JP3785558B2 - Organochlorine compound removal catalyst and organochlorine compound removal method - Google Patents

Organochlorine compound removal catalyst and organochlorine compound removal method Download PDF

Info

Publication number
JP3785558B2
JP3785558B2 JP32629397A JP32629397A JP3785558B2 JP 3785558 B2 JP3785558 B2 JP 3785558B2 JP 32629397 A JP32629397 A JP 32629397A JP 32629397 A JP32629397 A JP 32629397A JP 3785558 B2 JP3785558 B2 JP 3785558B2
Authority
JP
Japan
Prior art keywords
catalyst
organic chlorine
chlorine compound
exhaust gas
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32629397A
Other languages
Japanese (ja)
Other versions
JPH11156190A (en
Inventor
雅人 金枝
加藤  明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP32629397A priority Critical patent/JP3785558B2/en
Publication of JPH11156190A publication Critical patent/JPH11156190A/en
Application granted granted Critical
Publication of JP3785558B2 publication Critical patent/JP3785558B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス中に含まれる有害成分の塩素化合物を効率よく除去する排ガスの有機塩素化合物除去触媒及び有機塩素化合物除去方法に関する。
【0002】
【従来の技術】
都市ごみ、産業廃棄物、下水汚泥等を焼却する焼却炉から発生する排ガス中には、有害成分の窒素酸化物(以下NOxと記載)、炭化水素(以下HCと記載)及び一酸化炭素(以下COと記載)等の可燃性ガスと共に極めて微量であるが猛毒の有機塩素化合物、例えば芳香族系のポリ塩化ジベンゾダイオキシン(以下PCDDと記載)、ポリ塩化ジベンゾフラン(以下PCDFと記載)、クロロベンゼンが含まれており、これらの有害成分を除去し排ガスを浄化することは環境保全上重要である。
排ガス中に含まれる芳香族系有機塩素化合物を浄化する技術に触媒を用い酸化分解する方法があり、公知例としての特開平2−35914号公報には排ガスを150℃以上に昇温し、酸化チタン、酸化バナジウム、酸化タングステン、白金、パラジウムの中から選ばれた少なくとも一種の成分を含む触媒を用いる方法が開示されている。
また、排ガス中に含まれるNOx、有機塩素化合物及びCOを浄化する技術の公知例として特開平5−245343号公報にはA成分としてTi、Si、Zr、Al、Vから選択し、Vを必ず含む一種の金属の単独系酸化物または二種以上の金属の複合多元系酸化物群から選ばれる一種以上と、B成分としてPt、Pd、Ruから選ばれる一種またはその酸化物を含む触媒を用いる方法が開示されている。
【0003】
【発明が解決しようとする課題】
しかしながら従来の技術は必ずしもその性能が十分とは云えず、除去率を向上させるために触媒量を増加すること、触媒層の反応温度を高めることが必要となる。触媒量を増加する方法は、設備が大型になり触媒のコストが上昇する。そして触媒層の温度を高める方法は排ガスを昇温するための熱エネルギが増加し運転コストが上昇する。何れにしても排ガス浄化のためのコストが大幅に増加することは避けられない。本発明の目的は、排ガス中に含まれる有害成分の有機塩素化合物を効率よく除去することにある。
【0004】
【課題を解決するための手段】
上記目的は、主たる構成元素の原子比が、Ti50〜95%、Mn0.01〜20%、V0.5〜40%、W0〜20%、Mo0〜20%である有機塩素化合物除去用触媒により達成される。上記有機塩素化合物除去用触媒が、格子面間隔で4.37±0.2Å、3.54±0.2Å、3.28±0.2Å、3.16±0.2Å、3.09±0.2Å、3.04±0.2Åのいずれかに対応するX線回析ピークを含むことが望ましい。上記目的は、バナジウム酸化物及びマンガン酸化物に溶媒を加えて混練し、該第1の混合物を乾燥後に焼成し、該焼成物にチタン酸化物とモリブデン化合物或いはタングステン化合物と溶媒を加えて混練し、該第2の混合物を乾燥後に焼成することにより触媒を製造する有機塩素化合物除去用触媒の製造方法によっても達成される。有機塩素化合物及び酸素を含む排ガスを温度50〜600℃で上記の触媒に接触させて酸化分解して浄化することが望ましい。有機塩素化合物及び酸素を含む排ガスを温度100〜300℃で上記の触媒に接触させて酸化分解して浄化することが望ましい。有機塩素化合物、窒素酸化物及び可燃性ガスを含む排ガスに窒素酸化物還元剤を添加し、温度50〜600℃で上記の触媒に接触させて酸化分解して浄化することが望ましい。有機塩素化合物、窒素酸化物及び可燃性ガスを含む排ガスに窒素酸化物還元剤を添加し、温度100〜300℃で上記の触媒に接触させて酸化分解して浄化することが望ましい。上記の触媒を有機塩素化合物のうちの芳香族有機塩素化合物に適用することが望ましい。上記の触媒を有機塩素化合物のうちのポリ塩化ジベンゾダイオキシンまたはポリ塩化ジベンゾフランに適用することが望ましい。上記の触媒を下水汚泥焼却炉またはごみ焼却炉から排出される排ガスに適用することが望ましい。上記構成の触媒に含まれるMnとVの複合酸化物は、MnとVの相互作用が強まり、活性成分であるVの酸化還元反応速度が大きくなり、MnとVの複合酸化物の形態がMn(VO,MnV,MnVOであれば有害成分の高い除去率が得られる。触媒活性成分の原子比がMn1〜16%、V0.5〜40%で高い除去率を長期に維持できる。Mnの原子比が20%、Vの原子比が40%を超えるとTi上でMn、Vまたは複合酸化物が高分散しにくくなり高い触媒活性が得られない。また、W、Moの原子比が20%以下であればTi−(Mn−V)系の活性を保持したまま対SOx性が向上して触媒の寿命が長くなり、ハニカム成型性も向上する。W、Moの原子比が20%以上であればWまたはMoが触媒表面の活性点を被覆し、活性が低下する。そして上記構成の触媒は反応温度50〜600℃、好ましくは100〜300℃で排ガス中に含まれる有害成分の有機塩素化合物、窒素酸化物及び可燃性ガスを効率よく除去することができる。
【0005】
【発明の実施の形態】
以下、本発明の基本的な実施の形態を説明する。
本発明の触媒は極めて高い性能を有しているが、製造に関して特に困難な点は無く通常の製造技術である沈殿法、酸化物混合法、混練法、担持法、含浸法等が適用できる。触媒の成型には通常の押出し成型法、打錠成型法、転動造粒法等の目的に応じた成型技術を適用できる。触媒の形状は、円柱状、円管状、板状、リボン状、ハニカム状、ペレット状に成型できる。特に板状、ハニカム状に成型すれば排ガス中に含まれるダストが触媒表面に付着することを防止でき、活性の低下及び圧力損失の増加を低減できる。また、触媒成分の少量をシリカ、アルミナ、ジルコニア等に担持したり、シリカ、アルミナ、ジルコニア、マグネシア、酸性白土、活性白土、珪藻土の担体成分と触媒成分とを十分に混練し触媒に混合して使用できる。そして、担体成分の水溶性塩から触媒成分と同時に共沈させたり、担体成分の水酸化物を混練して使用できる。特に担体または担体成分の使用は触媒コストを低減せしめる点からも好ましい。
本発明の触媒の活性成分であるマンガンの原料としては、各種の酸化マンガン、酢酸マンガン、硝酸マンガン、硝酸マンガンアンモニウム、硫酸マンガン、炭酸マンガン、塩化マンガン、硼酸マンガン、蓚酸マンガン、安息香酸マンガン、蟻酸マンガン、燐酸マンガン、ステアリン酸マンガン、ナフテン酸マンガン、マンガンアセチルアセテート、エチルヘキサンマンガンが使用できる。
バナジウムの原料としては、各種の酸化バナジウム、メタバナジン酸塩及び硫酸バナジル、蓚酸バナジル、ハロゲン化バナジウムが使用できる。
更に、上記マンガンの原料、バナジウムの原料をそれぞれ水、蓚酸を用いて溶解させ両者を混合した後、その混合液を蒸発乾固させること、またはアンモニア水で沈殿を生成させることにより、マンガンとバナジウムを原子レベルで均一に混合できマンガンとバナジウムの複合酸化物を調整する上で好ましい。
チタンの原料としては、酸化チタンまたは加熱により酸化チタンを生成する各種の化合物、例えばチタン酸、水酸化チタン、硫酸チタンが使用できる。
触媒製造時に汎用される各種のチタン化合物、例えばハロゲン化チタン、硫酸チタンを水、アンモニア水、苛性アルカリ、炭酸アルカリで沈殿させ水酸化物とした後加熱分解により酸化物を生成することもできる。
【0006】
ここで、触媒製造の一例を挙げてその内容を説明する。
所定量のメタバナジン酸アンモニウム (NH4VO3)、硝酸マンガン Mn(NO32・6H2Oに蒸留水を加え、この混合物を十分に混練する。得られたペースト状の混合物を乾燥させた後、300〜800℃の温度で1〜10時間焼成する。
本発明の触媒を用いる有機塩素化合物系の除去反応の適用対象としては、PCDD、PCDF、クロロベンゼン、クロロフェノール、ポリ塩テトラクロロエチレンの塩素を含むものであり、特に芳香族塩素化合系が好適な除去反応の対象となる。排ガス中に含まれる有害成分の有機塩素化合物、窒素酸化物及び可燃性ガスを除去する際の排ガス空間速度は100,000/h以下とし、好ましくは 1,000〜50,000/hの範囲に設定する。反応温度は50〜600℃、好ましくは100〜300℃とし、反応圧力は特に限定しない。排ガスに添加する窒素酸化物還元剤は、アンモニアまたは尿素が好ましい。そして、触媒を保有する反応器の形式は固定床、移動床、流動床の何れでも適用できる。
【0007】
次に、本発明の詳細な実施の形態を比較例と対比しながら説明する。
実施の形態1
メタバナジン酸アンモニウム (NH4VO3)2.2gに硝酸マンガン Mn(NO32・6H2O2.16g及び蒸留水10mlを加え十分に混練する。得られたペースト状の混合物を120℃で乾燥させた後、500℃の温度で2時間焼成する。この焼成品に酸化チタン(TiO2)20g及び蒸留水30mlを加え十分に混練する。得られたペースト状の混合物を120℃で乾燥させた後、500℃の温度で2時間焼成して触媒を得た。以後この触媒をTi−(Mn、V)触媒と記載する。Ti−(Mn、V)触媒は原子比でTi:Mn:V=100:3:7.5の組成を有する。
図1は本発明の実施の形態のTi−(Mn、V)触媒のX線回析結果を表す図表である。
本図の上側図表はTi−(Mn、V)触媒のX線回析(以後XRDと記載)ピークを示し、本図の下側図表はXRDスペクトルで最上段はTi−(Mn、V)触媒、第2段はマーカとしてのTiO2であり、第3段はマーカとしてのMnV26であり、第4段はMn(VO32であり、最下段はマーカとしてのV25である。本図に示すXRDスペクトルから明らかなようにMnとVからなる複合酸化物Mn(VO32及びMnV26の存在が確認され、格子面間隔で4.37Å、3.28Å、3.16Å、3.09Å、3.04Åに対応するX線回折ピークを含む。
比較例としてTi、Mn、Vの三元素を本実施の形態のように分離せず同時に混練、焼成したTi−Mn−V触媒と、Ti、Vの二元素を混練、焼成したTi−V触媒のXRD分析を行ったところ、Mn、Vはそれぞれの単独酸化物で存在し、本実施の形態のようなMnとVからなる複合酸化物は認められなかった。
【0008】
次に、本実施の形態の触媒の活性試験について説明する。
活性試験装置は常圧流通型であり、反応管は内径16mmの耐熱ガラス(パイレックス)製で、反応管内に外径5mmの耐熱ガラス(パイレックス)製の熱伝対保護管を挿入している。この反応管を電気炉内に装着して反応温度50〜600℃に昇温する。反応管の中央に10〜20メッシュに整粒した各種触媒4.5mlを充填し、下記組成の有機塩素化合物としてクロロベンゼンを含む模擬排ガスを空間速度(以下SVと記載)10,000/hで流通させ、有機塩素化合物の分解率を測定した。
模擬排ガス組成
2 10%
2O 20%
クロロベンゼン 約1000ppm
NO 200ppm
NH3 200ppm
2 残部
図2は本発明の実施の形態及び比較例の触媒活性を示す図表である。
本図に示すように本実施の形態のTi−(Mn、V)触媒は、比較例のTi−Mn−V触媒、Ti−V触媒及びTi−Ag−V触媒より活性が高い。
【0009】
実施の形態2
実施の形態1で調整したTi−(Mn、V)触媒及び比較例の触媒を用い、実施の形態1の触媒活性試験条件のうちの有機塩素化合物をクロロベンゼンからo−ジクロロベンゼン、o−クロロフェノールのそれぞれに変え、下記のガス組成で触媒活性試験を行った。

Figure 0003785558
図3は本発明の実施の形態及び比較例の触媒活性を示す図表である。
本図に示すように本実施の形態のTi−(Mn、V)触媒(原子比でTi:Mn:V=100:3:7.5)は、有機塩素化合物のo−ジクロロベンゼン、o−クロロフェノールの何れに対しても比較例のTi−Mn−V触媒(原子比でTi:Mn:V=100:3:7.5)、Ti−V触媒(原子比でTi:V=100:7.5)より活性が高い。
【0010】
実施の形態3
実施の形態1で調整したTi−(Mn、V)触媒及び実施の形態1と同じ比較例の触媒を用い、模擬排ガス組成以外は実施の形態1と同じ触媒活性試験条件でNOx除去率に関する触媒活性試験を行った。
模擬排ガス組成
2 10%
2O 20%
クロロベンゼン 約1000ppm
NO 200ppm
NH3 240ppm
2 残部
図4は本発明の実施の形態及び比較例の触媒活性を示す図表である。
本図に示すように本実施の形態のTi−(Mn、V)触媒は、低い温度領域及び高い温度領域でTi−Mn−V触媒より活性が高く、脱硝触媒として実用化されているTi−V触媒よりも活性が高い。本実施の形態によれば排ガス中にクロロベンゼンのような有機塩素化合物が存在してもNOx除去率には影響せず、Ti−(Mn、V)触媒を用いて有機塩素化合物、NOxを同時に高い除去率で浄化することができる。
【0011】
実施の形態4
実施の形態1で調整したTi−(Mn、V)触媒及び比較例のTi−Mn−V触媒(原子比Ti:Mn:V=100:3:7.5)、Ti−V触媒(原子比Ti:V=100:7.5)、Ti−V−W触媒(原子比Ti:V:W=100:7.5:5.7)を用い、SV 20,000/h、下記の模擬排ガス組成で炭化水素プロパン(C38)の除去率に関する触媒活性試験を行った。
模擬排ガス組成
2 10%
2O 20%
38 150ppm
2 残部
図5は本発明の実施の形態及び比較例の触媒活性を示す図表である。
本図に示すように本実施の形態のTi−(Mn、V)触媒は、低い温度領域でTi−Mn−V触媒、Ti−W−V触媒及びTi−V触媒よりも格別に活性が高い。本実施の形態によれば排ガス中に炭化水素、一酸化炭素のような可燃性ガスが存在しても高い除去率で浄化することができる。
【0012】
実施の形態5
Ti−(Mn、V)触媒(原子比でTi:Mn:V=100:3:7.5)の形状をハニカム及び板状に調整し、比較例のTi−Mn−V触媒(原子比でTi:Mn:V=100:3:7.5)及びTi−V−W触媒(原子比でTi:V:W=100:7.5:5.7)の形状をハニカム及び板状に調整し、実施の形態1の触媒活性試験条件のうちの有機塩素化合物をPCDDとPCDFの混合ガスに変えてSV 10,000/hで触媒活性試験を行った。
模擬排ガス組成
2 10%
2O 20%
PCDD 200〜1000ng/Nm3
PCDF 200〜1000ng/Nm3
NO 100〜250ppm
NH3 240ppm
2 残部
図6は本発明の他の実施の形態及び比較例の触媒活性を示す図表である。
本図の縦軸はPCDDとPCDFの混合ガスの分解率を表し、ハニカム及び板状Ti−(Mn、V)触媒は比較例に対し高い活性を有する。
【0013】
実施の形態6
Ti−(Mn、V)触媒のうちのTiに対するMnの原子比を変え、実施の形態1と同じ方法で調整し、本実施の形態のTi−(Mn、V)触媒および比較例のTi−Mn−V触媒について温度210℃としそれ以外の条件、模擬排ガス組成、SVは実施の形態1と同じとし有機塩素化合物の分解率を測定した。
図7は本発明の実施の形態及び比較例の触媒活性を示す図表である。
本図に示すように本実施の形態のTi−(Mn、V)触媒は、Tiに対するMnの原子比0.2〜20%の範囲で比較例のTi−Mn−V触媒より活性が高く、特に1〜16%の範囲で著しく高くなる。
【0014】
実施の形態7
本実施の形態のTi−(Mn、V)−W触媒は実施の形態1のTi−(Mn、V)触媒にWを加え原子比でTi:Mn:V:W=100:3:7.5:5.7となるように調整し、Ti−(Mn、V)−Mo触媒は実施の形態1のTi−(Mn、V)触媒にMoを加え原子比でTi:Mn:V:Mo=100:3:7.5:5.7となるように調整し、比較例としてTi−V触媒(原子比でTi:V=100:7.5)を用い、実施の形態1の模擬排ガスにSOxを加えSVは実施の形態1と同じとし50時間後の有機塩素化合物の分解率を測定した。
模擬排ガス組成
2 10%
2O 20%
クロロベンゼン 約1000ppm
NO 200ppm
NH3 200ppm
SO2 200ppm
2 残部
図8は本発明の他の実施の形態の触媒加速劣化試験結果を示す図表である。
本図に示すように比較例のTi−V触媒は50時間後に活性が50%に低下したが、本実施の形態のTi−(Mn、V)−W触媒及びTi−(Mn、V)−Mo触媒は、活性低下が僅かに留まった。W及びMoを含むTi−(Mn、V)−W−Mo触媒も同様な効果を有する。
【0015】
【発明の効果】
本発明によれば、触媒に含まれるMnとVの複合酸化物により活性成分であるVの酸化還元反応速度が大きくなり、排ガス中に含まれる有害成分の有機塩素化合物、窒素酸化物及び可燃性ガスを効率良く除去する効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態のTi−(Mn、V)触媒のX線回析結果を表す図表である。
【図2】本発明の実施の形態及び比較例の触媒活性を示す図表である。
【図3】本発明の実施の形態及び比較例の触媒活性を示す図表である。
【図4】本発明の実施の形態及び比較例の触媒活性を示す図表である。
【図5】本発明の実施の形態及び比較例の触媒活性を示す図表である。
【図6】本発明の他の実施の形態及び比較例の触媒活性を示す図表である。
【図7】本発明の実施の形態及び比較例の触媒活性を示す図表である。
【図8】本発明の他の実施の形態の触媒加速劣化試験結果を示す図表である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas organochlorine compound removal catalyst and an organochlorine compound removal method for efficiently removing harmful components of chlorine compounds contained in exhaust gas .
[0002]
[Prior art]
In exhaust gas generated from incinerators that incinerate municipal waste, industrial waste, sewage sludge, etc., harmful components such as nitrogen oxides (hereinafter referred to as NOx), hydrocarbons (hereinafter referred to as HC), and carbon monoxide (hereinafter referred to as HC) Contains extremely tiny but highly toxic organochlorine compounds such as aromatic polychlorinated dibenzodioxins (hereinafter referred to as PCDD), polychlorinated dibenzofurans (hereinafter referred to as PCDF), and chlorobenzene together with flammable gases such as CO) It is important for environmental conservation to remove these harmful components and purify the exhaust gas.
As a technique for purifying aromatic organochlorine compounds contained in exhaust gas, there is a method of oxidizing and decomposing using a catalyst. JP-A-2-35914 as a known example raises the temperature of exhaust gas to 150 ° C. or higher and oxidizes it. A method using a catalyst containing at least one component selected from titanium, vanadium oxide, tungsten oxide, platinum, and palladium is disclosed.
In addition, as a known example of a technique for purifying NOx, organochlorine compounds and CO contained in exhaust gas, Japanese Patent Laid-Open No. 5-245343 selects Ti, Si, Zr, Al, V as an A component, and V must be One or more kinds selected from a single oxide of one kind of metal or a composite multi-element oxide group of two or more kinds of metals, and a catalyst containing one kind selected from Pt, Pd, and Ru as the B component or an oxide thereof. A method is disclosed.
[0003]
[Problems to be solved by the invention]
However, the conventional technique is not necessarily sufficient in performance, and it is necessary to increase the amount of catalyst and increase the reaction temperature of the catalyst layer in order to improve the removal rate. In the method of increasing the amount of catalyst, the equipment becomes large and the cost of the catalyst increases. And the method of raising the temperature of a catalyst layer increases the heat energy for heating up exhaust gas, and an operating cost rises. In any case, the cost for exhaust gas purification is inevitably increased. It is an object of the present invention to efficiently remove harmful organic chlorine compounds contained in exhaust gas.
[0004]
[Means for Solving the Problems]
The above object is achieved by a catalyst for removing organic chlorine compounds in which the atomic ratio of main constituent elements is Ti 50 to 95%, Mn 0.01 to 20%, V 0.5 to 40%, W 0 to 20%, Mo 0 to 20%. Is done. The organochlorine compound removal catalyst has a lattice spacing of 4.37 ± 0.2 mm, 3.54 ± 0.2 mm, 3.28 ± 0.2 mm, 3.16 ± 0.2 mm, 3.09 ± 0. It is desirable to include an X-ray diffraction peak corresponding to either 0.2 mm or 3.04 ± 0.2 mm . The purpose is to add and knead a solvent to vanadium oxide and manganese oxide, to dry the first mixture and to fire, and to knead the titanium oxide and molybdenum compound or tungsten compound and solvent to the fired product. It can also be achieved by a method for producing a catalyst for removing an organic chlorine compound, in which a catalyst is produced by calcining the second mixture after drying. It is desirable to purify the exhaust gas containing an organic chlorine compound and oxygen by contacting the catalyst at a temperature of 50 to 600 ° C. to oxidative decomposition. It is desirable to purify exhaust gas containing an organic chlorine compound and oxygen by contacting with the catalyst at a temperature of 100 to 300 ° C. to oxidative decomposition. It is desirable to add a nitrogen oxide reducing agent to exhaust gas containing an organic chlorine compound, nitrogen oxide and combustible gas, and contact with the above catalyst at a temperature of 50 to 600 ° C. to purify by oxidation decomposition. It is desirable to add a nitrogen oxide reducing agent to exhaust gas containing an organic chlorine compound, nitrogen oxides and combustible gas, and contact with the catalyst at a temperature of 100 to 300 ° C. to purify by oxidation decomposition. It is desirable to apply the above catalyst to an aromatic organochlorine compound among the organochlorine compounds. It is desirable to apply the above catalyst to polychlorinated dibenzodioxins or polychlorinated dibenzofurans among organochlorine compounds. It is desirable to apply the above catalyst to exhaust gas discharged from a sewage sludge incinerator or a waste incinerator. In the composite oxide of Mn and V contained in the catalyst having the above-described structure, the interaction between Mn and V is strengthened, the redox reaction rate of the active component V is increased, and the form of the composite oxide of Mn and V is Mn. If (VO 3 ) 2 , MnV 2 O 6 , or MnVO 3 is used , a high removal rate of harmful components can be obtained. A high removal rate can be maintained for a long time when the atomic ratio of the catalytically active component is Mn 1 to 16% and V is 0.5 to 40%. When the atomic ratio of Mn exceeds 20% and the atomic ratio of V exceeds 40%, Mn, V, or a composite oxide is hardly dispersed on Ti, and high catalytic activity cannot be obtained. Further, when the atomic ratio of W and Mo is 20% or less, the SOx property is improved while maintaining the Ti- (Mn-V) activity, the life of the catalyst is prolonged, and the honeycomb moldability is also improved. If the atomic ratio of W and Mo is 20% or more, W or Mo covers the active sites on the catalyst surface, and the activity decreases. And the catalyst of the said structure can remove efficiently the harmful | toxic organic chlorine compound, nitrogen oxide, and combustible gas which are contained in waste gas at reaction temperature 50-600 degreeC, Preferably it is 100-300 degreeC.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a basic embodiment of the present invention will be described.
Although the catalyst of the present invention has extremely high performance, there is no particular difficulty in production, and usual production techniques such as precipitation method, oxide mixing method, kneading method, loading method, impregnation method and the like can be applied. For the molding of the catalyst, a molding technique according to the purpose such as a normal extrusion molding method, a tableting molding method, a rolling granulation method or the like can be applied. The catalyst can be formed into a cylindrical shape, a circular tube shape, a plate shape, a ribbon shape, a honeycomb shape, or a pellet shape. In particular, if it is formed into a plate shape or honeycomb shape, dust contained in the exhaust gas can be prevented from adhering to the catalyst surface, and a decrease in activity and an increase in pressure loss can be reduced. In addition, a small amount of the catalyst component is supported on silica, alumina, zirconia, etc., or the support component and the catalyst component of silica, alumina, zirconia, magnesia, acid clay, activated clay, diatomaceous earth are sufficiently kneaded and mixed with the catalyst. Can be used. Then, it can be coprecipitated from the water-soluble salt of the carrier component at the same time as the catalyst component, or kneaded with the hydroxide of the carrier component. In particular, the use of a carrier or a carrier component is preferable from the viewpoint of reducing the catalyst cost.
As a raw material of manganese which is an active component of the catalyst of the present invention, various manganese oxides, manganese acetate, manganese nitrate, manganese manganese nitrate, manganese sulfate, manganese carbonate, manganese chloride, manganese borate, manganese oxalate, manganese benzoate, formic acid Manganese, manganese phosphate, manganese stearate, manganese naphthenate, manganese acetyl acetate, and ethylhexane manganese can be used.
As a raw material of vanadium, various vanadium oxides, metavanadate, vanadyl sulfate, vanadyl oxalate, and vanadium halide can be used.
Further, after dissolving the above manganese raw material and vanadium raw material using water and oxalic acid respectively and mixing both, manganese and vanadium are produced by evaporating the mixed liquid to dryness or forming a precipitate with aqueous ammonia. Can be mixed uniformly at the atomic level, which is preferable in preparing a complex oxide of manganese and vanadium.
As a raw material of titanium, titanium oxide or various compounds that generate titanium oxide by heating, such as titanic acid, titanium hydroxide, and titanium sulfate can be used.
Various titanium compounds widely used at the time of catalyst production, such as titanium halide and titanium sulfate, can be precipitated with water, aqueous ammonia, caustic alkali, and alkali carbonate to form hydroxides, and then oxides can be generated by thermal decomposition.
[0006]
Here, an example of catalyst manufacture will be given and the content will be described.
Distilled water is added to a predetermined amount of ammonium metavanadate (NH 4 VO 3 ) and manganese nitrate Mn (NO 3 ) 2 .6H 2 O, and this mixture is sufficiently kneaded. The obtained paste-like mixture is dried and then baked at a temperature of 300 to 800 ° C. for 1 to 10 hours.
As an application object of the removal reaction of the organochlorine compound system using the catalyst of the present invention, it contains chlorine of PCDD, PCDF, chlorobenzene, chlorophenol, polysalt tetrachloroethylene, and the removal reaction particularly suitable for the aromatic chlorination system. It becomes the object of. The exhaust gas space velocity when removing the harmful organic chlorine compounds, nitrogen oxides and combustible gas contained in the exhaust gas is 100,000 / h or less, preferably in the range of 1,000 to 50,000 / h. Set. The reaction temperature is 50 to 600 ° C., preferably 100 to 300 ° C., and the reaction pressure is not particularly limited. The nitrogen oxide reducing agent added to the exhaust gas is preferably ammonia or urea. The type of the reactor holding the catalyst can be any of a fixed bed, a moving bed, and a fluidized bed.
[0007]
Next, a detailed embodiment of the present invention will be described in comparison with a comparative example.
Embodiment 1
Add 2.16 g of manganese nitrate Mn (NO 3 ) 2 .6H 2 O and 10 ml of distilled water to 2.2 g of ammonium metavanadate (NH 4 VO 3 ) and knead thoroughly. The obtained paste-like mixture is dried at 120 ° C. and then baked at a temperature of 500 ° C. for 2 hours. To this fired product, 20 g of titanium oxide (TiO 2 ) and 30 ml of distilled water are added and kneaded sufficiently. The obtained paste-like mixture was dried at 120 ° C. and then calcined at a temperature of 500 ° C. for 2 hours to obtain a catalyst. Hereinafter, this catalyst is referred to as a Ti- (Mn, V) catalyst. The Ti- (Mn, V) catalyst has a composition of Ti: Mn: V = 100: 3: 7.5 by atomic ratio.
FIG. 1 is a chart showing the X-ray diffraction results of the Ti— (Mn, V) catalyst according to the embodiment of the present invention.
The upper chart in this figure shows the X-ray diffraction (hereinafter referred to as XRD) peak of the Ti- (Mn, V) catalyst, the lower chart in the figure is the XRD spectrum, and the top stage is the Ti- (Mn, V) catalyst. The second stage is TiO 2 as a marker, the third stage is MnV 2 O 6 as a marker, the fourth stage is Mn (VO 3 ) 2 , and the bottom stage is V 2 O 5 as a marker. It is. As is clear from the XRD spectrum shown in this figure, the presence of the composite oxides Mn (VO 3 ) 2 and MnV 2 O 6 composed of Mn and V was confirmed, and the lattice spacing was 4.37Å, 3.28Å, and 3. X-ray diffraction peaks corresponding to 16Å, 3.09Å, and 3.04Å are included.
As a comparative example, a Ti-Mn-V catalyst in which three elements of Ti, Mn, and V are simultaneously kneaded and calcined as in the present embodiment, and a Ti-V catalyst in which two elements of Ti and V are kneaded and calcined are used. As a result of the XRD analysis, Mn and V were present as individual oxides, and no complex oxide composed of Mn and V as in this embodiment was observed.
[0008]
Next, the activity test of the catalyst of the present embodiment will be described.
The activity test apparatus is a normal pressure flow type, the reaction tube is made of heat-resistant glass (Pyrex) having an inner diameter of 16 mm, and a thermocouple protection tube made of heat-resistant glass (Pyrex) having an outer diameter of 5 mm is inserted into the reaction tube. The reaction tube is mounted in an electric furnace and the reaction temperature is raised to 50 to 600 ° C. In the center of the reaction tube, 4.5 ml of various types of catalysts sized to 10 to 20 mesh are packed, and simulated exhaust gas containing chlorobenzene as an organochlorine compound with the following composition is distributed at a space velocity (hereinafter referred to as SV) of 10,000 / h. The decomposition rate of the organochlorine compound was measured.
Simulated exhaust gas composition O 2 10%
H 2 O 20%
About 1000ppm of chlorobenzene
NO 200ppm
NH 3 200ppm
N 2 balance FIG. 2 is a chart showing the catalytic activity of the embodiment of the present invention and the comparative example.
As shown in the figure, the Ti— (Mn, V) catalyst of the present embodiment has higher activity than the Ti—Mn—V catalyst, Ti—V catalyst, and Ti—Ag—V catalyst of the comparative example.
[0009]
Embodiment 2
Using the Ti- (Mn, V) catalyst prepared in the first embodiment and the catalyst of the comparative example, the organochlorine compound in the catalytic activity test conditions of the first embodiment is changed from chlorobenzene to o-dichlorobenzene, o-chlorophenol. The catalytic activity test was conducted with the following gas composition.
Figure 0003785558
FIG. 3 is a chart showing the catalytic activity of the embodiments of the present invention and comparative examples.
As shown in the figure, the Ti- (Mn, V) catalyst (atomic ratio Ti: Mn: V = 100: 3: 7.5) of the present embodiment is an organochlorine compound, o-dichlorobenzene, o- Ti-Mn-V catalyst of comparative example (Ti: Mn: V = 100: 3: 7.5 in atomic ratio) and Ti-V catalyst (Ti: V = 100 in atomic ratio) for any of chlorophenols More active than 7.5).
[0010]
Embodiment 3
Using the Ti- (Mn, V) catalyst prepared in the first embodiment and the catalyst of the same comparative example as in the first embodiment, a catalyst relating to the NOx removal rate under the same catalytic activity test conditions as in the first embodiment except for the simulated exhaust gas composition An activity test was performed.
Simulated exhaust gas composition O 2 10%
H 2 O 20%
About 1000ppm of chlorobenzene
NO 200ppm
NH 3 240ppm
N 2 balance 4 is a diagram showing the catalytic activity of the embodiments and comparative examples of the present invention.
As shown in the figure, the Ti— (Mn, V) catalyst of the present embodiment has higher activity than the Ti—Mn—V catalyst in a low temperature region and a high temperature region, and is practically used as a denitration catalyst. More active than V catalyst. According to the present embodiment, even if an organic chlorine compound such as chlorobenzene is present in the exhaust gas, the NOx removal rate is not affected, and the Ti- (Mn, V) catalyst is used to simultaneously increase the organic chlorine compound and NOx. It can be purified with a removal rate.
[0011]
Embodiment 4
Ti- (Mn, V) catalyst prepared in Embodiment 1 and Ti-Mn-V catalyst of comparative example (atomic ratio Ti: Mn: V = 100: 3: 7.5), Ti-V catalyst (atomic ratio) Ti: V = 100: 7.5), Ti—V—W catalyst (atomic ratio Ti: V: W = 100: 7.5: 5.7), SV 20,000 / h, the following simulated exhaust gas A catalytic activity test on the removal rate of hydrocarbon propane (C 3 H 8 ) by composition was performed.
Simulated exhaust gas composition O 2 10%
H 2 O 20%
C 3 H 8 150ppm
N 2 balance FIG. 5 is a chart showing the catalytic activity of the embodiment of the present invention and the comparative example.
As shown in the figure, the Ti- (Mn, V) catalyst of the present embodiment has a significantly higher activity than the Ti-Mn-V catalyst, Ti-W-V catalyst, and Ti-V catalyst in a low temperature range. . According to this embodiment, even if a combustible gas such as hydrocarbon or carbon monoxide is present in the exhaust gas, it can be purified with a high removal rate.
[0012]
Embodiment 5
The shape of the Ti- (Mn, V) catalyst (Ti: Mn: V = 100: 3: 7.5 in atomic ratio) was adjusted to a honeycomb and a plate, and the Ti-Mn-V catalyst of Comparative Example (in atomic ratio) Ti: Mn: V = 100: 3: 7.5) and Ti—V—W catalyst (atomic ratio of Ti: V: W = 100: 7.5: 5.7) were adjusted to honeycomb and plate shape. Then, the organochlorine compound in the catalyst activity test conditions of Embodiment 1 was changed to a mixed gas of PCDD and PCDF, and the catalyst activity test was conducted at SV 10,000 / h.
Simulated exhaust gas composition O 2 10%
H 2 O 20%
PCDD 200-1000 ng / Nm 3
PCDF 200-1000ng / Nm 3
NO 100-250ppm
NH 3 240ppm
N 2 balance FIG. 6 is a chart showing the catalytic activity of other embodiments of the present invention and comparative examples.
The vertical axis of this figure represents the decomposition rate of the mixed gas of PCDD and PCDF, and the honeycomb and the plate-like Ti— (Mn, V) catalyst have higher activity than the comparative example.
[0013]
Embodiment 6
The atomic ratio of Mn to Ti in the Ti- (Mn, V) catalyst was changed and adjusted by the same method as in the first embodiment, and the Ti- (Mn, V) catalyst of this embodiment and the Ti- The Mn-V catalyst was set at a temperature of 210 ° C., the other conditions, simulated exhaust gas composition, and SV were the same as those in Embodiment 1, and the decomposition rate of the organic chlorine compound was measured.
FIG. 7 is a chart showing the catalytic activity of the embodiment of the present invention and the comparative example.
As shown in the figure, the Ti- (Mn, V) catalyst of the present embodiment has higher activity than the Ti-Mn-V catalyst of the comparative example in the range of 0.2 to 20% of the atomic ratio of Mn to Ti. In particular, it becomes remarkably high in the range of 1 to 16%.
[0014]
Embodiment 7
In the Ti— (Mn, V) —W catalyst of the present embodiment, W is added to the Ti— (Mn, V) catalyst of Embodiment 1, and the atomic ratio is Ti: Mn: V: W = 100: 3: 7. The Ti— (Mn, V) —Mo catalyst was adjusted to 5: 5.7, and Mo was added to the Ti— (Mn, V) catalyst of the first embodiment to obtain an atomic ratio of Ti: Mn: V: Mo. = 100: 3: 7.5: 5.7 The simulated exhaust gas according to the first embodiment was prepared using a Ti-V catalyst (atomic ratio Ti: V = 100: 7.5) as a comparative example. SOx was added to SV, and the SV was the same as in Embodiment 1, and the decomposition rate of the organochlorine compound after 50 hours was measured.
Simulated exhaust gas composition O 2 10%
H 2 O 20%
About 1000ppm of chlorobenzene
NO 200ppm
NH 3 200ppm
SO 2 200ppm
N 2 balance FIG. 8 is a chart showing the results of the accelerated catalyst degradation test of another embodiment of the present invention.
As shown in the figure, the Ti-V catalyst of the comparative example decreased in activity to 50% after 50 hours. However, the Ti- (Mn, V) -W catalyst and Ti- (Mn, V)-of the present embodiment were used. The Mo catalyst remained slightly reduced in activity. A Ti— (Mn, V) —W—Mo catalyst containing W and Mo has a similar effect.
[0015]
【The invention's effect】
According to the present invention, the redox reaction rate of V, which is an active component, is increased by the composite oxide of Mn and V contained in the catalyst, and harmful organic chlorine compounds, nitrogen oxides, and combustible substances contained in the exhaust gas. The effect of efficiently removing the gas can be obtained.
[Brief description of the drawings]
FIG. 1 is a chart showing X-ray diffraction results of a Ti— (Mn, V) catalyst according to an embodiment of the present invention.
FIG. 2 is a chart showing catalytic activity of embodiments of the present invention and comparative examples.
FIG. 3 is a chart showing catalytic activity of embodiments of the present invention and comparative examples.
FIG. 4 is a chart showing the catalytic activity of the embodiments of the present invention and comparative examples.
FIG. 5 is a chart showing the catalytic activity of the embodiments of the present invention and comparative examples.
FIG. 6 is a chart showing the catalytic activity of other embodiments and comparative examples of the present invention.
FIG. 7 is a chart showing the catalytic activity of the embodiments of the present invention and comparative examples.
FIG. 8 is a chart showing the results of a catalyst accelerated deterioration test according to another embodiment of the present invention.

Claims (10)

触媒の主たる構成元素の原子比が、Ti50〜95%、Mn0.01〜20%、V0.5〜40%、W0〜20%、Mo0〜20%であることを特徴とする有機塩素化合物除去用触媒 For removing organic chlorine compounds, wherein the atomic ratio of the main constituent elements of the catalyst is Ti 50 to 95%, Mn 0.01 to 20%, V 0.5 to 40%, W 0 to 20%, Mo 0 to 20% Catalyst . 請求項1記載の有機塩素化合物の除去用触媒において、触媒が、4.37±0.2Å、3.54±0.2Å、3.28±0.2Å、3.16±0.2Å、3.09±0.2Å、3.04±0.2Åのいずれかの面間隔のピークを有することを特徴とする有機塩素化合物除去用触媒 2. The catalyst for removing an organic chlorine compound according to claim 1, wherein the catalyst is 4.37 ± 0.2 mm, 3.54 ± 0.2 mm, 3.28 ± 0.2 mm, 3.16 ± 0.2 mm, 3 A catalyst for removing an organic chlorine compound, having a peak with a spacing of any one of 0.09 ± 0.2 mm and 3.04 ± 0.2 mm . バナジウム酸化物及びマンガン酸化物に溶媒を加えて混練し、該第1の混合物を乾燥後に焼成し、該焼成物にチタン酸化物とモリブデン化合物或いはタングステン化合物と溶媒を加えて混練し、該第2の混合物を乾燥後に焼成することを特徴とする請求項1及び2記載の有機塩素化合物除去用触媒の製造方法。Vanadium oxide and manganese oxide are kneaded with a solvent, the first mixture is dried and fired, and the fired product is kneaded with a titanium oxide and a molybdenum compound or a tungsten compound and a solvent. The method for producing a catalyst for removing an organic chlorine compound according to claim 1 or 2 , wherein the mixture is calcined after drying. 有機塩素化合物及び酸素を含む排ガスを温度50〜600℃で請求項1又は2に記載の触媒に接触させて酸化分解して浄化することを特徴とする有機塩素化合物除去方法An organic chlorine compound removing method comprising purifying an exhaust gas containing an organic chlorine compound and oxygen at a temperature of 50 to 600 ° C. by contacting the exhaust gas with a catalyst according to claim 1 or 2 and oxidizing and decomposing it. 有機塩素化合物及び酸素を含む排ガスを温度100〜300℃で請求項1又は2に記載の触媒に接触させて酸化分解して浄化することを特徴とする有機塩素化合物除去方法 Organochlorine compound removal method characterized by the exhaust gas containing organic chlorine compounds and oxygen into contact with a catalyst according to claim 1 or 2 at a temperature 100 to 300 ° C. to purify by oxidation decomposition. 有機塩素化合物、窒素酸化物及び可燃性ガスを含む排ガスに窒素酸化物還元剤を添加し、温度50〜600℃で請求項1又は2に記載の触媒に接触させて浄化することを特徴とする有機塩素化合物除去方法A nitrogen oxide reducing agent is added to exhaust gas containing an organic chlorine compound, nitrogen oxides, and a combustible gas, and purified by contacting with the catalyst according to claim 1 or 2 at a temperature of 50 to 600 ° C. Organic chlorine compound removal method . 有機塩素化合物、窒素酸化物及び可燃性ガスを含む排ガスに窒素酸化物還元剤を添加し、温度100〜300℃で請求項1又は2に記載の触媒に接触させて浄化することを特徴とする有機塩素化合物除去方法A nitrogen oxide reducing agent is added to exhaust gas containing an organic chlorine compound, nitrogen oxides, and a combustible gas, and purified by contacting with the catalyst according to claim 1 or 2 at a temperature of 100 to 300 ° C. Organic chlorine compound removal method . 前記有機塩素化合物が芳香族有機塩素化合物であることを特徴とする請求項4乃至7のうちのいずれかに記載の有機塩素化合物除去方法The organic chlorine compound removing method according to any one of claims 4 to 7, wherein the organic chlorine compound is an aromatic organic chlorine compound. 前記有機塩素化合物がポリ塩化ジベンゾダイオキシンまたはポリ塩化ジベンゾフランであることを特徴とする請求項4乃至7のうちのいずれかに記載の有機塩素化合物除去方法The organic chlorine compound removing method according to any one of claims 4 to 7, wherein the organic chlorine compound is polychlorinated dibenzodioxin or polychlorinated dibenzofuran. 前記排ガスは下水汚泥焼却炉またはごみ焼却炉から排出されることを特徴とする請求項4乃至7のうちのいずれかに記載の有機塩素化合物除去方法。The method for removing an organic chlorine compound according to any one of claims 4 to 7, wherein the exhaust gas is discharged from a sewage sludge incinerator or a waste incinerator.
JP32629397A 1997-11-27 1997-11-27 Organochlorine compound removal catalyst and organochlorine compound removal method Expired - Fee Related JP3785558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32629397A JP3785558B2 (en) 1997-11-27 1997-11-27 Organochlorine compound removal catalyst and organochlorine compound removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32629397A JP3785558B2 (en) 1997-11-27 1997-11-27 Organochlorine compound removal catalyst and organochlorine compound removal method

Publications (2)

Publication Number Publication Date
JPH11156190A JPH11156190A (en) 1999-06-15
JP3785558B2 true JP3785558B2 (en) 2006-06-14

Family

ID=18186160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32629397A Expired - Fee Related JP3785558B2 (en) 1997-11-27 1997-11-27 Organochlorine compound removal catalyst and organochlorine compound removal method

Country Status (1)

Country Link
JP (1) JP3785558B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4730998B2 (en) * 2000-07-28 2011-07-20 京セラ株式会社 Exhaust gas purification catalyst and exhaust gas purification device
CN114602458B (en) * 2022-03-22 2023-05-26 江苏理工学院 Mn (VO 3 ) 2 /V 2 O 5 Catalyst, preparation method and application thereof

Also Published As

Publication number Publication date
JPH11156190A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
EP0800420B1 (en) Method for controlling voc, co and halogenated organic emissions
KR100239294B1 (en) Catalytic method and device for controlling voc, co and halogenated organic emissions
US5783515A (en) Catalyst for treating exhaust gases containing dioxines, production process for the catalyst and method of treating the exhaust gases
JP3326836B2 (en) Catalyst body and method for producing catalyst body
EP1293250B1 (en) Process for removing organohalogen compounds using a titanium, molybdenum and vanadium containing catalyst and process for producing the catalyst
JP3785558B2 (en) Organochlorine compound removal catalyst and organochlorine compound removal method
JP3702398B2 (en) Exhaust gas purification catalyst and purification method
JPH0947661A (en) Process and catalyst for purifying exhaust gas
KR100402430B1 (en) Catalyst for decomposition of toxic pollutants and producing process thereof
KR100382050B1 (en) Catalyst for Removing Dioxin and Nitrogen Oxides in Flue Gas and Method for Treating Combustion Exhaust Gases Using the Same
JP2000000471A (en) Waste gas treating catalyst, waste gas treatment and treating device
JP3790943B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2001252562A (en) Low temperature denitration catalyst and low temperature denitration method
JPH1057760A (en) Method for decomposing chlorinated organic compound
JP2000126601A (en) Decomposition catalyst for organic halogen compound and decomposition method
KR100515907B1 (en) Catalyst for removing dioxin and/or nitrogen oxide, and preparation method thereof
JP2001038206A (en) Catalyst for treating exhaust gas and method and apparatus for treating exhaust gas
JP3510541B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
KR100862272B1 (en) Catalyst for Removal of Carbon Monoxide and Preparation Method Thereof
JP2000061305A (en) Catalyst and method for treating exhaust gas
JP3332024B2 (en) Organic compound combustion removal catalyst and combustion removal method
JP3920612B2 (en) Exhaust gas treatment method
JPH10216480A (en) Treatment of waste gas and catalyst for treating waste gas
JP2002001065A (en) Decomposition catalyst and decomposition method for organic chlorine compound
JP2003053149A (en) Removing method of organic chlorine compound

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees