JP4707413B2 - Continuously cast aluminum alloy ingot and method for producing the same - Google Patents

Continuously cast aluminum alloy ingot and method for producing the same Download PDF

Info

Publication number
JP4707413B2
JP4707413B2 JP2005059910A JP2005059910A JP4707413B2 JP 4707413 B2 JP4707413 B2 JP 4707413B2 JP 2005059910 A JP2005059910 A JP 2005059910A JP 2005059910 A JP2005059910 A JP 2005059910A JP 4707413 B2 JP4707413 B2 JP 4707413B2
Authority
JP
Japan
Prior art keywords
ingot
heat treatment
aluminum alloy
thermal conductivity
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005059910A
Other languages
Japanese (ja)
Other versions
JP2006241531A (en
Inventor
弘 宮崎
敦 土屋
利夫 五島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Toyota Motor Corp
Original Assignee
Mitsubishi Plastics Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc, Toyota Motor Corp filed Critical Mitsubishi Plastics Inc
Priority to JP2005059910A priority Critical patent/JP4707413B2/en
Publication of JP2006241531A publication Critical patent/JP2006241531A/en
Application granted granted Critical
Publication of JP4707413B2 publication Critical patent/JP4707413B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、ダイカスト鋳造により製造されるアルミニウム合金鋳造品の物性に適合する素材としてのアルミニウム合金鋳塊、及びその鋳塊を連続鋳造にて製造する方法に関するものである。詳しくは、ダイカスト鋳造により製造されるAl−Si−Cu−Mg系アルミニウム合金鋳造品の物性に適合し、且つ容易に切削加工できる素材としてのAl−Si−Cu−Mg系アルミニウム合金鋳塊、およびその鋳塊の製造方法に関するものである。   The present invention relates to an aluminum alloy ingot as a material that matches the physical properties of an aluminum alloy cast product produced by die casting, and a method for producing the ingot by continuous casting. Specifically, an Al-Si-Cu-Mg-based aluminum alloy ingot as a material that conforms to the physical properties of an Al-Si-Cu-Mg-based aluminum alloy cast manufactured by die casting and can be easily machined, and The present invention relates to a method for producing the ingot.

自動車エンジンの主要部品であるシリンダーブロック等の自動車部品には、Al−Si−Cu−Mg系アルミニウム合金のダイカスト鋳造品が主に使われている。これらの鋳造品に使用されるアルミニウム合金としては、ADC12、ADC10が代表的である。
ダイカスト鋳造品の開発における初期試作テスト段階では、通常、ダイカスト金型が用いられるが、金型製作にはコスト、時間がかかり、設計変更の度に金型を作成する必要があるため、開発コスト及び時間の増加をもたらす問題があった。また、ダイカスト鋳造品は少量使用製品の場合、コストが高く使用出来なかった。
この様な問題は、試作テスト品を、素材の鋳塊を切削加工により製造することが出来れば解決し得るが、市販されている一般材では切削加工により、ダイカスト鋳造品と同等の特性を持ち、且つ内部欠陥の少ない試作テスト品を製造するのには適さなかった。そこで、切削加工によりダイカスト鋳造品と同等の試作品を製作することができる素材としてのアルミニウム合金が求められている。
Al-Si-Cu-Mg aluminum alloy die castings are mainly used for automobile parts such as cylinder blocks, which are the main parts of automobile engines. Typical aluminum alloys used in these castings are ADC12 and ADC10.
In the initial prototype test stage in the development of die casting products, die casting molds are usually used. However, it takes cost and time to manufacture molds, and it is necessary to create molds for every design change. And problems that resulted in increased time. In addition, die-cast products were expensive and could not be used in the case of products using a small amount.
Such a problem can be solved if a prototype test product can be manufactured by cutting an ingot of a material, but a commercially available general material has the same characteristics as a die cast product by cutting. In addition, it was not suitable for producing a prototype test product with few internal defects. Therefore, there is a demand for an aluminum alloy as a material that can produce a prototype equivalent to a die cast product by cutting.

本発明の目的は、ダイカスト鋳造にて製造されるAl−Si−Cu−Mg系アルミニウム合金鋳造品の所望物性に適合し、切削加工することが出来る素材としてのAl−Si−Cu−Mg系アルミニウム合金鋳塊、およびその鋳塊の製造方法を提供することにある。   An object of the present invention is to provide Al-Si-Cu-Mg-based aluminum as a material that can be machined and adapted to the desired physical properties of an Al-Si-Cu-Mg-based aluminum alloy cast product manufactured by die casting. An object is to provide an alloy ingot and a method for producing the ingot.

本発明者らは、従来のダイカスト鋳造品が有する特性、即ち0.2%耐力及び熱伝導率を有し、切削加工し得るアルミニウム合金鋳塊を、所定の組成のAl−Si−Cu−Mg系アルミニウム合金ブロックを連続鋳造にて製造し、該鋳塊を所定の条件で熱処理することにより製造し得ることを見出し、本発明に達した。   The inventors of the present invention have prepared an Al-Si-Cu-Mg alloy having a predetermined composition from an aluminum alloy ingot having the characteristics of a conventional die cast product, that is, 0.2% proof stress and thermal conductivity, and capable of being cut. The present inventors have found that an aluminum alloy block can be produced by continuous casting and the ingot can be heat-treated under predetermined conditions, and the present invention has been achieved.

即ち、本発明の第1の要旨は、Si:8.0〜11.0wt%、Cu:2.5〜4.5wt%、Mg:0.2〜0.6wt%、Mn:0.1〜0.5wt%、Fe≦0.25wt%を含有し、更にCr:0.02〜0.20wt%、Ti:0.02〜0.20wt%、及びV:0.02〜0.20wt%の内の1種又は2種以上の元素を含有し、残部アルミニウムおよび不可避的不純物からなる合金の連続鋳造による鋳塊であって、その0.2%耐力が145〜170MPaであり、且つ熱伝導率が110〜125W/m・℃である鋳塊を、温度400〜500℃、熱処理時間4時間以上で溶体化熱処理した後、温度200〜260℃、熱処理時間3〜7時間で時効熱処理を施すことにより得られたことを特徴とする連続鋳造アルミニウム合金鋳塊に存する。 That is, the first gist of the present invention, Si: 8.0~11.0wt%, Cu: 2.5~4.5wt%, Mg: 0.2~0.6wt%, Mn: 0.1~ 0.5 wt%, Fe ≦ 0.25 wt%, Cr: 0.02 to 0.20 wt%, Ti: 0.02 to 0.20 wt%, and V: 0.02 to 0.20 wt% An ingot by continuous casting of an alloy containing one or two or more elements, and the balance aluminum and inevitable impurities, the 0.2% proof stress is 145 to 170 MPa, and the thermal conductivity The ingot having a temperature of 110 to 125 W / m · ° C. is subjected to solution heat treatment at a temperature of 400 to 500 ° C. and a heat treatment time of 4 hours or more, and then subjected to an aging heat treatment at a temperature of 200 to 260 ° C. and a heat treatment time of 3 to 7 hours. continuous casting the aluminum case, characterized in that obtained by It exists in a gold ingot.

本発明の第2の要旨は、Si:8.0〜11.0wt%、Cu:2.5〜4.5wt%、Mg:0.2〜0.6wt%、Mn:0.1〜0.5wt%、Fe≦0.25wt%を含有し、更にCr:0.02〜0.20wt%、Ti:0.02〜0.20wt%、及びV:0.02〜0.20wt%の内の1種又は2種以上の元素を含有し、残部アルミニウムおよび不可避的不純物からなる合金の連続鋳造による鋳塊であって、その0.2%耐力が145〜170MPaであり、且つ熱伝導率が110〜125W/m・℃である鋳塊を、温度400〜500℃、熱処理時間4時間以上で溶体化熱処理した後、温度200〜260℃、熱処理時間3〜7時間で時効熱処理を施すことを特徴とする連続鋳造アルミニウム合金鋳塊の製造方法に存する。 The second gist of the present invention is as follows: Si: 8.0 to 11.0 wt%, Cu: 2.5 to 4.5 wt%, Mg: 0.2 to 0.6 wt%, Mn: 0.1 to 0. 5 wt%, Fe ≦ 0.25 wt%, and Cr: 0.02 to 0.20 wt%, Ti: 0.02 to 0.20 wt%, and V: 0.02 to 0.20 wt% It contains one or more elements, a slab by continuous casting of an alloy and the balance aluminum and unavoidable impurities, the 0.2% proof stress 145~170MPa, and thermal conductivity of 110 An ingot having a temperature of 400 to 500 ° C. and a heat treatment time of 4 hours or more is subjected to a solution heat treatment at a temperature of 200 to 260 ° C. and a heat treatment time of 3 to 7 hours. Exists in the manufacturing method of continuous cast aluminum alloy ingot .

本発明により得られる連続鋳造アルミニウム合金鋳塊は、ダイカスト鋳造を行うことなく、ダイカスト鋳造品と同等の物性の製品を製造することが出来、しかも切削加工をすることが出来るので、ダイカスト鋳造品の開発初期において鋳塊からの削り出しで性能把握することができ、ダイカスト金型の再製作等のコスト、時間を大幅に節約し、また、少量使用製品は鋳塊からの削り出しにて対応できる。本発明のアルミニウム合金鋳塊は、シリンダーブロック等エンジン回りの部品にとって重要な0.2%耐力、熱伝導率の物性値に適合しており、極めて有用な素材である。   The continuous cast aluminum alloy ingot obtained by the present invention can produce a product having the same physical properties as a die-cast product without performing die-casting. The performance can be grasped by cutting out from the ingot at the early stage of development, and the cost and time for remanufacturing the die casting mold can be saved greatly. . The aluminum alloy ingot of the present invention is a very useful material because it conforms to the physical properties of 0.2% proof stress and thermal conductivity which are important for parts around the engine such as a cylinder block.

以下、本発明の構成について詳細に説明するが、これらは代表例でありこれらに制約されるものではない。なお、本明細書中における、合金中の金属元素量単位の%は重量%を意味する。
シリンダブロック等ある程度の強度が要求されるダイカスト鋳造品には、従来ADC12、ADC10或いはこれらに類似するAl−Si−Cu−Mg系合金が使用されてきたが、これらの合金は、切削加工により試作品を製造するのには適していなかった。
本発明のアルミニウム合金は、これらADC12、ADC10等のダイカスト鋳造品と同等の物性を有し、切削加工し得る、素材としての連続鋳造によるアルミニウム合金鋳塊である。
Hereinafter, although the structure of this invention is demonstrated in detail, these are representative examples and are not restrict | limited to these. In the present specification,% of the metal element amount unit in the alloy means% by weight.
Conventionally, ADC12, ADC10, or similar Al-Si-Cu-Mg alloys have been used for die cast products that require a certain level of strength, such as cylinder blocks. These alloys have been tested by cutting. It was not suitable for producing works.
The aluminum alloy of the present invention is an aluminum alloy ingot by continuous casting as a material having physical properties equivalent to those of die cast products such as ADC12 and ADC10 and capable of being cut.

本発明は、連続鋳造によりこれらのADC12、ADC10等と同等の物性を有するアルミニウム合金鋳塊を製造するために、合金に要求される特性である0.2%耐力につき検討し、Si、Cu.Mg、Mn、Fe量を所定範囲内とすることで、0.2%耐力をダイカスト鋳造品の物性に合わせ得ることが可能であること、及び熱伝導率は、Ti、Cr、Mn、Vの含有量を少量の範囲内に制御することにより従来のダイカスト鋳造品の物性に合致させ得ることが可能であることを見出した。更に、連続鋳造にて製造した鋳塊を鋳造のまま切削加工すると、残留応力が高く歪みが発生するが、鋳塊に所定の条件下熱処理を施すことによりこの残留応力を除去することが可能であることを知得し、本発明はこれらの知見に基づくのである。   In the present invention, in order to produce an aluminum alloy ingot having physical properties equivalent to those of ADC12, ADC10, etc. by continuous casting, 0.2% proof stress, which is a characteristic required for the alloy, is studied. By setting the amount of Mg, Mn, and Fe within a predetermined range, it is possible to match the 0.2% proof stress to the physical properties of the die cast product, and the thermal conductivity is Ti, Cr, Mn, or V. It has been found that by controlling the content within a small range, it is possible to match the physical properties of a conventional die cast product. Furthermore, when an ingot produced by continuous casting is cut as it is cast, the residual stress is high and distortion occurs. However, it is possible to remove this residual stress by subjecting the ingot to heat treatment under specified conditions. It is known that there is, and the present invention is based on these findings.

本発明の連続鋳造アルミニウム合金は、Si、Cu及びMgを主元素として含むアルミニウム合金の連続鋳造による鋳塊を熱処理して得られるものであり、熱処理前の連続鋳造後のアルミニウム合金鋳塊は、その0.2%耐力が145〜170MPaであり、且つ熱伝導率が110〜125W/m・℃である。
そして、この連続鋳造後のアルミニウム合金鋳塊は、Si:8.0〜11.0wt%、Cu:2.5〜4.5wt%、Mg:0.2〜0.8wt%、Mn:0.1〜0.5wt%、Fe≦0.25wt%、残部アルミニウムおよび不可避的不純物からなる合金に、更にCr:0.02〜0.20wt%、Ti:0.02〜0.20wt%、V:0.02〜0.20wt%の内の1種又は2種以上の元素を含有させた合金からなるものである。
The continuous cast aluminum alloy of the present invention is obtained by heat-treating an ingot by continuous casting of an aluminum alloy containing Si, Cu and Mg as main elements, and the aluminum alloy ingot after continuous casting before the heat treatment is Its 0.2% proof stress is 145 to 170 MPa, and its thermal conductivity is 110 to 125 W / m · ° C.
And the aluminum alloy ingot after this continuous casting is Si: 8.0-11.0 wt%, Cu: 2.5-4.5 wt%, Mg: 0.2-0.8 wt%, Mn: 0.00. An alloy composed of 1 to 0.5 wt%, Fe ≦ 0.25 wt%, the balance aluminum and inevitable impurities, Cr: 0.02 to 0.20 wt%, Ti: 0.02 to 0.20 wt%, V: It is made of an alloy containing one or more elements of 0.02 to 0.20 wt%.

本発明のアルミニウム合金において、Si、Cu.Mg、Mn、Fe、Ti、Cr、Mn、Vの含有量は、熱伝導率及び強度(0.2%耐力)に影響するが、従来のADC12,ADC10に比べ、Fe量が減じられ、Ti、Cr量は増しており、これらの元素が所定量含有することによる相乗作用で、本発明合金の特性が発現するのである。
Si含有量は、8.0〜11.0%、好ましくは9.0〜10.0%の範囲内に定める。8.0%未満では熱伝導率が高くなり、熱伝導率の調整が困難となる。また、11.0%を超えると素材としての靱性が低下する。
In the aluminum alloy of the present invention, Si, Cu. The contents of Mg, Mn, Fe, Ti, Cr, Mn, and V affect the thermal conductivity and strength (0.2% yield strength), but the amount of Fe is reduced compared to conventional ADC12 and ADC10, and Ti The amount of Cr is increasing, and the characteristics of the alloy of the present invention are manifested by the synergistic effect of containing these elements in predetermined amounts.
The Si content is set in the range of 8.0 to 11.0%, preferably 9.0 to 10.0%. If it is less than 8.0%, the thermal conductivity becomes high, and it becomes difficult to adjust the thermal conductivity. Moreover, when it exceeds 11.0%, the toughness as a raw material will fall.

Cu含有量は、2.5〜4.5%、好ましくは3.0〜4.0%の範囲内に定める。2.5%未満では熱伝導率が高くなり、熱伝導率の調整が困難となる。また、4.5%を超えると素材としての靱性が低下する。
Mg含有量は、0.2〜0.8%、好ましくは0.4〜0.6%の範囲内に定める。0.2%未満では熱伝導率が高くなり、熱伝導率の調整が困難となる。また、0.8%を超えると素材としての靱性が低下する。
The Cu content is set in the range of 2.5 to 4.5%, preferably 3.0 to 4.0%. If it is less than 2.5%, the thermal conductivity becomes high, and it becomes difficult to adjust the thermal conductivity. Moreover, when it exceeds 4.5%, the toughness as a raw material will fall.
The Mg content is set in the range of 0.2 to 0.8%, preferably 0.4 to 0.6%. If it is less than 0.2%, the thermal conductivity becomes high, and it becomes difficult to adjust the thermal conductivity. Moreover, when it exceeds 0.8%, the toughness as a raw material will fall.

Mnは添加により耐力を向上させる効力があり、0.1〜0.5%、好ましくは0.2〜0.4%の範囲内で添加する。0.1%未満では耐力向上効果が得られず、一方、0.50%を超えると素材としての靱性が低下する。
Feの含有量は、不純物としてFe≦0.25%、好ましくは≦0.20%に制御する。0.25%を超えると素材としての靱性が低下する。
Mn has the effect of improving yield strength by addition, and is added in the range of 0.1 to 0.5%, preferably 0.2 to 0.4%. If it is less than 0.1%, the yield strength improvement effect cannot be obtained. On the other hand, if it exceeds 0.50%, the toughness as a raw material is lowered.
The Fe content is controlled to be Fe ≦ 0.25%, preferably ≦ 0.20% as an impurity. If it exceeds 0.25%, the toughness as a raw material is lowered.

Si、Cu.Mg、Mn、Feを上記含有量の範囲で含むアルミニウムの連続鋳造を行うことでADC12,ADC10に相当する0.2%耐力を有する合金鋳塊を製造できるが、熱伝導率はダイカスト鋳造品よりも高くなる傾向がある。ADC12,ADC10に相当する熱伝導率に制御し、合致させるために少量のCr,Ti、Vの1種又は2種以上を含有させる。これらの元素は少量の添加で熱伝導率を下げる効果が大きく、また、それぞれ所定量の上限値である0.20%以下の含有量であれば素材としての物性である0.2%耐力に影響を与えない。   Si, Cu. An alloy ingot having a 0.2% proof stress equivalent to ADC12 and ADC10 can be produced by continuous casting of aluminum containing Mg, Mn, and Fe in the above-mentioned range, but the thermal conductivity is higher than that of die cast products. Tend to be higher. In order to control and match the thermal conductivity corresponding to ADC12 and ADC10, a small amount of one or more of Cr, Ti and V is contained. These elements have a large effect of lowering the thermal conductivity when added in a small amount, and if the content is 0.20% or less, which is the upper limit value of each predetermined amount, the 0.2% proof stress, which is a physical property of the material, is achieved. Does not affect.

これらの元素のいずれかが0.20%を超えて含有された場合、晶出物が増えて素材としての靱性を低下させる。また、0.02%未満の含量では熱伝導率がADC12,ADC10のダイカスト鋳造品より高くなってしまう。このためCr,Ti、Vの少なくとも1種を含有させるが、その含有量はそれぞれ0.02〜0.20%、好ましくは0.10〜0.15%の範囲に定める。   If any of these elements exceeds 0.20%, the amount of crystallized substances increases and the toughness as a raw material decreases. On the other hand, if the content is less than 0.02%, the thermal conductivity is higher than that of the die cast products of ADC12 and ADC10. For this reason, at least one of Cr, Ti, and V is contained, and the content is set in the range of 0.02 to 0.20%, preferably 0.10 to 0.15%.

上記のSi、Cu.Mg、Mn、Fe、並びにTi、Cr、Mn、Vから選ばれる少なくとも1種を所定範囲内の含有量で含む、連続鋳造されたアルミニウム合金鋳塊は、その0.2%耐力が145〜170MPaであり、且つ熱伝導率が110〜125W/m・℃である。この鋳塊の0.2%耐力は、従来のADC12,ADC10の0.2%耐力±10MPaに相当し、熱伝導率は、ADC12,ADC10の熱伝導率±5W/m・℃に匹敵する。     Said Si, Cu. The continuously cast aluminum alloy ingot containing Mg, Mn, Fe and at least one selected from Ti, Cr, Mn, and V in a predetermined range has a 0.2% proof stress of 145 to 170 MPa. And the thermal conductivity is 110 to 125 W / m · ° C. The 0.2% proof stress of the ingot corresponds to 0.2% proof stress ± 10 MPa of the conventional ADC12 and ADC10, and the thermal conductivity is comparable to the thermal conductivity ± 5 W / m · ° C. of the ADC12 and ADC10.

上記連続鋳造により製造したアルミニウム合金鋳塊は、鋳造のままで切削加工すると、残留応力が高く歪みが発生し寸法精度を維持することができない。そこで、本発明では、この連続鋳造されたアルミニウム合金鋳塊に対して熱処理を施し、残留応力を除去し歪みの発生を防止する。
歪みの発生を防止するためには、アルミニウム鋳造合金を温度400〜500℃、熱処理時間4時間以上で溶体化熱処理した後、温度200〜260℃、熱処理時間3〜7時間で時効熱処理するのが適している。
When the aluminum alloy ingot produced by the continuous casting is cut as it is cast, the residual stress is high and distortion occurs, and the dimensional accuracy cannot be maintained. Therefore, in the present invention, the continuously cast aluminum alloy ingot is subjected to heat treatment to remove residual stress and prevent occurrence of distortion.
In order to prevent the occurrence of distortion, the aluminum casting alloy is subjected to solution heat treatment at a temperature of 400 to 500 ° C. and a heat treatment time of 4 hours or more, and then an aging heat treatment at a temperature of 200 to 260 ° C. and a heat treatment time of 3 to 7 hours. Is suitable.

溶体化熱処理温度は、通常、400〜500℃であり、400℃未満では、0.2%耐力がADC12,ADC10ダイカスト鋳造品を下回り、また、500℃を超えるとバーニングを起こし0.2%耐力がADC12,ADC10ダイカスト鋳造品を下回る。好ましい溶体化熱処理温度は、430〜470℃である。
溶耐化熱処理時間は、4時間以上、好ましくは5〜7時間であり、4時間未満では、残留応力除去が十分ではなく切削加工後歪みが発生する。
The solution heat treatment temperature is usually 400 to 500 ° C. If the temperature is less than 400 ° C, the 0.2% proof stress is lower than that of the ADC12 and ADC10 die cast products, and if it exceeds 500 ° C, burning occurs and the 0.2% proof stress is achieved. Is lower than ADC12 and ADC10 die-cast products. A preferable solution heat treatment temperature is 430 to 470 ° C.
The solution heat treatment time is 4 hours or more, preferably 5 to 7 hours, and if it is less than 4 hours, the residual stress is not sufficiently removed and distortion after cutting occurs.

時効熱処理温度は、通常、200〜260℃、好ましくは、220〜240℃である。温度が200℃未満では、残留応力除去が十分でなく切削加工後歪みが発生し、また、260℃を超えると0.2%耐力がADC12,ADC10ダイカスト鋳造品を下回る。
時効熱処理時間は、通常3〜7時間、好ましくは4〜6時間であり、3時間未満では、0.2%耐力がADC12,ADC10ダイカスト鋳造品を下回る。また、7時間を超えると過時効が進み0.2%耐力がADC12,ADC10ダイカスト鋳造品を下回る。
The aging heat treatment temperature is usually 200 to 260 ° C, preferably 220 to 240 ° C. If the temperature is less than 200 ° C., the residual stress is not sufficiently removed, and distortion occurs after cutting. If the temperature exceeds 260 ° C., the 0.2% proof stress is lower than that of the ADC12 and ADC10 die cast products.
The aging heat treatment time is usually 3 to 7 hours, preferably 4 to 6 hours, and in less than 3 hours, the 0.2% proof stress is lower than that of the ADC12 and ADC10 die cast products. Moreover, when it exceeds 7 hours, overaging will advance and 0.2% yield strength will fall below ADC12 and ADC10 die-cast castings.

本発明のアルミニウム合金には上記元素以外に物性を損なわない範囲で、鋳塊組織の制御のため0.20%以下のSb、0.02%以下のSrを含んでいてもよい。また、鋳造時の溶湯酸化膜生成抑止のため0.01%以下のBeを含んでもよい。   The aluminum alloy of the present invention may contain 0.20% or less of Sb and 0.02% or less of Sr in order to control the ingot structure as long as the physical properties are not impaired in addition to the above elements. Further, 0.01% or less of Be may be included to suppress the formation of a molten oxide film during casting.

以下に本発明を、実施例により更に詳細に説明するが、本発明はその要旨を超えない限りこれら実施例に限定されるものではない。
実施例
下記表1に記載の組成からなるアルミニウム合金(合金No.1〜4)及び一般材(市販品:5000系)用いて連続鋳造により鋳塊を製造した。連続鋳造は、断面150×300mmのスラブ形状で実施した。また、合金調整用のアルミニウムとしては99.8%の純度のものを用いた。
目標基準を示す為に、ADC12及びADC10を用い、ダイカスト鋳造品(目標例)を製造した。
Examples The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples unless it exceeds the gist.
Example An ingot was produced by continuous casting using an aluminum alloy (alloys No. 1 to 4) having the composition described in Table 1 below and a general material (commercial product: 5000 series). Continuous casting was carried out with a slab shape having a cross section of 150 × 300 mm. Moreover, as the aluminum for adjusting the alloy, 99.8% purity aluminum was used.
In order to show the target standard, ADC12 and ADC10 were used to manufacture a die cast product (target example).

連続鋳造により得られた鋳塊及びダイカスト鋳造品の0.2%耐力、伸び及び導電率を測定し評価した。熱伝導率は、導電率測定値より換算した値を示す。これらの結果を纏めて表1に示す。
なお、0.2%耐力及び伸び試験は、JIS Z2241により行い、導電率測定は、渦電流式導電率測定装置により行った。
The 0.2% proof stress, elongation and electrical conductivity of the ingot and die cast product obtained by continuous casting were measured and evaluated. Thermal conductivity shows the value converted from the measured conductivity value. These results are summarized in Table 1.
The 0.2% proof stress and elongation test were performed according to JIS Z2241, and the conductivity measurement was performed using an eddy current conductivity measuring device.

Figure 0004707413
Figure 0004707413

表1から明らかな様に、比較例の市販されている5000系一般材では、目標例より0.2%耐力が低く、伸び及び熱伝導率が高くなっている。
比較例の合金No.1では目標例に対して0.2%耐力が低く、熱伝導率が高い。また、合金No.2では熱伝導率が目標例より高くなってしまう。
本発明の実施例合金No.3はADC10と、No.4はADC12と同等の物性値を示している。このことは、本発明により、引張強度及び0.2%耐力の値をそれぞれ目標とするADC10及びADC12の0.2%耐力±10MPa、熱伝導率を±5W/m・℃の範囲内で十分制御が可能であることを表す。
As is apparent from Table 1, the commercially available 5000 series general material of the comparative example has a 0.2% yield strength lower than that of the target example, and has a higher elongation and thermal conductivity.
Alloy No. of Comparative Example 1, the 0.2% yield strength is lower than the target example, and the thermal conductivity is high. In addition, Alloy No. In 2, the thermal conductivity is higher than the target example.
Example alloy no. 3 is ADC10 and No.3. 4 shows the physical property value equivalent to ADC12. This means that, according to the present invention, ADC10 and ADC12, which are targeted for tensile strength and 0.2% proof stress, respectively, have 0.2% proof stress ± 10 MPa and thermal conductivity within the range of ± 5 W / m · ° C. Indicates that control is possible.

表1に記載の実施例合金No.4の連続鋳造により製造した鋳塊を、460℃で6時間溶体化熱処理し、その後230℃で5時間時効熱処理を行った。熱処理を施した鋳塊(No.6)と熱処理を行わなかった鋳塊(No.5)について歪み量を測定し、その結果を表2に示す。熱処理による残留応力の除去効果は、残留応力により発生する歪み量を測定し、その量を比較することで評価した。
表2から明らかなように、熱処理を実施していない比較例No.5に対し、熱処理を実施した実施例No.6は残留応力が除去され歪み量の発生が1/20に小さくなっている。これにより、切削加工時に歪みが発生することなく、良好な寸法精度を確保できる。
Example alloy Nos. The ingot produced by the continuous casting of No. 4 was subjected to solution heat treatment at 460 ° C. for 6 hours, and then subjected to aging heat treatment at 230 ° C. for 5 hours. The amount of strain was measured for the ingot (No. 6) subjected to heat treatment and the ingot (No. 5) not subjected to heat treatment, and the results are shown in Table 2. The effect of removing the residual stress by the heat treatment was evaluated by measuring the amount of strain generated by the residual stress and comparing the amount.
As is apparent from Table 2, Comparative Example No. in which no heat treatment was performed. In Example No. 5 where heat treatment was performed on In No. 6, the residual stress is removed, and the amount of distortion is reduced to 1/20. Thereby, favorable dimensional accuracy can be ensured without generating distortion at the time of cutting.

Figure 0004707413
Figure 0004707413

Claims (2)

Si:8.0〜11.0wt%、Cu:2.5〜4.5wt%、Mg:0.2〜0.6wt%、Mn:0.1〜0.5wt%、Fe≦0.25wt%を含有し、更にCr:0.02〜0.20wt%、Ti:0.02〜0.20wt%、及びV:0.02〜0.20wt%の内の1種又は2種以上の元素を含有し、残部アルミニウムおよび不可避的不純物からなる合金の連続鋳造による鋳塊であって、その0.2%耐力が145〜170MPaであり、且つ熱伝導率が110〜125W/m・℃である鋳塊を、温度400〜500℃、熱処理時間4時間以上で溶体化熱処理した後、温度200〜260℃、熱処理時間3〜7時間で時効熱処理を施すことにより得られたことを特徴とする連続鋳造アルミニウム合金鋳塊。 Si: 8.0 to 11.0 wt%, Cu: 2.5 to 4.5 wt%, Mg: 0.2 to 0.6 wt%, Mn: 0.1 to 0.5 wt%, Fe ≦ 0.25 wt % containing further Cr: 0.02~0.20wt%, Ti: 0.02~0.20wt %, and V: 1 or two or more elements of the 0.02~0.20Wt% Ingot by continuous casting of an alloy composed of the balance aluminum and inevitable impurities , the 0.2% proof stress is 145 to 170 MPa, and the thermal conductivity is 110 to 125 W / m · ° C. The ingot was obtained by subjecting the ingot to solution heat treatment at a temperature of 400 to 500 ° C. and a heat treatment time of 4 hours or more, and then performing an aging heat treatment at a temperature of 200 to 260 ° C. and a heat treatment time of 3 to 7 hours. Cast aluminum alloy ingot. Si:8.0〜11.0wt%、Cu:2.5〜4.5wt%、Mg:0.2〜0.6wt%、Mn:0.1〜0.5wt%、Fe≦0.25wt%を含有し、更にCr:0.02〜0.20wt%、Ti:0.02〜0.20wt%、及びV:0.02〜0.20wt%の内の1種又は2種以上の元素を含有し、残部アルミニウムおよび不可避的不純物からなる合金の連続鋳造による鋳塊であって、その0.2%耐力が145〜170MPaであり、且つ熱伝導率が110〜125W/m・℃である鋳塊を、温度400〜500℃、熱処理時間4時間以上で溶体化熱処理した後、温度200〜260℃、熱処理時間3〜7時間で時効熱処理を施すことを特徴とする連続鋳造アルミニウム合金鋳塊の製造方法。 Si: 8.0 to 11.0 wt%, Cu: 2.5 to 4.5 wt%, Mg: 0.2 to 0.6 wt%, Mn: 0.1 to 0.5 wt%, Fe ≦ 0.25 wt % containing further Cr: 0.02~0.20wt%, Ti: 0.02~0.20wt %, and V: 1 or two or more elements of the 0.02~0.20Wt% Ingot by continuous casting of an alloy composed of the balance aluminum and inevitable impurities , the 0.2% proof stress is 145 to 170 MPa, and the thermal conductivity is 110 to 125 W / m · ° C. A continuous cast aluminum alloy ingot characterized by subjecting an ingot to solution heat treatment at a temperature of 400 to 500 ° C. and a heat treatment time of 4 hours or more, and then performing an aging heat treatment at a temperature of 200 to 260 ° C. and a heat treatment time of 3 to 7 hours. Manufacturing method.
JP2005059910A 2005-03-04 2005-03-04 Continuously cast aluminum alloy ingot and method for producing the same Expired - Fee Related JP4707413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005059910A JP4707413B2 (en) 2005-03-04 2005-03-04 Continuously cast aluminum alloy ingot and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005059910A JP4707413B2 (en) 2005-03-04 2005-03-04 Continuously cast aluminum alloy ingot and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006241531A JP2006241531A (en) 2006-09-14
JP4707413B2 true JP4707413B2 (en) 2011-06-22

Family

ID=37048223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005059910A Expired - Fee Related JP4707413B2 (en) 2005-03-04 2005-03-04 Continuously cast aluminum alloy ingot and method for producing the same

Country Status (1)

Country Link
JP (1) JP4707413B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100453206C (en) * 2007-06-06 2009-01-21 中国兵器工业第五二研究所 Process of making oil cylinder body and cover with aluminium alloy
CN102676885B (en) * 2012-05-25 2015-06-24 无锡格莱德科技有限公司 Aluminum alloy ingot
JP2014152375A (en) * 2013-02-13 2014-08-25 Art Metal Mfg Co Ltd Piston material for internal combustion engine and method of manufacturing the same
CN103643091B (en) * 2013-12-20 2015-12-02 西南铝业(集团)有限责任公司 A kind of Aluminum alloy production method for railway vehicle body
WO2015126515A2 (en) * 2013-12-20 2015-08-27 Alcoa Inc. HIGH PERFORMANCE AlSiMgCu CASTING ALLOY
WO2018042494A1 (en) * 2016-08-29 2018-03-08 日本軽金属株式会社 High-strength aluminum alloy, internal combustion engine piston comprising said alloy, and method for producing internal combustion engine piston
CN113510222A (en) * 2021-07-01 2021-10-19 中国航发北京航空材料研究院 Manufacturing method of aluminum alloy ingot
CN114717455B (en) * 2022-04-20 2023-01-24 北京车和家汽车科技有限公司 Heat-treatment-free high-strength and high-toughness die-casting aluminum alloy and preparation method thereof
CN114959375B (en) * 2022-07-19 2022-11-08 浙江大华技术股份有限公司 Surface source black body and preparation method and device thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5985349A (en) * 1982-11-05 1984-05-17 Showa Alum Ind Kk Aluminum alloy for part contacting with magnetic tape

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5985349A (en) * 1982-11-05 1984-05-17 Showa Alum Ind Kk Aluminum alloy for part contacting with magnetic tape

Also Published As

Publication number Publication date
JP2006241531A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4707413B2 (en) Continuously cast aluminum alloy ingot and method for producing the same
JP5300118B2 (en) Aluminum alloy casting manufacturing method
JP5879181B2 (en) Aluminum alloy with excellent high temperature characteristics
JP6118728B2 (en) Thick product and manufacturing method made of 7XXX alloy
KR102003569B1 (en) 2xxx series aluminum lithium alloys
JP5703881B2 (en) High strength magnesium alloy and method for producing the same
JPWO2011129431A1 (en) Method for producing aluminum alloy forged member
JP5284935B2 (en) Heat-resistant aluminum alloy extruded material with excellent high-temperature strength and fatigue properties
WO2015111437A1 (en) Underbracket for two-wheeled vehicle and three-wheeled vehicle, and production method for same
WO2015111438A1 (en) Underbracket for two-wheeled vehicle and three-wheeled vehicle, and production method for same
JP2005187896A (en) Heat resistant magnesium alloy casting
JP2013053361A (en) Aluminum alloy for flying body excellent in heat-resistant strength
JPH05247574A (en) Production of aluminum alloy for forging and forged product of aluminum alloy
JPH09296245A (en) Aluminum alloy for casting
KR20140050172A (en) High strength and high toughness magnesium alloy with suppressed discontinuous precipitation
RU2245388C1 (en) Aluminum-based material
JP5688744B2 (en) High strength and high toughness copper alloy forging
JP5522692B2 (en) High strength copper alloy forging
JP7073068B2 (en) Al-Cu-Mg-based aluminum alloy and Al-Cu-Mg-based aluminum alloy material
JP3951921B2 (en) Manufacturing method of aluminum alloy processed material of 58.1IACS% or more
JP2006316341A (en) Castable aluminum alloy and aluminum alloy cast made therefrom
JP7126915B2 (en) Aluminum alloy extruded material and its manufacturing method
US20140127076A1 (en) 5xxx-lithium aluminum alloys, and methods for producing the same
US20210404038A1 (en) 2xxx aluminum lithium alloys
JPH09176805A (en) Production of aluminum fin material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110315

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees