JP4716647B2 - ナノスコピック熱電冷却装置 - Google Patents

ナノスコピック熱電冷却装置 Download PDF

Info

Publication number
JP4716647B2
JP4716647B2 JP2003103274A JP2003103274A JP4716647B2 JP 4716647 B2 JP4716647 B2 JP 4716647B2 JP 2003103274 A JP2003103274 A JP 2003103274A JP 2003103274 A JP2003103274 A JP 2003103274A JP 4716647 B2 JP4716647 B2 JP 4716647B2
Authority
JP
Japan
Prior art keywords
thermoelectric
area
cooling system
type
thermoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003103274A
Other languages
English (en)
Other versions
JP2003347606A (ja
Inventor
ウッタム・シャマリンドゥ・ゴーシャル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JP2003347606A publication Critical patent/JP2003347606A/ja
Application granted granted Critical
Publication of JP4716647B2 publication Critical patent/JP4716647B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/832Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
    • Y10S977/833Thermal property of nanomaterial, e.g. thermally conducting/insulating or exhibiting peltier or seebeck effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷却技術に関し、より詳細には、ペルチェ効果を実施する熱電冷却器に関する。
【0002】
【従来の技術】
コンピュータの速度が上昇し続けるにつれて、コンピュータ内の回路で発生する熱量も増加し続けている。多くの回路および応用例については、熱が増加するとコンピュータの性能が落ちてしまう。これらの回路は、最も効率的に動作するために冷却する必要がある。パーソナルコンピュータなど多くのローエンド・コンピュータでは、コンピュータは、対流冷却用のファンとフィンを使用するだけで冷却することが可能である。しかし、より高速で動作し、はるかに多くの熱を発生するメインフレームなど、より大きなコンピュータについては、これらの解決策は実用的ではない。
【0003】
現在、多くのメインフレームは、蒸気圧縮冷却器を用いてコンピュータを冷却している。蒸気圧縮冷却器は、多くの家庭で使用されている中央式空気調和ユニットと本質的に同じ働きをする。しかし、蒸気圧縮冷却器は機械的に極めて複雑であり、過熱によって性能の低下を最も受けやすい特定の領域を冷却するために、メインフレームの様々な部分に通さなければならない断熱材やホースが必要である。
【0004】
熱電冷却器は、はるかに単純で安価なタイプの冷却器である。熱電冷却器は、ペルチェ効果として知られている物理原理を利用する。ペルチェ効果によって、2種の異種材料の両端に電源からの直流電流を流すと、2種の異種材料の接合部で熱が吸収される。したがって、熱は、熱い物質から除去され、放熱器に運ばれて放散し、これにより熱い物質を冷却する。熱電冷却器は、集積回路チップ内に製作することができ、蒸気圧縮冷却器が必要とするような複雑な機械的システムの必要性なしに、特定の熱い個所を直接冷却することができる。
【0005】
【発明が解決しようとする課題】
しかし、現在の熱電冷却器は、蒸気圧縮冷却器ほど効率的ではなく、同一量の冷却を実現するのにより多くの電力を消費することを必要とする。さらに、現在の熱電冷却器は、蒸気圧縮冷却器と同量の物質を冷却することができない。したがって、効率および冷却能力が改善された熱電冷却器があれば望ましいことであり、それにより、例えば、メインフレーム・コンピュータ、「ホット・チップス」の熱管理、高周波通信回路、磁気読取り書込みヘッド、光学およびレーザ装置、および自動車冷房装置などの小さな冷却用途から複雑な蒸気圧縮冷却器を無くすことができるであろう。
【0006】
通常の熱電冷却器はまた、上から下へ形成されている。すなわち、熱電素子は、低温伝導区域(熱源)が(例えば)システムの底部に、かつ高温伝導区域が(対応して)システムの頂部に垂直に配置されている。こうした冷却システムは、製作するのが複雑であり、大きな容積を占めている。
【0007】
【課題を解決するための手段】
本発明は、電子加熱技術の改良を教示する。好ましい実施形態では、熱電冷却システムは、(垂直ではなく)横方向すなわち水平方向に構築され、熱電材料を伝導体と接触させる役割を果たす複数の尖ったチップを有している。好ましい実施形態では、熱電素子およびこれが接続する伝導区域は、すべて同一の平面を実質的に占めており、その結果この装置は、垂直に配置または形成された冷却システムより小さくなっている。熱電材料上の鋭い先端は、集束イオンビーム技術または電子ビーム・リソグラフィを用いて形成することが好ましい。他の好ましい実施形態では、こうした熱電冷却デバイスのアレイを製作して、様々な形状および冷却ニーズのナノスコピック領域を冷却する。
【0008】
【発明の実施の形態】
次に図面を参照する。まず図1を参照すると、従来技術による熱電冷却(TEC)デバイスのハイレベル構成図が図示してある。周知の原理である熱電冷却は、ペルチェ効果に基づくものである。ペルチェ効果によって、2種の異種材料の両端に電源102から直流電流を流すと、2種の異種材料の接合部で熱が吸収される。通常の熱電冷却デバイスは、p型半導体104とn型半導体106を使用しており、これらは、熱伝導性が優れた非導電体108の間に挟まれている。N型半導体106では電子が過剰であり、一方、p型半導体104では電子が不足している。
【0009】
電子が、導電体110からn型半導体106へ移動すると、電子のエネルギー状態は熱源112から吸収された熱エネルギーによって上昇する。このプロセスは、熱源112から、n型半導体106と導電体114を通る電子の流れを介して、吸熱器116へ熱エネルギーを移動させる効果を有する。前記電子は、低エネルギー状態へ下降して、導電体114で前記熱エネルギーを放出する。尚、p型半導体材料104についても、同様かつ同等の現象が発生していることに留意されたい。
【0010】
熱電冷却器100などの冷却装置の動作係数(coefficient of performance)hは、冷却装置の冷却能力を冷却装置の全消費電力で除した比である。したがって、動作係数は、次式で与えられる。
【数1】
Figure 0004716647
式中、項aITは熱電冷却によるものであり、項1/2IRはジュール加熱逆流(Joule heating backflow)によるものであり、項KDTは熱伝導によるものであり、項IRはジュール損失によるものであり、項aIDTはペルチェ電圧に対してなされた仕事によるものであり、aは材料のゼーベック係数であり、Tは熱源の温度であり、DTは熱源の温度と吸熱器の温度の差である。
【0011】
最大動作係数は、電流Iを最適化することによって得られ、次の関係式で与えられる。
【数2】
Figure 0004716647
式中、
【数3】
Figure 0004716647
である。また、
【数4】
Figure 0004716647
であり、eは冷却装置の効率因子である。性能係数ZTは、次式で与えられる。
【数5】
Figure 0004716647
式中、lは2種の成分から構成される。すなわち、電子による成分le、および格子による成分lである。したがって、性能係数ZTが無限大に近づくと最高効率eが得られる。蒸気圧縮冷却装置の効率は約0.3である。図1の熱電冷却器100など、通常の熱電冷却器の効率は、一般に0.1未満である。したがって、熱電冷却器の効率を蒸気圧縮冷却装置に匹敵するような領域まで上昇させるには、性能係数ZTを2より大きくしなければならない。2より大きい性能係数ZTの値が得られれば、熱電冷却器は、蒸気圧縮冷却装置と同等の効率および冷却能力を獲得したと言うことができる。
【0012】
図2は、好ましい実施形態による1次元ユニットセル冷却装置を示す図である。2つの金属接点202、204が示されている。これらは、外部電源に接続され、熱電セルを流れる電流を提供する。セルは、p型熱電素子208およびn型熱電素子210を有する。これら2つの素子の間に、セルの低温部としての役割を果たす他の伝導材料206がある。
【0013】
電流が熱電素子208、210を経由して高温側202から高温側204へ流れると、ペルチェ効果により、低温区域206が冷却され、高温区域202、204が加熱される。
【0014】
尚、熱電素子208、210は、端部が低温区域206へ向かって先細になっていることに留意されたい。この先細の端部が量子低温点(quantum cold point)を形成する。低温点は、電子の閉じ込めやフォノンの不連続も形成し、これにより、材料の格子を介した振動エネルギーの移動を制限し、したがって熱電素子208、210から低温区域206への熱伝達を制限する。これらの効果は、熱電冷却デバイスの冷却効率を改善するものである。
【0015】
pおよびn型熱電素子の先細端部は、いくつかの方法で製作または形成することができる。例えば、この鋭い先端は、集束イオンビームを用いて余分な材料を削り出すことによって形成することができる。しかし、この方法は、集積回路などのデバイスの大量生産に実施するには遅く難しい。個々の素子の先細端部を形成するより好ましい方法は、何らかのリソグラフィ法、好ましくは電子ビーム・リソグラフィを使用することである。電子ビーム・リソグラフィでは、必要な尖った構造を作るためにマスキングしてエッチングすることが必要であるが、この方法は、集束イオンビームと比べて、より鋭い細部を形成することができ、生産の状況においてはより速くより容易に実施しうる。好ましい実施形態では、n型熱電素子は、BiTe2.7Se0.3からなる。p型熱電素子は、Bi0.5Sb1.5Teからなることが好ましい。もちろん、これらの特殊な材料は、本発明が意図する熱電素子を作るための唯一可能なものではない。
【0016】
図3は、本発明の好ましい実施形態による他の実施例を示す図である。この実施例では、個々の熱電素子208、210の先細端部は、ナノワイヤと取り替えてある。ナノワイヤは、1次元電子移動効果を利用する金属ナノチューブや熱電ナノワイヤでもよい。これらは、Thermoelectrics: Basic Principles and New Materials Development, byG. Nolas, J. Sharp, and H. Goldsmid (Springer, Berlin, 2001)に記載されており、これを参照により本明細書に組み込む。しかし、ナノワイヤは、原子間力顕微鏡などの手段を用いて配置しなければならないので、大量生産の状況において実施するのは難しい。
【0017】
図4〜8は、好ましい実施形態による熱電冷却器の一部の製作工程のステップを示す側面図である。これらの説明は、好ましい2要素熱電冷却器の形成工程を示すものである。(好ましい実施形態には、n型およびp型熱電素子の両方が含まれる。)
【0018】
図4は、ポリイミドまたはSiO304の層で覆われた基板302(ガラスなど)を示している。層304は、通常、数百ミクロンの厚みである。尚、図は原寸に比例していない。層304の上には、SiN層306が形成されている。この層は、接着層としての役割を果たす。SiN層306は、金属の層308、好ましくはCuで覆われている。この層は、数ミクロン程度の厚みであることが好ましい。金属層308は、第2のSiN層306で覆われている。
【0019】
図5は、同じ領域で、マスクをした異方性エッチングを様々な層に行って、領域310Aおよび310Bから材料を取り除いた後を示す。既知のマスキングおよびエッチング方法を用いて、基板302の表面まで前記材料を除去することが好ましい。
【0020】
図6は、等方性エッチ工程によって、SiO層304から、図示したように形成されているトレンチ縁部近傍のSiO材料をアンダーカットした後の領域を示す。これらのエッチングは、示された前記金属層を3つの部分308A、308B、308Cにさらに分離する。
【0021】
図7は、2つのブリッジ314A、314Bが、前記金属層308の側部の間、すなわち308Aと308Bの間、および308Bと308Cの間に形成されていることを除いて、図6と同様の構造を示す。この実施例のブリッジ314Aは、n型材料から形成され、電気めっき技術を用いて成長させる。ブリッジ314Bは、n型材料をマスクしながら、p型材料から形成される。金属区域の間のこれらのn型およびp型材料のブリッジは、熱電冷却素子としての役割を果たす。
【0022】
もちろん、nおよびp型熱電素子の相対的位置を逆にすることもできる。
【0023】
この実施形態では、熱電素子およびそれらが接続する伝導区域は同一の面を占めている、すなわち、これらは横に配列して形成されており、これらはすべて基板302上に同一の相対高さに形成されていることが分かる。リソグラフィによって形状を正確に制御することができるので、これらの鋭い先端を形成する上でこうした横構造は縦構造より製作しやすい。好ましい実施形態のデバイスは、これらの鋭い先端の機械的位置決めを必要とせずに、半導体加工フローの一部として形成することができる。
【0024】
好ましい一実施形態では、熱電素子314A、314Bはさらに加工される。素子314Aが金属層308Bと接合する接合部では、素子314Aの端部は、尖った形状になっている(図9参照)。同じく、素子314Bは、金属層308Bと接合するところで尖った形状になっている。これについては以下でさらに説明する。
【0025】
図8は、尖った区域414A、414Bを有する本発明の構造の上面図である。
前記ブリッジ材料(図7の314A、314B)は、区域308Aおよび区域308Cをそれぞれ区域308Bに接続している。図8において、314Aと314Bの斜線区域(D、E、F、Gと表示)を、好ましくは集束イオンビーム・エッチングまたはフォトマスクと化学エッチングを使用して取り除く。これらの部分を取り除くと、尖ったブリッジ414Aおよび414Bがそれぞれ残る。区域414Aと414Bの先細の端部に注意されたい。
【0026】
図9は、図4〜8の本発明の冷却システムを完成した上面図を示す。N型半導体材料414Aは、区域408Aと区域408Bの間の間隙にかかっており、一方、p型半導体414Bは、区域408Bと区域408Cの間の間隙にかかっている。これらのnおよびp型半導体が熱電素子としての役割を果たす。
【0027】
尖った先端を有する熱電素子を作ることによって、冷却効率の上昇が得られる。低温端冷却器(cold point cooler)の詳細は、下記の文献で得ることができる。これらの文献を参照により本明細書に組み込む。米国特許出願第09/731,616号、第09/731,999号、第09/731,614号、第09/731,997号、U.Ghoshal, S. Ghoshal, C. McDowell, L. Shi, S. Cordes, and M. Farinelli,"ENHANCED THERMOELECTRIC COOLING AT COLD JUNCTION INTERFACES,"Applied Physics Letters, vol. 80, no. 16, April 22 (2002)。低温端は、ゼーベック係数を上昇させ非平衡電子フォノン交互作用効果を引き出す電子閉じ込めをもたらし、さらにフォノンの不連続も引き出す。これにより、材料の格子を介したエネルギーの移動を制限し、したがって熱電素子208、210から低温区域206への熱伝達を制限する。これらの効果は、熱電冷却デバイスの冷却効率を改善するものである。
【0028】
図10は、本発明の冷却システムの、他の好ましい実施形態を実行した2次元セルを示す上面図である。この2次元ユニット冷却セルは、2つのp型熱電素子502、504、および2つのn型熱電素子506、508を含む。4つの素子はすべて、中央アイランド510に接続している。このアイランド510は、このデバイスに電流を流すと、ペルチェ効果によりこれらの素子によって冷却される。4つの素子すべてはまた、先に議論したように、前記中央アイランド510に向かって先細の端部を有している。これらのn型およびp型熱電素子は、他の(外側の)端部で伝導体に接続している。これらの伝導体は、冷却装置において、高温端部吸熱器としての役割を果たす。運転中は、n型素子が接続している伝導体は、p型素子が接続している伝導体より高い電位に保持されている。これによって、電流は、n型素子の外側から中央アイランドへ、および中央アイランドからp型素子を経由して外側の伝導体へ流れる。この実施形態についての正しい電流の流れの方向を図中に示す。この構造により、中央アイランドが冷却される。
【0029】
こうした冷却セルの寸法は、10ミクロン程度である。中央の素子の寸法が小さいので、非常に小さな面積をスポット冷却することができる。これらのスポットを、低ノイズ・トランジスタなどの集積回路の部品とすることができ、あるいは、イメージ・センサなどのアレイに複製することができる。
【0030】
図11は、本発明のシステムの一実施形態による2次元熱電冷却セルを示す。この2次元ユニット冷却セルは、2つのp型熱電素子514、516、および2つのn型熱電素子518、520を含む。4つの素子はすべて、中央アイランド510に接続している。このアイランド510は、このデバイスに電流を流すと、ペルチェ効果によって冷却される。熱電素子の先細端部の代わりに、これらの素子はナノワイヤを介して中央アイランドに接続している。ナノワイヤが熱電材料で構成されていれば、アイランドとの接合部で冷却現象が起こる。一方、カーボン・ナノチューブを使用すると、熱電素子514〜520で冷却が起こるが、この冷却効果は、前記カーボン・ナノチューブのより高い熱伝導度によってアイランドへ運ばれる。
【0031】
図12および13はブロック図であり、矩形のパターンに整列した1次元冷却セルのアレイの図を示す。この実施例では、このアレイは、その間に共通の伝導レール610を配置した2セットの熱電冷却システムを有する。この特別な構造では、熱を吸収する3つの「高温」レール606、610、614があり、前記熱電冷却システムの動作中に冷却される2つの「低温」レール608、612がある。
【0032】
個々の熱電素子それぞれが除去する熱の総量は小さいので、冷却素子をカスケードに接続したこうしたアレイは、ある意味で有用である。いくつかの冷却素子を結合してアレイとすることによって、複数の素子が持つメリットを比較的狭い面積で得ることができる。図12の実施例の構造では、前記アレイの左端部602は冷却デバイスとして使用され、一方、高温端部604は熱を熱グラウンドまたは他の利用に放散する。
【0033】
図13は、図12の部分詳細図を示す。この図では、外側レール606、614、および中央レール610は、熱電冷却デバイスから熱を吸収する。低温レール608、612は、熱電素子の作用で冷却される。
【0034】
この冷却器のアレイは、その間に共通の吸熱レール610を有する2列の冷却器を備えている。この実施例の中央レール610は、高電位に保持されており、一方、外側レール606、614は比較的低い電位に保持されている。これにより、電流はレール610からn型熱電素子を通り、それぞれ608または612を通り、次いでアレイの外側の列のp型熱電素子(例えば、p型熱電素子616)を通って流れる。上記のように、これによって低温レール608、612が冷却される。
【0035】
図14は、正方形に整列された2次元冷却セルのアレイ700を示す。この実施例の実施形態では、図10または11の2次元冷却ユニット702のいくつかが、冷却ユニットのアレイ内に組み込まれている。ユニットセル702のそれぞれの中央には、低温アイランド704が示されている。このタイプのアレイは、小面積、すなわち、例えば集積回路またはイメージセンサ・アレイ上の小面積のシステムを冷却するのに有用である。冷却器の寸法が小さいので正確なポイントに配置して、所望の領域だけを冷却することができるので、チップ上の面積を削減することができる。
【0036】
本発明の記述は、例示および説明の目的で提供されたものであり、網羅的であること、あるいは、開示された形で本発明を限定することを意図したものではない。多くの修正および変更が、当分野の技術者なら明らかであろう。この実施形態は、本発明の原理および実用的な用途を最もよく説明するために選択されかつ記述されたものであり、かつ、様々な実施形態および考慮した特定の使用に適切な様々な修正について、当分野の他の技術者が本発明を理解できるように選択されかつ記述されたものである。
【0037】
まとめとして、本発明の構成に関して以下の事項を開示する。
【0038】
(1)熱電冷却システムであって、
基板上に形成され、それぞれ第1の伝導区域に接続された、第1および第2の熱電素子と、
前記第1の熱電素子に接続された第2の伝導区域と、
前記第2の熱電素子に接続された第3の伝導区域とを含み、
前記第1の熱電素子は、前記第1の伝導区域との接触表面積が、前記第2の伝導区域との接触表面積より小さく、
前記第2の熱電素子は、前記第1の伝導区域との接触表面積が、前記第3の伝導区域との接触表面積より小さく、
前記第1および第2の熱電素子が、第1、第2、および第3の伝導区域が占めている平面と実質的に同一の平面に形成されている熱電冷却システム。
(2)前記熱電冷却システムを集積回路上に配置して、前記回路の領域を冷却する、上記(1)に記載の冷却システム。
(3)前記熱電冷却システムが冷却ユニットを形成しており、複数の冷却ユニットが集合して領域を冷却するように構成されている、上記(1)に記載の冷却システム。
(4)熱電冷却システムであって、
それぞれ第1の伝導区域と結合したn型熱電素子およびp型熱電素子と、
前記n型素子に接続した第2の伝導区域と、
前記p型素子に接続した第3の伝導区域とを含み、
前記n型素子、前記p型素子、ならびに前記第1、第2、および第3の伝導区域が実質的に同一の平面を占めている熱電冷却システム。
(5)前記熱電冷却システムを集積回路上に配置して、前記回路の領域を冷却する、上記(4)に記載の熱電冷却システム。
(6)前記熱電冷却システムが冷却ユニットを形成しており、複数の冷却ユニットが集合して領域を冷却するように構成されている、上記(4)に記載の熱電冷却システム。
(7)それぞれ前記第1の伝導区域と結合した第3および第4の熱電素子をさらに含み、前記n型熱電素子、前記p型熱電素子、前記第3および第4の熱電素子、ならびに第1伝導区域がすべて同一平面にある、上記(4)に記載の熱電冷却システム。
(8)前記n型およびp型熱電素子が、第1の伝導区域と結合している先端に向かって実質的に先細になっている、上記(4)に記載の熱電冷却システム。
(9)前記n型およびp型熱電素子が、ナノワイヤを用いて前記第1の伝導区域と結合している、上記(4)に記載の熱電冷却システム。
(10)前記第1の伝導区域が第1の中央アイランドを含み、前記熱電冷却システムが複数の中央アイランドを含み、前記複数の中央アイランドがそれぞれ少なくとも2つの熱電素子と接続している、上記(4)に記載の熱電冷却システム。
(11)熱電冷却システムであって、
複数の熱電素子を含み、前記複数の素子のそれぞれが共通の伝導区域への接続を有し、
前記複数の素子および前記共通の伝導区域が実質的に同一の平面を占めている熱電冷却システム。
(12)前記複数の熱電素子のそれぞれが、前記共通の伝導区域と接触している先細の端部を有する、上記(11)に記載の熱電冷却システム。
(13)前記熱電冷却システムを集積回路上に配置して、前記回路の領域を冷却する、上記(11)に記載の熱電冷却システム。
(14)前記熱電冷却システムが冷却ユニットを形成しており、複数の冷却ユニットが集合して領域を冷却するように構成されている、上記(11)に記載の熱電冷却システム。
(15)熱電冷却システムを形成する方法であって、
上に絶縁層を有する基板を形成するステップと、
前記絶縁層の上に伝導層を形成して、多層構造を形成するステップと、
第1の領域で、前記第1の領域が前記多層構造の第1の区域および前記多層構造の第2の区域と境界を接するように、前記基板から前記多層構造の第1の部分を取り除くステップと、
第2の領域で、前記第2の領域が前記多層構造の第2の区域および前記多層構造の第3の区域と境界を接するように、前記基板から前記多層構造の第2の部分を取り除くステップと、
前記多層構造の前記第1の区域の伝導層と、前記多層構造の前記第2の区域の伝導層の間に、第1の熱電素子を形成するステップと、
前記多層構造の前記第2の区域の伝導層と、前記多層構造の前記第3の区域の伝導層の間に、第2の熱電素子を形成するステップとを含む方法。
(16)前記第1の熱電素子は、前記多層構造の前記第2の区域の前記第2の伝導層との接触面積が、前記多層構造の前記第1の区域の前記伝導層との接触面積より小さく、
前記第2の熱電素子は、前記多層構造の前記第2の区域の前記第2の伝導層との接触面積が、前記多層構造の前記第3の区域の前記伝導層との接触面積より小さい、上記(15)に記載の方法。
(17)前記第1および第2の熱電素子を形成するステップが電気めっきを含む、上記(15)に記載の方法。
(18)前記熱電冷却システムを集積回路上に配置して、前記回路の領域を冷却する、上記(15)に記載の方法。
(19)前記熱電冷却システムが冷却ユニットを形成しており、複数の冷却ユニットが集合して領域を冷却するように構成されている、上記(15)に記載の方法。
(20)熱電冷却システムであって、
上に絶縁層を有する基板を形成する手段と、
前記絶縁層の上に伝導層を形成して、多層構造を形成する手段と、
第1の領域で、前記第1の領域が前記多層構造の第1の区域および前記多層構造の第2の区域と境界を接するように、前記基板から前記多層構造の第1の部分を取り除く手段と、
第2の領域で、前記第2の領域が前記多層構造の第2の区域および前記多層構造の第3の区域と境界を接するように、前記基板から前記多層構造の第2の部分を取り除く手段と、
前記多層構造の前記第1の区域の伝導層と、前記多層構造の前記第2の区域の伝導層の間に、第1の熱電素子を形成する手段と、
前記多層構造の前記第2の区域の伝導層と、前記多層構造の前記第3の区域の伝導層の間に、第2の熱電素子を形成する手段とを含む熱電冷却システム。
(21)前記第1の熱電素子は、前記多層構造の前記第2の区域の前記第2の伝導層との接触面積が、前記多層構造の前記第1の区域の前記伝導層との接触面積より小さく、
前記第2の熱電素子は、前記多層構造の前記第2の区域の前記第2の伝導層との接触面積が、前記多層構造の前記第3の区域の前記伝導層との接触面積より小さい、上記(20)に記載の熱電冷却システム。
(22)前記冷却システムを集積回路上に配置して、前記回路の領域を冷却する、上記(20)に記載の熱電冷却システム。
(23)前記熱電冷却システムが冷却ユニットを形成しており、複数の冷却ユニットが集合して領域を冷却するように構成されている、上記(20)に記載の電熱冷却システム。
(24)熱電冷却システムであって、
それぞれが第1の伝導区域に接続しているn型熱電素子の第1の列と、
それぞれが前記第1の伝導区域に接続しているp型熱電素子の第1の列と、
前記n型素子のそれぞれに接続している第2の伝導区域と、
前記p型素子のそれぞれに接続している第3の伝導区域とを含み、
n型素子の前記第1の列とp型素子の前記第1の列が、前記冷却システムに電流を流すと集合して前記第1の伝導区域を冷却する熱電冷却器のアレイを形成し、
n型素子の前記第1の列とp型素子の前記第1の列が、前記第1の伝導区域と実質的に同一の平面を占めている熱電冷却システム。
(25)前記複数のn型素子の少なくとも1つは、前記第1の伝導区域との接触表面積が、前記第2の伝導区域との接触表面積より小さく、
前記複数のp型素子の少なくとも1つは、前記第1の伝導区域との接触表面積が、前記第3の伝導区域との接触表面積より小さい、上記(24)に記載の熱電冷却システム。
(26)前記熱電冷却システムを集積回路上に配置して、前記回路の領域を冷却する、上記(24)に記載の熱電冷却システム。
(27)前記熱電冷却システムが冷却ユニットを形成しており、複数の冷却ユニットが集合して領域を冷却するように構成されている、上記(24)に記載の熱電冷却システム。
【図面の簡単な説明】
【図1】従来技術による代表的な熱電冷却システムを示す図である。
【図2】好ましい実施形態による1次元ユニット冷却セルを示す図である。
【図3】ナノワイヤを用いた好ましい実施形態による1次元ユニット冷却セルを示す図である。
【図4】好ましい実施形態による熱電冷却システムを形成するための製作ステップを示す図である。
【図5】好ましい実施形態による熱電冷却システムを形成するための製作ステップを示す図である。
【図6】好ましい実施形態による熱電冷却システムを形成するための製作ステップを示す図である。
【図7】好ましい実施形態による熱電冷却システムを形成するための製作ステップを示す図である。
【図8】好ましい実施形態による熱電冷却システムを形成するための製作ステップを示す図である。
【図9】好ましい実施形態による熱電冷却システムの上面図を示す図である。
【図10】好ましい実施形態による2次元ユニット冷却セルを示す図である。
【図11】ナノワイヤを用いた好ましい実施形態による2次元ユニット冷却セルを示す図である。
【図12】好ましい実施形態による1次元熱電冷却デバイスのアレイを示す図である。
【図13】図12の細部を示す図である。
【図14】2次元ユニット冷却セルのアレイを示す図である。
【符号の説明】
100 熱電冷却器
102 電源
104 p型半導体
106 n型半導体
108 非導電体
110 導電体
112 熱源
114 導電体
116 吸熱器
202 金属接点(高温側)(高温区域)
204 金属接点(高温側)(高温区域)
206 低温区域
208 p型熱電素子
210 n型熱電素子
212 ナノワイヤ
302 基板
304 SiO
306 SiN層
308 金属層
308A 金属層の第1の部分
308B 金属層の第2の部分
308C 金属層の第3の部分
310A 第1の領域
310B 第2の領域
314A ブリッジ(熱電素子)
314B ブリッジ(熱電素子)
414A 尖ったブリッジ(n型半導体)
414B 尖ったブリッジ(p型半導体)
502 p型熱電素子
504 p型熱電素子
506 n型熱電素子
508 n型熱電素子
510 中央アイランド
512 ナノワイヤ
514 p型熱電素子
516 p型熱電素子
518 n型熱電素子
520 n型熱電素子
602 左端部(熱源レール)
604 高温端部
606 外側レール(高温レール)
608 低温レール
610 中央レール(共通の吸熱レール)
612 低温レール
614 外側レール(高温レール)
616 p型熱電素子
618 n型熱電素子
700 2次元冷却セルの正方形アレイ
702 2次元冷却ユニット
704 低温アイランド

Claims (14)

  1. 熱電冷却システムであって、
    基板上に形成され、それぞれ第1の伝導区域に先細になってその端部が量子低温点を形成するように接続する、第1および第2の熱電素子と、
    前記第1の熱電素子に接続された第2の伝導区域と、
    前記第2の熱電素子に接続された第3の伝導区域とを含み、
    前記第1の熱電素子は、前記第1の伝導区域との接触表面積が、前記第2の伝導区域との接触表面積より小さく、
    前記第2の熱電素子は、前記第1の伝導区域との接触表面積が、前記第3の伝導区域との接触表面積より小さく、
    前記第1および第2の熱電素子が、第1、第2、および第3の伝導区域が占めている平面と実質的に同一の平面に形成されている熱電冷却システム。
  2. 前記熱電冷却システムを集積回路上に配置して、前記集積回路の領域を冷却する、請求項1に記載の熱電冷却システム。
  3. 前記熱電冷却システムが冷却ユニットを形成しており、複数の冷却ユニットが集合して領域を冷却するように構成されている、請求項1に記載の熱電冷却システム。
  4. 熱電冷却システムであって、
    それぞれ第1の伝導区域と先細になってその端部が量子低温点を有するように接続する第1のn型熱電素子および第2のp型熱電素子と、
    前記第1のn型熱電素子に接続した第2の伝導区域と、
    前記第2のp型熱電素子に接続した第3の伝導区域とを含み、
    前記第1のn型熱電素子、前記第2のp型熱電素子、ならびに前記第1、第2、および第3の伝導区域が実質的に同一の平面を占めている熱電冷却システム。
  5. 前記熱電冷却システムを集積回路上に配置して、前記集積回路の領域を冷却する、
    請求項4に記載の熱電冷却システム。
  6. 前記熱電冷却システムが冷却ユニットを形成しており、複数の冷却ユニットが集合して領域を冷却するように構成されている、請求項4に記載の熱電冷却システム。
  7. それぞれ前記第1の伝導区域と先細になってその端部が量子低温点を有するように接続する第3のn型熱電素子および第4のp型熱電素子をさらに含み、
    前記第1のn型熱電素子、前記第2のp型熱電素子、前記第3のn型熱電素子および第4のp型熱電素子、ならびに第1伝導区域がすべて同一平面にある、請求項4に記載の熱電冷却システム。
  8. 熱電冷却システムであって、
    それぞれ第1の伝導区域とナノワイヤを介して接続される第1のn型熱電素子および第2のp型熱電素子と、
    前記第1のn型熱電素子に接続した第2の伝導区域と、
    前記第2のp型熱電素子に接続した第3の伝導区域とを含み、
    前記第1のn型熱電素子、前記第2のp型熱電素子、ならびに前記第1、第2、および第3の伝導区域が実質的に同一の平面を占めている熱電冷却システム。
  9. 前記第1の伝導区域が中央アイランドを含み、前記中央アイランドが前記2つの熱電素子と接続している、請求項4に記載の熱電冷却システム。
  10. 熱電冷却システムを形成する方法であって、
    絶縁層の上に伝導層を形成して、多層構造を形成するステップと、
    前記多層構造の第1の区域および前記多層構造の第2の区域との間において、前記多層構造の第1の部分を取り除くことにより第1の領域を形成するステップと、
    前記多層構造の第2の区域および前記多層構造の第3の区域との間において、前記基板から前記多層構造の第2の部分を取り除くことにより第2の領域を形成するステップと、
    前記多層構造の前記第1の区域の伝導層と、前記多層構造の前記第2の区域の伝導層との間の前記第1の領域に、第1の熱電素子を形成するステップと、
    前記多層構造の前記第2の区域の伝導層と、前記多層構造の前記第3の区域の伝導層との間の前記第2の領域に、第2の熱電素子を形成するステップとを含み、
    前記第1の熱電素子は、先細の端部が量子低温点を有するように形成され、前記多層構造の前記第2の区域の伝導層との接触面積が、前記多層構造の前記第1の区域の伝導層との接触面積より小さく、
    前記第2の熱電素子は、先細の端部が量子低温点を有するように形成され、前記多層構造の前記第2の区域の伝導層との接触面積が、前記多層構造の前記第3の区域の伝導層との接触面積より小さい、熱電冷却システムを形成する方法。
  11. 前記第1および第2の熱電素子を形成するステップが電気めっきを含む、請求項10に記載の方法。
  12. 熱電冷却システムであって、
    それぞれが第1の伝導区域に接続しているn型熱電素子の第1の列と、
    それぞれが前記第1の伝導区域に接続しているp型熱電素子の第1の列と、
    前記n型素子のそれぞれに接続している第2の伝導区域と、
    前記p型素子のそれぞれに接続している第3の伝導区域とを含み、
    n型素子の前記第1の列とp型素子の前記第1の列が、全体に電流を流すことにより前記第1の伝導区域を冷却する熱電冷却器のアレイを形成し、
    n型素子の前記第1の列とp型素子の前記第1の列が、前記第1の伝導区域と実質的に同一の平面を占め、
    前記複数のn型素子の少なくとも1つは、先細の端部が量子低温点を有するように形成され、前記第1の伝導区域との接触表面積が、前記第2の伝導区域との接触表面積より小さく、
    前記複数のp型素子の少なくとも1つは、先細の端部が量子低温点を有するように形成され、前記第1の伝導区域との接触表面積が、前記第3の伝導区域との接触表面積より小さい、熱電冷却システム。
  13. 前記熱電冷却システムを集積回路上に配置して、前記集積回路の領域を冷却する、
    請求項12に記載の熱電冷却システム。
  14. 前記熱電冷却システムが冷却ユニットを形成しており、複数の冷却ユニットが集合して領域を冷却するように構成されている、請求項12に記載の熱電冷却システム。
JP2003103274A 2002-04-11 2003-04-07 ナノスコピック熱電冷却装置 Expired - Fee Related JP4716647B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/121,497 US6598403B1 (en) 2002-04-11 2002-04-11 Nanoscopic thermoelectric refrigerators
US10/121497 2002-04-11

Publications (2)

Publication Number Publication Date
JP2003347606A JP2003347606A (ja) 2003-12-05
JP4716647B2 true JP4716647B2 (ja) 2011-07-06

Family

ID=27610702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103274A Expired - Fee Related JP4716647B2 (ja) 2002-04-11 2003-04-07 ナノスコピック熱電冷却装置

Country Status (2)

Country Link
US (1) US6598403B1 (ja)
JP (1) JP4716647B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8362264B2 (en) 2003-08-22 2013-01-29 Dendreon Corporation Compositions and methods for the treatment of disease associated with Trp-p8 expression

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6672076B2 (en) 2001-02-09 2004-01-06 Bsst Llc Efficiency thermoelectrics utilizing convective heat flow
US7273981B2 (en) * 2001-02-09 2007-09-25 Bsst, Llc. Thermoelectric power generation systems
US7942010B2 (en) 2001-02-09 2011-05-17 Bsst, Llc Thermoelectric power generating systems utilizing segmented thermoelectric elements
US7946120B2 (en) 2001-02-09 2011-05-24 Bsst, Llc High capacity thermoelectric temperature control system
US6959555B2 (en) 2001-02-09 2005-11-01 Bsst Llc High power density thermoelectric systems
US7098393B2 (en) * 2001-05-18 2006-08-29 California Institute Of Technology Thermoelectric device with multiple, nanometer scale, elements
WO2003014634A1 (en) 2001-08-07 2003-02-20 Bsst Llc Thermoelectric personal environment appliance
WO2005061972A1 (en) * 2002-12-06 2005-07-07 Nanocoolers, Inc. Cooling of electronics by electrically conducting fluids
US20050150536A1 (en) * 2004-01-13 2005-07-14 Nanocoolers, Inc. Method for forming a monolithic thin-film thermoelectric device including complementary thermoelectric materials
US20050150539A1 (en) * 2004-01-13 2005-07-14 Nanocoolers, Inc. Monolithic thin-film thermoelectric device including complementary thermoelectric materials
US20050160752A1 (en) * 2004-01-23 2005-07-28 Nanocoolers, Inc. Apparatus and methodology for cooling of high power density devices by electrically conducting fluids
US20050228280A1 (en) * 2004-03-31 2005-10-13 Siemens Medical Solutions Usa, Inc. Acquisition and display methods and systems for three-dimensional ultrasound imaging
US8642353B2 (en) * 2004-05-10 2014-02-04 The Aerospace Corporation Microfluidic device for inducing separations by freezing and associated method
US7694694B2 (en) 2004-05-10 2010-04-13 The Aerospace Corporation Phase-change valve apparatuses
US7380586B2 (en) 2004-05-10 2008-06-03 Bsst Llc Climate control system for hybrid vehicles using thermoelectric devices
US7686040B2 (en) * 2004-06-24 2010-03-30 The Aerospace Corporation Electro-hydraulic devices
US7650910B2 (en) * 2004-06-24 2010-01-26 The Aerospace Corporation Electro-hydraulic valve apparatuses
US7721762B2 (en) * 2004-06-24 2010-05-25 The Aerospace Corporation Fast acting valve apparatuses
US20060076046A1 (en) * 2004-10-08 2006-04-13 Nanocoolers, Inc. Thermoelectric device structure and apparatus incorporating same
US7654311B2 (en) * 2004-10-20 2010-02-02 University Of Maryland Thermal management of systems having localized regions of elevated heat flux
US7290596B2 (en) * 2004-10-20 2007-11-06 University Of Maryland Thermal management of systems having localized regions of elevated heat flux
US7293416B2 (en) * 2004-12-23 2007-11-13 Nanocoolers, Inc. Counterflow thermoelectric configuration employing thermal transfer fluid in closed cycle
US7296417B2 (en) * 2004-12-23 2007-11-20 Nanocoolers, Inc. Thermoelectric configuration employing thermal transfer fluid flow(s) with recuperator
US7475551B2 (en) 2004-12-23 2009-01-13 Nanocoolers, Inc. System employing temporal integration of thermoelectric action
US7743614B2 (en) 2005-04-08 2010-06-29 Bsst Llc Thermoelectric-based heating and cooling system
JP4891318B2 (ja) 2005-06-28 2012-03-07 ビーエスエスティー エルエルシー 中間ループを備えた熱電発電機
US8783397B2 (en) 2005-07-19 2014-07-22 Bsst Llc Energy management system for a hybrid-electric vehicle
US20070101737A1 (en) 2005-11-09 2007-05-10 Masao Akei Refrigeration system including thermoelectric heat recovery and actuation
US7310953B2 (en) * 2005-11-09 2007-12-25 Emerson Climate Technologies, Inc. Refrigeration system including thermoelectric module
US7870745B2 (en) * 2006-03-16 2011-01-18 Bsst Llc Thermoelectric device efficiency enhancement using dynamic feedback
EP2050148A2 (en) * 2006-07-28 2009-04-22 Bsst, Llc High capacity thermoelectric temperature control systems
US7779639B2 (en) 2006-08-02 2010-08-24 Bsst Llc HVAC system for hybrid vehicles using thermoelectric devices
US20080178921A1 (en) * 2006-08-23 2008-07-31 Qi Laura Ye Thermoelectric nanowire composites
CN101720414B (zh) 2007-05-25 2015-01-21 Bsst有限责任公司 分配式热电加热和冷却的系统和方法
US8701422B2 (en) 2008-06-03 2014-04-22 Bsst Llc Thermoelectric heat pump
US20100101239A1 (en) 2008-10-23 2010-04-29 Lagrandeur John Multi-mode hvac system with thermoelectric device
US9447994B2 (en) 2008-10-23 2016-09-20 Gentherm Incorporated Temperature control systems with thermoelectric devices
US9555686B2 (en) 2008-10-23 2017-01-31 Gentherm Incorporated Temperature control systems with thermoelectric devices
CN102576232B (zh) 2009-05-18 2015-05-06 Bsst有限责任公司 带有热电装置的温度控制系统
KR102218137B1 (ko) 2009-05-18 2021-02-22 젠썸 인코포레이티드 열전기 가열 및 냉각 시스템
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
WO2012170443A2 (en) 2011-06-06 2012-12-13 Amerigon Incorporated Cartridge-based thermoelectric systems
DE112012002935T5 (de) 2011-07-11 2014-05-15 Gentherm Inc. Auf Thermoelektrik basierendes Wärmemanagement elektrischer Vorrichtungen
JP2015524894A (ja) 2012-08-01 2015-08-27 ゲンサーム インコーポレイテッド 高効率熱電発電
DE112014000419T5 (de) 2013-01-14 2015-10-15 Gentherm Incorporated Auf Thermoelektrik basierendes Thermomanagement elektrischer Vorrichtungen
JP6637765B2 (ja) 2013-01-30 2020-01-29 ジェンサーム インコーポレイテッドGentherm Incorporated 熱電ベースの熱管理システム
US9590282B2 (en) 2013-10-29 2017-03-07 Gentherm Incorporated Battery thermal management systems including heat spreaders with thermoelectric devices
US9899711B2 (en) 2014-09-12 2018-02-20 Gentherm Incorporated Graphite thermoelectric and/or resistive thermal management systems and methods
DE112015005666T5 (de) 2014-12-19 2017-09-14 Gentherm Incorporated Thermische Konditionierungssysteme und -verfahren für Fahrzeugbereiche
US10625566B2 (en) 2015-10-14 2020-04-21 Gentherm Incorporated Systems and methods for controlling thermal conditioning of vehicle regions
US20200035898A1 (en) 2018-07-30 2020-01-30 Gentherm Incorporated Thermoelectric device having circuitry that facilitates manufacture
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376463A (ja) * 1986-09-19 1988-04-06 Hitachi Ltd 薄膜冷却装置
JPH01220870A (ja) * 1987-06-23 1989-09-04 British Gas Plc 小形熱電変換器
JPH04152664A (ja) * 1990-10-17 1992-05-26 Seiko Epson Corp 半導体装置
JPH10173110A (ja) * 1996-12-13 1998-06-26 Nissan Motor Co Ltd 電子冷却モジュールおよびその製造方法
JPH11233837A (ja) * 1998-02-18 1999-08-27 Matsushita Electric Works Ltd 熱電変換モジュール
JP2002303880A (ja) * 2001-04-03 2002-10-18 Seiko Epson Corp 液晶装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE329870B (ja) * 1967-10-31 1970-10-26 Asea Ab
DE1944453B2 (de) * 1969-09-02 1970-11-19 Buderus Eisenwerk Peltierbatterie mit Waermeaustauscher
FR2570169B1 (fr) * 1984-09-12 1987-04-10 Air Ind Perfectionnements apportes aux modules thermo-electriques a plusieurs thermo-elements pour installation thermo-electrique, et installation thermo-electrique comportant de tels modules thermo-electriques
JPH0997930A (ja) * 1995-07-27 1997-04-08 Aisin Seiki Co Ltd 熱電冷却モジュール及びその製造方法
US5712448A (en) * 1996-02-07 1998-01-27 California Institute Of Technology Cooling device featuring thermoelectric and diamond materials for temperature control of heat-dissipating devices
US6000225A (en) 1998-04-27 1999-12-14 International Business Machines Corporation Two dimensional thermoelectric cooler configuration
US6347521B1 (en) * 1999-10-13 2002-02-19 Komatsu Ltd Temperature control device and method for manufacturing the same
US6256996B1 (en) 1999-12-09 2001-07-10 International Business Machines Corporation Nanoscopic thermoelectric coolers
US6467275B1 (en) * 2000-12-07 2002-10-22 International Business Machines Corporation Cold point design for efficient thermoelectric coolers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376463A (ja) * 1986-09-19 1988-04-06 Hitachi Ltd 薄膜冷却装置
JPH01220870A (ja) * 1987-06-23 1989-09-04 British Gas Plc 小形熱電変換器
JPH04152664A (ja) * 1990-10-17 1992-05-26 Seiko Epson Corp 半導体装置
JPH10173110A (ja) * 1996-12-13 1998-06-26 Nissan Motor Co Ltd 電子冷却モジュールおよびその製造方法
JPH11233837A (ja) * 1998-02-18 1999-08-27 Matsushita Electric Works Ltd 熱電変換モジュール
JP2002303880A (ja) * 2001-04-03 2002-10-18 Seiko Epson Corp 液晶装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8362264B2 (en) 2003-08-22 2013-01-29 Dendreon Corporation Compositions and methods for the treatment of disease associated with Trp-p8 expression
US8389730B2 (en) 2003-08-22 2013-03-05 Dendreon Corporation Compositions and methods for the treatment of disease associated with TRP-P8 expression

Also Published As

Publication number Publication date
US6598403B1 (en) 2003-07-29
JP2003347606A (ja) 2003-12-05

Similar Documents

Publication Publication Date Title
JP4716647B2 (ja) ナノスコピック熱電冷却装置
US6608250B2 (en) Enhanced interface thermoelectric coolers using etched thermoelectric material tips
US6384312B1 (en) Thermoelectric coolers with enhanced structured interfaces
US6467275B1 (en) Cold point design for efficient thermoelectric coolers
US6740600B2 (en) Enhanced interface thermoelectric coolers with all-metals tips
JP3896323B2 (ja) 熱電冷却器およびその製造方法
US6256996B1 (en) Nanoscopic thermoelectric coolers
US10305014B2 (en) Methods and devices for controlling thermal conductivity and thermoelectric power of semiconductor nanowires
KR20110011717A (ko) 증기 챔버―열전 모듈 조립체
US20040018729A1 (en) Enhanced interface thermoelectric coolers with all-metal tips
US20070053394A1 (en) Cooling device using direct deposition of diode heat pump
JPH06318736A (ja) 薄膜ペルチェ熱電素子
Ren et al. Thermoelectric Cooling Device Based on Holey Silicon

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081106

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees