JP4729020B2 - 平面表示装置 - Google Patents

平面表示装置 Download PDF

Info

Publication number
JP4729020B2
JP4729020B2 JP2007204706A JP2007204706A JP4729020B2 JP 4729020 B2 JP4729020 B2 JP 4729020B2 JP 2007204706 A JP2007204706 A JP 2007204706A JP 2007204706 A JP2007204706 A JP 2007204706A JP 4729020 B2 JP4729020 B2 JP 4729020B2
Authority
JP
Japan
Prior art keywords
storage capacitor
voltage
capacitor element
pixel electrode
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007204706A
Other languages
English (en)
Other versions
JP2008033336A (ja
Inventor
央 富谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Central Inc
Original Assignee
Toshiba Mobile Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mobile Display Co Ltd filed Critical Toshiba Mobile Display Co Ltd
Priority to JP2007204706A priority Critical patent/JP4729020B2/ja
Publication of JP2008033336A publication Critical patent/JP2008033336A/ja
Application granted granted Critical
Publication of JP4729020B2 publication Critical patent/JP4729020B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、表示画素を駆動する薄膜トランジスタに蓄積容量素子が接続された平面表示装置に関する。
図8は、従来の平面表示装置90の構成を示す平面図である。平面表示装置90は、略マトリックス状に配置された複数の液晶9と各液晶9を駆動するためにそれぞれ設けられた複数の薄膜トランジスタ(TFT)4とを備えている。各液晶9は、容量性の負荷となる。薄膜トランジスタ4は、Nチャンネルのトランジスタである。
各薄膜トランジスタ4には、ゲート端子5とソース端子6とドレイン端子7とがそれぞれ設けられている。各液晶9は、各薄膜トランジスタ4にそれぞれ設けられたドレイン端子7にそれぞれ接続されている。
各薄膜トランジスタ4にそれぞれ設けられたゲート端子5には、それぞれが所定の間隔を空けて水平方向に沿って配置された複数のゲート電極19が接続されている。各薄膜トランジスタ4にそれぞれ設けられたソース端子6には、それぞれが所定の間隔を空けて垂直方向に沿って配置された複数のソース電極3が接続されている。
各液晶9および各液晶9をそれぞれ駆動する薄膜トランジスタ4に設けられたドレイン端子7には、蓄積容量素子8がそれぞれ接続されている。各液晶9は、それぞれが所定の間隔を空けて水平方向に沿って配置された複数の蓄積容量電極91に蓄積容量素子8を介してそれぞれ接続されている。各液晶8を挟んで薄膜トランジスタ4の反対側には、対向電極22がそれぞれ設けられている。
各ソース電極3が各ゲート電極19とそれぞれ交差する位置には、寄生容量23がそれぞれ設けられている。各ソース電極3が各蓄積容量電極91とそれぞれ交差する位置には、寄生容量24がそれぞれ設けられている。
各ソース電極3は、ソース電極駆動回路92にそれぞれ接続されている。各ゲート電極19および各蓄積容量電極91は、走査回路25にそれぞれ接続されている。
このように構成された平面表示装置90の動作を説明する。図9は、平面表示装置90の動作を説明するための波形図である。まず、走査回路25は、各蓄積容量電極91を順番に走査するために、補償電圧12、13、14および15を印加する。各補償電圧12、13、14および15は、高電圧と低電圧と中間電圧との3値を有している。蓄積容量電極91を走査していない時には3値の補償電圧のうち、中間電圧の補償電圧を蓄積容量電極91に印加する。走査しているときには、画素電圧の極性に応じて、3値の補償電圧のうち、高電圧と低電圧との補償電圧を交互に印加する。次のフレーム周期27においては前のフレーム周期27において印加した補償電圧と反対の極性を有する補償電圧を印加する。
そして、走査回路25は、同一のゲート電極19に接続された薄膜トランジスタ4をオンさせるために、ゲート駆動電圧16、17および18を各ゲート電極19に順番に印加する。各ゲート駆動電圧16、17および18において、ハイレベルは薄膜トランジスタ4がオンする電圧を示しており、ローレベルは薄膜トランジスタ4がオフする電圧を示している。ゲート駆動電圧16、17および18と順番にパルスがシフトしていくことで、各ゲート電極19を順番に走査している。次のフレーム周期27において再びパルスをシフトさせて各ゲート電極19を順番に走査する。
ソース電極駆動回路92は、表示すべき画像に応じた画像信号電圧93を各ソース電極3に印加することによって、各薄膜トランジスタ4を介して各蓄積容量素子8と各液晶9とを所望の電圧に充電する。画像信号電圧93においては、走査する各行ごとにプラス、マイナス、プラスという順番で極性を反転させる。次のフレーム周期27においては、マイナス、プラス、マイナスという順番で極性を反転させる。
そして、走査回路25は、同一のゲート電極19に接続された薄膜トランジスタ4をオフさせるために、ゲート駆動電圧16をローレベルにする。各薄膜トランジスタ4がオフすると、各蓄積容量素子8と各液晶9とに充電された電圧が保持される。次に、走査回路25は、蓄積容量電極91に印加する補償電圧12を中間電圧に切り替える。このことにより、各液晶9に保持された電圧に補償電圧が重畳され、画素電圧として保持される。画素電圧は、次の走査まで保持される。このようにして、ゲート線を順番に走査することによって画面全体を表示する。
1画面分の走査が終了すると液晶を交流化するために画素電圧として保持させる電圧の極性を反対極性にするように、画像信号電圧と補償電圧との電圧極性を反対にして、再び走査を行う。
画面表示におけるフリッカを抑えるために画素電圧に保持させる電圧の極性を反対にして1行ごとに走査をおこなうことが一般的であり、通常ライン反転駆動と呼ばれている。
図10(a)は奇数フレームにおいて印加される画素印加電圧の極性を説明するための模式図であり、図10(b)は偶数フレームにおいて印加される画素印加電圧の極性を説明するための模式図である。それぞれのます目は各表示画素の画素電圧の極性を示し、それぞれ+、あるいは−で区分して表示している。行方向は走査方向である。従来の平面表示装置では各行内において画素電圧の極性がそろっており、各行ごとに異なっていた。また、奇数フレームと偶数フレームとにおいて各表示画素に印加される電圧の極性を異ならせて液晶を交流駆動している。
画素印加電圧95、96および97は、画素を構成する液晶に印加される電圧の波形を示している。まず、蓄積容量電極91に低電圧の補償電圧12を印加する。次に、ゲート電極19にハイレベルのゲート駆動電圧16が印加されると、ソース電極3に与えられた画像信号電圧93によって液晶が充電される。次に、ゲート電極19にローレベルのゲート駆動電圧16が与えられ、ソース電極3に与えられた画像信号電圧93が液晶に保持される。
次に、蓄積容量電極91に中間電圧の補償電圧12を印加することによって、先に保持された画像信号電圧に補償電圧の変化分の差電圧が重畳されて液晶に印加され、画素印加電圧95として保持される。
次のフレーム周期27では、異なった極性の画像信号電圧93と補償電圧12とを印加することにより、フレーム周期27ごとに印加される画素印加電圧95の極性を異ならせて、液晶の交流化を行っている。また、行ごとに画像信号電圧と補償電圧との極性を異ならせることでフリッカを改善している。
特開平4−52684号公報 特開2002−140043号公報
平面表示装置が大画面化、高精細化すると、ソース電極がゲート電極と交差する位置における寄生容量、およびソース電極が蓄積容量電極と交差する位置における寄生容量が増大する。また、ソース電極、ゲート電極および蓄積容量電極の配線抵抗も増加する。このため、ソース電極、ゲート電極および蓄積容量電極の充電時定数が大きくなる結果、駆動波形において鈍りおよび歪が増大するという問題がある。特に、ソース電極が蓄積容量電極と交差する位置における寄生容量の増大、および配線抵抗の増加による充電時定数の増大は顕著である。
画像信号電圧が行ごとに一斉にその極性を切り替えて充電する従来の平面表示装置の駆動方法では、走査時において、1行分の画素の蓄積容量素子とソース電極が蓄積容量電極と交差する位置における寄生容量とを充放電するための電流が一斉に蓄積容量電極に流れる。蓄積容量電極は配線抵抗が高いために、このような電流を十分に流し切らず、充電時定数が大きくなって駆動波形の鈍りが発生する。その結果、所望の画素電圧に液晶を充電することができないという問題がある。
また、走査しない場合においても、ソース電極が蓄積容量電極と交差する位置における寄生容量を充放電するための電流は、行ごとに一斉にその極性が切り替わる画像信号電圧に応じて流れる。このため、配線抵抗が高い蓄積容量電極は、このような電流を十分に流し切らず、充電時定数が大きくなって駆動波形の歪が発生する。その結果、所望の画素電圧に液晶を充電することができないという問題がある。
このため、従来の平面表示装置においては画像を表示したときに現れるクロストークと呼ばれる横方向の表示むらが発生し、その表示品位を著しく低下させていたという問題がある。
本発明は係る問題を解決するためになされたものであり、その目的は、均一で良質な表示品位を有する平面表示装置を提供することにある。
本発明に係る平面表示装置は、複数の画素電極が水平方向に沿って配列された画素電極ラインが垂直方向に沿って複数本配置された表示領域と、各画素電極を駆動するためにそれぞれ設けられた複数の薄膜トランジスタと、各薄膜トランジスタに設けられたゲート端子に接続され、前記画素電極ラインに沿って互いに略平行に配置された複数のゲート電極と、各薄膜トランジスタに設けられたドレイン端子に接続され、垂直方向に沿って互いに略平行に配置された複数のソース電極と、各薄膜トランジスタに設けられたソース電極に一端が接続された蓄積容量素子と、前記蓄積容量素子の他端に接続され、前記画素電極ラインに沿って互いに略平行に配置された複数の蓄積容量素子配線と、前記複数の画素電極に共通に設けられた対向電極とを備え、前記蓄積容量素子配線は、前記画素電極ラインに沿って1以上の画素電極毎に、互いに異なる画素電極ライン側に設けられた蓄積容量素子に接続され、互いに隣接する第1及び第2の蓄積容量素子配線には、所定差電圧だけ異なる電位の補償電圧が印加され、該補償電圧の印加後、一方の蓄積容量素子配線の電圧は、他方の蓄積容量素子配線と同一レベルの電圧に変化され、前記同一レベルに変化した蓄積容量素子配線に蓄積容量素子を介して接続された画素電極の電位は、前記蓄積容量素子配線の変化した電圧だけ増加すると共に保持されることを特徴とする。
本発明によれば、均一で良質な表示品位を有する平面表示装置を提供することができる。
本実施の形態に係る平面表示装置においては、同一のゲート電極に接続された複数の薄膜トランジスタのうち第1蓄積容量電極に蓄積容量素子を介して接続された薄膜トランジスタに設けられたソース端子にソース電極を介して印加される画像信号電圧と、第2蓄積容量電極に蓄積容量素子を介して接続された薄膜トランジスタに設けられたソース端子にソース電極を介して印加される画像信号電圧とは、互いに異なる電圧極性になっている。このため、第1蓄積容量電極に蓄積容量素子を介して接続された薄膜トランジスタに設けられたソース端子に接続されたソース電極を流れる第1電流の向きと第2蓄積容量電極に蓄積容量素子を介して接続された薄膜トランジスタに設けられたソース端子に接続されたソース電極を流れる第2電流の向きとが互いに反対の方向になる。従って、第1蓄積容量電極に接続された薄膜トランジスタに設けられたソース端子に接続されたソース電極と第1蓄積容量電極とが交差する位置における寄生容量と、第2蓄積容量電極に接続された薄膜トランジスタに設けられたソース端子に接続されたソース電極と第2蓄積容量電極とが交差する位置における寄生容量とが低減するために、第1および第2蓄積容量電極における駆動波形の鈍りおよび駆動波形の歪みが減少する。その結果、クロストークが発生しない均一で良好な表示品位を有する平面表示装置を得ることができる。
各ソース電極に前記画像信号電圧を印加するために設けられたソース電極駆動回路をさらに具備することが好ましい。
前記ソース電極駆動回路は、各ソース電極を時分割駆動することが好ましい。
前記ソース電極駆動回路は、複数のソース電極ごとに前記画像信号電圧を順番に印加することが好ましい。
前記第1蓄積容量電極に接続された前記薄膜トランジスタに設けられた前記ソース端子に印加される画像信号電圧と、前記第2蓄積容量電極に接続された前記薄膜トランジスタに設けられた前記ソース端子に印加される画像信号電圧とを順番に印加するために設けられたスイッチ回路をさらに具備することが好ましい。
前記スイッチ回路は、前記ソース電極駆動回路から前記画像信号電圧を受け取り、前記画像信号電圧の電圧極性が切り替わる回数が少なくなるように前記画像信号電圧を順番に印加することが好ましい。
前記スイッチ回路は、前記互いに異なる電圧極性を有している画像信号電圧を受け取り、前記ソース電極駆動回路からの指示に応じて前記画像信号電圧を順番に印加することが好ましい。
前記複数の表示画素は、P行Q列(PおよびQは2以上の整数)のマトリックス状に配置されており、各第1蓄積容量電極は、2N行目(1≦N≦(P−1)/2)に配置された表示画素と(2N+1)行目に配置された表示画素とにそれぞれ接続するように配置されており、各第2蓄積容量電極は、(2N−1)行目に配置された表示画素と前記2N行目に配置された表示画素とにそれぞれ接続するように配置されていることが好ましい。
前記蓄積容量素子配線は、前記画素電極ラインに沿って1個の画素電極毎に、異なる画素電極ライン側に配列された画素電極に対応する蓄積容量素子に接続されていることが好ましい。
前記蓄積容量素子配線は、前記画素電極ラインに沿って複数個の画素電極毎に、異なる画素電極ライン側に配列された画素電極に対応する蓄積容量素子に接続されていることが好ましい。
互いに隣接する蓄積容量素子配線には、互いに異なる電圧極性を有する電圧信号が印加されることが好ましい。
前記電圧信号は、前記画素電極をCC駆動するための電圧信号であることが好ましい。
各蓄積容量素子配線は、互いに隣接する画素電極ラインの間に配置されていることが好ましい。
前記ゲート電極は、前記画素電極の下側に配置されていることが好ましい。
前記画素電極は、前記薄膜トランジスタの上に層間絶縁膜を介して配置されていることが好ましい。
入力画像データを補正する補正回路をさらに具備しており、前記補正回路は、前記入力画像データを受け取り、前記入力画像データの濃淡ムラを補正するために、所定の関数が設定されたテーブルに基づいて補正画像データを生成するルックアップテーブルと、水平同期信号によってリセットされ、前記入力画像データを転送するためのドットクロックをカウントして奇数列偶数列識別信号を生成する列カウンタと、前記ルックアップテーブルにおいて生成された前記補正画像データと前記入力画像データとを前記列カウンタから供給された前記奇数列偶数列識別信号に基づいて選択して、前記ソース電極を駆動するために設けられたソース電極駆動回路へ供給するセレクタとを含んでいることが好ましい。
以下、図面を参照して本発明の実施の形態を説明する。
(実施の形態1)
図1Aは実施の形態1に係る平面表示装置100の構成を示す平面図であり、図1Bは平面表示装置100の要部を示す平面図である。平面表示装置100は、P行Q列(PおよびQは2以上の整数)のマトリックス状に配置された複数の液晶9と各液晶9を駆動するためにそれぞれ設けられた複数の薄膜トランジスタ4(TFT)とを備えている。各液晶9は、容量性の負荷となる。薄膜トランジスタ4は、Nチャンネルのトランジスタである。液晶9は、薄膜トランジスタ4の上に層間絶縁膜を介して配置されている。
各薄膜トランジスタ4には、ゲート端子5とソース端子6とドレイン端子7とがそれぞれ設けられている。各液晶9は、各薄膜トランジスタ4にそれぞれ設けられたドレイン端子7にそれぞれ接続されている。
各薄膜トランジスタ4にそれぞれ設けられたゲート端子5には、それぞれが所定の間隔を空けて水平方向に沿って配置された複数のゲート電極19が接続されている。ゲート電極19は、液晶9の下側に配置されている。各薄膜トランジスタ4にそれぞれ設けられたソース端子6には、それぞれが所定の間隔を空けて垂直方向に沿って配置された複数のソース電極3が接続されている。
各液晶9および各液晶9をそれぞれ駆動する薄膜トランジスタ4に設けられたドレイン端子7には、蓄積容量素子8がそれぞれ接続されている。奇数番目の列に配置された各液晶9は、それぞれが所定の間隔を空けて水平方向に沿って配置された複数の蓄積容量電極(蓄積容量配線)1に蓄積容量素子8を介してそれぞれ接続されている。偶数番目の列に配置された各液晶9は、それぞれが所定の間隔を空けて水平方向に沿って配置された複数の蓄積容量電極(蓄積容量配線)2に蓄積容量素子8を介してそれぞれ接続されている。各液晶8を挟んで薄膜トランジスタ4の反対側には、対向電極22がそれぞれ設けられている。各蓄積容量配線1および各蓄積容量配線2の上には、蓄積容量パッド1Aおよび2Aがそれぞれ設けられている。
各蓄積容量電極1は、2N行目(1≦N≦(P−1)/2)に配置された液晶9と(2N+1)行目に配置された液晶9とにそれぞれ接続するように配置されており、各蓄積容量電極2は、(2N−1)行目に配置された液晶9と2N行目に配置された液晶9とにそれぞれ接続するように配置されている。
各ソース電極3が各ゲート電極19とそれぞれ交差する位置には、寄生容量24がそれぞれ設けられている。各ソース電極3が各蓄積容量電極1および各蓄積容量電極2とそれぞれ交差する位置には、寄生容量23がそれぞれ設けられている。
各ソース電極3は、ソース電極駆動回路20に接続されている。各ゲート電極19および各蓄積容量電極1および各蓄積容量電極2は、走査回路25に接続されている。
このように、蓄積容量素子配線1および2は、複数の液晶9が水平方向に沿って配列された画素電極ラインに沿って1個の液晶9毎に、異なる画素電極ライン側に配列された液晶9に対応する蓄積容量素子8に接続されている。
このように構成された平面表示装置100の動作を説明する。図2は、平面表示装置100の動作を説明するための波形図である。
図1A、図1Bおよび図2を参照すると、蓄積容量電極1に蓄積容量素子8を介して接続された薄膜トランジスタ4に設けられたソース端子6に奇数列目のソース電極3を介して印加される画像信号電圧10は、水平同期周期26ごとに極性が変化している。蓄積容量電極2に蓄積容量素子8を介して接続された薄膜トランジスタ4に設けられたソース端子6に偶数列目のソース電極3を介して印加される画像信号電圧11も、画像信号電圧10と同様に、水平同期周期26ごとに極性が変化している。画像信号電圧10と画像信号電圧11とは、同一の水平同期周期26の間、互いに異なる電圧極性を有している。
画像信号電圧10は、奇数列目のソース電極3に印加される。画像信号電圧11は、偶数列目のソース電極3に印加される。このため、画像信号電圧10が印加されるソース電極3と画像信号電圧11が印加されるソース電極3とは、およそ半数ずつになっている。
蓄積容量電極1に印加される補償電圧12、蓄積容量電極2に印加される補償電圧13、他の蓄積容量電極1に印加される補償電圧14および他の蓄積容量電極2に印加される補償電圧15においては、印加する電圧極性がラインごとに反転しながら走査される。各補償電圧12、補償電圧13、補償電圧14および補償電圧15は、印加する電圧極性がフレーム周期27ごとにそれぞれ反転するようにしている。
画素を構成する液晶9に各ラインごとに印加される画素印加電圧28、画素印加電圧29、画素印加電圧30および画素印加電圧31の電圧極性は各ラインごとに異なっている。各液晶9は実効値応答をするため、画素印加電圧28、画素印加電圧29、画素印加電圧30および画素印加電圧31の電圧実効値は互いに等しくなっている。
各薄膜トランジスタ4に設けられたゲート端子5と接続するように、それぞれが所定の間隔を空けて水平方向に沿って配置された複数のゲート電極19にそれぞれ印加されるゲート駆動電圧16、ゲート駆動電圧17およびゲート駆動電圧18は、水平同期周期26ごとに順番にそれぞれオンになる。
ゲート駆動電圧16が期間T1と期間T2との間においてオンになると、画像信号電圧10および画像信号電圧11は、ゲート駆動電圧16が印加される各ゲート端子5が設けられた薄膜トランジスタ4を通って蓄積容量素子8および液晶9に印加される。
次に、補償電圧12が期間T2と期間T3との間においてロー電位から中間電位に変化すると、画素を構成する液晶9に印加される画素印加電圧28には、補償電圧12の差電圧が重畳され、補償電圧12の差電圧が重畳された画素印加電圧28は、その電圧値を保持する。
図3Aは平面表示装置100に設けられた液晶9に印加される画素印加電圧の極性を説明するための模式図である。図3A(a)は奇数フレームにおいて印加される画素印加電圧の極性を説明するための模式図であり、図3A(b)は偶数フレームにおいて印加される画素印加電圧の極性を説明するための模式図である。画素印加電圧の極性は、各行ごとに異なっており、各列ごとに異なっている。さらに、画素印加電圧の極性は、奇数フレームと偶数フレームとの間で液晶を交流化するために、奇数フレームと偶数フレームとの間で反転している。
このように、画像信号電圧10と画像信号電圧11とは同一の水平同期周期26の間、互いに異なる電圧極性を有しており、画像信号電圧10が印加されるソース電極3と画像信号電圧11が印加されるソース電極3とは、およそ半数ずつになっている。
図3Bは、実施の形態1に係る他の平面表示装置100Cの構成を示す平面図である。図1を参照して前述した平面表示装置100においては、蓄積容量素子配線1および2は、複数の液晶9が水平方向に沿って配列された画素電極ラインに沿って1個の液晶9毎に、異なる画素電極ライン側に配列された液晶9に対応する蓄積容量素子8に接続されていた。しかしながら、本発明はこれに限定されない。図3Bに示すように、蓄積容量素子配線1および2は、画素電極ラインに沿って2個の液晶9毎に、異なる画素電極ライン側に配列された液晶9に対応する蓄積容量素子8に接続されてもよい。
図3Cは、実施の形態1に係るさらに他の平面表示装置100Dの構成を示す平面図である。図3Cに示すように、蓄積容量素子配線1および2は、画素電極ラインに沿って3個の液晶9毎に、異なる画素電極ライン側に配列された液晶9に対応する蓄積容量素子8に接続されてもよい。
このように、蓄積容量素子配線1および2は、画素電極ラインに沿って少なくとも1個以上の所定の液晶9毎に、異なる画素電極ライン側に配列された液晶9に対応する蓄積容量素子8に接続されていればよい。
図3Dは、実施の形態1に係る平面表示装置に設けられた補正回路の構成を示すブロック図である。この補正回路は、CCDI駆動される上下画素の間の実効電圧差をソース諧調電圧を変えることによって補正するために設けられている。
補正回路は、下画素(後書き込み)用のルックアップテーブル5を備えている。ルックアップテーブル5は、平面表示装置100へ入力される入力デジタル画像データ1を受け取り、入力デジタル画像データ1の濃淡ムラを補正するために、所定の関数が設定されたテーブルに基づいて補正画像データ6を生成する。
補正回路には、列カウンタ7が設けられている。列カウンタ7は、水平同期信号4によってリセットされ、デジタル画像データを転送するためのドットクロック3をカウントして奇数列偶数列識別信号8をセレクタ9へ供給する。画像列の奇数列および偶数列は、画素レイアウトにおける上画素(前書き込み)および下画素(後書き込み)に対応している。
セレクタ9は、ルックアップテーブル5において生成された補正画像データ6と入力デジタル画像データ1とを列カウンタ7から供給された奇数列偶数列識別信号8に基づいて選択して、出力画像データ2として出力し、平面表示装置100に設けられたソース電極駆動回路へ供給する。
セレクタ9は、上画素(前書き込み)の場合は入力デジタル画像データ1を選択して出力画像データ2として出力し、下画素(後書き込み)の場合は所定の演算によって算出された補正画像データ6を出力画像データ2として列毎に交互に出力し、ソース電極駆動回路へ供給する。所定の演算は、8ビット入力画像を量子化するための演算であり、下記の(式1)を用いる。
y=f(x)、y=x、(0≦x<32)、y=x−1、(32<x≦255) ・・・(式1)、
なお、線形補間等を用いてより高精度に補正するとさらに大きな効果が得られる。
このように上下画像の実効電圧のずれをソース諧調電圧に所定の差分を与えることによって補正すると、列毎の表示濃淡ムラを改善し、均一な表示を得ることができる。
以上のように実施の形態1によれば、同一のゲート電極19に接続された複数の薄膜トランジスタ4のうち蓄積容量電極1に蓄積容量素子8を介して接続された薄膜トランジスタ4に設けられたソース端子6にソース電極3を介して印加される画像信号電圧10と、蓄積容量電極2に蓄積容量素子8を介して接続された薄膜トランジスタ4に設けられたソース端子6にソース電極3を介して印加される画像信号電圧11とは、互いに異なる電圧極性になっている。
このため、蓄積容量電極1に蓄積容量素子8を介して接続された薄膜トランジスタ4に設けられたソース端子6に接続されたソース電極3を流れる電流の向きと蓄積容量電極2に蓄積容量素子8を介して接続された薄膜トランジスタ4に設けられたソース端子6に接続されたソース電極3を流れる電流の向きとが互いに反対の方向になる。
従って、蓄積容量電極1に接続された薄膜トランジスタ4に設けられたソース端子6に接続されたソース電極3と蓄積容量電極1とが交差する位置における寄生容量23の容量と、蓄積容量電極2に接続された薄膜トランジスタ4に設けられたソース端子6に接続されたソース電極3と蓄積容量電極2とが交差する位置における寄生容量24の容量とが低減するために、蓄積容量電極1および蓄積容量電極2における駆動波形の鈍りおよび駆動波形の歪みが減少する。
また、画像信号電圧10が印加されるソース電極3に接続された寄生容量23に流れる電流の方向は、画像信号電圧11が印加されるソース電極3に接続された寄生容量23に流れる電流の方向と逆の方向になるので、両電流が互いに相殺される結果、寄生容量23に接続された蓄積容量電極1および蓄積容量電極2において駆動電圧歪みが消滅する。
その結果、クロストークが発生しない均一で良好な表示品位を有する平面表示装置を得ることができる。
(実施の形態2)
図4は、実施の形態2に係る平面表示装置100Aの構成を示す平面図である。実施の形態1において図1を参照して前述した平面表示装置100の構成要素と同一の構成要素には同一の参照符号を付している。従って、これらの構成要素の詳細な説明は省略する。前述した平面表示装置100と異なる点は、スイッチ回路21をさらに備えている点、およびソース電極駆動回路20の替わりにソース電極駆動回路20Aを備えている点である。
スイッチ回路21は、蓄積容量電極1に接続された薄膜トランジスタ4に設けられたソース端子6に印加される画像信号電圧と、蓄積容量電極2に接続された薄膜トランジスタ4に設けられたソース端子6に印加される画像信号電圧とを順番に印加するために設けらている。
スイッチ回路21には、各ソース電極3に画像信号電圧をそれぞれ印加するための複数のトランジスタ32が設けられている。各トランジスタ32に設けられたドレイン端子は、対応するソース電極3にそれぞれ接続されている。
各トランジスタ32に設けられたソース端子は、互いに隣接する3本のソース電極3にそれぞれ接続された3個のトランジスタ32にそれぞれ設けられたソース端子ごとに、ソース電極駆動回路20Aに接続された画像信号電圧供給線34に接続されている。このように、ソース電極3は、3本のソース電極3ごとに1本の画像信号電圧供給線34に接続されている。
互いに隣接する3本のソース電極3にそれぞれ接続された3個のトランジスタ32のうちの1つに設けられたゲート端子は、スイッチ回路制御信号35を供給するためのスイッチ回路制御信号線にそれぞれ接続されている。互いに隣接する3本のソース電極3にそれぞれ接続された3個のトランジスタ32のうちの他の1つに設けられたゲート端子は、スイッチ回路制御信号36を供給するための他のスイッチ回路制御信号線にそれぞれ接続されている。互いに隣接する3本のソース電極3にそれぞれ接続された3個のトランジスタ32のうちのさらに他の1つに設けられたゲート端子は、スイッチ回路制御信号37を供給するためのさらに他のスイッチ回路制御信号線にそれぞれ接続されている。
図5は、平面表示装置100Aの動作を説明するための波形図である。図2を参照して前述した波形図の構成要素と同一の構成要素には同一の参照符号を付している。従って、これらの構成要素の詳細な説明は省略する。
図4および図5を参照すると、蓄積容量電極1に蓄積容量素子8を介して接続された薄膜トランジスタ4に設けられたソース端子6に奇数列目のソース電極3を介して印加される画像信号電圧10Aは、水平同期周期26と同一の長さの期間ごとに極性が変化している。蓄積容量電極2に蓄積容量素子8を介して接続された薄膜トランジスタ4に設けられたソース端子6に偶数列目のソース電極3を介して印加される画像信号電圧11Aも、画像信号電圧10と同様に、水平同期周期26と同一の長さの期間ごとに極性が変化している。画像信号電圧10Aと画像信号電圧11Aとは、互いに異なる電圧極性を有している。
スイッチ回路制御信号35、スイッチ回路制御信号36およびスイッチ回路制御信号37は、各ソース電極3を時分割駆動(マルチプレクス駆動)するように、水平同期周期26の間、まず、スイッチ回路制御信号35がオンになり、スイッチ回路制御信号35がオフになった後、スイッチ回路制御信号36がオンになり、スイッチ回路制御信号36がオフになった後、スイッチ回路制御信号37がオンになる。このため、互いに隣接する3本のソース電極3にそれぞれ接続されたトランジスタ32は、順番にオンになる。従って、ソース電極駆動回路20Aから画像信号電圧供給線34を通って供給される画像信号電圧は、互いに隣接する3本のソース電極3へ順番に印加される。
画像信号電圧10Aは、奇数列目のソース電極3に印加される。画像信号電圧11Aは、偶数列目のソース電極3に印加される。このため、画像信号電圧10Aが印加されるソース電極3と画像信号電圧11Aが印加されるソース電極3とは、およそ半数ずつになっている。
蓄積容量電極1に印加される補償電圧12、蓄積容量電極2に印加される補償電圧13、他の蓄積容量電極1に印加される補償電圧14および他の蓄積容量電極2に印加される補償電圧15においては、印加する電圧極性がラインごとに反転しながら走査される。各補償電圧12、補償電圧13、補償電圧14および補償電圧15は、印加する電圧極性がフレーム周期27ごとにそれぞれ反転するようにしている。
画素を構成する液晶9に各ラインごとに印加される画素印加電圧38、画素印加電圧39、画素印加電圧40、画素印加電圧41、画素印加電圧42および画素印加電圧43の電圧極性は各ラインごとに異なっている。各液晶9は実測値応答をするため、画素印加電圧38、画素印加電圧39、画素印加電圧40、画素印加電圧41、画素印加電圧42および画素印加電圧43の電圧実効値は互いに等しくなっている。
各薄膜トランジスタ4に設けられたゲート端子5と接続するように、それぞれが所定の間隔を空けて水平方向に沿って配置された複数のゲート電極19にそれぞれ印加されるゲート駆動電圧16、ゲート駆動電圧17およびゲート駆動電圧18は、水平同期周期26ごとに順番にそれぞれオンになる。
ゲート駆動電圧16がオンになると、画像信号電圧10Aおよび画像信号電圧11Aは、ゲート駆動電圧16が印加される各ゲート端子5が設けられた薄膜トランジスタ4を通って蓄積容量素子8および液晶9に印加される。
次に、補償電圧12がロー電位から中間電位に変化すると、画素を構成する液晶9に印加される画素印加電圧38には、補償電圧12の差電圧が重畳され、補償電圧12の差電圧が重畳された画素印加電圧38は、その電圧値を保持する。
以上のように実施の形態2によれば、スイッチ回路21は、ソース電極駆動回路20Aから画像信号電圧を受け取り、画像信号電圧の電圧極性が切り替わる回数が少なくなるように画像信号電圧をソース電極3に順番に印加する。このため、ソース電極駆動回路20Aから出力される画像信号電圧において不要な波形の変化が少なくなる。従って、駆動波形の鈍りおよび駆動波形の歪みが減少する。その結果、クロストークが発生しない均一で良好な表示品位を有する平面表示装置を得ることができる。
(実施の形態3)
図6は、実施の形態3に係る平面表示装置100Bの構成を示す平面図である。実施の形態2において図4を参照して前述した平面表示装置100Aの構成要素と同一の構成要素には同一の参照符号を付している。従って、これらの構成要素の詳細な説明は省略する。前述した平面表示装置100Aと異なる点は、スイッチ回路21の替わりにスイッチ回路21Aを備えており、ソース電極駆動回路20Aの替わりにソース電極駆動回路20Bを備えている点である。
スイッチ回路21Aには、各ソース電極3に画像信号電圧をそれぞれ印加するための複数のトランジスタ32が設けられている。各トランジスタ32に設けられたドレイン端子は、対応するソース電極3にそれぞれ接続されている。
各トランジスタ32に設けられたゲート端子は、互いに隣接する2本のソース電極3にそれぞれ接続された2個のトランジスタ32にそれぞれ設けられた2個のゲート端子ごとに、ソース電極駆動回路20Bに接続された1本の制御信号線51に接続されている。
互いに隣接する2本のソース電極3にそれぞれ接続された2個のトランジスタ32の1つに設けられたソース端子は、画像信号電圧10を供給するための画像信号電圧供給線に接続されている。互いに隣接する2本のソース電極3にそれぞれ接続された2個のトランジスタ32の他の1つに設けられたソース端子は、画像信号電圧11を供給するための画像信号電圧供給線に接続されている。
図7は、実施の形態3に係る平面表示装置100Bの動作を説明するための波形図である。図2および図5を参照して前述した波形図の構成要素と同一の構成要素には同一の参照符号を付している。従って、これらの構成要素の詳細な説明は省略する。
画像信号電圧10は、水平同期周期26ごとに極性が変化している。画像信号電圧11も、画像信号電圧10と同様に、水平同期周期26ごとに極性が変化している。画像信号電圧10と画像信号電圧11とは、同一の水平同期周期26の間、互いに異なる電圧極性を有している。
ソース電極駆動回路20Bから制御信号線51を通って出力されるスイッチ回路制御信号35、スイッチ回路制御信号36およびスイッチ回路制御信号37は、各ソース電極3を時分割駆動(マルチプレクス駆動)するように、水平同期周期26の間、まず、スイッチ回路制御信号35がオンになり、スイッチ回路制御信号35がオフになった後、スイッチ回路制御信号36がオンになり、スイッチ回路制御信号36がオフになった後、スイッチ回路制御信号37がオンになる。このため、画像信号電圧10および画像信号電圧11は、互いに隣接する2本のソース電極3ごとに同時に印加される。
蓄積容量電極1に印加される補償電圧12、蓄積容量電極2に印加される補償電圧13、他の蓄積容量電極1に印加される補償電圧14および他の蓄積容量電極2に印加される補償電圧15においては、印加する電圧極性がラインごとに反転しながら走査される。各補償電圧12、補償電圧13、補償電圧14および補償電圧15は、印加する電圧極性がフレーム周期27ごとにそれぞれ反転するようにしている。
画素を構成する液晶9に各ラインごとに印加される画素印加電圧38、画素印加電圧39、画素印加電圧40、画素印加電圧41、画素印加電圧42および画素印加電圧43の電圧極性は各ラインごとに異なっている。各液晶9は実測値応答をするため、画素印加電圧38、画素印加電圧39、画素印加電圧40、画素印加電圧41、画素印加電圧42および画素印加電圧43の電圧実効値は互いに等しくなっている。
各薄膜トランジスタ4に設けられたゲート端子5と接続するように、それぞれが所定の間隔を空けて水平方向に沿って配置された複数のゲート電極19にそれぞれ印加されるゲート駆動電圧16、ゲート駆動電圧17およびゲート駆動電圧18は、水平同期周期26ごとに順番にそれぞれオンになる。
ゲート駆動電圧16がオンになると、画像信号電圧10および画像信号電圧11は、ゲート駆動電圧16が印加される各ゲート端子5が設けられた薄膜トランジスタ4を通って蓄積容量素子8および液晶9に印加される。
次に、補償電圧12がロー電位から中間電位に変化すると、画素を構成する液晶9に印加される画素印加電圧38には、補償電圧12の差電圧が重畳され、補償電圧12の差電圧が重畳された画素印加電圧38は、その電圧値を保持する。
なお、実施の形態1〜実施の形態3において、薄膜トランジスタ4とトランジスタ32がNチャネルトランジスタである例を示したが、Pチャネルトランジスタであってもよく、CMOS構成を有するトランジスタであってもよい。
実施の形態1に係る平面表示装置の構成を示す平面図である。 実施の形態1に係る平面表示装置の要部を示す平面図である。 実施の形態1に係る平面表示装置の動作を説明するための波形図である。 実施の形態1に係る平面表示装置に設けられた液晶に印加される画素印加電圧の極性を説明するための模式図であり、(a)は、奇数フレームにおいて印加される画素印加電圧の極性を説明するための模式図であり、(b)は、偶数フレームにおいて印加される画素印加電圧の極性を説明するための模式図である。 実施の形態1に係る他の平面表示装置の構成を示す平面図である。 実施の形態1に係るさらに他の平面表示装置の構成を示す平面図である。 実施の形態1に係る平面表示装置に設けられた補正回路の構成を示すブロック図である。 実施の形態2に係る平面表示装置の構成を示す平面図である。 実施の形態2に係る平面表示装置の動作を説明するための波形図である。 実施の形態3に係る平面表示装置の構成を示す平面図である。 実施の形態3に係る平面表示装置の動作を説明するための波形図である。 従来の平面表示装置の構成を示す平面図である。 従来の平面表示装置の動作を説明するための波形図である。 従来の平面表示装置に設けられた液晶に印加される画素印加電圧の極性を説明するための模式図であり、(a)は、奇数フレームにおいて印加される画素印加電圧の極性を説明するための模式図であり、(b)は、偶数フレームにおいて印加される画素印加電圧の極性を説明するための模式図である。

Claims (7)

  1. 複数の画素電極が水平方向に沿って配列された画素電極ラインが垂直方向に沿って複数本配置された表示領域と、
    各画素電極を駆動するためにそれぞれ設けられた複数の薄膜トランジスタと、
    各薄膜トランジスタに設けられたゲート端子に接続され、前記画素電極ラインに沿って互いに略平行に配置された複数のゲート電極と、
    各薄膜トランジスタに設けられたドレイン端子に接続され、垂直方向に沿って互いに略平行に配置された複数のソース電極と、
    各薄膜トランジスタに設けられたソース電極に一端が接続された蓄積容量素子と、
    前記蓄積容量素子の他端に接続され、前記画素電極ラインに沿って互いに略平行に配置された複数の蓄積容量素子配線とを備え、
    前記蓄積容量素子配線は、前記画素電極ラインに沿って1以上の画素電極毎に、互いに異なる画素電極ライン側に設けられた蓄積容量素子に接続され、
    互いに隣接する第1及び第2の蓄積容量素子配線には、所定差電圧だけ異なる電位の補償電圧が印加され、該補償電圧の印加後、一方の蓄積容量素子配線の電圧は、他方の蓄積容量素子配線と同一レベルの電圧に変化され、
    前記同一レベルに変化した蓄積容量素子配線に蓄積容量素子を介して接続された画素電極の電位は、前記蓄積容量素子配線の変化した電圧だけ増加すると共に保持されることを特徴とする平面表示装置。
  2. 前記蓄積容量素子配線は、前記画素電極ラインに沿って1個の画素電極毎に、異なる画素電極ライン側に配列された画素電極に対応する蓄積容量素子に接続されている、請求の範囲1記載の平面表示装置。
  3. 前記蓄積容量素子配線は、前記画素電極ラインに沿って複数個の画素電極毎に、異なる画素電極ライン側に配列された画素電極に対応する蓄積容量素子に接続されている、請求の範囲1記載の平面表示装置。
  4. 各蓄積容量素子配線は、互いに隣接する画素電極ラインの間に配置されている、請求の範囲1記載の平面表示装置。
  5. 前記ゲート電極は、前記画素電極の下側に配置されている、請求の範囲1記載の平面表示装置。
  6. 前記画素電極は、前記薄膜トランジスタの上に層間絶縁膜を介して配置されている、請求の範囲1記載の平面表示装置。
  7. 入力画像データを補正する補正回路をさらに具備しており、
    前記補正回路は、前記入力画像データを受け取り、前記入力画像データの濃淡ムラを補正するために、所定の関数が設定されたテーブルに基づいて補正画像データを生成するルックアップテーブルと、
    水平同期信号によってリセットされ、前記入力画像データを転送するためのドットクロックをカウントして奇数列偶数列識別信号を生成する列カウンタと、
    前記ルックアップテーブルにおいて生成された前記補正画像データと前記入力画像データとを前記列カウンタから供給された前記奇数列偶数列識別信号に基づいて選択して、前記ソース電極を駆動するために設けられたソース電極駆動回路へ供給するセレクタとを含んでいる、請求の範囲1記載の平面表示装置。
JP2007204706A 2002-10-29 2007-08-06 平面表示装置 Expired - Lifetime JP4729020B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007204706A JP4729020B2 (ja) 2002-10-29 2007-08-06 平面表示装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002314901 2002-10-29
JP2002314901 2002-10-29
JP2007204706A JP4729020B2 (ja) 2002-10-29 2007-08-06 平面表示装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004548044A Division JPWO2004040545A1 (ja) 2002-10-29 2003-10-28 平面表示装置

Publications (2)

Publication Number Publication Date
JP2008033336A JP2008033336A (ja) 2008-02-14
JP4729020B2 true JP4729020B2 (ja) 2011-07-20

Family

ID=39122737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007204706A Expired - Lifetime JP4729020B2 (ja) 2002-10-29 2007-08-06 平面表示装置

Country Status (1)

Country Link
JP (1) JP4729020B2 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05307194A (ja) * 1992-04-28 1993-11-19 Semiconductor Energy Lab Co Ltd アクティブマトリクス表示装置およびその駆動方法
JPH06242417A (ja) * 1993-02-18 1994-09-02 G T C:Kk アクティブマトリックス型表示装置およびその駆動方法
JPH06265846A (ja) * 1993-03-10 1994-09-22 Hitachi Ltd アクティブマトリクス型液晶表示装置及びその駆動方法
JP2002098997A (ja) * 2000-09-25 2002-04-05 Toshiba Corp 液晶表示装置
JP2002182623A (ja) * 2000-10-04 2002-06-26 Seiko Epson Corp 画像信号補正回路、その補正方法、液晶表示装置及び電子機器
JP2002182622A (ja) * 2000-10-04 2002-06-26 Seiko Epson Corp 画像信号補正回路、その補正方法、液晶表示装置及び電子機器
JP2003279929A (ja) * 2002-03-25 2003-10-02 Sharp Corp 液晶表示装置の駆動方法及びその液晶表示装置
JP2003295157A (ja) * 2002-03-29 2003-10-15 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2004021069A (ja) * 2002-06-19 2004-01-22 Sharp Corp アクティブマトリクス基板および表示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05307194A (ja) * 1992-04-28 1993-11-19 Semiconductor Energy Lab Co Ltd アクティブマトリクス表示装置およびその駆動方法
JPH06242417A (ja) * 1993-02-18 1994-09-02 G T C:Kk アクティブマトリックス型表示装置およびその駆動方法
JPH06265846A (ja) * 1993-03-10 1994-09-22 Hitachi Ltd アクティブマトリクス型液晶表示装置及びその駆動方法
JP2002098997A (ja) * 2000-09-25 2002-04-05 Toshiba Corp 液晶表示装置
JP2002182623A (ja) * 2000-10-04 2002-06-26 Seiko Epson Corp 画像信号補正回路、その補正方法、液晶表示装置及び電子機器
JP2002182622A (ja) * 2000-10-04 2002-06-26 Seiko Epson Corp 画像信号補正回路、その補正方法、液晶表示装置及び電子機器
JP2003279929A (ja) * 2002-03-25 2003-10-02 Sharp Corp 液晶表示装置の駆動方法及びその液晶表示装置
JP2003295157A (ja) * 2002-03-29 2003-10-15 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2004021069A (ja) * 2002-06-19 2004-01-22 Sharp Corp アクティブマトリクス基板および表示装置

Also Published As

Publication number Publication date
JP2008033336A (ja) 2008-02-14

Similar Documents

Publication Publication Date Title
JP3039404B2 (ja) アクティブマトリクス型液晶表示装置
TWI395176B (zh) 用於交替驅動矩陣排列之像素之矩陣定址方法以及用於交替驅動矩陣排列之像素之矩陣定址電路
US8330700B2 (en) Driving circuit and driving method of active matrix display device, and active matrix display device
KR100838223B1 (ko) 액정표시장치, 그 구동회로 및 구동방법
KR100561946B1 (ko) 액정표시장치 및 그 구동방법
TWI413958B (zh) 主動矩陣型顯示裝置的驅動電路、驅動方法及主動矩陣型顯示裝置
KR101022566B1 (ko) 액정 표시 장치
JP2010033038A (ja) 表示パネル駆動方法及び表示装置
JPH1073843A (ja) アクティブマトリクス型液晶表示装置
US20050264508A1 (en) Liquid crystal display device and driving method thereof
US7133004B2 (en) Flat display device
US20080180462A1 (en) Liquid crystal display device and method of driving liquid crystal display device
KR20090101852A (ko) 액정 표시 장치 및 액정 표시 방법, 표시 제어 장치 및 표시 제어 방법
KR100302829B1 (ko) 액정전기광학장치
JPH07318901A (ja) アクティブマトリクス型液晶表示装置及びその駆動方法
US7746306B2 (en) Display device having an improved video signal drive circuit
JP5115001B2 (ja) 表示パネル及びそれを用いたマトリックス表示装置
JP2009020197A (ja) 表示装置ならびにその駆動回路および駆動方法
WO2009148006A1 (ja) 表示装置
JP4991127B2 (ja) 表示信号処理装置および液晶表示装置
US20210132453A1 (en) Liquid crystal display device
JP4729020B2 (ja) 平面表示装置
JP5418388B2 (ja) 液晶表示装置
JP3377739B2 (ja) 液晶表示装置の駆動方法及び駆動回路
JP2009180855A (ja) 液晶表示装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R150 Certificate of patent or registration of utility model

Ref document number: 4729020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term