represents mol% of K 2 WO 4 .
 図7及び図8から、KWOを増やすことで、結晶相は三斜晶V(12wt%)を経て、単斜晶WO(100wt%)となったこと、及び、触媒に含まれるタングステン原子の比率が比例的に増加することが示された。 From FIGS. 7 and 8, by increasing K 2 WO 4 , the crystal phase changed from triclinic V 4 O 7 (12 wt%) to monoclinic WO 3 (100 wt%), and the catalyst. It was shown that the ratio of the tungsten atoms contained in was proportionally increased.
<3.2.2.2 NO転化率>
(測定結果)
 表8に各五酸化バナジウム触媒の、水分が共存しない場合と水分の共存下の場合との双方のNO転化率を示す。図9は、この表6をグラフ化したものである。
Figure JPOXMLDOC01-appb-T000009
<3.2.2.2 NO conversion rate>
(Measurement result)
Table 8 shows the NO conversion rates of each vanadium pentoxide catalyst in both the case where water does not coexist and the case where water coexists. FIG. 9 is a graph of this Table 6.
Figure JPOXMLDOC01-appb-T000009
 表8及び図9から分かるように、三斜晶V(22.1wt%)にて、触媒活性が最大(96.3%)となった。また、過剰のKWOは、触媒活性の低下を招き、タングステンの含有量が100wt%では、触媒活性はなかった。 As can be seen from Table 8 and FIG. 9, the catalytic activity was maximized (96.3%) in the triclinic V 4 O 7 (22.1 wt%). In addition, excess K 2 WO 4 caused a decrease in catalytic activity, and when the tungsten content was 100 wt%, there was no catalytic activity.
<3.2.3 前駆体としてHPW1240・nHOを用いる場合>
<3.2.3.1 粉末X線回折及び元素分析>
(測定方法)
 粉末X線回折としては、Rigaku smart labにより、Cu-Kαを用いて測定を行った。また、SEM-EDSによる元素分析を行った。
<3.2.3 using H 3 PW 12 O 40 · nH 2 O as precursors>
<3.2.3.1 Powder X-ray diffraction and elemental analysis>
(Measuring method)
As the powder X-ray diffraction, a measurement was performed using Cu—Kα by Rigaku smart lab. In addition, elemental analysis by SEM-EDS was performed.
(測定結果)
 図10は、実施例19(38.4wt%)、比較例4(61.7wt%)、比較例5(77.3wt%)、比較例6(84.4wt%)、比較例7(100wt%)の粉末XRDパターンを示す。
 また、図11は、横軸をHPW1240・nHOのmol%とした場合の、タングステン元素の割合(%)を示す。
(Measurement result)
FIG. 10 shows Example 19 (38.4 wt %), Comparative Example 4 (61.7 wt %), Comparative Example 5 (77.3 wt %), Comparative Example 6 (84.4 wt %), Comparative Example 7 (100 wt %). ) Is shown in the powder XRD pattern.
Further, FIG. 11 shows the proportion (%) of the tungsten element when the horizontal axis is mol% of H 3 PW 12 O 40 · nH 2 O.
 図10及び図11から、HPW1240・nHOの仕込み量を増やすことで、HPW1240・nHO由来の回折ピークが大きくなること、及び、比較的少量の仕込み量でタングステンの含有量が多くなることが示された。 10 and 11, of H 3 PW 12 O 40 · nH 2 O charged amounts by increasing the, H 3 PW 12 O 40 · nH 2 to O diffraction peak derived from increases, and relatively small amounts of It was shown that the content of tungsten increased with the charged amount.
<3.2.3.2 NO転化率>
(測定結果)
 表9に各五酸化バナジウム触媒の、水分が共存しない場合と水分の共存下の場合との双方のNO転化率を示す。図12は、この表9をグラフ化したものである。
Figure JPOXMLDOC01-appb-T000010
<3.2.3.2 NO conversion rate>
(Measurement result)
Table 9 shows the NO conversion rates of each vanadium pentoxide catalyst in both the case where water does not coexist and the case where water coexists. FIG. 12 is a graph of this Table 9.
Figure JPOXMLDOC01-appb-T000010
 表9及び図12から分かるように、HPW1240・nHOを前駆体とする場合は、タングステンの含有率が38.4wt%において触媒活性が最大(82.9%)となったものの、KWOを前駆体とする、タングステンの含有率が22.1wt%のバナジウム触媒の方が触媒活性が高い結果となった。 As can be seen from Table 9 and FIG. 12, when H 3 PW 12 O 40 .nH 2 O is used as the precursor, the maximum catalytic activity (82.9%) is obtained when the tungsten content is 38.4 wt %. and although, the K 2 WO 4 and the precursor, the content of tungsten towards 22.1Wt% vanadium catalyst was higher results catalytic activity.
<4 第2の金属としてニオブを含有するバナジウム触媒>
<4.1 各実施例>
<4 Vanadium catalyst containing niobium as the second metal>
<4.1 Examples>
 上記のように、実施例1~実施例8のバナジウム触媒において、水分が共存しない場合では、実施例4(ニオブを添加)が、2番目に最も高いNO転化率を示し、水分が共存する場合でも、比較的高いNO転化率を示したため、ニオブの添加量を変化させることにより、以下の各実施例に係るバナジウム触媒を生成した。 As described above, in the vanadium catalysts of Examples 1 to 8, when water does not coexist, Example 4 (with niobium added) shows the second highest NO conversion rate, and water coexists. However, since the NO conversion was relatively high, the vanadium catalyst according to each of the following examples was produced by changing the addition amount of niobium.
[実施例20]
 バナジン酸アンモニウム(NHVO)とシュウ酸((COOH))とを純水に溶解させ、前駆体錯体を合成した。この前駆体錯体に対し、第2の金属であるニオブ(Nb)のシュウ酸錯体を、金属酸化物換算でNbが1.8wt%となるように添加した。得られたバナジウム-ニオブ錯体混合物を電気炉によって300℃の温度で4時間、2回焼成することにより、ニオブ(Nb)を含有する五酸化バナジウム(V)の脱硝触媒を得た。
[Example 20]
Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. To this precursor complex, a oxalic acid complex of niobium (Nb), which is a second metal, was added so that Nb 2 O 5 was 1.8 wt% in terms of metal oxide. The resulting vanadium - 4 hours at a temperature of 300 ° C. by an electric furnace niobium complex mixture, by firing twice, to obtain a denitration catalyst of vanadium pentoxide containing niobium (Nb) (V 2 O 5 ).
[実施例21]
 バナジン酸アンモニウム(NHVO)とシュウ酸((COOH))とを純水に溶解させ、前駆体錯体を合成した。この前駆体錯体に対し、第2の金属であるニオブ(Nb)のシュウ酸錯体を、金属酸化物換算でNbが5.2wt%となるように添加した。得られたバナジウム-ニオブ錯体混合物を電気炉によって300℃の温度で4時間、2回焼成することにより、ニオブ(Nb)を含有する五酸化バナジウム(V)の脱硝触媒を得た。
[Example 21]
Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. To this precursor complex, a oxalic acid complex of niobium (Nb), which is a second metal, was added so that Nb 2 O 5 was 5.2 wt% in terms of metal oxide. The resulting vanadium - 4 hours at a temperature of 300 ° C. by an electric furnace niobium complex mixture, by firing twice, to obtain a denitration catalyst of vanadium pentoxide containing niobium (Nb) (V 2 O 5 ).
[実施例22]
 バナジン酸アンモニウム(NHVO)とシュウ酸((COOH))とを純水に溶解させ、前駆体錯体を合成した。この前駆体錯体に対し、第2の金属であるニオブ(Nb)のシュウ酸錯体を、金属酸化物換算でNbが8.5wt%となるように添加した。得られたバナジウム-コバルト錯体混合物を電気炉によって300℃の温度で4時間、2回焼成することにより、コバルト(Co)を含有する五酸化バナジウム(V)の脱硝触媒を得た。
[Example 22]
Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. To this precursor complex, a oxalic acid complex of niobium (Nb), which is a second metal, was added so that Nb 2 O 5 was 8.5 wt% in terms of metal oxide. The resulting vanadium - 4 hours at a temperature of 300 ° C. The cobalt complex mixture by an electric furnace and fired twice to obtain a denitration catalyst of vanadium pentoxide containing cobalt (Co) (V 2 O 5 ).
[実施例23]
 バナジン酸アンモニウム(NHVO)とシュウ酸((COOH))とを純水に溶解させ、前駆体錯体を合成した。この前駆体錯体に対し、第2の金属であるニオブ(Nb)のシュウ酸錯体を、金属酸化物換算でNbが11.7wt%となるように添加した。得られたバナジウム-ニオブ錯体混合物を電気炉によって300℃の温度で4時間、2回焼成することにより、ニオブ(Nb)を含有する五酸化バナジウム(V)の脱硝触媒を得た。
[Example 23]
Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. To this precursor complex, a oxalic acid complex of niobium (Nb), which is a second metal, was added so that Nb 2 O 5 was 11.7 wt% in terms of metal oxide. The resulting vanadium - 4 hours at a temperature of 300 ° C. by an electric furnace niobium complex mixture, by firing twice, to obtain a denitration catalyst of vanadium pentoxide containing niobium (Nb) (V 2 O 5 ).
[実施例24]
 バナジン酸アンモニウム(NHVO)とシュウ酸((COOH))とを純水に溶解させ、前駆体錯体を合成した。この前駆体錯体に対し、第2の金属であるニオブ(Nb)のシュウ酸錯体を、金属酸化物換算でNbが16.2wt%となるように添加した。得られたバナジウム-ニオブ錯体混合物を電気炉によって300℃の温度で4時間、2回焼成することにより、ニオブ(Nb)を含有する五酸化バナジウム(V)の脱硝触媒を得た。
[Example 24]
Ammonium vanadate (NH 4 VO 3 ) and oxalic acid ((COOH) 2 ) were dissolved in pure water to synthesize a precursor complex. To this precursor complex, a oxalic acid complex of niobium (Nb), which is a second metal, was added so that Nb 2 O 5 was 16.2 wt% in terms of metal oxide. The resulting vanadium - 4 hours at a temperature of 300 ° C. by an electric furnace niobium complex mixture, by firing twice, to obtain a denitration catalyst of vanadium pentoxide containing niobium (Nb) (V 2 O 5 ).
 なお、以下の表10は、実施例20~実施例24における、ニオブ導入時の前駆体の仕込み量を示す。
Figure JPOXMLDOC01-appb-T000011
<4.2 評価>
<4.2.1 NO転化率>
(測定方法)
 上記の表1の条件の下、反応温度150℃で、固定床流通式触媒反応装置を用いてNH-SCR反応を行った。触媒層を通過したガスのうち、NOをJasco FT-IR-4700で分析した。
 また、NO転化率を、上記の式(1)により算出した。
In addition, Table 10 below shows the amount of the precursor charged at the time of introducing niobium in Examples 20 to 24.
Figure JPOXMLDOC01-appb-T000011
<4.2 Evaluation>
<4.2.1 NO conversion>
(Measuring method)
Under the conditions shown in Table 1 above, the NH 3- SCR reaction was carried out at a reaction temperature of 150 ° C. using a fixed-bed flow catalytic reactor. Of the gas that passed through the catalyst layer, NO was analyzed by Jasco FT-IR-4700.
Further, the NO conversion rate was calculated by the above equation (1).
(測定結果)
 表11に各酸化バナジウム触媒の、水分が共存しない場合と水分の共存下の場合との双方のNO転化率を示す。図13は、この表11をグラフ化したものである。
Figure JPOXMLDOC01-appb-T000012
(Measurement result)
Table 11 shows the NO conversion of each vanadium oxide catalyst both in the absence of water and in the presence of water. FIG. 13 is a graph of this table 11.
Figure JPOXMLDOC01-appb-T000012
 水分が共存しない場合と水分の共存下の場合との双方で、実施例の脱硝触媒は、全て、比較例の脱硝触媒よりも高いNO転化率を示した。とりわけ、水分が共存しない場合においては、実施例22(9wt%)が最も高いNO転化率を示し、水分が共存する場合においては、実施例21(5wt%)が最も高いNO転化率を示した。 The denitration catalysts of the examples all showed higher NO conversion than the denitration catalysts of the comparative examples both in the absence of water and in the presence of water. In particular, in the absence of water, Example 22 (9 wt%) showed the highest NO conversion, and in the presence of water, Example 21 (5 wt%) showed the highest NO conversion. ..
<5 炭素と第2の金属としてのコバルトを含有し、低温で焼成されたバナジウム触媒>
<5.1 各実施例と比較例>
[実施例25]
 バナジン酸アンモニウム(NHVO)とシュウ酸とを純水に溶解させ、前駆体錯体を合成した。この前駆体錯体に対し、エチレングリコールと、第2の金属であるコバルト(Co)の前駆体であるシュウ酸錯体を、金属酸化物換算でCoが6wt%となるように添加した。得られた触媒躯体を電気炉によって270℃の温度で2時間焼成することにより、炭素及びコバルト(Co)を含有する酸化バナジウムの脱硝触媒を得た。
 なお、以下の表12は、実施例25における、コバルト導入時の前駆体の仕込み量を示す。
Figure JPOXMLDOC01-appb-T000013
<Vanadium catalyst containing 5 carbon and cobalt as a second metal and calcined at low temperature>
<5.1 Examples and Comparative Examples>
[Example 25]
Ammonium vanadate (NH 4 VO 3 ) and oxalic acid were dissolved in pure water to synthesize a precursor complex. To this precursor complex, ethylene glycol and an oxalic acid complex which is a precursor of cobalt (Co) which is the second metal were added so that Co 3 O 4 was 6 wt% in terms of metal oxide. The obtained catalyst skeleton was fired in an electric furnace at a temperature of 270° C. for 2 hours to obtain a vanadium oxide denitration catalyst containing carbon and cobalt (Co).
In addition, Table 12 below shows the charged amount of the precursor when cobalt was introduced in Example 25.
Figure JPOXMLDOC01-appb-T000013
<5.2 評価>
<5.2.1 炭素含有量>
(測定方法)
 各五酸化バナジウム触媒の炭素含有量の測定の際は、C(炭素)、H(水素)、N(窒素)の元素分析によって炭素含有量を定量した。より詳細には、エグゼタ-アナリティカル社製CE-440F内部の高温の反応管内で、各脱硝触媒を完全燃焼・分解し、主構成元素であるC、H、NをCO、HO、Nに変換した後、これらの三成分を三つの熱伝導度検出器で順次定量し、構成元素中のC、H、Nの含有量を測定した。
<5.2 Evaluation>
<5.2.1 Carbon content>
(Measuring method)
When measuring the carbon content of each vanadium pentoxide catalyst, the carbon content was quantified by elemental analysis of C (carbon), H (hydrogen), and N (nitrogen). More specifically, each denitration catalyst is completely combusted and decomposed in a high-temperature reaction tube inside the CE-440F manufactured by Exeter Analytical Co., and C, H, and N, which are main constituent elements, are CO 2 , H 2 O, After conversion to N 2 , these three components were sequentially quantified by three thermal conductivity detectors, and the contents of C, H, and N in the constituent elements were measured.
(測定結果)
 実施例25のバナジウム触媒に含まれる炭素含有量は、0.70wt%であった。
(Measurement result)
The carbon content of the vanadium catalyst of Example 25 was 0.70 wt %.
<5.2.2 NO転化率>
(測定方法)
 上記の表1の条件の下、反応温度150℃で、固定床流通式触媒反応装置を用いてNH-SCR反応を行った。触媒層を通過したガスのうち、NOをJasco FT-IR-4700で分析した。
 また、NO転化率を、上記の式(1)により算出した。
<5.22 NO conversion rate>
(Measuring method)
Under the conditions shown in Table 1 above, the NH 3- SCR reaction was carried out at a reaction temperature of 150 ° C. using a fixed-bed flow catalytic reactor. Of the gas that passed through the catalyst layer, NO was analyzed by Jasco FT-IR-4700.
Further, the NO conversion rate was calculated by the above equation (1).
(測定結果)
 表13に、比較例1、実施例12、実施例25の各五酸化バナジウム触媒の、水分が共存しない場合と水分の共存下の場合との双方のNO転化率を示す。図14は、この表13をグラフ化したものである。
Figure JPOXMLDOC01-appb-T000014
(Measurement result)
Table 13 shows the NO conversion rates of the vanadium pentoxide catalysts of Comparative Example 1, Example 12, and Example 25 in both the case where water does not coexist and the case where water coexists. FIG. 14 is a graph of this table 13.
Figure JPOXMLDOC01-appb-T000014
 水分が共存しない場合と水分の共存下の場合との双方で、実施例25の脱硝触媒が最も高いNO転化率を示した。 The denitration catalyst of Example 25 showed the highest NO conversion rate both in the absence of water and in the presence of water.
<6 適用例>
<6.1 燃焼システム>
<6.1.1 第1の燃焼システム>
 以下、本発明の第1の適用例について図面を参照しながら説明する。
 図15は、第1の適用例に係る燃焼システム1の構成を示す図である。燃焼システム1は、微粉炭を燃料とする燃焼システムである。図15に示すように、燃焼システム1は、例として火力発電システムを想定しており、燃焼装置としてのボイラ10と、微粉炭機20と、排気路L1と、空気予熱器30と、熱回収器としてのガスヒータ40と、集塵装置50と、誘引通風機60と、脱硫装置70と、加熱器としてのガスヒータ80と、脱硝装置90と、煙突100と、を備える。
<6 application example>
<6.1 Combustion system>
<6.1.1 First combustion system>
Hereinafter, the first application example of the present invention will be described with reference to the drawings.
FIG. 15: is a figure which shows the structure of the combustion system 1 which concerns on a 1st application example. The combustion system 1 is a combustion system using pulverized coal as fuel. As shown in FIG. 15, the combustion system 1 is assumed to be a thermal power generation system as an example, and includes a boiler 10 as a combustion device, a pulverized coal machine 20, an exhaust passage L1, an air preheater 30, and heat recovery. A gas heater 40 as a vessel, a dust collector 50, an induced draft fan 60, a desulfurization apparatus 70, a gas heater 80 as a heater, a denitration apparatus 90, and a chimney 100 are provided.
 ボイラ10は、燃料としての微粉炭を空気とともに燃焼させる。ボイラ10において、微粉炭が燃焼することにより排ガスが発生する。なお、微粉炭が燃焼することによって、クリンカアッシュ及びフライアッシュ等の石炭灰が生成する。ボイラ10において生成するクリンカアッシュは、ボイラ10の下方に配置されるクリンカホッパ11に排出されてから、図示しない石炭灰回収サイロに搬送される。 The boiler 10 burns pulverized coal as fuel with air. Exhaust gas is generated by burning pulverized coal in the boiler 10. The combustion of pulverized coal produces coal ash such as clinker ash and fly ash. The clinker ash generated in the boiler 10 is discharged to the clinker hopper 11 arranged below the boiler 10 and then conveyed to a coal ash recovery silo (not shown).
 ボイラ10は、全体として略逆U字状に形成される。ボイラ10において生成する排ガスは、ボイラ10の形状に沿って逆U字状に移動する。ボイラ10の排ガスの出口付近における排ガスの温度は、例えば300~400℃である。 The boiler 10 is formed in a substantially inverted U shape as a whole. The exhaust gas generated in the boiler 10 moves in an inverted U shape along the shape of the boiler 10. The temperature of the exhaust gas in the vicinity of the exhaust gas outlet of the boiler 10 is, for example, 300 to 400°C.
 微粉炭機20は、図示しない石炭バンカから供給される石炭を、微細な粒度に粉砕して微粉炭を形成する。微粉炭機20は、微粉炭と空気とを混合することにより、微粉炭を予熱及び乾燥させる。微粉炭機20において形成された微粉炭は、エアーが吹きつけられることにより、ボイラ10に供給される。 The pulverized coal machine 20 pulverizes coal supplied from a coal bunker (not shown) to a fine particle size to form pulverized coal. The pulverized coal machine 20 preheats and dries the pulverized coal by mixing the pulverized coal and air. The pulverized coal formed in the pulverized coal machine 20 is supplied to the boiler 10 by blowing air.
 排気路L1は、上流側がボイラ10に接続される。排気路L1は、ボイラ10において発生する排ガスが流通する流路である。 The upstream side of the exhaust passage L1 is connected to the boiler 10. The exhaust passage L1 is a passage through which exhaust gas generated in the boiler 10 flows.
 空気予熱器30は、排気路L1に配置される。空気予熱器30は、排ガスと図示しない押込式通風機から送り込まれる燃焼用の空気との間で熱交換を行い、排ガスから熱回収する。燃焼用の空気は、空気予熱器30において加熱されてからボイラ10に供給される。 The air preheater 30 is arranged in the exhaust path L1. The air preheater 30 performs heat exchange between the exhaust gas and the combustion air sent from a push-type fan (not shown) to recover heat from the exhaust gas. The combustion air is heated in the air preheater 30 and then supplied to the boiler 10.
 ガスヒータ40は、排気路L1における空気予熱器30の下流側に配置される。ガスヒータ40には、空気予熱器30において熱回収された排ガスが供給される。ガスヒータ40は、排ガスから更に熱回収する。 The gas heater 40 is arranged downstream of the air preheater 30 in the exhaust passage L1. The gas heater 40 is supplied with the exhaust gas whose heat is recovered in the air preheater 30. The gas heater 40 further recovers heat from the exhaust gas.
 集塵装置50は、排気路L1におけるガスヒータ40の下流側に配置される。集塵装置50には、ガスヒータ40において熱回収された排ガスが供給される。集塵装置50は、電極に電圧を印加することによって排ガス中の石炭灰(フライアッシュ)等の煤塵を収集する装置である。集塵装置50において捕集されるフライアッシュは、図示しない石炭灰回収サイロに搬送される。集塵装置50における排ガスの温度は、例えば80~120℃である。 The dust collector 50 is arranged on the downstream side of the gas heater 40 in the exhaust passage L1. The dust collector 50 is supplied with the exhaust gas heat-recovered by the gas heater 40. The dust collector 50 is a device that collects soot dust such as coal ash (fly ash) in the exhaust gas by applying a voltage to the electrodes. The fly ash collected by the dust collector 50 is transported to a coal ash recovery silo (not shown). The temperature of the exhaust gas in the dust collector 50 is, for example, 80 to 120 ° C.
 誘引通風機60は、排気路L1における集塵装置50の下流側に配置される。誘引通風機60は、集塵装置50においてフライアッシュを除去した排ガスを、一次側から取り込んで二次側に送り出す。 The attraction ventilator 60 is arranged on the downstream side of the dust collector 50 in the exhaust passage L1. The draft fan 60 takes in the exhaust gas from which the fly ash has been removed in the dust collector 50 from the primary side and sends it to the secondary side.
 脱硫装置70は、排気路L1における誘引通風機60の下流側に配置される。脱硫装置70には、誘引通風機60から送り出された排ガスが供給される。脱硫装置70は、排ガスから硫黄酸化物を除去する。詳しくは、脱硫装置70は、排ガスに石灰石と水との混合液(石灰石スラリー)を吹き付けることによって、排ガスに含まれる硫黄酸化物を混合液に吸収させて、排ガスから硫黄酸化物を除去する。脱硫装置70における排ガスの温度は、例えば50~120℃である。 The desulfurization device 70 is arranged on the downstream side of the induction ventilator 60 in the exhaust passage L1. The exhaust gas sent from the induction ventilator 60 is supplied to the desulfurization apparatus 70. The desulfurization device 70 removes sulfur oxides from the exhaust gas. Specifically, the desulfurization device 70 removes the sulfur oxides from the exhaust gas by spraying the mixed liquid (limestone slurry) of limestone and water onto the exhaust gas so that the mixed liquid absorbs the sulfur oxides contained in the exhaust gas. The temperature of the exhaust gas in the desulfurization apparatus 70 is, for example, 50 to 120 ° C.
 ガスヒータ80は、排気路L1における脱硫装置70の下流側に配置される。ガスヒータ80には、脱硫装置70において硫黄酸化物が除去された排ガスが供給される。ガスヒータ80は、排ガスを加熱する。ガスヒータ40及びガスヒータ80は、排気路L1における、空気予熱器30と集塵装置50との間を流通する排ガスと、脱硫装置70と後述する脱硝装置90との間を流通する排ガスと、の間で熱交換を行うガスガスヒータとして構成してもよい。
 とりわけガスヒータ80は、排ガスを、後段の脱硝装置90における脱硝反応に適した温度まで加熱させる。
The gas heater 80 is arranged on the downstream side of the desulfurization apparatus 70 in the exhaust passage L1. Exhaust gas from which sulfur oxides have been removed in the desulfurization apparatus 70 is supplied to the gas heater 80. The gas heater 80 heats the exhaust gas. The gas heater 40 and the gas heater 80 are disposed between the exhaust gas flowing between the air preheater 30 and the dust collector 50 and the exhaust gas flowing between the desulfurization device 70 and a denitration device 90 described later in the exhaust passage L1. It may be configured as a gas gas heater that performs heat exchange with.
In particular, the gas heater 80 heats the exhaust gas to a temperature suitable for the denitration reaction in the subsequent denitration device 90.
 脱硝装置90は、排気路L1におけるガスヒータ80の下流側に配置される。脱硝装置90には、ガスヒータ80において加熱された排ガスが供給される。脱硝装置90は、脱硝触媒によって排ガスから窒素酸化物を除去する。脱硝装置90においては、酸化バナジウムを主成分とする脱硝触媒であって、第2の金属の酸化物の含有量が1wt%以上40wt%以下であり、第2の金属が、Co、W、Mo、Nb、Ce、Sn、Ni、及びFeからなる群から選ばれる少なくとも一つの金属元素である上記の脱硝触媒を用いる。脱硝装置90における排ガスの温度は、例えば130~200℃である。 The denitration device 90 is arranged downstream of the gas heater 80 in the exhaust passage L1. The exhaust gas heated by the gas heater 80 is supplied to the denitration device 90. The denitration device 90 removes nitrogen oxides from the exhaust gas by a denitration catalyst. In the denitration device 90, the denitration catalyst containing vanadium oxide as a main component, the oxide content of the second metal is 1 wt% or more and 40 wt% or less, and the second metal is Co, W, Mo. The denitration catalyst described above, which is at least one metal element selected from the group consisting of Nb, Ce, Sn, Ni, and Fe, is used. The temperature of the exhaust gas in the denitration device 90 is, for example, 130 to 200 ° C.
 脱硝装置90では、選択接触還元法によって排ガスから窒素酸化物を除去する。選択接触還元法によれば、還元剤及び、上記の脱硝触媒によって窒素酸化物から窒素及び水を生成することで、排ガスから効率的に窒素酸化物を除去することができる。選択接触還元法において用いられる還元剤は、アンモニア及び尿素の少なくとも一方を含む。還元剤としてアンモニアを用いる場合、アンモニアガス、液体アンモニア及びアンモニア水溶液のいずれの状態のアンモニアを用いてもよい。 In the denitration device 90, nitrogen oxides are removed from the exhaust gas by the selective catalytic reduction method. According to the selective catalytic reduction method, nitrogen oxides can be efficiently removed from the exhaust gas by producing nitrogen and water from the nitrogen oxides by the reducing agent and the denitration catalyst. The reducing agent used in the selective catalytic reduction method contains at least one of ammonia and urea. When ammonia is used as the reducing agent, ammonia in any state of ammonia gas, liquid ammonia, and aqueous ammonia solution may be used.
 より具体的には、脱硝装置90は、導入された排ガスに対してアンモニアガスを注入してから、その混合ガスを、脱硝触媒に接触させる構成とすることができる。 More specifically, the denitration device 90 can be configured to inject ammonia gas into the introduced exhaust gas and then bring the mixed gas into contact with the denitration catalyst.
 このため、脱硝装置90は、例えば一段又は複数段の脱硝触媒層を備え、当該脱硝触媒層は、複数のケーシングと、これら複数のケーシングに収容される複数のハニカム触媒と、シール部材とを備えてもよい。 Therefore, the denitration device 90 includes, for example, one or a plurality of denitration catalyst layers, and the denitration catalyst layer includes a plurality of casings, a plurality of honeycomb catalysts housed in the plurality of casings, and a seal member. You may.
 より詳細には、ケーシングは、一端及び他端が開放された角筒状の金属部材により構成され、開放された一端及び他端が脱硝反応器における排ガスの流路に向かい合うように、つまり、ケーシングの内部を排ガスが流通するように配置されてもよい。また、複数のケーシングは、排ガスの流路を塞ぐように当接した状態で連結されて配置されてもよい。 More specifically, the casing is composed of a rectangular tubular metal member having one end and the other end opened, and the one end and the other end opened are opposed to the exhaust gas flow path in the denitration reactor, that is, the casing. The exhaust gas may be arranged so as to circulate inside. Further, the plurality of casings may be connected and arranged in a state of being in contact with each other so as to block the flow path of the exhaust gas.
 ハニカム触媒は、長手方向に延びる複数の排ガス流通穴が形成された長尺状(直方体状)に形成され、排ガス流通穴の延びる方向が排ガスの流路に沿うように配置されてもよい。 The honeycomb catalyst may be formed in a long shape (a rectangular parallelepiped shape) in which a plurality of exhaust gas circulation holes extending in the longitudinal direction are formed, and the exhaust gas circulation holes may be arranged so that the extending direction is along the exhaust gas passage.
 煙突100は、排気路L1の下流側が接続される。煙突100には、脱硝装置90において窒素酸化物を除去した排ガスが導入される。煙突100に導入された排ガスは、ガスヒータ80によって加熱されていることから、煙突効果によって煙突100の上部から効果的に排出される。また、ガスヒータ80において排ガスが加熱されることで、煙突100の上方において水蒸気が凝縮して白煙が生じるのを防ぐことができる。煙突100の出口付近における排ガスの温度は、例えば110℃である。 The chimney 100 is connected to the downstream side of the exhaust passage L1. Exhaust gas from which nitrogen oxides are removed by the denitration device 90 is introduced into the chimney 100. Since the exhaust gas introduced into the chimney 100 is heated by the gas heater 80, it is effectively discharged from the upper part of the chimney 100 by the chimney effect. Further, by heating the exhaust gas in the gas heater 80, it is possible to prevent water vapor from condensing above the chimney 100 to generate white smoke. The temperature of the exhaust gas near the outlet of the chimney 100 is, for example, 110 ° C.
<6.1.2 第2の燃焼システム>
 図16は、第2の適用例に係る燃焼システム1Aの構成を示す図である。燃焼システム1Aは、燃焼システム1と同様に、微粉炭を燃料とする燃焼システムである。燃焼システム1Aにおいて、燃焼システム1と同一の構成要素については、同一の符号を用いると共に、その機能の説明は省略する。
<6.1.2 Second combustion system>
FIG. 16 is a diagram showing the configuration of the combustion system 1A according to the second application example. Similar to the combustion system 1, the combustion system 1A is a combustion system using pulverized coal as fuel. In the combustion system 1A, the same reference numerals are used for the same components as the combustion system 1, and the description of their functions will be omitted.
 燃焼システム1Aにおいては、脱硝装置90が、集塵装置50の直後に設置されている点で、燃焼システム1と異なる。更に、脱硝装置90の下流には、上流から順に、誘引通風機60、脱硫装置70、ガスヒータ80が備わる。 The combustion system 1A differs from the combustion system 1 in that the denitration device 90 is installed immediately after the dust collector 50. Further, a ventilator 60, a desulfurization device 70, and a gas heater 80 are provided downstream of the denitration device 90 in this order from the upstream.
 燃焼システム1におけるガスヒータ80は、排ガスを、後段の脱硝装置90における脱硝反応に適した温度まで加熱させるものであった。一方で、燃焼システム1Aにおけるガスヒータ80は、排ガスを、後段の煙突100から拡散するまで適した温度まで加熱させる。 The gas heater 80 in the combustion system 1 heats the exhaust gas to a temperature suitable for the denitration reaction in the denitration device 90 in the subsequent stage. On the other hand, the gas heater 80 in the combustion system 1A heats the exhaust gas to a suitable temperature until it diffuses from the chimney 100 in the subsequent stage.
 脱硝装置90を集塵装置50の直後に設置することにより、脱硝装置90の前段にガスヒータを設ける必要なく、脱硝装置90における排ガスの温度を、130~200℃とすることができる。 By installing the denitration device 90 immediately after the dust collector 50, the temperature of the exhaust gas in the denitration device 90 can be set to 130 to 200° C. without providing a gas heater in front of the denitration device 90.
<6.1.3 第3の燃焼システム>
 図17は、第3の適用例に係る燃焼システム1Bの構成を示す図である。燃焼システム1Bは、燃焼システム1及び1Aとは異なり、天然ガスを燃料とする燃焼システムである。燃焼システム1Bにおいて、燃焼システム1及び燃焼システム1Aと同一の構成要素については、同一の符号を用いると共に、その機能の説明は省略する。
<6.1.3 Third combustion system>
FIG. 17: is a figure which shows the structure of the combustion system 1B which concerns on a 3rd application example. The combustion system 1B is a combustion system that uses natural gas as fuel, unlike the combustion systems 1 and 1A. In the combustion system 1B, the same reference numerals are used for the same components as those of the combustion system 1 and the combustion system 1A, and the description of their functions will be omitted.
 図17に示すように、燃焼システム1Bは、燃焼装置としてのボイラ10と、天然ガスの気化器15と、排気路L1と、空気予熱器30と、脱硝装置90と、誘引通風機60と、煙突100と、を備える。一方、燃焼システム1Bは、集塵装置と脱硫装置を必須の構成要素とはしていない。 As shown in FIG. 17, the combustion system 1B includes a boiler 10 as a combustion device, a natural gas vaporizer 15, an exhaust passage L1, an air preheater 30, a denitration device 90, an induction ventilator 60, and the like. And a chimney 100. On the other hand, in the combustion system 1B, the dust collector and the desulfurizer are not essential components.
 気化器15は、図示しないLNGタンクから供給される天然ガスを、気化してボイラ10に供給する。気化する際には、海水を利用する方式(オープンラック式)を用いてもよく、ガスバーナで温水を作り加熱する方式(サブマージドコンバスチョン式)を用いてもよく、中間媒体を用いて数段階の熱交換を行う方式を用いてもよい。 The vaporizer 15 vaporizes natural gas supplied from an LNG tank (not shown) and supplies it to the boiler 10. When vaporizing, a method of using seawater (open rack method), a method of producing hot water with a gas burner and heating (submerged combustion method), or an intermediate medium for several steps A method of performing heat exchange may be used.
 脱硝装置90は、排気路L1における空気予熱器30の下流側に配置される。脱硝装置90には、空気予熱器30において冷却された排ガスが供給される。脱硝装置90は、脱硝触媒によって排ガスから窒素酸化物を除去する。脱硝装置90における排ガスの温度は、例えば130~200℃である。 The denitration device 90 is arranged on the downstream side of the air preheater 30 in the exhaust passage L1. The exhaust gas cooled in the air preheater 30 is supplied to the denitration device 90. The denitration device 90 removes nitrogen oxides from the exhaust gas by a denitration catalyst. The temperature of the exhaust gas in the denitration device 90 is, for example, 130 to 200 ° C.
 煙突100には、排気路L1の下流側が接続される。煙突100には、脱硝装置90において窒素酸化物を除去した排ガスが導入される。脱硝装置90における排ガスの温度は、例えば130~200℃であることから、煙突100に導入された排ガスは、煙突効果によって煙突100の上部から効果的に排出される。また、煙突100の出口付近における排ガスの温度は、例えば110℃である。 The downstream side of the exhaust passage L1 is connected to the chimney 100. Exhaust gas from which nitrogen oxides are removed by the denitration device 90 is introduced into the chimney 100. Since the temperature of the exhaust gas in the denitration device 90 is, for example, 130 to 200° C., the exhaust gas introduced into the stack 100 is effectively discharged from the upper part of the stack 100 due to the stack effect. The temperature of the exhaust gas near the exit of the chimney 100 is 110° C., for example.
 脱硝装置90を空気予熱器30の下流側に配置することにより、脱硝触媒が脱硝する排ガスの温度が低くなり、脱硝触媒の劣化を低減することが可能となる。 By arranging the denitration device 90 on the downstream side of the air preheater 30, the temperature of the exhaust gas denitrated by the denitration catalyst becomes low, and the deterioration of the denitration catalyst can be reduced.
<6.1.4 第4の燃焼システム>
 図18は、第4の適用例に係る燃焼システム1Cの構成を示す図である。図18に示すように、燃焼システム1Cは、船舶の推進のために用いられる燃焼システムであり、燃料供給装置110と、燃焼装置としての内燃機関120と、集塵装置130と、排熱回収装置140と、脱硝装置150と、煙突160と、加勢モータ170と、燃料路R1、排気路R2及びR3、蒸気路R4、電力路R5とを備える。
<6.1.4 Fourth combustion system>
FIG. 18 is a diagram showing the configuration of a combustion system 1C according to the fourth application example. As shown in FIG. 18, the combustion system 1C is a combustion system used for propulsion of a ship, and includes a fuel supply device 110, an internal combustion engine 120 as a combustion device, a dust collector 130, and an exhaust heat recovery device. 140, a denitration device 150, a chimney 160, an energizing motor 170, a fuel path R1, exhaust paths R2 and R3, a steam path R4, and a power path R5.
 燃料供給装置110は、内燃機関120に対し、燃料路R1を用いて燃料を供給する。燃料としては、例えば、軽油・重油等の石油系燃料を用いることができる。 The fuel supply device 110 supplies fuel to the internal combustion engine 120 using the fuel passage R1. As the fuel, for example, petroleum-based fuel such as light oil and heavy oil can be used.
 燃料路R1は、上流側が燃料供給装置110に接続され、下流側が内燃機関120に接続される。燃料路R1は、燃料供給装置110から内燃機関120に向けて燃料が運搬される流路である。 The upstream side of the fuel passage R1 is connected to the fuel supply device 110, and the downstream side is connected to the internal combustion engine 120. The fuel passage R1 is a flow path through which fuel is transported from the fuel supply device 110 to the internal combustion engine 120.
 内燃機関120は、石油系燃料を空気と共に燃焼させる。内燃機関120において、石油系燃料が燃焼することにより排ガスが発生する。発生した排ガスは、排気路R2を経由して、集塵装置130に排出される。なお、内燃機関120は、例えば、大型船舶で用いられる2ストローク低速ディーゼル機関であってもよく、フェリー等で用いられる4ストローク中速ディーゼル機関であってもよく、高速船艇や小型船で用いられる4ストローク高速ディーゼル機関であってもよい。 The internal combustion engine 120 burns petroleum fuel with air. In the internal combustion engine 120, exhaust gas is generated by burning petroleum-based fuel. The generated exhaust gas is discharged to the dust collector 130 via the exhaust path R2. The internal combustion engine 120 may be, for example, a 2-stroke low-speed diesel engine used in a large ship, or a 4-stroke medium-speed diesel engine used in a ferry or the like, and used in a high-speed boat or small boat. It may be a 4-stroke high-speed diesel engine.
 排気路R2は、上流側が内燃機関120に接続される。排気路R2は、内燃機関120で発生する排ガスが流通する流路である。 The upstream side of the exhaust passage R2 is connected to the internal combustion engine 120. The exhaust passage R2 is a passage through which exhaust gas generated in the internal combustion engine 120 flows.
 集塵装置130は、排気路R2における内燃機関120の下流側に配置され、内燃機関120から排出された排ガスが供給される。集塵装置130は、排ガス中の煤塵を収集する装置である。煤塵の収集方法としては、例えば、電極に電圧を印加して煤塵を帯電させ、クーロン力を用いて収集する方法を用いてもよい。あるいは、ベンチュリスクラバが実施する方法のように、ベンチュリ部に煤塵吸収液を供給し、このベンチュリ部で高速になった排ガスによって煤塵吸収液を微細化させて、気液接触により煤塵を収集する方法を用いてもよい。 The dust collector 130 is arranged on the downstream side of the internal combustion engine 120 in the exhaust passage R2, and the exhaust gas discharged from the internal combustion engine 120 is supplied. The dust collector 130 is a device that collects soot and dust in the exhaust gas. As a method for collecting soot and dust, for example, a method may be used in which a voltage is applied to the electrodes to charge the soot and dust and the soot and dust are collected by using Coulomb force. Alternatively, as in the method implemented by the Venturi scrubber, a soot absorbing liquid is supplied to the Venturi part, the soot and dust absorbing liquid is miniaturized by the exhaust gas speeded up in the Venturi part, and the soot is collected by gas-liquid contact. May be used.
 排熱回収装置140は、排気路における集塵装置130の下流側に配置され、集塵装置130で煤塵が除去された排ガスが供給される。排熱回収装置140は、集塵装置130から供給される排ガスから排熱を回収する。より具体的には、排熱回収装置140は、タービン装置141と排ガスエコノマイザ145とを備える。 The exhaust heat recovery device 140 is arranged in the exhaust passage on the downstream side of the dust collector 130, and the exhaust gas from which the dust has been removed by the dust collector 130 is supplied. The exhaust heat recovery device 140 recovers exhaust heat from the exhaust gas supplied from the dust collector 130. More specifically, the exhaust heat recovery device 140 includes a turbine device 141 and an exhaust gas economizer 145.
 タービン装置141は、ガスタービン142と、蒸気タービン143と、発電機144とを備える。ガスタービン142と発電機144、及び、蒸気タービン143と発電機144とは互いに接続される。ガスタービン142は、集塵装置130から排気路R3を経由して供給される排ガスによって駆動する。ガスタービン142が駆動されると、ガスタービン142に接続する発電機144も連動して駆動し発電を行う。また、蒸気タービン143は、後述の排ガスエコノマイザ145から蒸気路R4を経由して供給される蒸気によって駆動する。蒸気タービン143が駆動されると、蒸気タービン143に接続する発電機144も連動して発電を行う。発電機144によって生成される電力は、電力路R5を経由して加勢モータ170に供給される。 The turbine device 141 includes a gas turbine 142, a steam turbine 143, and a generator 144. The gas turbine 142 and the generator 144, and the steam turbine 143 and the generator 144 are connected to each other. The gas turbine 142 is driven by the exhaust gas supplied from the dust collector 130 via the exhaust path R3. When the gas turbine 142 is driven, the generator 144 connected to the gas turbine 142 is also driven in conjunction with it to generate power. Further, the steam turbine 143 is driven by steam supplied from the exhaust gas economizer 145, which will be described later, via the steam passage R4. When the steam turbine 143 is driven, the generator 144 connected to the steam turbine 143 also generates electricity in conjunction with it. The electric power generated by the generator 144 is supplied to the biasing motor 170 via the electric power line R5.
 排ガスエコノマイザ145は、集塵装置130から排気路R2を経由して供給される排ガスと、ガスタービン142から排気路R3を経由して供給される排ガスとを熱源として、給水タンク(図示せず)等に貯蓄された水から蒸気を発生させる。排ガスエコノマイザ145により生成された蒸気は、蒸気路R4を経由して、蒸気タービン143に供給される。 The exhaust gas economizer 145 uses a water supply tank (not shown) as a heat source of the exhaust gas supplied from the dust collector 130 via the exhaust passage R2 and the exhaust gas supplied from the gas turbine 142 via the exhaust passage R3. Generate steam from the water stored in etc. The steam generated by the exhaust gas economizer 145 is supplied to the steam turbine 143 via the steam passage R4.
 排気路R3は、排気路R2とは異なる排気路であり、上流側が集塵装置130に、下流側が排ガスエコノマイザ145に接続されると共に、その途中で、ガスタービン142を経由する。排気路R3は、集塵装置130から供給される排ガスを、ガスタービン142を経由して、排ガスエコノマイザ145に流通する流路である。 The exhaust passage R3 is an exhaust passage different from the exhaust passage R2, and the upstream side is connected to the dust collector 130 and the downstream side is connected to the exhaust gas economizer 145, and the exhaust passage R3 passes through the gas turbine 142 on the way. The exhaust path R3 is a flow path for circulating the exhaust gas supplied from the dust collector 130 to the exhaust gas economizer 145 via the gas turbine 142.
 蒸気路R4は、上流側が排ガスエコノマイザ145に、下流側が蒸気タービン143に接続される。蒸気路R4は、排ガスエコノマイザ145で発生する蒸気が流通する流路である。 The upstream side of the steam passage R4 is connected to the exhaust gas economizer 145, and the downstream side is connected to the steam turbine 143. The steam passage R4 is a flow path through which steam generated by the exhaust gas economizer 145 flows.
 電力路R5は、上流側が発電機144に、下流側が加勢モータ170に接続される。電力路は、発電機144で生成される電力が流通する流路である。 The power path R5 is connected to the generator 144 on the upstream side and to the boosting motor 170 on the downstream side. The electric power path is a flow path through which electric power generated by the generator 144 flows.
 脱硝装置150は、排気路R2における排熱回収装置140の下流側に配置され、排熱が回収された排ガスが供給される。脱硝装置150は、脱硝触媒によって排ガスから窒素酸化物を除去する。脱硝装置150においては、酸化バナジウムを主成分とする脱硝触媒であって、第2の金属の酸化物の含有量が1wt%以上40wt%以下であり、前記第2の金属が、Co、W、Mo、Nb、Ce、Sn、Ni、及びFeからなる群から選ばれる少なくとも一つの金属元素である上記の脱硝触媒を用いる。脱硝装置150は、排熱回収装置140の下流側に設置されているため、脱硝装置150における排ガスの温度は、例えば130~200℃である。 The denitration device 150 is arranged in the exhaust passage R2 on the downstream side of the exhaust heat recovery device 140, and the exhaust gas from which the exhaust heat is recovered is supplied. The denitration device 150 removes nitrogen oxides from the exhaust gas with a denitration catalyst. In the denitration device 150, the denitration catalyst containing vanadium oxide as a main component, the oxide content of the second metal is 1 wt% or more and 40 wt% or less, and the second metal is Co, W, The above denitration catalyst, which is at least one metal element selected from the group consisting of Mo, Nb, Ce, Sn, Ni, and Fe, is used. Since the denitration device 150 is installed on the downstream side of the exhaust heat recovery device 140, the temperature of the exhaust gas in the denitration device 150 is, for example, 130 to 200°C.
 脱硝装置150では、選択接触還元法によって排ガスから窒素酸化物を除去する。選択接触還元法によれば、還元剤及び脱硝触媒によって窒素酸化物から窒素及び水を生成することで、排ガスから効率的に窒素酸化物を除去することができる。選択接触還元法において用いられる還元剤は、アンモニア及び尿素の少なくとも一方を含む。還元剤としてアンモニアを用いる場合、アンモニアガス、液体アンモニア及びアンモニア水溶液のいずれの状態のアンモニアを用いてもよい。 In the denitration device 150, nitrogen oxides are removed from the exhaust gas by the selective catalytic reduction method. According to the selective catalytic reduction method, nitrogen oxides can be efficiently removed from exhaust gas by producing nitrogen and water from nitrogen oxides with a reducing agent and a denitration catalyst. The reducing agent used in the selective catalytic reduction method contains at least one of ammonia and urea. When ammonia is used as the reducing agent, ammonia in any state of ammonia gas, liquid ammonia, and aqueous ammonia solution may be used.
 より具体的には、脱硝装置150は、導入された排ガスに対してアンモニアガスを注入してから、その混合ガスを脱硝触媒に接触させる構成とすることができる。 More specifically, the denitration device 150 can be configured to inject ammonia gas into the introduced exhaust gas and then bring the mixed gas into contact with the denitration catalyst.
 煙突160は、排気路R2の下流側が接続される。煙突160には、脱硝装置150において窒素酸化物を除去した排ガスが導入される。煙突160に導入された排ガスは、脱硝装置150における排ガスの温度が、例えば130~200℃であることから、煙突効果によって煙突160の上部から効果的に排出される。また、煙突160の上方において水蒸気が凝縮して白煙が生じるのを防ぐことができる。煙突160の出口付近における排ガスの温度は、例えば110℃である。 The chimney 160 is connected to the downstream side of the exhaust passage R2. Exhaust gas from which nitrogen oxides have been removed by the denitration device 150 is introduced into the chimney 160. The exhaust gas introduced into the chimney 160 is effectively discharged from the upper portion of the chimney 160 due to the chimney effect because the temperature of the exhaust gas in the denitration device 150 is, for example, 130 to 200°C. In addition, it is possible to prevent condensation of water vapor above the chimney 160 to generate white smoke. The temperature of the exhaust gas near the outlet of the chimney 160 is, for example, 110 ° C.
 加勢モータ170は、電力路R5における発電機144の下流側に設置され、内燃機関120のプロペラシャフト周りの回転を加勢するように駆動する。加勢モータ170には、発電機144から電力路R5を経由して電力が供給され、この電力を用いることにより、内燃機関120により生成される動力を加勢するように駆動する。 The energizing motor 170 is installed on the downstream side of the generator 144 in the electric power line R5, and drives so as to energize the rotation of the internal combustion engine 120 around the propeller shaft. Electric power is supplied to the energizing motor 170 from the generator 144 via the electric power path R5, and by using this electric power, the motive power generated by the internal combustion engine 120 is energized.
<6.1.5 第5の燃焼システム>
 また、図示はしないが、第5の適用例として、酸化バナジウムを主成分とする脱硝触媒であって、第2の金属の酸化物の含有量が1wt%以上40wt%以下であり、第2の金属が、Co、W、Mo、Nb、Ce、Sn、Ni、及びFeからなる群から選ばれる少なくとも一つの金属元素である上記の脱硝触媒を、生ゴミなどを焼却する燃焼システムに備わる脱硝装置で用いてもよい。生ゴミを燃焼するボイラの後段に設置される脱硝装置においては、排ガスの温度が150℃以下となることがあるが、上記の脱硝触媒は、反応温度が80-150℃の脱硝に用いることが可能であるため、このような燃焼システムにとっても有用である。
<6.1.5 Fifth combustion system>
Although not shown, as a fifth application example, a denitration catalyst containing vanadium oxide as a main component, wherein the content of the oxide of the second metal is 1 wt% or more and 40 wt% or less, A denitration device provided in a combustion system for incinerating raw garbage, etc., using the above denitration catalyst in which the metal is at least one metal element selected from the group consisting of Co, W, Mo, Nb, Ce, Sn, Ni, and Fe. May be used in. In the denitration device installed after the boiler that burns garbage, the temperature of the exhaust gas may be 150 ° C or lower, but the above denitration catalyst can be used for denitration with a reaction temperature of 80-150 ° C. Because it is possible, it is also useful for such combustion systems.
<6.2 基盤に触媒成分をコーティングしてなる脱硝触媒>
 上記の脱硝触媒は基本的に粉末状であるが、例えば、特開2005-199108号公報で開示されるように、火力発電所に設置される排煙脱硝装置においては、ハニカム形状の基盤に触媒成分をコーティングしたハニカムタイプの触媒が用いられることがある。本発明においても、第6の適用例として、基盤に対して、上記の脱硝触媒を触媒成分としてコーティングすることが可能である。
<6.2 Denitration catalyst formed by coating the base with a catalyst component>
The above denitration catalyst is basically in the form of powder. For example, as disclosed in Japanese Patent Application Laid-Open No. 2005-199108, in a flue gas denitration device installed in a thermal power plant, a catalyst is formed on a honeycomb-shaped substrate. Honeycomb type catalysts coated with components may be used. Also in the present invention, as a sixth application example, the substrate can be coated with the above-mentioned denitration catalyst as a catalyst component.
 上記の基盤としては、200℃以上の温度で変形等がなければ、任意の基盤を用いる事が可能である。例えば、基盤として、セラミック、陶器、チタン等の金属を用いてもよい。あるいは、基盤として、セラミック繊維ペーパー、ガラス繊維ペーパー、難燃紙、活性カーボンペーパー、脱臭用ペーパー、ハニカムフィルター不織布、フェルト、プラスチックシートから成るコルゲート型のハニカムフィルターを用いてもよい。
 あるいは、新品の触媒や使用済みの触媒上に、更に本発明の触媒成分をコーティングしてもよい。また、基盤は任意の形状とすることが可能であり、例えば、板状、ペレット状、流体状、円柱型、星型状、リング状、押出し型、球状、フレーク状、パスティル状、リブ押出し型、リブリング状のいずれかとすることが可能である。例えば、コルゲート型のハニカムフィルターは、ブロック型、ローター型、斜交型、異形ブロック、短冊型、ミニプリーツ等の自由な形態を取ることが可能である。
As the above-mentioned substrate, any substrate can be used as long as it is not deformed at a temperature of 200 ° C. or higher. For example, a metal such as ceramic, pottery, or titanium may be used as the base. Alternatively, a corrugated honeycomb filter made of ceramic fiber paper, glass fiber paper, flame-retardant paper, activated carbon paper, deodorizing paper, honeycomb filter non-woven fabric, felt, or plastic sheet may be used as the base.
Alternatively, a new catalyst or a used catalyst may be further coated with the catalyst component of the present invention. The substrate can have any shape, for example, plate-shaped, pellet-shaped, fluid-shaped, cylindrical, star-shaped, ring-shaped, extruded, spherical, flake-shaped, pastil-shaped, rib-extruded. , Or rib ring shape. For example, the corrugated type honeycomb filter can take any form such as a block type, a rotor type, an oblique type, a deformed block, a strip type, and a mini pleats.
<6.3 ブロック状に成形された脱硝触媒>
 更に、例えば、特開2017-32215号に記載されるように、石炭火力発電設備に備わる脱硝装置において、ハニカム触媒のような触媒ブロックが用いられることがあるが、本発明においても、第7の適用例として上記の脱硝触媒を触媒成分とする触媒ブロックを製造することが可能である。
<6.3 Block-shaped denitration catalyst>
Further, for example, as described in Japanese Patent Application Laid-Open No. 2017-32215, a catalyst block such as a honeycomb catalyst may be used in a denitration device provided in a coal-fired power generation facility. As an application example, it is possible to manufacture a catalyst block containing the above denitration catalyst as a catalyst component.
 具体的には、上記の粉末状の脱硝触媒に対し、バインダーとして、例えば、CMC(カルボキシメチルセルロース)又はPVA(ポリビニルアルコール)を1~50wt%混合して混練し、押出造粒機、真空押出機等の成形器で押出成形したり、プレス成形したりした後、乾燥させてから、焼成することにより、触媒ブロックを製造することが可能である。なお、焼成の際、上記のバインダーが焼き飛ばされることから、焼成後の触媒ブロック中の、上記の脱硝触媒の重量比は100wt%となる。 Specifically, for example, 1-50 wt% of CMC (carboxymethyl cellulose) or PVA (polyvinyl alcohol) is mixed as a binder with the above powdery denitration catalyst, and the mixture is kneaded, followed by an extrusion granulator and a vacuum extruder. It is possible to manufacture the catalyst block by extrusion-molding or press-molding with a molding machine such as the above, followed by drying and then firing. Since the binder is burnt off during firing, the weight ratio of the denitration catalyst in the catalyst block after firing is 100 wt %.
 また、上記の粉末状の脱硝触媒に対し、更に、例えば、チタン、モリブデン、タングステン、及び/又はその化合物(とりわけ酸化物)、又はシリカ等を混合した上で、混練し、押し出し成形することにより、触媒ブロックを製造することが可能である。 In addition, by further mixing, for example, titanium, molybdenum, tungsten, and/or its compounds (particularly oxides), silica, or the like with the above powdery denitration catalyst, by kneading and extruding It is possible to manufacture a catalyst block.
 触媒ブロックは任意の形状を取ることが可能であり、例えば、板状、ペレット状、流体状、円柱状、星型状、リング状、押出し型、球状、フレーク状、ハニカム状、パスティル状、リブ押出し型、リブリング状とすることが可能である。また、例えば、ハニカム状の触媒ブロックは、ハニカム面が三角形、四角形、五角形、六角形等の多角形であったり、円形であったりしてもよい。 The catalyst block can have any shape, for example, plate shape, pellet shape, fluid shape, columnar shape, star shape, ring shape, extrusion type, spherical shape, flake shape, honeycomb shape, pastille shape, rib. An extrusion type or rib ring type can be used. Further, for example, in the honeycomb-shaped catalyst block, the honeycomb surface may have a polygonal shape such as a triangle, a quadrangle, a pentagon, a hexagon, or a circle.
<6.4 その他の用途>
 上記の脱硝触媒の用途として、6.1では燃焼システムについて、6.2では基盤に触媒成分をコーティングしてなる脱硝触媒について、6.3ではブロック状に成形された脱硝触媒について述べたが、脱硝触媒の用途はこれには限られない。
 例えば、6.1.1及び6.1.2では微粉炭を燃料とする燃焼システムについて、6.1.3では天然ガスを燃料とする燃焼システムについて述べたが、上記の脱硝触媒は、微粉炭や天然ガスの代わりに、石油やバイオマス燃料を用いる燃焼システムで用いられてもよい。また、6.1.4では船舶の推進のために用いられる燃焼システムについて述べたが、上記の脱硝触媒は、船舶の代わりに自動車を推進するために用いられる燃焼システムで用いられてもよい。
<6.4 Other uses>
As applications of the above-mentioned denitration catalyst, in 6.1, the combustion system, in 6.2, the denitration catalyst formed by coating the substrate with a catalyst component was described, and in 6.3, the denitration catalyst formed in a block shape was described. The use of the denitration catalyst is not limited to this.
For example, in 6.1.1 and 6.1.2, a combustion system using pulverized coal as a fuel and in 6.1.3 a combustion system using natural gas as a fuel were described. It may be used in combustion systems that use petroleum or biomass fuels instead of charcoal and natural gas. Moreover, although the combustion system used for propulsion of a ship was described in 6.1.4, the above-described denitration catalyst may be used in a combustion system used for propulsion of an automobile instead of a ship.
 上記の適用例に係る燃焼システムによれば、以下の効果が奏される。
 (1)上記のように、上記適用例に係る燃焼システム1では、ボイラ(燃焼装置)10において発生する排ガスの流通する排気路L1において、脱硝装置90を集塵装置50の下流側に配置した。更に、上記実施形態では、脱硝装置90において、酸化バナジウムを主成分とする脱硝触媒であって、第2の金属の酸化物の含有量が1wt%以上40wt%以下であり、第2の金属が、Co、W、Mo、Nb、Ce、Sn、Ni、及びFeからなる群から選ばれる少なくとも一つの金属元素の脱硝触媒を用いた。
 上記の脱硝触媒を用いることにより、上記実施形態に係る燃焼システム1では、アンモニアを還元剤とする200℃以下の選択的触媒還元反応の際、従来技術に比較して、低温での脱硝効率が更に高いという効果を発揮できる。
According to the combustion system according to the above application example, the following effects are achieved.
(1) As described above, in the combustion system 1 according to the application example, the denitration device 90 is arranged on the downstream side of the dust collecting device 50 in the exhaust passage L1 through which the exhaust gas generated in the boiler (combustion device) 10 flows. .. Further, in the above-described embodiment, in the denitration device 90, the denitration catalyst containing vanadium oxide as a main component, the content of the oxide of the second metal is 1 wt% or more and 40 wt% or less, and the second metal is , Co, W, Mo, Nb, Ce, Sn, Ni, and Fe, a denitration catalyst of at least one metal element selected from the group was used.
By using the above-mentioned denitration catalyst, in the combustion system 1 according to the above-described embodiment, the denitration efficiency at a low temperature is lower than that of the prior art in the selective catalytic reduction reaction of 200° C. or less using ammonia as a reducing agent. The effect of being even higher can be exhibited.
 (2)上記適用例に係る燃焼システム1Aでは、排ガスから熱回収する空気予熱器30を更に備え、空気予熱器30は集塵装置50の上流側に配置した。
 空気予熱器30により熱回収された排ガスが、集塵装置50に供給されることにより、排ガスの熱による集塵装置50への負荷が抑えられる。また、排気路L1におけるボイラ(燃焼装置)10の近傍に通常配置される空気予熱器30の上流に脱硝装置90が配置されていないことから、アンモニアと排ガス中のS分とが反応することで生成する硫酸アンモニウムに起因する空気予熱器30の目詰まりが生じない。これにより、燃焼システム1Aは稼働のコストが低い。
(2) The combustion system 1A according to the application example further includes the air preheater 30 that recovers heat from the exhaust gas, and the air preheater 30 is arranged on the upstream side of the dust collector 50.
By supplying the exhaust gas whose heat is recovered by the air preheater 30 to the dust collector 50, the load on the dust collector 50 due to the heat of the exhaust gas is suppressed. Further, since the denitration device 90 is not arranged upstream of the air preheater 30 which is usually arranged near the boiler (combustion device) 10 in the exhaust passage L1, ammonia reacts with S in exhaust gas. The air preheater 30 is not clogged due to the generated ammonium sulfate. As a result, the combustion system 1A has a low operating cost.
 (3)上記適用例に係る燃焼システム1Bでは、ボイラ(燃焼装置)10において発生する排ガスの流通する排気路L1において、脱硝装置90を空気予熱器30の下流側に配置した。更に、上記実施形態では、脱硝装置90において酸化バナジウムを主成分とする脱硝触媒であって、第2の金属の酸化物の含有量が1wt%以上40wt%以下であり、第2の金属が、Co、W、Mo、Nb、Ce、Sn、Ni、及びFeからなる群から選ばれる少なくとも一つの金属元素の脱硝触媒を用いた。
 上記の脱硝触媒を用いることにより、上記実施形態に係る燃焼システム1Aでは、アンモニアを還元剤とする200℃以下の選択的触媒還元反応の際、従来技術に比較して、低温での脱硝効率が更に高いという効果を発揮できる。また、これにより、脱硝装置90を空気予熱器30の下流側に配置することが可能となるため、脱硝触媒が脱硝する排ガスの温度が低くなり、脱硝触媒の劣化を低減することが可能となる。
 また、上記の実施形態における燃焼システム1Bでは、集塵装置と脱硫装置を必須の構成要素とはしていない。従って、燃焼システム1Bの構成を単純化することにより、設置コストを下げることが可能となる。
(3) In the combustion system 1B according to the above application example, the denitration device 90 is arranged on the downstream side of the air preheater 30 in the exhaust passage L1 through which the exhaust gas generated in the boiler (combustion device) 10 flows. Further, in the above-described embodiment, in the denitration device 90, the denitration catalyst containing vanadium oxide as a main component, the content of the oxide of the second metal is 1 wt% or more and 40 wt% or less, and the second metal is A denitration catalyst of at least one metal element selected from the group consisting of Co, W, Mo, Nb, Ce, Sn, Ni, and Fe was used.
By using the above-mentioned denitration catalyst, in the combustion system 1A according to the above-described embodiment, the denitration efficiency at a low temperature is improved in the selective catalytic reduction reaction at a temperature of 200° C. or less using ammonia as a reducing agent, as compared with the conventional technique. The effect of being even higher can be exhibited. Further, as a result, it becomes possible to dispose the denitration device 90 on the downstream side of the air preheater 30, so that the temperature of the exhaust gas denitrated by the denitration catalyst becomes low, and the deterioration of the denitration catalyst can be reduced. ..
Further, in the combustion system 1B in the above embodiment, the dust collector and the desulfurization device are not essential components. Therefore, the installation cost can be reduced by simplifying the configuration of the combustion system 1B.
 (4)上記適用例に係る燃焼システム1Cは、内燃機関120において燃料が燃焼することによって発生する排ガスが流通する排気路R2と、排気路R2に配置され且つ内燃機関120から排出される排ガスから排熱を回収する排熱回収装置140と、排気路R2に配置され且つ脱硝触媒によって排ガスから窒素酸化物を除去する脱硝装置150とを備える燃焼システム1Cであって、脱硝装置150は、排気路R2における排熱回収装置140の下流側に配置され、脱硝触媒は、酸化バナジウムを主成分とする脱硝触媒であって、第2の金属の酸化物の含有量が1wt%以上40wt%以下であり、第2の金属が、Co、W、Mo、Nb、Ce、Sn、Ni、及びFeからなる群から選ばれる少なくとも一つの金属元素の脱硝触媒である。
 上記の脱硝触媒を用いることにより、上記実施形態に係る燃焼システム1Cでは、アンモニアを還元剤とする200℃以下の選択的触媒還元反応の際、従来技術に比較して、低温での脱硝効率が更に高いという効果を発揮でき、脱硝装置を排熱回収装置の下流側に配置することが可能となる。更に、脱硝装置150に排ガスを導入する直前で、排ガスを加熱することは必須ではない。これにより、脱硝触媒が高温に晒されることがなくなるため、脱硝触媒の劣化が低減され、燃焼システム1Cの稼働のコストは低くなる。
 また、上記の実施形態の燃焼システム1Cは、排ガスを加熱する加熱ヒータが必須ではない分、コンパクトな構成とすることが可能である。これにより、船舶のような狭いスペースにも、脱硝装置付きの燃焼システムを設置することが可能となる。
(4) The combustion system 1C according to the application example described above includes an exhaust passage R2 through which exhaust gas generated by combustion of fuel in the internal combustion engine 120 flows, and exhaust gas disposed in the exhaust passage R2 and discharged from the internal combustion engine 120. A combustion system 1C including an exhaust heat recovery device 140 that recovers exhaust heat and a denitration device 150 that is disposed in the exhaust passage R2 and that removes nitrogen oxides from exhaust gas by a denitration catalyst. The denitration catalyst arranged on the downstream side of the exhaust heat recovery apparatus 140 in R2 is a denitration catalyst containing vanadium oxide as a main component, and the content of the oxide of the second metal is 1 wt% or more and 40 wt% or less. The second metal is a denitration catalyst of at least one metal element selected from the group consisting of Co, W, Mo, Nb, Ce, Sn, Ni, and Fe.
By using the above-mentioned denitration catalyst, in the combustion system 1C according to the above-described embodiment, the denitration efficiency at a low temperature is improved in the selective catalytic reduction reaction at a temperature of 200° C. or less using ammonia as a reducing agent, as compared with the conventional technique. The effect of being even higher can be exhibited, and the denitration device can be arranged on the downstream side of the exhaust heat recovery device. Furthermore, it is not essential to heat the exhaust gas immediately before introducing the exhaust gas into the denitration device 150. As a result, the NOx removal catalyst is not exposed to high temperatures, so the deterioration of the NOx removal catalyst is reduced, and the operating cost of the combustion system 1C is reduced.
In addition, the combustion system 1C of the above-described embodiment can have a compact structure because a heater for heating exhaust gas is not essential. As a result, it becomes possible to install the combustion system with the denitration device even in a narrow space such as a ship.
 (5)上記のように、排熱回収装置140は、タービン装置141と排ガスエコノマイザ145とを備え、排ガスエコノマイザ145は、内燃機関120から排出される排ガスとタービン装置141から供給される排ガスとを熱源として蒸気を発生させ、タービン装置141は、内燃機関120から排出される排ガスと、排ガスエコノマイザ145から供給される蒸気とを用いて発電をすることが好ましい。
 上記の実施形態における排熱回収装置140は、タービン装置141と排ガスエコノマイザ145とを備えることにより、内燃機関120における燃料の燃焼により生成される熱エネルギーを、より有効に活用することが可能となる。
(5) As described above, the exhaust heat recovery device 140 includes the turbine device 141 and the exhaust gas economizer 145, and the exhaust gas economizer 145 collects the exhaust gas discharged from the internal combustion engine 120 and the exhaust gas supplied from the turbine device 141. It is preferable that steam is generated as a heat source, and the turbine device 141 uses the exhaust gas discharged from the exhaust gas engine 120 and the steam supplied from the exhaust gas economizer 145 to generate power.
The exhaust heat recovery device 140 in the above-described embodiment includes the turbine device 141 and the exhaust gas economizer 145, so that the thermal energy generated by the combustion of the fuel in the internal combustion engine 120 can be more effectively utilized. ..
1、1A、1B、1C 燃焼システム
10 ボイラ
15 気化器
30 空気予熱器
50 電気集塵装置
90 150 脱硝装置
100 160 煙突
110 燃料供給装置
120 内燃機関
130 集塵装置
140 排熱回収装置
141 タービン装置
145 排ガスエコノマイザ
170 加勢モータ
 
1, 1A, 1B, 1C Combustion system 10 Boiler 15 Vaporizer 30 Air preheater 50 Electric dust collector 90 150 Denitration device 100 160 Chimney 110 Fuel supply device 120 Internal combustion engine 130 Dust collector 140 Exhaust heat recovery device 141 Turbine device 145 Exhaust gas economizer 170 booster motor

Claims (5)

  1.  燃料を燃焼させる燃焼装置と、
     前記燃焼装置において前記燃料が燃焼することによって発生する排ガスが流通する排気路と、
     前記排気路に配置され且つ前記排ガス中の煤塵を収集する集塵装置と、
     前記排気路に配置され且つ脱硝触媒によって前記排ガスから窒素酸化物を除去する脱硝装置と、を備える燃焼システムであって、
     前記脱硝装置は、前記排気路における前記集塵装置の下流側に配置され、
     前記脱硝触媒は、酸化バナジウムを主成分とする脱硝触媒であって、第2の金属の酸化物の含有量が1wt%以上40wt%以下であり、前記第2の金属が、Co、W、Mo、Nb、Ce、Sn、Ni、及びFeからなる群から選ばれる少なくとも一つの金属元素の脱硝触媒である燃焼システム。
    A combustion device that burns fuel and
    An exhaust path through which exhaust gas generated by burning the fuel in the combustion device flows, and
    A dust collector arranged in the exhaust path and collecting soot and dust in the exhaust gas,
    A combustion system including a denitration device arranged in the exhaust passage and removing nitrogen oxides from the exhaust gas by a denitration catalyst.
    The denitration device is arranged on the downstream side of the dust collector in the exhaust passage.
    The denitration catalyst is a denitration catalyst containing vanadium oxide as a main component, the content of the oxide of the second metal is 1 wt% or more and 40 wt% or less, and the second metal is Co, W, or Mo. , Nb, Ce, Sn, Ni, and Fe, a combustion system that is a denitration catalyst for at least one metal element selected from the group.
  2.  前記燃焼システムは、前記排気路に配置され且つ前記排ガスから熱回収する空気予熱器を更に備え、
     前記空気予熱器は、前記集塵装置の上流側に配置される、請求項1に記載の燃焼システム。
    The combustion system further comprises an air preheater disposed in the exhaust passage and recovering heat from the exhaust gas,
    The combustion system according to claim 1, wherein the air preheater is arranged on the upstream side of the dust collector.
  3.  燃料を燃焼させる燃焼装置と、
     前記燃焼装置において前記燃料が燃焼することによって発生する排ガスが流通する排気路と、
     前記排気路に配置され且つ前記排ガスから熱回収する空気予熱器と、
     前記排気路に配置され且つ脱硝触媒によって前記排ガスから窒素酸化物を除去する脱硝装置と、を備える燃焼システムであって、
     前記脱硝装置は、前記排気路における前記空気予熱器の下流側に配置され、
     前記脱硝触媒は、酸化バナジウムを主成分とする脱硝触媒であって、第2の金属の酸化物の含有量が1wt%以上40wt%以下であり、前記第2の金属が、Co、W、Mo、Nb、Ce、Sn、Ni、及びFeからなる群から選ばれる少なくとも一つの金属元素の脱硝触媒である燃焼システム。
    A combustion device that burns fuel and
    An exhaust path through which exhaust gas generated by burning the fuel in the combustion device flows, and
    An air preheater arranged in the exhaust gas path and recovering heat from the exhaust gas,
    A combustion system including a denitration device arranged in the exhaust passage and removing nitrogen oxides from the exhaust gas by a denitration catalyst.
    The denitration device is arranged on the downstream side of the air preheater in the exhaust passage.
    The denitration catalyst is a denitration catalyst containing vanadium oxide as a main component, the content of the oxide of the second metal is 1 wt% or more and 40 wt% or less, and the second metal is Co, W, or Mo. , Nb, Ce, Sn, Ni, and Fe, a combustion system that is a denitration catalyst for at least one metal element selected from the group.
  4.  燃料を燃焼させる内燃機関と、
     前記内燃機関において前記燃料が燃焼することによって発生する排ガスが流通する排気路と、
     前記排気路に配置され且つ前記内燃機関から排出される排ガスから排熱を回収する排熱回収装置と、
     前記排気路に配置され且つ脱硝触媒によって前記排ガスから窒素酸化物を除去する脱硝装置とを備える燃焼システムであって、
     前記脱硝装置は、前記排気路における前記排熱回収装置の下流側に配置され、
     前記脱硝触媒は、酸化バナジウムを主成分とする脱硝触媒であって、第2の金属の酸化物の含有量が1wt%以上40wt%以下であり、前記第2の金属が、Co、W、Mo、Nb、Ce、Sn、Ni、及びFeからなる群から選ばれる少なくとも一つの金属元素の脱硝触媒である燃焼システム。
    An internal combustion engine that burns fuel and
    An exhaust path through which exhaust gas generated by combustion of the fuel in the internal combustion engine flows, and
    An exhaust heat recovery device arranged in the exhaust passage and recovering exhaust heat from the exhaust gas discharged from the internal combustion engine.
    A combustion system provided with a denitration device arranged in the exhaust passage and for removing nitrogen oxides from the exhaust gas by a denitration catalyst.
    The denitration device is arranged on the downstream side of the exhaust heat recovery device in the exhaust passage.
    The denitration catalyst is a denitration catalyst containing vanadium oxide as a main component, the content of the oxide of the second metal is 1 wt% or more and 40 wt% or less, and the second metal is Co, W, or Mo. , Nb, Ce, Sn, Ni, and Fe, a combustion system that is a denitration catalyst for at least one metal element selected from the group.
  5.  前記排熱回収装置は、タービン装置と排ガスエコノマイザとを備え、
     前記排ガスエコノマイザは、前記内燃機関から排出される排ガスと前記タービン装置から供給される排ガスとを熱源として蒸気を発生させ、
     前記タービン装置は、前記内燃機関から排出される排ガスと、前記排ガスエコノマイザから供給される蒸気とを用いて発電をする、請求項4に記載の燃焼システム。
    The exhaust heat recovery device includes a turbine device and an exhaust gas economizer.
    The exhaust gas economizer generates steam by using the exhaust gas discharged from the internal combustion engine and the exhaust gas supplied from the turbine device as a heat source,
    The combustion system according to claim 4, wherein the turbine device generates electricity by using exhaust gas discharged from the internal combustion engine and steam supplied from the exhaust gas economizer.
PCT/JP2019/009202 2019-03-07 2019-03-07 Combustion system WO2020179077A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
PCT/JP2019/009202 WO2020179077A1 (en) 2019-03-07 2019-03-07 Combustion system
JP2019538444A JPWO2020179077A1 (en) 2019-03-07 2019-03-07
JP2020549726A JP7429012B2 (en) 2019-03-07 2020-03-05 Denitrification catalyst and its manufacturing method
SG11202109733U SG11202109733UA (en) 2019-03-07 2020-03-05 Denitration catalyst and method for manufacturing same
EP20767017.5A EP3936706A4 (en) 2019-03-07 2020-03-05 Combustion system
JP2020549727A JP7445925B2 (en) 2019-03-07 2020-03-05 combustion system
US17/436,965 US20220170403A1 (en) 2019-03-07 2020-03-05 Combustion system
US17/436,958 US20220168712A1 (en) 2019-03-07 2020-03-05 Denitration catalyst and method for manufacturing same
CN202080019195.8A CN113874109A (en) 2019-03-07 2020-03-05 Denitration catalyst and method for producing same
SG11202109743T SG11202109743TA (en) 2019-03-07 2020-03-05 Combustion system
PCT/JP2020/009542 WO2020179891A1 (en) 2019-03-07 2020-03-05 Denitration catalyst and method for manufacturing same
PCT/JP2020/009543 WO2020179892A1 (en) 2019-03-07 2020-03-05 Combustion system
CN202080019137.5A CN113631804A (en) 2019-03-07 2020-03-05 Combustion system
EP20766854.2A EP3936230A4 (en) 2019-03-07 2020-03-05 Denitration catalyst and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/009202 WO2020179077A1 (en) 2019-03-07 2019-03-07 Combustion system

Publications (1)

Publication Number Publication Date
WO2020179077A1 true WO2020179077A1 (en) 2020-09-10

Family

ID=72337081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009202 WO2020179077A1 (en) 2019-03-07 2019-03-07 Combustion system

Country Status (2)

Country Link
JP (1) JPWO2020179077A1 (en)
WO (1) WO2020179077A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738939A (en) * 1980-08-19 1982-03-03 Ishikawajima Harima Heavy Ind Co Ltd Catalyst for treatment of nitrogen oxide and its production
JPS6410202B2 (en) * 1983-08-18 1989-02-21 Maruwa Ekoo Kk
JPH11342337A (en) * 1998-06-02 1999-12-14 Tokyo Gas Co Ltd Catalyst b and method for removal of nitrogen oxides by decomposition
JP2000197822A (en) * 1999-01-08 2000-07-18 Tokyo Gas Co Ltd Catalyst for decomposing and removing nitrogen oxide and method for decomposing and removing nitrogen oxide
JP2007167780A (en) * 2005-12-22 2007-07-05 Cataler Corp Catalyst for exhaust gas purification
WO2010131636A1 (en) * 2009-05-11 2010-11-18 昭和電工株式会社 Catalyst, process for production thereof, and use thereof
WO2017042895A1 (en) * 2015-09-08 2017-03-16 中国電力株式会社 Thermal power generation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013007779B4 (en) * 2012-08-17 2023-10-12 Johnson Matthey Public Limited Company Zeolite-promoted V/TiW catalyst compositions
US10350543B2 (en) * 2014-08-12 2019-07-16 Noram Engineering And Constructors Ltd. Gas treatment process and apparatus
SG11201802496TA (en) * 2016-09-12 2018-04-27 The Chugoku Electric Power Co Inc Denitration catalyst and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738939A (en) * 1980-08-19 1982-03-03 Ishikawajima Harima Heavy Ind Co Ltd Catalyst for treatment of nitrogen oxide and its production
JPS6410202B2 (en) * 1983-08-18 1989-02-21 Maruwa Ekoo Kk
JPH11342337A (en) * 1998-06-02 1999-12-14 Tokyo Gas Co Ltd Catalyst b and method for removal of nitrogen oxides by decomposition
JP2000197822A (en) * 1999-01-08 2000-07-18 Tokyo Gas Co Ltd Catalyst for decomposing and removing nitrogen oxide and method for decomposing and removing nitrogen oxide
JP2007167780A (en) * 2005-12-22 2007-07-05 Cataler Corp Catalyst for exhaust gas purification
WO2010131636A1 (en) * 2009-05-11 2010-11-18 昭和電工株式会社 Catalyst, process for production thereof, and use thereof
WO2017042895A1 (en) * 2015-09-08 2017-03-16 中国電力株式会社 Thermal power generation system

Also Published As

Publication number Publication date
JPWO2020179077A1 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
WO2020179892A1 (en) Combustion system
JP6410201B2 (en) Combustion system
JP5550715B2 (en) CO shift catalyst, CO shift reaction apparatus, and purification method of gasification gas
JP5404774B2 (en) CO shift catalyst, CO shift reaction apparatus, and purification method of gasification gas
JP2020515384A (en) Catalyst, exhaust system and method for treating exhaust gas
WO2020179077A1 (en) Combustion system
WO2020179075A1 (en) Combustion system
JP2008126103A (en) Oxidation catalyst for removing fine particulate substance in exhaust gas, and removing method of fine particulate substance using the same
AU2009346342B2 (en) CO shift catalyst, method for producing the same, and CO shift reactor using CO shift catalyst
KR20190068189A (en) Low Temperature De―NOx Catalyst for Selective Catalytic Reduction and Preparation Method Thereof
WO2020179079A1 (en) Combustion system
WO2014103076A1 (en) Co shift catalyst, co shift reactor, and method for purifying gasification gas
KR100758065B1 (en) Preparation method of rutile titania-based catalyst showing excellent removal performance of nitrogen oxide emitted from stationary sources and mobile sources in ultra high temperature, and use thereof
KR100701331B1 (en) Oxidation Catalyst for Removing the Fine Soot Particulates of Exhaust Gas and Method Thereof
CN116272953A (en) Catalyst for synergistic removal of nitrogen oxides and CVOCs, preparation and application
KR20240004113A (en) Catalyst for removing nitrogen oxides generated during start-up and stop and/or normal operation in gas turbine combined cycle power plant
Prasad et al. Potash Substituted Mixed Metal (La-Zn) Oxide Catalysts for Diesel Soot Oxidation

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019538444

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918253

Country of ref document: EP

Kind code of ref document: A1