KR100402430B1 - Catalyst for decomposition of toxic pollutants and producing process thereof - Google Patents

Catalyst for decomposition of toxic pollutants and producing process thereof Download PDF

Info

Publication number
KR100402430B1
KR100402430B1 KR10-2000-0063175A KR20000063175A KR100402430B1 KR 100402430 B1 KR100402430 B1 KR 100402430B1 KR 20000063175 A KR20000063175 A KR 20000063175A KR 100402430 B1 KR100402430 B1 KR 100402430B1
Authority
KR
South Korea
Prior art keywords
catalyst
titanium dioxide
decomposition
alumina
cordialite
Prior art date
Application number
KR10-2000-0063175A
Other languages
Korean (ko)
Other versions
KR20020032167A (en
Inventor
조철훈
신병철
황재동
임선기
Original Assignee
삼성엔지니어링 주식회사
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성엔지니어링 주식회사, 한국과학기술원 filed Critical 삼성엔지니어링 주식회사
Priority to KR10-2000-0063175A priority Critical patent/KR100402430B1/en
Publication of KR20020032167A publication Critical patent/KR20020032167A/en
Application granted granted Critical
Publication of KR100402430B1 publication Critical patent/KR100402430B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8659Removing halogens or halogen compounds
    • B01D53/8662Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/648Vanadium, niobium or tantalum or polonium
    • B01J23/6482Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Abstract

본 발명은 연소 공정에서 배출되는 염소계 화합물과 질소 산화물을 포함하는 독성 오염물질을 동시에 분해하기 위한 촉매에 관한 것으로서, 코르디얼라이트 표면에 이산화티탄(TiO2) 및 알루미나(Al2O3)가 코팅되어 이루어진 코르디얼라이트-이산화티탄-알루미나 담체에 촉매활성 성분으로써 바나듐(V)이 담지되어 있으며, X선 회절법으로 측정한 상기 이산화티탄의 결정도가 10 내지 20%인 것을 특징으로 한다.The present invention relates to a catalyst for simultaneously decomposing toxic contaminants including chlorine-based compounds and nitrogen oxides emitted from a combustion process, wherein titanium dioxide (TiO 2 ) and alumina (Al 2 O 3 ) are coated on the cordialite surface. The vanadium (V) is supported as a catalytically active component on the cordialite-titanium dioxide-alumina support, and the crystallinity of the titanium dioxide measured by the X-ray diffraction method is 10 to 20%.

Description

독성 오염물질 분해용 촉매 및 그 제조방법{Catalyst for decomposition of toxic pollutants and producing process thereof}Catalyst for decomposition of toxic pollutants and its preparation method {Catalyst for decomposition of toxic pollutants and producing process}

본 발명은 독성 오염물질 분해용 촉매 및 그 제조방법에 관한 것으로서, 보다 상세하게는 소각 또는 연소공정에서 배출되는 다이옥신과 같은 염소계 화합물과 질소산화물을 독성이 적거나 무해한 물질로 분해시킬 수 있는 촉매 및 그 제조방법에 관한 것이다.The present invention relates to a catalyst for decomposing toxic pollutants and a method for manufacturing the same, and more particularly, a catalyst capable of decomposing chlorine-based compounds and nitrogen oxides such as dioxins discharged from incineration or combustion processes into less toxic or harmless substances, and It relates to a manufacturing method.

화력발전소, 산업소각로, 도시폐기물 소각로, 병원 폐기물 소각로, 용해로, 보일러 등의 소각 또는 연소공정에서 배출되는 가스에는 염소계 화합물 중에서도 독성이 매우 강하여 환경과 인체에 치명적인 악영향을 미치는 다이옥신(PCDD/PCDF, polychlorinated dibenzo-p-dioxin/polychlorinated dibenzofuran), 폴리염화 비페닐(PCB), 염화벤젠, 염화페놀, 휘발성 유기화합물(VOC) 등이 다량 함유되어 있다. 최근에는 이러한 독성 화합물을 다량 생성시키는 연소 및 소각공정의 가동이 증가하면서 심각한 환경오염 문제가 대두되고 있다.The gas emitted from incineration or combustion processes such as thermal power plants, industrial incinerators, municipal waste incinerators, hospital waste incinerators, furnaces, boilers, etc. Dibenzo-p-dioxin / polychlorinated dibenzofuran, polychlorinated biphenyl (PCB), benzene chloride, phenol chloride, volatile organic compound (VOC), etc. In recent years, as the operation of combustion and incineration processes that produce a large amount of such toxic compounds increases, serious environmental pollution problems are raised.

또한, 연소 및 소각공정에서는 연료 성분 및 높은 화염 온도로 인하여 다량의 질소산화물이 발생되게 되는데, 이러한 질소산화물은 산성비를 유발하여 환경생태계를 파괴하는 물질로 알려져 있다.In addition, a large amount of nitrogen oxides are generated in the combustion and incineration processes due to fuel components and high flame temperatures. These nitrogen oxides are known to cause acid rain to destroy environmental ecosystems.

기존 염소계화합물의 처리법으로 흡착법, 열소각법 및 세정법이 사용되어 왔으며, 질소산화물의 분해에는 선택적 촉매환원법(SCR)이 가장 많이 사용되고 있다.Adsorption, thermal incineration, and scrubbing have been used to treat existing chlorine compounds, and selective catalytic reduction (SCR) is most commonly used to decompose nitrogen oxides.

흡착법은 활성탄 또는 코크스, 제올라이트 등의 흡착제 층에 연소 배가스를 통과시켜 흡착제거하는 방법이나, 제거효율이 낮을 뿐만 아니라 낮은 농도로 포함된 독성화합물의 처리에는 적용할 수 없다. 또한 흡착제의 연속사용이 불가능할 뿐만 아니라 폐기된 흡착제를 소각하면 독성화합물이 재발생되는 문제점이 있고, 매립시에는 용출되어 지하수를 오염시키는 큰 문제점을 안고 있다.Adsorption is a method of adsorbing and removing combustion exhaust gas through an adsorbent layer such as activated carbon or coke, zeolite, etc., but it is not applicable to the treatment of toxic compounds contained at low concentrations with low removal efficiency. In addition, the continuous use of the adsorbent is not only possible, but incineration of the discarded adsorbent has a problem that the toxic compounds are regenerated, and when the landfill is buried has a big problem of contaminating groundwater.

세정법은 배가스를 화학용액과 접촉시키는 방법으로 배가스내에 포함된 산성가스 및 입자상 물질의 제거에는 효과적이나 다량의 화학폐수가 발생하여 오염을 가중시키고 용해도가 낮은 독성화합물은 제거하지 못하는 단점이 있다.The cleaning method is a method of contacting the exhaust gas with a chemical solution, which is effective for removing acidic gas and particulate matter contained in the exhaust gas, but a large amount of chemical wastewater is generated, which causes pollution and does not remove toxic compounds having low solubility.

반면, 질소산화물의 분해는 선택적 촉매환원법에 의해 고효율로 제거할 수 있다. 촉매환원 반응은 암모니아를 주입하여 촉매에서 질소산화물의 환원반응에 의해 질소로 분해시키는 방법이다. 구체적인 예로는 미합중국 특허 제4,085,193호, 제제4,018,706호, 제4,059,675호, 제4,059,676호 및 제4,059,683호에서 TiO2및, Al2O3, SiO2, V2O5, WO3, Pt, Pd 등으로 구성된 촉매를 사용하여 높은 효율로 질소산화물을 처리하는 방법을 개시하고 있다.On the other hand, decomposition of nitrogen oxides can be removed with high efficiency by selective catalytic reduction. Catalytic reduction is a method of injecting ammonia and decomposing it into nitrogen by reduction of nitrogen oxides in the catalyst. Specific examples include TiO 2 and Al 2 O 3 , SiO 2 , V 2 O 5 , WO 3 , Pt, Pd, etc. in US Pat. Nos. 4,085,193, Formulations 4,018,706, 4,059,675, 4,059,676 and 4,059,683. A method of treating nitrogen oxides at high efficiency using a constructed catalyst is disclosed.

다이옥신 및 질소산화물을 동시에 제거할 수 있는 촉매를 사용하는 공정에 관한 것으로는 미합중국 특허 제5,512,259호가 있으며, 상기 특허는 70 내지 80중량%의 TiO2, 0 내지 10중량 %의 WO3, 0.5 내지 3중량%의 V2O5및 0 내지 5중량%의 MoO3를 포함하는 하니컴형 촉매를 사용하여 산화반응조건에서 할로겐화합물을 분해하고 암모니아를 주입한 환원반응 조건에서 질소산화물을 환원시키는 공정을 개시하고 있다. 그러나, 상기 특허는 기존의 질소산화물 제거에 사용되던 촉매를 그대로 또는 도너(donner) 금속을 첨가하여 개조한 것으로서 기존의 선택적 촉매환원공정(SCR)에 사용되던 촉매와 유사한 특성을 가지고 있다. 따라서, 상기 촉매는 다이옥신등의 염소계 방향족 화합물이 일산화탄소, 이산화탄소, 물, 염산, 염소가스로 분해되지 효율이 낮고 다른 구조의 유기화합물로 전환된다는 단점이 있다. 또한, BET 표면적이 20 내지 100 m2/g으로 작아 금속입자의 소결이 쉽게 일어나므로 장시간 사용할 때 분해활성이 크게 저하한다는 단점이 있다.US Pat. No. 5,512,259 relates to a process using a catalyst capable of simultaneously removing dioxins and nitrogen oxides, which have 70 to 80 weight percent TiO 2 , 0 to 10 weight percent WO 3 , 0.5 to 3 A process for decomposing halogen compounds under oxidation reaction conditions and reducing nitrogen oxides under reduction reaction conditions in which ammonia is injected is carried out using a honeycomb catalyst comprising a wt% of V 2 O 5 and 0 to 5 wt% of MoO 3 . Doing. However, the patent is similar to the catalyst used in the selective catalytic reduction process (SCR), which is a modification of the catalyst used for removing nitrogen oxide as it is or by adding a donor metal. Therefore, the catalyst has a disadvantage in that chlorine-based aromatic compounds such as dioxin are converted into organic compounds having low efficiency and low efficiency from being decomposed into carbon monoxide, carbon dioxide, water, hydrochloric acid, and chlorine gas. In addition, since the BET surface area is small to 20 to 100 m 2 / g, sintering of the metal particles easily occurs, so that there is a disadvantage in that the decomposition activity greatly decreases when used for a long time.

또한, 미합중국 특허 제5,387,734호 및 제 5,276,250호는 실리카-알루미나 담체에 Zn, Ni, Cr, Cu, Fe, Pt, Rh 또는 그 산화물이 담지된 촉매를 사용하여 높은 효율로 다이옥신을 제거하는 공정을 개시하고 있고, 미합중국 특허 제 5,260,044호는 60중량%의 TiO2-뮬라이트(3Al2O2SiO2) 지지체에 백금을 담지한 하니컴형 성형촉매를 사용하여 다이옥신(PCDDs/PCDFs)을 분해하는 공정을 개시하고 있다. 그러나, 상기 촉매는 담체에 담지된 금속의 분산성이 불량하여 촉매의 열소성시 금속성분의 소결이 발생하는 등의 이유로 분해활성이 낮기 때문에 많은 공간시간(space velocity; SV)이 요구된다는 단점이 있다.US Pat. Nos. 5,387,734 and 5,276,250 also disclose processes for removing dioxins with high efficiency using catalysts in which Zn, Ni, Cr, Cu, Fe, Pt, Rh or their oxides are supported on silica-alumina carriers. U.S. Patent No. 5,260,044 describes a process for decomposing dioxins (PCDDs / PCDFs) using a honeycomb shaped catalyst in which platinum is supported on a 60% by weight TiO 2 -Mulite (3Al 2 O 3 · 2SiO 2 ) support. It is starting. However, the catalyst has a disadvantage in that a large space velocity (SV) is required because the decomposition activity is low due to poor dispersibility of the metal supported on the carrier and sintering of the metal component during the thermal firing of the catalyst. have.

따라서, 본발명이 이루고자 하는 기술적 과제는 독성화합물의 분해에 적절한 표면적을 제공함과 동시에 금속성분의 소결에 의한 분해효율의 감소가 나타나지 않고 장시간 높은 효율을 유지할 수 있는 촉매를 제공하는 것이다.Accordingly, the technical problem to be achieved by the present invention is to provide a catalyst capable of maintaining a high efficiency for a long time without providing a suitable surface area for decomposition of toxic compounds and at the same time does not decrease the decomposition efficiency due to the sintering of metal components.

또한, 본 발명이 이루고자 하는 다른 기술적 과제는 상기 촉매를 제조하는 방법을 제공하는 것이다.In addition, another technical problem to be achieved by the present invention is to provide a method for producing the catalyst.

본 발명의 상기 기술적 과제를 달성하기 위하여In order to achieve the above technical problem of the present invention

코르디얼라이트 표면에 이산화티탄(TiO2) 및 알루미나(Al2O3)가 코팅되어 이루어진 코르디얼라이트-이산화티탄-알루미나 담체에 촉매활성 성분으로써 바나듐(V)이 담지되어 있으며, X선 회절법으로 측정한 상기 이산화티탄의 결정도가 10 내지 20% 인 것을 특징으로 하는 독성 오염물질 분해용 촉매를 제공한다.A vanadium (V) is supported as a catalytically active component on a cordialite-titanium dioxide-alumina carrier formed by coating titanium dioxide (TiO 2 ) and alumina (Al 2 O 3 ) on the cordialite surface. It provides a catalyst for the decomposition of toxic pollutants, characterized in that the crystallinity of the titanium dioxide measured by 10 to 20%.

본 발명의 실시예에 의하면, 상기 이산화티탄의 함량이 촉매 총 중량을 기준으로 6 내지 12중량 %인 것이 바람직하다.According to an embodiment of the present invention, the content of the titanium dioxide is preferably 6 to 12% by weight based on the total weight of the catalyst.

본 발명의 실시예에 의하면, 상기 알루미나의 함량이 촉매 총 중량을 기준으로 10 내지 30중량 %인 것이 바람직하다.According to an embodiment of the present invention, the content of the alumina is preferably 10 to 30% by weight based on the total weight of the catalyst.

본 발명의 실시예에 의하면, 상기 바나듐의 함량이 이산화티탄의 중량을 기준으로 1 내지 6 중량 %인 것이 바람직하다.According to an embodiment of the present invention, it is preferable that the content of vanadium is 1 to 6% by weight based on the weight of titanium dioxide.

본 발명의 다른 실시예에 의하면, 상기 촉매 활성성분이 몰리브데늄(Mo), 텅스텐(W), 팔라듐(Pd) 및 이들의 산화물로 이루어진 군에서 선택되는 하나 이상의 금속 또는 금속 산화물을 더 포함하는 것이 바람직하다.According to another embodiment of the present invention, the catalytically active ingredient further comprises at least one metal or metal oxide selected from the group consisting of molybdenum (Mo), tungsten (W), palladium (Pd) and oxides thereof. It is preferable.

본 발명의 다른 실시예에 의하면, 상기 금속 또는 금속 산화물의 함량이 이산화티탄의 중량을 기준으로 9중량% 이하인 것이 바람직하다.According to another embodiment of the present invention, the content of the metal or metal oxide is preferably 9% by weight or less based on the weight of titanium dioxide.

또한, 본 발명은 다른 기술적 과제를 달성하기 위하여,In addition, the present invention to achieve another technical problem,

(a) 이산화티탄을 400 내지 600℃에서 열소성하여, X선 회절법으로 측정한 결정도가 10 내지 20%가 되도록 조절하는 단계;(a) thermosetting the titanium dioxide at 400 to 600 ° C. to adjust the crystallinity to be 10 to 20% as measured by X-ray diffraction;

(b) (a)단계에서 준비된 이산화티탄에 바나듐 전구체 수용액을 함침시키는 단계;(b) impregnating the aqueous solution of vanadium precursor to the titanium dioxide prepared in step (a);

(c) (b)단계의 결과물을 100 내지 300℃에서 건조한 후 400 내지 600℃에서 1 내지 5시간 동안 소성하는 단계; 및(c) drying the resultant of step (b) at 100 to 300 ° C. and calcining at 400 to 600 ° C. for 1 to 5 hours; And

(d) (c) 단계의 결과물을 알루미나와 함께 코르디얼라이트 표면에 코팅하는 단계를 포함하는 독성 오염물질 분해용 촉매 제조방법을 제공한다.(d) providing a catalyst for the decomposition of toxic contaminants comprising coating the result of step (c) on the cordialite surface with alumina.

본 발명의 실시예에 의하면, 상기 (b) 단계를 실시하기 전에, 몰리브데늄(Mo), 텅스텐(W), 팔라듐(Pd) 및 이들의 산화물로부터 선택되는 하나 이상의 금속의 전구체 수용액을 (a) 단계의 결과물에 함침하는 단계 및 그 결과물을 100 내지 300℃에서 건조 및 소성하는 단계를 더 포함하는 것이 바람직하다.According to an embodiment of the present invention, prior to performing the step (b), an aqueous solution of a precursor of one or more metals selected from molybdenum (Mo), tungsten (W), palladium (Pd), and oxides thereof (a It is preferable to further include a step of impregnating the result of the step) and drying and firing the resultant at 100 to 300 ℃.

또한, 본 발명은 상기 촉매를 사용하여 폴리염화 디벤조-p-다이옥신(PCDD), 폴리염화 디벤조 퓨란(PCDF), 폴리염화 비페닐(PCB) 및 클로로벤젠, 염소계 휘발성화합물, 질소산화물을 분해하는 방법을 제공한다.In addition, the present invention decomposes polychlorinated dibenzo-p-dioxin (PCDD), polychlorinated dibenzofuran (PCDF), polychlorinated biphenyl (PCB) and chlorobenzene, chlorine-based volatile compounds and nitrogen oxides using the catalyst. Provide a way to.

본 발명의 실시예에 의하면, 상기 분해반응은 5 부피% 내지 21 부피%의 산소농도를 유지하는 분위기하에서 실시되는 것이 바람직하다.According to an embodiment of the present invention, the decomposition reaction is preferably carried out under an atmosphere of maintaining an oxygen concentration of 5% by volume to 21% by volume.

본 발명의 실시예에 의하면, 상기 분해반응이 200℃ 내지 350 ℃에서 실시되는 것이 바람직하다.According to an embodiment of the present invention, the decomposition reaction is preferably carried out at 200 ℃ to 350 ℃.

이하에서는 본 발명을 보다 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail.

금속 또는 금속산화물이 다른 다공성의 금속산화물에 담지된 형태의 담지 촉매는 일반적으로 다공성 담체 또는 지지체 (support or carrier)와 금속 또는 금속산화물과의 상호작용에 의하여 촉매 작용을 증진시키거나 또는 기계적 강도와 열 안정성을 높이기 위하여 다공성 산화물을 담체로 사용한다. 즉 넓은 표면적을 제공하고 열 및 기계적 안정성이 우수한 다공성 물질에 촉매금속을 얇게 담지 함으로써 촉매의 반응활성을 높이는 것이 중요하다.Supported catalysts in the form of metals or metal oxides supported on other porous metal oxides generally promote catalysis by the interaction of a porous support or carrier with the metal or metal oxide, Porous oxides are used as carriers to enhance thermal stability. In other words, it is important to increase the reaction activity of the catalyst by providing a thin surface of the catalyst metal in a porous material having a large surface area and excellent thermal and mechanical stability.

이때 사용된 금속성분의 종류와 함량, 금속성분의 조성비율이 촉매효율의 중요한 인자가 된다. 또한, 담체의 종류 및 조성도 촉매효율에 영향을 미치는 중요한 인자인데 이는 금속성분과 상호 작용을 일으켜 촉매 성능에 큰 영향을 미치기 때문이다.At this time, the type and content of the metal component used, the composition ratio of the metal component is an important factor of the catalytic efficiency. In addition, the type and composition of the carrier is also an important factor influencing the catalyst efficiency because it interacts with the metal components and greatly affects the catalyst performance.

본 발명에서는 전술한 바와 같은 인자를 고려하여, 하니컴 형상을 제공하는 코르디얼라이트(Cordierite) 표면에 이산화티탄(TiO2) 또는 이산화티탄(TiO2)-알루미나(Al2O3)를 담지체로 사용하고, 금속 성분으로는 기본적으로 바나듐을 사용한다.In the present invention, considering the factors as described above, titanium dioxide (TiO 2 ) or titanium dioxide (TiO 2 ) -alumina (Al 2 O 3 ) is used as a carrier on a cordierite surface that provides a honeycomb shape. In addition, vanadium is basically used as a metal component.

이산화티탄(TiO2)은 부분적으로 환원될 수 있는 산화물로서 활성 금속성분을 잘 분산시킬 수 있을 뿐만 아니라 열 안정성이 높고 금속과 강하게 상호 작용하는 것으로 알려져 있다. 또한 환원처리의 조건에 따라 +3가 와 +2가 상태가 가능하며환원처리 후 강한 금속-담체 상호작용을 나타내는 특징이 있다.Titanium dioxide (TiO 2 ) is an oxide that can be partially reduced, and is known to not only disperse active metal components well, but also to have high thermal stability and to strongly interact with metals. In addition, depending on the conditions of the reduction treatment, the + 3-valent and + 2-valent states are possible, and there is a characteristic that shows strong metal-carrier interaction after reduction treatment.

또한 본 발명에 사용되는 알루미나는 넓은 표면적을 갖는 금속산화물로 기계적 안정성이 매우 우수한 다공성 물질이다.In addition, alumina used in the present invention is a metal oxide having a large surface area and is a porous material having excellent mechanical stability.

즉 본 발명은 하니컴형상을 제공하는 코르디얼라이트(cordierite) 표면에 이산화티탄(TiO2) 또는 이산화티탄(TiO2)-알루미나(Al2O3)를 담지체로 사용하여 열 및 기계적 안정성을 높이고, 그 표면의 결정도를 적절하게 조정하여 표면적을 최대화시킴으로써 활성금속 입자를 잘 분산시켜 사용온도에서 금속입자의 소결이 일어나지 않도록 하고 배가스의 정화에 높은 분해반응을 나타내게 하였다.That is, the present invention increases the thermal and mechanical stability by using titanium dioxide (TiO 2 ) or titanium dioxide (TiO 2 ) -alumina (Al 2 O 3 ) as a support on the cordierite surface providing a honeycomb shape, By appropriately adjusting the crystallinity of the surface to maximize the surface area, the active metal particles are dispersed well, so that the sintering of the metal particles does not occur at the use temperature and the decomposition of the exhaust gas is high.

따라서, 본 발명에 의한 독성오염물질 분해용 촉매에 있어서 담체로 사용되는 하니컴형 코르디얼라이트-이산화티탄(TiO2) 또는 코르디얼라이트-이산화티탄(TiO2)-알루미나(Al2O3)는 넓은 표면적과 열 및 기계적 안정성, 내산성을 제공하고 촉매금속 입자와의 강한 상호작용을 일으키는 역할을 하며 그 함량은 촉매 총 중량을 기준으로 85 내지 99중량%인 것이 바람직하다.Therefore, the honeycomb cordialite-titanium dioxide (TiO 2 ) or cordialite-titanium dioxide (TiO 2 ) -alumina (Al 2 O 3 ) used as a carrier in the catalyst for decomposition of toxic pollutants according to the present invention is It provides a large surface area and thermal and mechanical stability, acid resistance and serves to cause strong interaction with the catalyst metal particles, the content is preferably 85 to 99% by weight based on the total weight of the catalyst.

한편, 바나듐 산화물은 저온 환원성이 높아 낮은 온도에서 높은 분해활성을 제공하는 역할을 하며 그 함량은 이산화티탄의 중량을 기준으로 1내지 6중량 %인 것이 바람직하다.On the other hand, vanadium oxide serves to provide high decomposition activity at low temperatures due to low temperature reducibility, the content is preferably 1 to 6% by weight based on the weight of titanium dioxide.

본 발명의 일실시예에 의하면, 본 발명에 의한 촉매의 금속 활성성분인 바나듐에 부가하여, 몰리브데늄(Mo), 텅스텐(W), 팔라듐(Pd) 또는 그 산화물이 첨가될 수 있는데, 이들은 바나듐의 안정화, 분산도 향상 및 상호작용에 의해 효율을 향상시키는 역할을 하며, 그 함량은 이산화 티탄의 중량을 기준으로 0∼9중량%인 것이 바람직하다.According to one embodiment of the present invention, in addition to vanadium, which is a metal active component of the catalyst according to the present invention, molybdenum (Mo), tungsten (W), palladium (Pd) or an oxide thereof may be added. Stabilization of the vanadium, improves the dispersion degree and serves to improve the efficiency, the content is preferably 0 to 9% by weight based on the weight of titanium dioxide.

특히, 팔라듐은 바나듐과의 강한 상호작용에 의해 독성 화합물의 분해에 높은 활성을 나타내는 활성점을 제공하며, 그 함량은 이산화티탄의 중량을 기준으로 0∼1 중량%인 것이 바람직하다.In particular, palladium provides an active site exhibiting high activity in the decomposition of toxic compounds by strong interaction with vanadium, the content of which is preferably 0 to 1% by weight based on the weight of titanium dioxide.

본 발명에 의한 촉매는 당업계에서 일반적으로 금속담지 촉매를 제조하는데 사용하는 방법으로 제조될 수 있다. 구체적으로 본 발명에 의한 촉매는 다음과 같은 공정 순서로 제조하는 것이 바람직하다.The catalyst according to the present invention may be prepared by a method generally used in the art to prepare a metal supported catalyst. Specifically, the catalyst according to the present invention is preferably prepared in the following process sequence.

(a) 이산화티탄을 400 내지 600℃에서 열소성하여, X선 회절법으로 측정한 결정도가 20% 이하가 되도록 조절하는 단계;(a) thermally calcining titanium dioxide at 400 to 600 ° C. to adjust the crystallinity to be 20% or less as measured by X-ray diffraction;

(b) (a)단계에서 준비된 이산화티탄에 바나듐 전구체 수용액을 함침시키는 단계;(b) impregnating the aqueous solution of vanadium precursor to the titanium dioxide prepared in step (a);

(c) (b)단계의 결과물을 100 내지 300℃에서 건조한 후 400 내지 600℃에서 1 내지 5시간 동안 소성하는 단계; 및(c) drying the resultant of step (b) at 100 to 300 ° C. and calcining at 400 to 600 ° C. for 1 to 5 hours; And

(d) (c) 단계의 결과물을 알루미나와 함께 코르디얼라이트 표면에 코팅하는 단계를 포함하는 독성 오염물질 분해용 촉매 제조방법을 제공한다.(d) providing a catalyst for the decomposition of toxic contaminants comprising coating the result of step (c) on the cordialite surface with alumina.

몰리브데늄(Mo), 텅스텐(W), 팔라듐(Pd) 및 이들의 산화물로부터 선택되는 하나 이상의 금속을 첨가하고자 하는 경우에는 이들의 전구체 수용액을 상기 (b)단계를 실시하기 전에 이산화티탄에 함침하는 것이 바람직하고, 그 결과물을 100 내지 300℃에서 건조 및 소성하는 단계를 더 포함할 수 있다.If one or more metals selected from molybdenum (Mo), tungsten (W), palladium (Pd) and their oxides are to be added, their precursor aqueous solution is impregnated with titanium dioxide prior to step (b). Preferably, the result may further comprise the step of drying and firing at 100 to 300 ℃.

본 발명에 의한 촉매는 특히, 폴리염화 디벤조-p-다이옥신(PCDD), 폴리염화 디벤조 퓨란(PCDF), 폴리염화 비페닐(PCB) 및 클로로벤젠, 염소계 휘발성화합물, 질소산화물을 분해하기에 특히 유용하다.The catalysts according to the invention are particularly suitable for decomposing polychlorinated dibenzo-p-dioxin (PCDD), polychlorinated dibenzofuran (PCDF), polychlorinated biphenyl (PCB) and chlorobenzene, chlorine-based volatile compounds and nitrogen oxides. Particularly useful.

본 발명의 실시예에 의하면, 본 발명에 의한 촉매를 사용하여 연소공정 배기 가스를 처리하는 방법에 있어서, 분해반응은 5 부피% 내지 21 부피%의 산소농도를 유지하는 분위기하에서 실시되는 것이 바람직하다.According to an embodiment of the present invention, in the method for treating the combustion process exhaust gas using the catalyst according to the present invention, the decomposition reaction is preferably carried out under an atmosphere of maintaining an oxygen concentration of 5% by volume to 21% by volume. .

이하에서는 실시예를 들어 본 발명을 보다 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

<제조예 1><Manufacture example 1>

이산화티탄 300g을 550 ℃에서 3시간 동안 소성하여 결정도를 조절함으로써, X선 회절법으로 측정한 결정도가 10~20 %가 되도록 하였다. 상기 결과물에 몰리브데늄(Mo) 산화물 24 g을 담지하고 110℃에서 5시간 건조한 다음 550 ℃에서 2시간동안 소성하였다. 상기 결과물에 바나듐(V) 산화물을 17g을 담지하고 상기와 같은 조건에서 건조와 소성을 실시하였다.300 g of titanium dioxide was calcined at 550 ° C. for 3 hours to adjust the crystallinity so that the crystallinity measured by X-ray diffraction method was 10-20%. The resulting product was loaded with 24 g of molybdenum (Mo) oxide, dried at 110 ° C. for 5 hours, and calcined at 550 ° C. for 2 hours. The resultant was loaded with 17 g of vanadium (V) oxide and dried and calcined under the same conditions as described above.

코르디얼라이트 1000 cm3당 상기 결과물 50g과 알루미나 20g이 담지되도록 하니컴형 코르디얼라이트 표면에 코팅하였다. 상기 결과물을 110℃에서 5시간 건조하고 최종적으로 550 ℃에서 2시간동안 소성하여 하니컴형의 코르디얼라이트-이산화티탄(TiO2)-알루미나(Al2O3)-바나듐(V) 산화물-몰리브데늄(Mo) 산화물 촉매를 제조하였다.The honeycomb type cordialite surface was coated to carry 50g of the resultant and 20g of alumina per 1000 cm 3 of cordialite. The resultant was dried at 110 ° C. for 5 hours and finally calcined at 550 ° C. for 2 hours to form honeycomb cordierite-titanium dioxide (TiO 2 ) -alumina (Al 2 O 3 ) -vanadium (V) oxide-molybdenum. A denium (Mo) oxide catalyst was prepared.

<제조예 2-4><Manufacture example 2-4>

몰리브데늄 대신에 텅스텐(W) 산화물, 팔라듐(Pd) 산화물을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 각각 코르디얼라이트-이산화티탄(TiO2)-알루미나(Al2O3)-바나듐(V) 산화물-텅스텐(W) 산화물 촉매(제조예 2), 코르디얼라이트-이산화티탄(TiO2)-알루미나(Al2O3)-바나듐(V)산화물-팔라듐(Pd) 촉매(제조예 3)를 제조하였다.Cordialite-titanium dioxide (TiO 2 ) -alumina (Al 2 O 3 ) -vanadium in the same manner as in Preparation Example 1, except that tungsten (W) oxide and palladium (Pd) oxide were used instead of molybdenum. (V) Oxide-tungsten (W) oxide catalyst (Production Example 2), Cordialite-Titanium Dioxide (TiO 2 ) -Alumina (Al 2 O 3 ) -Vanadium (V) oxide-Palladium (Pd) Catalyst (Production Example 3) was prepared.

<실시예 1><Example 1>

상업용 도시폐기물 소각로의 배기 가스 정화율을 테스트하기 위하여, 직경 15 cm, 너비 15 cm, 길이 30 cm의 코르디얼라이트 - 이산화티탄 (TiO2) - 알루미나 (Al2O3) - 바나듐(V) 산화물 - 몰리브데늄(Mo) 산화물 촉매(제조예 1)를 이용하여 반응온도 및 공간속도를 변화시키면서 다이옥신 및 질소산화물의 분해율을 측정한 결과를 표 1 나타내었다.To test the exhaust gas purification rate of a commercial municipal waste incinerator, cordialite-titanium dioxide (TiO 2 )-alumina (Al 2 O 3 )-vanadium (V) oxide, 15 cm in diameter, 15 cm in width and 30 cm in length Table 1 shows the results of measuring the decomposition rate of dioxins and nitrogen oxides while varying the reaction temperature and space velocity using a molybdenum (Mo) oxide catalyst (Preparation Example 1).

No.No. 반응온도(℃)Reaction temperature (℃) 공간속도(hr-1)Space velocity (hr -1 ) 반응기 출구다이옥신 농도(ng TEQ/Nm3)Reactor Outlet Dioxin Concentration (ng TEQ / Nm 3 ) 다이옥신분해율 (%)Dioxin degradation rate (%) NOx분해율 (%)NO x decomposition rate (%) 1-11-21-31-41-51-61-11-21-31-41-51-6 250250300300350350250 250 300 300 350 350 7,00010,0007,00015,0007,00010,0007,00010,0007,00015,0007,00010,000 0.0180.070.0090.1560.0210.0320.0180.070.0090.1560.0210.032 88.948.292.680.595.593.588.948.292.680.595.593.5 --91.184.499.995.9--91.184.499.995.9

상기 표 1에서 TEQ란 독성 당량(toxic equivalent)을 의미한다. 다이옥신이라는 명칭이 이백여종의 물질을 포함하고 있기 때문에 전체 독성을 나타낼 때에는 각 물질이 가지는 독성계수(TEF; toxic equivalence factor)에 농도를 곱하여 TEQ형태로 독성을 표시한다.In Table 1, TEQ means a toxic equivalent. Since the name dioxin contains more than two hundred substances, total toxicity is indicated by multiplying the concentration by the concentration of the toxic equivalence factor (TEF) of each substance.

<실시예 2><Example 2>

제조예 1의 촉매, 직경 2.54 cm, 길이 5 cm의 코르디얼라이트-이산화티탄 (TiO2)-알루미나(Al2O3)-바나듐(V)산화물-몰리브데늄(Mo) 산화물 촉매를 이용하여, 반응온도 및 공간속도를 변화시켜 가면서, 100 ppm의 1,2-디클로로벤젠과 5 부피% H2O, 11 부피% O2조건에서 분해율을 측정하여 그 결과를 표 2에 나타내었다.Using the catalyst of Preparation Example 1, a cordierite-titanium dioxide (TiO 2 )-alumina (Al 2 O 3 )-vanadium (V) oxide-molybdenum (Mo) oxide catalyst of 2.54 cm in diameter, 5 cm in length , By varying the reaction temperature and space velocity, the decomposition rate was measured under conditions of 100 ppm 1,2-dichlorobenzene and 5 vol% H 2 O, 11 vol% O 2 and the results are shown in Table 2.

No.No. 공간속도(hr-1)Space velocity (hr -1 ) 반응온도(℃)Reaction temperature (℃) 분해율 (%)Decomposition rate (%) 2-12-22-33-42-52-62-72-82-92-102-112-12-22-33-42-52-62-72-82-92-102-11 5,7005,7005,7005,7005,7007,0007,0007,0008,6008,6008,6005,7005,7005,7005,7005,7007,0007,0007,0008,6008,6008,600 250300350380400350380400350380400250 300 350 380 400 350 380 400 350 380 400 63.158.578.490.497.259.386.394.356.179.490.263.158.578.490.497.259.386.394.356.179.490.2

<실시예 3><Example 3>

제조예 2의 촉매, 직경 2.54 cm, 길이 5 cm의 코르디얼라이트-이산화티탄 (TiO2)-알루미나(Al2O3)-바나듐(V)산화물-텅스텐(W) 산화물 촉매를 이용하여, 실시예 2의 반응조건하에서 반응온도만을 변화시키면서 분해율을 측정하여 그 결과를 표 3에 나타내었다.It was carried out using the catalyst of Preparation Example 2, cordierite-titanium dioxide (TiO 2 ) -alumina (Al 2 O 3 ) -vanadium (V) oxide-tungsten (W) oxide catalyst having a diameter of 2.54 cm and a length of 5 cm. The decomposition rate was measured while changing only the reaction temperature under the reaction conditions of Example 2, and the results are shown in Table 3.

No.No. 공간속도(hr-1)Space velocity (hr -1 ) 반응온도(℃)Reaction temperature (℃) 분해율 (%)Decomposition rate (%) 3-13-23-33-43-53-13-23-33-43-5 5,7005,7005,7005,7005,7005,7005,7005,7005,7005,700 250300350380400250300350380400 60.661.462.068.670.660.661.462.068.670.6

<실시예 4><Example 4>

제조예 3의 촉매, 직경 2.54 cm, 길이 5 cm의 코르디얼라이트-이산화티탄(TiO2)-알루미나(Al2O3)-바나듐(V)산화물-팔라듐(Pd) 촉매를 이용하여 실시예 2의 반응조건에서, 공간속도 및 반응온도를 변화시키면서 분해율을 측정한 결과를 표 4에 나타내었다.Example 2 using the catalyst of Preparation Example 3, cordierite-titanium dioxide (TiO 2 ) -alumina (Al 2 O 3 ) -Vanadium (V) oxide-palladium (Pd) catalyst of diameter 2.54 cm, length 5 cm In the reaction conditions of, the decomposition rate was measured while changing the space velocity and the reaction temperature is shown in Table 4.

No.No. 공간속도(hr-1)Space velocity (hr -1 ) 반응온도(℃)Reaction temperature (℃) 분해율 (%)Decomposition rate (%) 4-14-24-34-44-54-64-74-84-14-24-34-44-54-64-74-8 5,7005,7005,7005,7005,7007,0007,0007,0005,7005,7005,7005,7005,7007,0007,0007,000 250300350380400350380400250 300 350 380 400 350 380 400 55.086.098.099.099.955.985.794.155.086.098.099.099.955.985.794.1

이상의 결과로부터 본 발명의 독성 오염물질 분해용 촉매의 다이옥신, 질소산화물(NOx) 및 클로로 벤젠류의 분해율이 매우 높아 배기 가스 정화용 촉매로 적합한 성능을 가지는 것을 알 수 있다.From the above results, it can be seen that the decomposition rate of dioxins, nitrogen oxides (NO x ), and chlorobenzenes of the catalyst for decomposition of toxic contaminants of the present invention is very high, and thus has a suitable performance as an exhaust gas purification catalyst.

본 발명에 의한 코르디얼라이트-이산화티탄(TiO2)-알루미나(Al2O3) 성분의 하니컴형 담체에 바나듐(V) 또는, 바나듐(V)과 몰리브데늄(Mo), 또는 팔라듐(Pd) 또는 그 산화물들이 담지된 촉매는 다이옥신, 질소산화물(NOx) 및 클로로벤젠을 포함하는 독성 오염물질의 분해에 높은 활성을 나타내어, 각종 연소공정에서 배출되는 배기 가스에 포함된 다이옥신 등의 염소계 화합물과 질소 산화물을 포함하는 독성 오염물질의 분해에 유용하게 사용될 수 있다.Vanidium (V), vanadium (V), molybdenum (Mo), or palladium (Pd) in a honeycomb carrier of cordialite-titanium dioxide (TiO 2 ) -alumina (Al 2 O 3 ) component according to the present invention Or catalysts bearing oxides thereof have a high activity in the decomposition of toxic pollutants including dioxins, nitrogen oxides (NO x ) and chlorobenzenes, and thus chlorine compounds such as dioxins contained in exhaust gases emitted in various combustion processes. It can be usefully used for the decomposition of toxic contaminants including and nitrogen oxides.

Claims (11)

코르디얼라이트 표면에 촉매 총 중량을 기준으로 6 내지 12중량%의 이산화티탄(TiO2) 및 10 내지 30중량%의 알루미나(Al2O3)가 코팅되어 이루어진 코르디얼라이트-이산화티탄-알루미나 담체에, 촉매활성 성분으로써 이산화티탄의 중량을 기준으로 1 내지 6중량%의 바나듐(V) 및 1 내지 9중량%의 몰리브데늄(Mo) 또는 몰리브데늄 산화물이 담지되어 있으며, X선 회절법으로 측정한 상기 이산화티탄의 결정도가 10 내지 20%인 것을 특징으로 하는 염소계 화합물 및/또는 질소 산화물 분해용 촉매.Cordialite-titanium dioxide-alumina carrier coated with 6-12 wt% titanium dioxide (TiO 2 ) and 10-30 wt% alumina (Al 2 O 3 ) based on the total weight of the catalyst on the cordialite surface X-ray diffraction method is carried on the surface of titanium dioxide with 1 to 6% by weight of vanadium (V) and 1 to 9% by weight of molybdenum (Mo) or molybdenum oxide as catalytically active components. The catalyst for the decomposition of chlorine compounds and / or nitrogen oxides, characterized in that the crystallinity of the titanium dioxide measured by 10 to 20%. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete (a) 이산화티탄을 400 내지 600℃에서 열소성하여, X선 회절법으로 측정한 결정도가 20% 이하가 되도록 조절하는 단계;(a) thermally calcining titanium dioxide at 400 to 600 ° C. to adjust the crystallinity to be 20% or less as measured by X-ray diffraction; (b) (a)단계에서 준비된 이산화티탄에 바나듐 전구체 수용액을 함침시키는 단계;(b) impregnating the aqueous solution of vanadium precursor to the titanium dioxide prepared in step (a); (c) (b)단계의 결과물을 100 내지 300℃에서 건조한 후 400 내지 600℃에서 1 내지 5시간 동안 소성하는 단계; 및(c) drying the resultant of step (b) at 100 to 300 ° C. and calcining at 400 to 600 ° C. for 1 to 5 hours; And (d) (c) 단계의 결과물을 알루미나와 함께 코르디얼라이트 표면에 코팅하는 단계;를 포함하는 제1항의 염소계 화합물 및/또는 질소산화물 분해용 촉매 제조방법.(d) coating the resultant of step (c) with the alumina on the cordialite surface; a method for preparing a catalyst for decomposing chlorine-based compounds and / or nitrogen oxides according to claim 1. 제8항에 있어서, 상기 (b) 단계를 실시하기 전에, 몰리브데늄(Mo), 텅스텐(W), 팔라듐(Pd) 및 이들의 산화물로부터 선택되는 하나 이상의 금속의 전구체 수용액을 (a) 단계의 결과물에 함침하는 단계 및 그 결과물을 100 내지 300℃에서 건조 및 소성하는 단계를 더 포함하는 것을 특징으로 하는 방법.The method of claim 8, wherein before the step (b) is performed, an aqueous solution of a precursor of at least one metal selected from molybdenum (Mo), tungsten (W), palladium (Pd) and oxides thereof is used. Impregnating the resulting product and drying and firing the resulting product at 100 to 300 ° C. 제1항 내지 제7항중 어느 한항에 기재된 촉매를 사용하여 폴리염화 디벤조-p-다이옥신(PCDD), 폴리염화 디벤조 퓨란(PCDF), 폴리염화 비페닐(PCB) 및 클로로벤젠, 염소계 휘발성화합물, 질소산화물을 분해하는 방법.Polychlorinated dibenzo-p-dioxin (PCDD), polychlorinated dibenzofuran (PCDF), polychlorinated biphenyl (PCB) and chlorobenzene, chlorine-based volatile compounds using the catalyst according to any one of claims 1 to 7. To decompose nitrogen oxides. 제9항에 있어서, 5 부피% 내지 21 부피%의 산소농도를 유지하는 분위기하에서 실시되는 것을 특징으로 하는 방법.10. The process according to claim 9, which is carried out in an atmosphere which maintains an oxygen concentration of 5% by volume to 21% by volume. 제9항에 있어서, 분해반응이 200℃ 내지 350℃에서 실시되는 것을 특징으로 하는 방법.10. The process according to claim 9, wherein the decomposition reaction is carried out at 200 ° C to 350 ° C.
KR10-2000-0063175A 2000-10-26 2000-10-26 Catalyst for decomposition of toxic pollutants and producing process thereof KR100402430B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0063175A KR100402430B1 (en) 2000-10-26 2000-10-26 Catalyst for decomposition of toxic pollutants and producing process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0063175A KR100402430B1 (en) 2000-10-26 2000-10-26 Catalyst for decomposition of toxic pollutants and producing process thereof

Publications (2)

Publication Number Publication Date
KR20020032167A KR20020032167A (en) 2002-05-03
KR100402430B1 true KR100402430B1 (en) 2003-10-22

Family

ID=19695558

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0063175A KR100402430B1 (en) 2000-10-26 2000-10-26 Catalyst for decomposition of toxic pollutants and producing process thereof

Country Status (1)

Country Link
KR (1) KR100402430B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100462705B1 (en) * 2002-04-09 2004-12-20 한국해양연구원 Method of reducing a toxicity of PCB with Pd-Al2O3 and Ultrasonic
KR100497171B1 (en) * 2002-09-18 2005-06-23 주식회사 엘지화학 Catalyst supporting noble metal for oxidation decomposition of chloride based organic compound, method for preparing the same, and method for removing chloride based organic compound using the same
KR102040093B1 (en) * 2017-11-21 2019-11-05 엘지전자 주식회사 Volatile organic compound decomposition catalyst
CN110639548B (en) * 2019-09-19 2022-06-14 北京工业大学 Monoatomic palladium-cobalt bimetallic nano-catalyst for efficiently catalyzing benzene oxidation
CN110917872B (en) * 2019-11-05 2021-08-10 河北科技大学 Method for absorbing and catalytically oxidizing halogenated hydrocarbon by liquid alloy
CN114192131B (en) * 2021-12-01 2024-02-27 河北科技大学 Preparation method and application of CVOC integrated catalyst
CN115007137B (en) * 2022-07-14 2023-07-28 南大恩洁优环境技术(江苏)股份公司 Catalyst for purifying dioxin and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164331A (en) * 1984-09-07 1986-04-02 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas
JPS61120640A (en) * 1984-11-19 1986-06-07 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying carbon monoxide and gaseous hydrocarbon in diesel exhaust gas
JPH0724260A (en) * 1993-07-15 1995-01-27 I C T:Kk Catalyst for purification of exhaust gas from diesel engine
US5696049A (en) * 1993-03-25 1997-12-09 Mitsui Mining Co., Ltd. Catalyst for the decomposition of nitrogen oxides and a method for denitrification using the same
KR0170366B1 (en) * 1988-07-15 1999-01-15 알프레드 엘. 미첼슨 Catalyst-agglomerate bodies encapsulated in a structure
KR19990034738A (en) * 1997-10-30 1999-05-15 이형도 Catalyst for exhaust purification of automobile
KR20000072217A (en) * 2000-08-18 2000-12-05 김철홍 Cordierite catalyst system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164331A (en) * 1984-09-07 1986-04-02 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas
JPS61120640A (en) * 1984-11-19 1986-06-07 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying carbon monoxide and gaseous hydrocarbon in diesel exhaust gas
KR0170366B1 (en) * 1988-07-15 1999-01-15 알프레드 엘. 미첼슨 Catalyst-agglomerate bodies encapsulated in a structure
US5696049A (en) * 1993-03-25 1997-12-09 Mitsui Mining Co., Ltd. Catalyst for the decomposition of nitrogen oxides and a method for denitrification using the same
JPH0724260A (en) * 1993-07-15 1995-01-27 I C T:Kk Catalyst for purification of exhaust gas from diesel engine
KR19990034738A (en) * 1997-10-30 1999-05-15 이형도 Catalyst for exhaust purification of automobile
KR20000072217A (en) * 2000-08-18 2000-12-05 김철홍 Cordierite catalyst system

Also Published As

Publication number Publication date
KR20020032167A (en) 2002-05-03

Similar Documents

Publication Publication Date Title
CN110586073A (en) Catalyst for removing dioxin in kiln flue gas through catalytic oxidation and preparation method thereof
CN1314206A (en) Metal oxide catalyst for clearing halogenated aromatic through catalytic oxidation
KR100402430B1 (en) Catalyst for decomposition of toxic pollutants and producing process thereof
KR100533877B1 (en) Catalyst for Removing Aromatic Halogenated Compounds Comprising Dioxin, Carbon Monoxide, and Nitrogen Oxide and Use Thereof
JP3212577B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
KR100382050B1 (en) Catalyst for Removing Dioxin and Nitrogen Oxides in Flue Gas and Method for Treating Combustion Exhaust Gases Using the Same
KR20010032676A (en) Method and Catalyst for the Oxidation of Gaseous Halogenated and Non-halogenated Organic Compounds
JP3510541B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
JP3944149B2 (en) Catalyst for removing aromatic halogen compounds, carbon monoxide and nitrogen oxides including dioxins
KR100406364B1 (en) Cromia/zeolite catalyst for removing nitrogen oxides and chlorinated organic compounds from waste gases
KR100428564B1 (en) W-cr-tio2 catalysts and method for the removal of chlorinated organic compounds
KR100502853B1 (en) Cr·W·TiO2 CATALYST AND METHOD FOR THE REMOVAL OF DIOXINS
KR100332224B1 (en) Oxidation Catalyst for Emission Control of Dioxin in Flue Gas, method of preparing and using the same
KR100390770B1 (en) Multifunctional oxidation catalysts for removal of chlorinated volatile organic compounds
JP3702398B2 (en) Exhaust gas purification catalyst and purification method
JP3785558B2 (en) Organochlorine compound removal catalyst and organochlorine compound removal method
CN113905805A (en) Ozone-assisted dioxin removal method
JP3538984B2 (en) Decomposition method of chlorinated organic compounds
JP4182697B2 (en) Catalyst for decomposing chlorinated organic compounds and process for producing the same
KR100502852B1 (en) Cr·W·Ba·TiO2 CATALYST AND METHOD FOR THE REMOVAL OF DIOXINS
KR20010046104A (en) Catalyst for reduction of toxic organic compounds from incinerator flue gas and preparing process thereof
KR100423413B1 (en) A chromia/titania catalyst for removing dioxins and a method of removing dioxins by usint the same
JP3744587B2 (en) Method for decomposing chlorinated organic compounds
JP2000042409A (en) Catalyst for decomposing organochlorine compound and treatment of combustion exhaust gas
KR20030095912A (en) The catalyst for removing injuriousness gas and manufacturing method of the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130613

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140620

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20150709

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160711

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20170626

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20180525

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20190628

Year of fee payment: 17