JP4704499B2 - 圧縮サブバンド・フィルタ・インパルス応答を作るためのフィルタ・コンプレッサおよび方法 - Google Patents

圧縮サブバンド・フィルタ・インパルス応答を作るためのフィルタ・コンプレッサおよび方法 Download PDF

Info

Publication number
JP4704499B2
JP4704499B2 JP2009517033A JP2009517033A JP4704499B2 JP 4704499 B2 JP4704499 B2 JP 4704499B2 JP 2009517033 A JP2009517033 A JP 2009517033A JP 2009517033 A JP2009517033 A JP 2009517033A JP 4704499 B2 JP4704499 B2 JP 4704499B2
Authority
JP
Japan
Prior art keywords
filter
value
impulse response
subband
filter impulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009517033A
Other languages
English (en)
Other versions
JP2009542137A (ja
Inventor
ラルス ヴィレモエス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dolby International AB
Original Assignee
Dolby International AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dolby International AB filed Critical Dolby International AB
Publication of JP2009542137A publication Critical patent/JP2009542137A/ja
Application granted granted Critical
Publication of JP4704499B2 publication Critical patent/JP4704499B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0248Filters characterised by a particular frequency response or filtering method
    • H03H17/0264Filter sets with mutual related characteristics
    • H03H17/0272Quadrature mirror filters
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0248Filters characterised by a particular frequency response or filtering method
    • H03H17/0264Filter sets with mutual related characteristics
    • H03H17/0266Filter banks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S5/00Pseudo-stereo systems, e.g. in which additional channel signals are derived from monophonic signals by means of phase shifting, time delay or reverberation 
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Computational Linguistics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compressor (AREA)

Description

本発明は、例えばヘッドホン上のマルチチャンネル・サウンド体験のための頭部伝達関数(HRTF)のフィルタリングのような音声アプリケーションの分野において例えば使用することができる、QMFドメイン(QMF=直交ミラー・フィルタバンク)と呼ばれることもあるサブバンド・ドメインにおけるフィルタ・コンプレッサに関する。
フィルタ変換技術の最近の進展は、時間ドメイン・フィルタの非常に効率的なQMF表現を可能にしている。一般に、時間ドメインのどのFIRフィルタ(FIR=有限インパルス応答)も、QMFにおいて特定のサブバンドにそれぞれ対応する1セットの複素フィルタに変換することができる。このため、フィルタリングは、フィルタリングがFFT(FFT=高速フーリエ変換)を用いて実行することができる方法と同様に、複素QMFドメインにおいて起こることができる。それでも、フィルタリングのQMFドメイン表現および実施の計算の複雑性は、例えば時間ドメインにおいて長いインパルス応答を有するフィルタの場合にかなりなものとなり得る。
さらに、音声符号化における最近の進展は、ステレオ(またはモノラル)信号および対応する制御データに基づいて音声信号のマルチチャンネル表現を再現する能力を利用できるようになっている。これらの方法は、さらなる制御データが、送信されたモノラルまたはステレオ・チャンネルに基づくサラウンド・チャンネルの、アップミックスとも呼ばれる、再現を制御するために送信されるので、ドルビー社プロロジック(Prologic(登録商標))のような古くからあるマトリクスに基づく解決策とは大幅に異なる。
したがって、そのようなパラメトリック・マルチチャンネル・オーディオ・デコーダ、例えばMPEGサラウンド(MPEG Surround(登録商標))は、M個の送信されたチャンネルおよびさらなる制御データに基づいてN個のチャンネルを再構成し、NおよびMは可能な整数であり、N>Mである。このさらなる制御データは、N個のチャンネルの全ての送信より著しく低いデータレートを表し、符号化を非常に効率的にすると同時に、Mチャンネル装置およびNチャンネル装置の両方の互換性を確実にする。
これらのパラメトリック・サラウンド符号化方法は、通常、IID(チャンネル間強度差)およびICC(チャンネル間コヒーレンス)に基づくサラウンド信号のパラメータ化を含む。これらのパラメータは、アップミックス・プロセスにおけるチャンネル対間のパワー比および相関関係を表す。先行技術でも用いられるさらなるパラメータは、アップミックス手順中に、中間または出力チャンネルを予測するために用いられる予測パラメータを含む。
音声符号化における他の進展は、ステレオ・ヘッドホン上のマルチチャンネル信号印象を得る手段を提供している。これは、元のマルチチャンネル信号およびいわゆるHRTF(頭部伝達関数)フィルタを用いて、マルチチャンネル信号をステレオにダウンミックスすることによって一般に行われる。パラメトリック・マルチチャンネル・オーディオ・デコーダが、送信されたダウンミックス信号からマルチチャンネル信号をまず再現し、その後にHRTFフィルタによって再びそれをダウンミックスする必要なく、ヘッドホン上のマルチチャネル信号をレンダリングすることを可能にするバイノーラル・ダウンミックス・アルゴリズムと組み合わせることができることは、先行技術に示されている。これは、パラメトリック・マルチチャネル表現の関数として、HRTFフィルタを4つのフィルタに組み合わせることによって達成される。結果として、4つのフィルタは、マルチチャンネル表現のための入力として用いられるステレオ信号(2つのチャンネル)が結果として生じるバイノーラルまたはステレオ出力信号(2つのチャンネル)を達成するためにどのように組み合わされまたはミックスされるかについてパラメトリック・マルチチャンネル表現の関数として表される。それで、4つのフィルタのそれぞれは、2つの出力信号に関して2つの入力信号のうちの1つに関連する。しかしながら、HRTFフィルタは、室内特性をうまくモデル化するために、非常に長くなり、そのため、QMFドメインにおいて4つのHRTFフィルタをフィルタリングするための計算の複雑性は、著しくなり得る。
本発明の実施形態によれば、フィルタ・タップでフィルタ・インパルス応答値を含む、サブバンドに対応する入力サブバンド・フィルタ・インパルス応答から圧縮サブバンド・フィルタ・インパルス応答を生成するためのフィルタ・コンプレッサは、より高い値を有するフィルタ・インパルス応答値およびそのより高い値より低い値を有する少なくとも1つのフィルタ・インパルス応答値を見つけるために、少なくとも2つの入力サブバンド・フィルタ・インパルス応答からフィルタ・インパルス応答値を調べるためのプロセッサと、そのより高い値を有するフィルタ・インパルス応答値を用いて圧縮サブバンド・フィルタ・インパルス応答を構成するためのフィルタ・インパルス応答コンストラクタとを含み、その圧縮サブバンド・フィルタ・インパルス応答は、そのより低い値を有する少なくとも1つのフィルタ・インパルス応答値のフィルタ・タップに対応するフィルタ・インパルス応答値を含まず、または、そのより低い値を有する少なくとも1つのフィルタ・インパルス応答値のフィルタ・タップに対応するゼロ値の値を含む。
本発明のさらなる実施形態は、フィルタ・タップでフィルタ・インパルス応答値を含む、サブバンドに対応する入力サブバンド・フィルタ・インパルス応答から圧縮サブバンド・フィルタ・インパルス応答を作るするための方法に関し、より高い値を有するフィルタ・インパルス応答値およびそのより高い値より低い値を有する少なくとも1つのフィルタ・インパルス応答値を見つけるために、少なくとも2つの入力サブバンド・フィルタ・インパルス応答からフィルタ・インパルス応答値を調べるステップと、そのより高い値を有するフィルタ・インパルス応答値を用いて圧縮サブバンド・フィルタ・インパルス応答を構成するステップとを含み、その圧縮サブバンド・フィルタ・インパルス応答は、そのより低い値を有する少なくとも1つのフィルタ・インパルス応答値のフィルタ・タップに対応するフィルタ・インパルス応答値を含まず、または、そのより低い値を有する少なくとも1つのフィルタ・インパルス応答値のフィルタ・タップに対応するゼロ値の値を含む。
コンピュータ読み取り可能な記憶媒体の実施形態は、それに記憶された複数セットのサブバンド・フィルタ・インパルス応答を含み、それぞれのセットのサブバンド・フィルタ・インパルス応答は、ともに時間ドメイン頭部伝達関数関連フィルタに近似し、その時間ドメイン頭部伝達関数関連フィルタのフィルタ・インパルス応答は、それぞれのセットのサブバンド・フィルタ・インパルス応答のサブバンド・フィルタ・インパルス応答の長さの合計より大きいか、または、その時間ドメイン頭部伝達関数関連フィルタのフィルタ・インパルス応答は、フィルタ・インパルス応答値が複素数値である場合に、それぞれのセットのサブバンド・フィルタ・インパルス応答のサブバンド・フィルタ・インパルス応答の複素数値のフィルタ・インパルス応答値の長さの合計より大きい。
本発明のいくつかの実施形態は、一方では計算効率および他方では品質を両立させることに関して有利になる得る。実施形態は、計算の複雑性の著しい低減および入力サブバンド・フィルタ・インパルス応答によって表されるフィルタの優れた近似の両方を提供する。選択された(または決定された)フィルタ・インパルス応答値を用いて圧縮サブバンド・フィルタ・インパルス応答を調べること(結局、選択することまたは決定することを含む)および構成することは、いくつかの実施形態および/またはアプリケーションにおいて計算の複雑性の低減および優れた近似の両方を達成することができ、(ほとんど)音声的に見分けのつかないリスニング体験に導くことができる。いくつかの実施形態において、これは、より高い値を有する入力フィルタ・インパルス応答のフィルタ・インパルス応答値を見つけ、選択しまたは決定することによって達成することができ、その一方で、少なくとも1つのフィルタ・インパルス応答値は、選択されないかまたは決定されず、より高い値より低い値を有する。選択されまたは決定されたフィルタ・インパルス応答値またはより高い値を有するフィルタ・インパルス応答値を用いて、圧縮フィルタ・インパルス応答値を有する圧縮フィルタ・インパルス応答は、構成されまたは作られる。実施に応じて、選択されない若しくは決定されないフィルタ・インパルス応答値またはより高い値より低い値を有するフィルタ・インパルス応答値は、ゼロにセットされるかまたは無視される。換言すれば、フィルタ・インパルス応答値は、無視されるパターンを含んでも、ゼロに設定されてもまたはその他に修正されたフィルタ・インパルス応答値であってもよい。
さらに、いくつかの実施形態は、圧縮サブバンド・フィルタ・インパルス応答が構成されるフィルタ・インパルス応答値の選択に影響を与えることによって、計算の複雑性の広範囲にわたる達成可能な低減を提供することができる。結果として、本発明のいくつかの実施形態は、一方では計算の複雑性の達成可能な適合および他方では近似の品質を両立させることにおいて非常に大きい柔軟性を提供する。
したがって、本発明のいくつかの実施形態は、特に、時間ドメインにおいて比較的長い(有限の)インパルス応答を有するフィルタを含む音声または他のアプリケーションの分野において適用することができる。後に説明されるように、フィルタまたはフィルタ・エレメントを時間ドメインから(複素)サブバンド・ドメインに変換することによって、計算は、個々のサブバンド・フィルタのインパルス応答が時間ドメインにおいてフィルタのインパルス応答と比較して著しく短いように並行して行うことができる。
しかしながら、全体の計算の複雑性は、時間ドメインから(複素)サブバンド・ドメインへの単なる変換だけでは低減することができない。例えば、HRTFフィルタのように比較的長いインパルス応答を有するフィルタに対して、個々のサブバンド・フィルタでさえ通常長い有限インパルス応答を有し、それは、個々のサブバンドの数で除算される時間ドメインおいて対応するフィルタの有限インパルス応答の順序について非常に大ざっぱに言っている。したがって、特定のアプリケーションで利用可能な計算する能力に応じて、全体の計算の複雑性または個々のサブバンド・フィルタに関する計算の複雑性さえ、かなりなものとなり得る。
さらに、付加的にまたは代わりに、フィルタ・インパルス応答のレベルに基づく決定は、フィルタ・コンプレッサの実施形態において実施することができる。このような場合、フィルタ・コンプレッサは、フィルタ・インパルス応答の値(例えば絶対値)が閾値より下である場合に、少なくとも1つのフィルタ・インパルス応答値がゼロに設定されまたは無視されることができるように、構成することができる。アプリケーションのいくらかの分野において、1以上のフィルタ・インパルス応答値は、入力サブバンド・フィルタ・インパルス応答に対応するフィルタバンクのエイリアシング・レベルに近くてもよい。フィルタ・インパルス応答値の値がそのような対応するフィルタバンクのエイリアシング・レベルに近い場合、特定のタップは、対応するフィルタ係数またはフィルタ・インパルス応答値がゼロに問題なく設定されることができるように、ゼロに設定されてもよい。結果として、そのような圧縮フィルタ・インパルス応答に基づくフィルタの実施は、ゼロ値の係数またはインパルス応答値のための乗加算を実行する必要がない。
これに関連して、フィルタバンクのエイリアシング・レベルは、多くのフィルタバンクの固有特性である。フィルタバンクのそのようなエイリアシング・レベルは、例えばSBRアプリケーションの枠組みにおいて、信号の単なる処理から生じる。それぞれのフィルタ・タップまたはフィルタ・インパルス応答値が信号を生じる出力に貢献するので、タブ(の例えば絶対値)がより小さく、それぞれのタップの結果または貢献がフィルタバンクの出力に関してより小さい。したがって、小さいタップは、それらの貢献がその範囲にあるフィルタバンクのまたはそれぞれのフィルタバンクのエイリアシング・レベルの順序の出力へのそのような小さい貢献を有することが起こる。この場合、対応するタップをゼロに設定することによって導入されるさらなるディストーションは、さらなる聞き取れるディストーションを導入しないように、多くの場合に許容することができる。多くの場合、エイリアシング・レベルの典型的な範囲は、ピーク信号と比較して−30dB、−40dB、−50dB、−60dBおよび−70dBの範囲およびそれ以下である。
例えば、HRTFフィルタの場合、時間ドメインHRTFフィルタを複素QMF表現に変換した後に、複素QMF表現において時間周波数タイルのいくつかは、(MPEGサラウンド・フィルタバンクのエイリアシング・レベルで)低い絶対値を有し得る。HRTFフィルタの複素QMF表現のこれらのエントリーは、ゼロに設定することができる。これは、複素QMF表現に含まれる室内応答を有する長いHRTFフィルタを実施するための煩雑性低減を可能にする。したがって、低減された煩雑性でバイノーラル化を達成するために、現実的な室内効果を維持するとともに、フィルタ・コンバータの後にフィルタ・コンプレッサの実施形態の形式においてフィルタ低減プロセスが続くことができる。フィルタ低減ステップは、サブバンドHRTFフィルタが少なくとも少ない数またはかなりの数のゼロさえも含むように、HRTFフィルタを単純化することを目的とする。より少ない係数がアクティブであるので、計算の複雑性の著しい低減は、それによって達成することができる。
したがって、フィルタ・コンプレッサの実施形態、それを作るための方法の実施形態によって提供される1セットの作られた圧縮サブバンド・フィルタ・インパルス応答および複数の圧縮サブバンド・フィルタ・インパルス応答を含むコンピュータ読み取り可能な記憶媒体の実施形態は、それぞれのサブバンド・フィルタに対して個々の計算の複雑性および全てのサブバンド・フィルタに関して全体の計算の複雑性を著しく低減することができる。
本発明は、添付図面を参照して、本発明の範囲または精神を制限しない図示例によって記載される。
図1は、フィルタ・コンバータおよび本発明によるコンプレッサの実施形態の相互作用を図示する。 図2は、本発明のための使用例のシナリオを図示する。 図3は、本発明によるフィルタ・コンプレッサの実施形態を図示する。 図4は、本発明によるフィルタ・コンプレッサのさらなる実施形態を図示する。 図5は、マルチプル・フィルタに同時に作動する本発明によるフィルタ・コンプレッサのさらなる実施形態を図示する。 図6は、HRTFフィルタリングとの関連で用いられる本発明の実施形態を図示する。 図7は、適合性のあるフィルタのための可能な解決策を図示する。 図8は、フィルタ・コンバータの主要なコンポーネントのための可能な解決策を図示する。 図9は、(複素)分析フィルタバンクの可能な解決策を図示する。 図10は、適合性のあるサブバンド・フィルタバンクの可能な解決策を図示する。 図11は、(複素)合成フィルタバンクの第1の可能な解決策を図示する。 図12は、(複素)合成フィルタバンクのための第2の可能な解決策を図示する。 図13は、本発明によるフィルタ・コンプレッサのさらなる実施形態を図示する。 図14a〜図14cは、本発明によるフィルタ・コンプレッサの実施形態に使用されるようにスペクトル白色化を図示する。 図15は、マルチプル・フィルタに同時に作動する本発明によるフィルタ・コンプレッサの実施形態を図示する。
以下に記載されている実施形態は、効率的なフィルタ表現のための本発明の原理のために単に図示するだけである。本願明細書に記載されている構成および詳細の変更および変形が他の当業者にとって明らかであるものと理解される。したがって、本願明細書において実施形態の記載および説明として表される具体的な詳細によってではなく、間近に迫った特許請求の範囲だけによって制限されることを意図する。
さらに詳細に本発明の実施形態、実施形態のさらなるコンポーネントおよびアプリケーションを記載する前に、同一または類似の機能特性を有する目的、構成およびコンポーネントが同じ引用符号によって示される点に留意すべきである。明示的にその他に注意さない限り、類似するまたは等しい機能特性および特徴を有する目的、構成およびコンポーネントに関する記載は、互いに関して交換することができる。さらに、以下において、特定の目的、構成およびコンポーネントの特性または特徴が述べられない限り、1つの実施形態において同一であるか類似する、または、図の1つに示される異なる構成に現れる、目的、構成およびコンポーネントの引用符号を要約することが用いられる。引用符号を要約することによって、本発明の実施形態のよりコンパクトでより明瞭な記載を可能にし、さらに異なる実施形態間の特徴および記載の交換の可能性を明確に示す。
さらに、以下において、図に示される実施形態が方法の対応する実施形態を等しく表す点に留意すべきである。したがって、図に示される実施形態は、例えばフィルタ・コンプレッサの対応する実施形態を図示するだけでなく、対応する方法の対応する実施形態のフローチャートも表す。以下に概説されるように、方法のそのような実施形態は、ハードウェアにおいてまたはソフトウェアにおいて実施することができる。
図1において、可能なアプリケーションとともに本発明の1つの実施形態が概説される。具体的には、図1は、フィルタ・コンプレッサ102の実施形態に接続されるフィルタ・コンバータ101を示す。フィルタ・コンバータ101は、後にさらに詳細に記載される。フィルタ・コンバータ101の実施形態には、時間ドメインにおいてフィルタまたはフィルタ・エレメントの有限インパルス応答h(n)に関する情報を含む入力信号が提供される。インデックスnは、これに関連して有限インパルス応答(FIR)の異なる値またはサンプルを示す整数であり、h(n)は、実数値の数である。
時間ドメイン・フィルタh(n)の有限インパルス応答は、所定の振幅を有する単一のインパルスの形式において励起上の時間ドメインにおけるフィルタまたはフィルタ・エレメントの応答である。原則として、時間ドメインにおけるフィルタ・エレメントの完全な挙動は、フィルタの有限インパルス応答に含まれる。デジタル・システムの場合、フィルタのインパルス応答は、時間において単一の例でゼロとは異なる値を有する入力信号を適用することによって決定されまたは測定され得る。この値は、例えば1に等しくあり得る。
フィルタ・コンバータ101は、図10との関連で概説されるように、適合性のあるフィルタの枠組みにおいて用いることができる1セットの有限インパルス応答H(n,k)を提供することができる。複素分析フィルタバンクに基づく複素フィルタ・コンバータの場合、有限インパルス応答H(n,k)が複素数値の数を含む点に留意すべきであり、nは、前と同じように異なるサンプルを示し、k=0、・・・、(L−1)は、サブバンド・フィルタの有限インパルス応答が対応する対応のサブバンドを示す。lおよびkの両方とも整数である。さらに、サブバンドの数Lは、正の整数でもある。デジタル・システムの場合、フィルタ・コンバータ101によって提供され、フィルタリング・デジタル音声入力信号のために後に用いられるサブバンドの数Lは、多くの場合に2の累乗、例えば16、32、64、128、256、512である。以下の例では、サブバンドの数は、L=64であるように選択される。しかしながら、前に概説されるように、原則として、フィルタ・コンプレッサのアプリケーション、コンポーネントおよび実施形態においてサブバンドの数としてあらゆる正の整数Lが使用できる。
説明されるように、時間ドメイン・フィルタh(n)は、フィルタH(n,k)の複素QMFまたはサブバンド表現を作り出すフィルタ・コンバータ101に入力される。L=64のサブバンドQMFが用いられるこの特定例において、フィルタの複素QMF表現は、多数のL=64の有限インパルス応答の長さを有する長さKの時間ドメイン・フィルタに対して、長さK/64+2のL=64の複素フィルタによって表される。
本発明によれば、フィルタH(n,k)は、その後にフィルタ・コンプレッサ102に入力され、それは、圧縮サブバンド・フィルタ・インパルス応答としてH(n,k)を出力する。フィルタ・コンプレッサ102の実施形態は、元のフィルタH(n,k)より多い数のゼロ値の係数を有するフィルタH(n,k)出力し、したがって、低い計算の複雑性を可能する。
実施形態およびアプリケーションに応じて、フィルタ・コンバータ101およびフィルタ・コンプレッサ102は、L接続を介して互いに結合され、それぞれに異なるサブバンド(インデックスk=0、・・・、L−1またはk=1、・・・、L)に対応するフィルタ・インパルス応答が送信される。このオプションは、フィルタ・コンバータ101およびフィルタ・コンプレッサ102の接続を交差するスラッシュ(/)によって図1に示される。しかしながら、2つのコンポーネントは、より少ない数の接続によってまたは単一の接続だけによって互いに結合されてもよく、それに対応する信号または情報が送信される。示される図および実施形態の単純化のために、それぞれのサブバンドに対して個々の接続を含むエレメントの可能な並列接続が必要に応じて示される。しかしながら、サブバンドに関する信号または情報が送信されるときはいつでも、例えばそれを示す変数(例えばH(n,k))によって示されるように、いかなる接続も実施することができる。
後にさらに詳細に説明されるように、フィルタ・コンプレッサ102の実施形態も、例えばサブバンド・フィルタバンクに含まれるそれぞれの数のサブバンド・フィルタに対して1セットまたは複数のフィルタ・インパルス応答を出力する。入力サブバンド・フィルタ・インパルス応答H(n,k)および圧縮サブバンド・フィルタ・インパルス応答H(n,k)の両方とも、前に説明されるように、時間に関連したnおよびサブバンドに関連したkによって表示される2次元マトリクスに配列される両方の複素数値の数である。
しかしながら、フィルタ・コンプレッサ102の異なる実施形態に関するさらなる詳細は、後に概説される。さらに、圧縮サブバンド・フィルタ・インパルス応答H(n,k)および入力サブバンド・フィルタ応答H(n,k)間の関係は、フィルタ・コンプレッサ102の異なる実施形態のために後に説明される。原則として、2セットの複数のフィルタ・インパルス応答H(n,k)およびH(n,k)は、簡単に概説されるように、ゼロ値の係数の数だけより多くのやり方において異なり得る点に留意することが重要である。
図2において、本発明のための一般の使用例のシナリオが概説される。ここで、時間ドメイン・フィルタh(n)は、フィルタH(n,k)の複素QMF表現を作り出すフィルタ・コンバータ101に入力され、複素QMFフィルタH(n,k)は、前に説明されるように、低減されまたは圧縮された複素QMFフィルタH(n,k)を出力するフィルタ・コンプレッサ102の実施形態に入力される。
両方が図1との関連で説明される時間ドメインh(n)においてフィルタの実数値のインパルス応答を提供するフィルタ・コンバータ101およびフィルタ・コンプレッサ102の実施形態は別として、図2に示される使用例のシナリオは、複素分析フィルタバンクとも呼ばれるQMF分析フィルタバンク203をさらに含む。QMF分析フィルタバンク203には、例えばデジタル音声信号であり得る入力信号x(n)が提供される。QMF分析フィルタ・ドメイン203は、出力において入力信号x(n)の複素QMF表現X(n,k)を提供する。図1との関連で説明されるように、整数nおよびkは、サンプルまたは時間インデックスとサブバンド・インデックスとにそれぞれ関連する。QMF分析フィルタバンク203のための可能な解決策は、図9との関連でさらに詳細に説明される。
入力信号x(n)の複素QMF表現X(n,k)は、サブバンド・ドメインにおいて作動するフィルタリング・ステージ201にその後に提供される。フィルタリング・ステージまたはサブバンド・フィルタ201は、調整可能なサブバンド・フィルタバンクであり、それは、フィルタ・コンプレッサ102の実施形態の出力に結合される複数のL個の中間フィルタを含む。フィルタ・コンプレッサ102の実施形態を介して、サブバンド・フィルタバンク201の中間フィルタには、(複素数値の)QMF表現X(n,k)をフィルタにかけるために用いられる圧縮サブバンド・フィルタ・インパルス応答H(n,k)が提供される。
原則として、後に説明されるように、複素QMF表現X(n,k)は、サブバンド・インデックスkによって識別されるそれぞれのサブバンドに対して複素QMF表現X(n,k)およびフィルタ・コンプレッサ102の実施形態によって提供されるそれぞれのフィルタ・インパルス応答H(n,k)の畳み込みを計算することによって、フィルタにかけることができる。
それから、複素QMFドメインにおいてサブバンド・フィルタバンク201によって提供されるフィルタ信号は、QMF合成フィルタバンクまたは複素合成フィルタバンクに提供され、それは、最後的に(実数値の)出力信号y(n)を合成する。QMF合成フィルタバンク202または複素合成フィルタバンクのための可能な解決策は、図11および図12の枠組みにおいて述べられる。
換言すれば、図1に示すように、フィルタ・コンバータ101およびフィルタ・コンプレッサ102の実施形態と並行して、信号x(n)は、X(n,k)すなわち入力信号の合複素QMF表現を出力するQMF分析203モジュールに入力される。その後、その信号は、フィルタ・コンプレッサ102によって出力される複素QMFフィルタを用いてQMFドメインにおいてフィルタ201にかけられ、フィルタにかけられた信号は、フィルタにかけられた出力信号y(n)を作り出すQMF合成フィルタバンク202によって時間ドメインに最終的に合成される。
図3において、フィルタ・コンプレッサ102の実施形態のさらに詳細な図が与えられる。また、時間ドメインにおいて入力インパルス応答としての時間ドメイン・フィルタh(n)は、フィルタ・コンバータ101に入力される。フィルタの時間ドメイン・インパルス応答は、301によって表示される。前に説明されるように、フィルタ・コンバータの後に、時間ドメイン・フィルタは、サブバンド・ドメインに転送され、H(n,k)によって表される。フィルタ応答の絶対値の時間/周波数プロットは、302によって与えられる。
図3に示されるフィルタ・コンプレッサ102の実施形態は、絶対値表現モジュール303を含み、それは、フィルタ・コンプレッサ102の実施形態の入力に接続される。フィルタ・コンプレッサ102の実施形態は、さらにマスク・ジェネレータ304を含み、それは、絶対値表現モジュール303の出力に結合される。また、フィルタ計算機305は、フィルタ・コンプレッサ102の実施形態に含まれ、それは、フィルタ・コンプレッサ102の実施形態の入力およびマスク・ジェネレータ304の出力の両方に接続される。また、フィルタ計算機305は、出力を含み、それは、フィルタ・コンプレッサ102の実施形態の出力を表す。
複素QMFフィルタまたはサブバンド入力フィルタH(n,k)は、絶対値表現モジュール303、フィルタ・マスク・ジェネレータ304およびフィルタ計算機305を含むフィルタ・コンプレッサ102の実施形態に入力される。絶対値表現モジュール303は、部分図302によって例示されるように、フィルタの絶対値の時間/周波数プロットを作る。これは、後に概説されるように、例えば、QMFドメインにおいてフィルタ係数の絶対値の対数表現であり得る。フィルタ・マスク・ジェネレータ304は、1つの実施形態において、絶対値表現モジュール303によって提供される情報に基づいてQMFドメインにおいてフィルタの絶対値の表現における最大値を有する係数(n,k)を選択しまたは決定する。フィルタ・マスク・ジェネレータ304は、要求されるフィルタ圧縮の量に依存する係数の調整可能な、プログラム可能な、一定のまたは所定の数を決定しまたは選択する。選択されたフィルタ係数のより低い数は、より高い煩雑性低減を与える。例およびさらなる詳細は、さらに明細書中に説明される。したがって、本願記載の枠組みにおいて多くの場合、ワードの決定、選択し、確定し、確立しおよび見つけることは、同義的に用いることができる。多くの場合、決定されまたは選択されているフィルタ・インパルス応答値は、そのようなフィルタ・インパルス応答値であり、それは、より高い値より低い値を有するフィルタ・インパルス応答値と比較して、高い値を有する(または含む)。これらの低い値のフィルタ・インパルス応答値は、選択されないまたは決定されないものとして見なされる。
前に概説されるように、代わりにまたは付加的に、煩雑性の低減は、フィルタ・コンプレッサの実施形態に提供されるように、フィルタ・インパルス応答に対応するフィルタバンクのいわゆるエイリアシング・レベルと比較して、フィルタ・タップまたはフィルタ・インパルス応答値を調べることに基づいて達成することもできる。QMFドメインにおいてフィルタ・インパルス応答価値の特定のタップが、フィルタバンクのエイリアシング・レベルに近い場合、これらのフィルタ・タップは、計算の複雑性を低減するために問題なくゼロに設定されまたはその他に取り扱われ得る。これらのフィルタ・タップは、ゼロ値の係数がフィルタの実施において乗加算の枠組みに含まれることを必要としないように、フィルタの実施の場合において問題なく無視することができる。例えば、時間ドメインHRTFフィルタを複素QMF表現に変換した後に、複素QMF表現において時間周波数タイルのいくつかは、対応するMPEGサラウンド・フィルタバンクのエイリアシング・レベルで低い絶対値を有し得る。HRTFフィルタの複素QMF表現においてこれらのエントリーは、ゼロに設定することができ、それは、含まれる室内応答を有する長いHRTFフィルタを実施するための煩雑性低減を可能にする。
フィルタ・マスク・ジェネレータは、絶対値表現モジュール303によって提供される情報に基づいて、フィルタ・マスクM(n,k)を作り、さらに、H(n,k)の選択されたフィルタ係数をフィルタ計算機305に示す選択されたフィルタ・マスクM(n,k)を出力する。フィルタ計算機305は、選択されたフィルタ係数を含むQMFドメインにおいて元のフィルタH(n,k)から新しい圧縮フィルタH(n,k)を作り出す。実施に関する異なる可能性についてのさらなる詳細は、以下に与えられる。
図4は、フィルタ・コンプレッサ102のさらなる実施形態を示し、それは、図3に示されるフィルタ・コンプレッサ102の実施形態と同じ基本構成を有する。具体的には、図4に示されるフィルタ・コンプレッサ102の実施形態も、絶対値表現モジュール303を含み、それは、一方ではフィルタ・コンプレッサ102の実施形態の入力に接続され、他方では絶対値表現モジュール303の出力を介してマスク・ジェネレータ304に接続される。図4におけるフィルタ・コンプレッサ102の実施形態も、フィルタ計算機305を含み、それは、フィルタ・コンプレッサの入力およびマスク・ジェネレータ304の出力に接続される。フィルタ計算機305の出力は、前と同じように、図4に示されるフィルタ・コンプレッサ102の実施形態の出力を表す。
しかしながら、図3に示されるフィルタ・コンプレッサ102の実施形態と比較して、絶対値表現モジュール303およびフィルタ計算機305は、図4に示される実施形態の場合にさらに詳細に示され、本願特許出願の以下のセクションにおいて代わりのまたはさらなる実施とともにさらに詳細に説明される。
絶対値表現モジュール303は、絶対値アルゴリズム関数モジュール401を含み、それは、絶対値表現モジュール303の入力および出力間に白色化モジュール402と直列に接続される。フィルタ計算機モジュール305は、フィルタ・デシメータ・モジュール403を含み、それは、利得計算機404と直列に接続される。フィルタ・デシメータ・モジュール403および利得計算機404の両方は、フィルタ計算機モジュール305の入力および出力間に直列に接続される。具体的な実施に応じて、マスク・ジェネレータ304によって提供されるようにマスクに関する情報は、図4に示されるように、フィルタ・デシメータ・モジュール403に提供されさらに任意に利得計算機モジュール404に提供される。しかしながら、フィルタ計算機モジュール305の具体的な実施に応じて、利得計算機モジュール404には、図4の破線によって示されるように、利得計算機モジュール404およびフィルタ計算機モジュール305の入力間の任意の接続を介して、フィルタ・コンプレッサ102の実施形態に提供されるように、入力サブバンド・フィルタ・インパルス応答H(n,k)が任意に提供されてもよい。
図4にさらに詳細に示されるフィルタ・コンプレッサ102の実施形態の個々のモジュールについて述べる前に、図4に示されるようにフィルタ・コンプレッサ102の実施形態の機能性の総括が与えられる。
図4において、本発明によるフィルタ・コンプレッサ102の異なる実施形態が概説される。ここで、絶対値表現モジュール303は、絶対値および対数関数モジュール401と、絶対値および対数関数モジュール401によって供給される絶対値の表現のスペクトル白色化を実行する白色化モジュール402とを含む。フィルタ・マスク・ジェネレータ304は、前と同じであり、フィルタ・マスクM(n,k)をフィルタ計算機モジュール305に出力する。これは、フィルタH(n,k)の選択された係数を保持し、他の係数をこの実施形態においてゼロに設定するフィルタ・デシメータ・モジュール403と、圧縮フィルタH(n,k)の利得が元のフィルタH(n,k)のそれと同様であるように、フィルタの利得を調整する利得計算機モジュール404とを含む。
Figure 0004704499
方程式(1)によって示される評価表現A(n,k)は、人間の耳の特定の音響特性を考慮することなく人間の耳に関して体積配分を反映する。
Figure 0004704499
評価表現A(n,k)を概略的に表す図3における部分図302は、図3に示される平面において2つのインデックスk、nの関数として評価表現A(n,k)の3次元プロットとして理解することができ、さらに、評価表現値A(n,k)は、部分図302のn−k平面と直角にプロットされる。換言すれば、部分図302は、サンプル・インデックスまたは時間インデックスnとサブバンド・インデックスkとの関数としてフィルタA(n,k)絶対値の時間/周波数表現の評価表現の略図を示す。時間インデックスまたはサンプル・インデックスnは、例えば、時間ドメイン・インパルス応答h(n)のインデックスnからL(サブバンドの数)倍だけ異なってもよい。図9、図11および図12との関連で説明されるように、フィルタ・コンバータ101は、複素変調された分析フィルタバンクを含んでもよく、それは、順に1つ以上のダウンサンプラを含んでもよく、それは、サンプルの数を係数倍だけ低減し、それは、例えばサブバンドLの数であり得る。しかしながら、これらのダウンサンプラが任意のコンポーネントであるように、インデックスnは、時間ドメイン・インパルス応答H(n)のインデックスに相当する時間インデックスまたはサンプル・インデックスを指すか、または、例えば、時間ドメイン・インパルス応答H(n)の時間またはサンプル・インデックスnからL倍だけ異なるダウンサンプルされた時間インデックスまたはサンプル・インデックスに対応してもよい。
以下には、白色化モジュール402についてのさらなる詳細が概説される。本発明によって教示される白色化モジュールの目的は、知覚的に重要なフィルタ・タップが廃棄される状況を回避するために、マスク生成の前にフィルタの知覚的な重み付けを可能にすることであり、その理由は、それらが、他の知覚的により重要でないフィルタ・タップのために小さい絶対値を有するからである。
Figure 0004704499
Figure 0004704499
スペクトル白色化は、図14との関連でさらに方程式(4)によって表されるように特に白色化を考慮してさらに詳細に説明されるにもかかわらず、(スペクトル)白色化が、フィルタ圧縮の過程において作られるディストーションを防止しまたは最小化するためにエネルギーをスペクトル部分から異なるスペクトル部分に転送することが望ましいという知見に基づく点に留意すべきである。
現実のフィルタおよびオーディオ・システムは、不規則に分散された時間/周波数分布を非常に多くの場合に有し、それは、より高い周波数に位置されているサブバンドよりはむしろより低い周波数に位置されているサブバンドと比較して著しく大きい長さを有するサブバンド・ドメインにおいてフィルタ・インパルス応答をもたらすことができる。さらに、現実のフィルタおよびオーディオ・システムの不規則に分散された振幅/周波数分布は、互いに関して個々のサブバンド・フィルタの異なる関連性を導くこともできる。換言すれば、例えば、より高い周波数で現実のフィルタおよびのオーディオ・システムより高い減衰化のため、より高い周波数に対応するサブバンド・フィルタは、より低い周波数に対応するサブバンド・フィルタと比較して、それほど重要でない。しかしながら、フィルタ圧縮がより高い周波数サブバンド・フィルタにおいて有する影響を防止しまたは少なくとも最小化するために、(スペクトル)白色化は、リスニング体験の激しいディストーションを導く、圧縮の過程において完全に抑制されることから、より高い周波数でサブバンド・フィルタを、上で概説されるシナリオにおいて防止するために有利に実施することができる。そのため、重み付けとも呼ばれる(スペクトル)白色化は、現実のフィルタおよびオーディオ・システムのための重要な点であり得る。
したがって、図4に示される実施形態において絶対値表現モジュール303に含まれるように白色化モジュール402は、正規化効果が全体の周波数範囲を周波数バンドに分割することによって使用されるスペクトル白色化を適用する。複素変調された分析フィルタバンクとの関連でさらに詳細に説明されるように、それぞれのサブバンドは、特定の中心周波数を有する特定の周波数範囲に対応する。結果として、サブバンドは、中心周波数に従って配列することができる。自然な選択において、サブバンド・インデックスkは、増加する順序において中心周波数に増加する順序に対応する。
前述の周波数バンドに関して正規化効果の形式においてスペクトル白色化を実施するために、サブバンドまたはサブバンドのサブグループの知覚的に関連したインターバルが形成され、それはそれぞれ少なくとも1つのサブバンドを含む。さらに、多くの具体的な実施において、個々のサブバンドは、全体として正確に1つのサブグループに属する。しかしながら、サブバンドのそれぞれのサブグループは、複数のサブバンドを含んでもよい。この場合、サブグループは、典型的に隣接した中心周波数を有するサブバンドだけを含む。
換言すれば、サブバンドが、増加する順序においてそれらの中心周波数に従ってさらに同時に増加するサブバンド・インデックスkに従って配列される場合、隣接した周波数を有するサブバンドだけを含むサブグループは、サブバンド・インデックスkを有するサブバンドに関連し、それは、2つの配列されたサブバンド・インデックス間の最大差が方程式(3)との関連で説明されるように+/−lに等しいように、配列することができる。換言すれば、それぞれの周波数バンドは、サブバンドのサブグループまたはインターバルによって表すことができ、それは、サブバンドの上位集合である。しかしながら、サブバンドのサブグループが正確に1つのサブバンドを含んでもよい点に留意すべきである。
前述のように、スペクトル白色化の枠組みにおいて、特定の数Pの周波数バンド、サブバンドのサブグループまたはインターバルは、区別される。原則として、サブバンドのサブグループの数pは、整数であり、それは、それぞれのサブグループが少なくとも1つのサブバンドを含みさらにそれぞれのサブバンドが正確にサブバンドの1つのサブグループに属する制約のためサブバンドの数Lより小さい。L=64のサブバンドにおいて作動するフィルタ・システムの場合に、サブバンドのサブグループの典型的な数Pは、28になるように選択することができる。しかしながら、この数は、上述のように制限されない。サブバンドのサブグループの対応する数P(例えばP=32)は、周波数ドメインにおいて知覚的に関連したインターバルを表す心理音響モデルに基づいて選択することができる。
したがって、白色化は、多くの現実のフィルタおよびオーディオ・システムにおいて、任意に心理音響モデルに関する人間の耳の知覚特性に基づいて、エネルギーのより低いスペクトル部分からより高いスペクトル部分への転送を導く。
しかしながら、白色化モジュール402の異なる実施は、絶対値表現303の枠組みにおいて容易に実施することができる。具体的には、他の実施は、方程式(4)に従ってサブバンドのそれぞれのサブグループに含まれる全てのサブバンドに基づいて白色化を実行する代わりに、インデックスkを有するそれぞれのサブバンドに対して評価表現A(n,k)を個々に白色化する可能性を含む。さらに、方程式(4)に示されるように最大値を減算する代わりに、白色化は、評価表現A(n,k)の全ての値を分割しさらにそれによりそれぞれのサブバンドの最大に関してまたはサブバンドのそれぞれのサブグループの最大値に関して評価表現の全ての値を正規化することによって、実行することができる。さらに、評価表現を分割することによる記載されている正規化は、それぞれの評価表現A(n,k)の全ての値の合計が(それぞれの個々のサブバンドに関してまたはサブバンドのそれぞれのサブグループに関して)実行することができるように、実行することもできる。この場合、第1のステップにおいて、それぞれのサブバンドまたはサブバンドのそれぞれのサブグループに関して評価表現の全ての値の合計が決定され、その後に、方程式(4)に従って減算することまたはそれぞれの合計値を有する評価表現の値を分割することが続く。
要約すると、上で概説される実施形態において、調べることおよび選択することは、フィルタ・タップでフィルタ・インパルス応答値の絶対値に基づく。そのため、この実施形態において、フィルタ・インパルス応答値は、より高い値を含む少なくとも1つを選択する場合、フィルタ・タップの絶対値に関する比較に基づいて選択されるかまたは選択されない。異なる実施形態において、必要に応じて、フィルタ・タップを比較することまたは調べることが、他の数学的手段の適用に基づいてもよい。フィルタ・タップが実数値である場合、原則として、数学的手段の適用は必要でないが、絶対値を計算しまたは決定することが実施されてもよい。
複素数値のフィルタ・タップの場合、いくつかの数学的手段の適用が望ましい。例としては、絶対値を導き出すこと、または、複素数の平面において所定の若しくは明確な方向(例えば正の実数の方向)に関してフィルタ・タップの角度若しくは位相を導き出すことであり得る。さらに、実数部、実数部の絶対値、虚数部、虚数部の絶対値を決定すること、または、それぞれの複素数を(任意に正の)実数にマップするその他の関数も、原則として適用することができる。
図4に示される実施形態において、白色化モジュール402による出力として白色化された評価表現AW(n,k)は、マスク・ジェネレータ304に提供され、それは、白色化された評価表現に基づいてフィルタ・マスクまたはマスクM(k)を作る。評価表現についての実際の白色化モジュール402のため、マスク・ジェネレータ304は、最も多くの(知覚的に)関連したフィルタ係数を選択することができる。フィルタ・マスクは、図4に示される実施形態において、1セットの0および1であり、M(n,k)=1は、対応するフィルタ・タップまたはフィルタ・インパルス応答値が用いられまたは保持されるように選択されることを示す。したがって、値M(n,k)=0は、サンプル・インデックスまたは時間インデックスnとサブバンド・インデックスkとによって識別される対応するフィルタ・タップまたはフィルタ・インパルス応答値が選択されず、そのため、用いられないことを示す。換言すれば、特定のフィルタ・インパルス応答値は、無視されるかまたはゼロに設定される。
マスク・ジェネレータ304の具体的な実施は、フィルタ・コンプレッサ102の実施形態によって大幅に異なり得る。図4に示される実施形態において、マスク・ジェネレータは、例えば、フィルタ・マスクM(n,k)=1の対応する値を設定するがフィルタ・マスクの残りの値が0に設定されることによる白色化された評価表現AW(n,k)に基づいて、特定の数のインパルス応答値を選択することができる。特定の絶対数のインパルス応答値を選択することは別として、1セットのサブバンド・フィルタ応答H(n,k)によって与えられる全体の数のインパルス応答値に関する相対数も可能である。それぞれの入力サブバンド・フィルタ・インパルス応答が16個の非ゼロの、ゼロになることのないまたは非自明なフィルタ・タップを含むL=64のQMFサブバンド実施の場合における具体的な例において、入力サブバンド・フィルタ応答の全体のマトリクスは、1024個のインパルス応答値を含む64・16のマトリクスによって与えられる。この例において、マスク・ジェネレータ304は、例えば、特定の所定の数のインパルス応答値(例えば白色化された評価表現によって提供されるように最も大きい絶対値による256個のエレメント)を選択することができ、または、マスク・ジェネレータ304は、全体の数のフィルタ・インパルス応答に関して所定のまたは特定の比率(相対数)のフィルタ・インパルス応答(例えば全体の数の25%のフィルタ応答値)を選択することができる。いずれの場合においても、残りのインパルス応答値は、フィルタ・マスクM(n,k)の対応する値をゼロ(M(n,k)=0)に等しく設定することによって無視されるかまたは選択されない。
フィルタ・コンプレッサ102のさらなる実施形態において、マスク・ジェネレータ304は、選択される絶対数のインパルス応答値を示しまたは全体の数のインパルス応答値に関してインパルス応答値の比率を示す信号を受信するように構成されてもよい。フィルタ・コンプレッサ102のそのような実施形態において、圧縮比は、前に言及された図を調整することによって調整することができる。
さらに、マスク・ジェネレータ304は、代わりにまたは付加的に、異なる基準に基づいてそれぞれのフィルタ・インパルス応答値を選択するように構成されてもよい。例えば、マスク・ジェネレータ304は、サブバンドごとに所定の、一定の、プログラム可能なまたは適合性のある数のインパルス応答値(例えばそれぞれのサブバンドに対して評価表現に関する最大値を有する3つのインパルス応答値)を選択するように構成されてもよい。さらに、マスク・ジェネレータ304は、例えば、全てのインパルス応答値が選択されるように、閾値基準が所定の、一定の、調整可能なまたはプログラム可能な閾値より大きい対応する評価表現値を保持するように構成されてもよい。さらなる実施態様において、隣接したインパルス応答値で、それぞれの値との比較に基づいて、インパルス応答値を選択することができるように、マスク・ジェネレータ304を構成することが望ましい。例えば、マスク・ジェネレータ304は、それぞれの値が(任意に白色化された)評価表現を考慮して隣接した値と比較して一定の、所定の、プログラム可能なまたは調整可能な比率より小さい(例えば25%より小さい)場合、フィルタ・インパルス応答値が選択されないように構成されてもよい。しかしながら、他の選択スキームも実施され得る。
しかしながら、白色化のため、方程式(4)との関連で記載されるように、サブバンドのそれぞれのサブグループまたは個々のサブバンドに基づいて、少なくとも1つのインパルス応答値は、選択されたインパルス応答値の数がサブバンドによってまたはサブグループによって大幅に異なるが、具体的な実施に応じて、サブバンドのそれぞれのサブグループにおいてまたはそれぞれのサブバンドにおいて選択される。例えば、評価表現値の対応するサブセットの最大値で評価表現A(n,k)を除算することによって実施される白色化の場合、マスク・ジェネレータ304の上述の実施において、少なくとも1つのフィルタ・インパルス応答値は、図14との関連で説明されるように、それぞれのサブバンドにおいてまたはサブバンドのそれぞれのサブグループにおいて選択される。
結果として、絶対値表現モジュール303およびマスク・ジェネレータ304の相互作用は、n−k平面(参照図3における部分図302参照)においてフィルタ・インパルス応答価値の重要なエリアへの集合、および、n−k平面の知覚的に関連したエリア間において「減圧」または「空気」の「圧縮」を導く。したがって、関連したインパルス応答値は、マスクM(n,k)を設定することによって無視される。
Figure 0004704499
この実施形態において、マスクは、ゼロまたは1であるエントリーからなる。ゼロを有するエントリーは、どのフィルタ係数が放棄されるべきものであるかを表し、1を有するエントリーは、どのフィルタ係数が保持(選択)されるべきものであるかを表す。
Figure 0004704499
Figure 0004704499
Figure 0004704499
いずれの場合においても、Gmaxは、利得補償についての上限であり、さらにεは、ゼロでの除算を回避するために含まれる小さい正の数である。したがって、Gmaxおよびεの両方は、数であり、それらは、方程式(6)および(8)において括弧でくくられた括弧における2つの項の最小によるように、ゼロによる除算を防止するため(すなわちε>0)に、さらに、利得計算機モジュール404によってサブバンドに適用される利得を最大利得Gmaxによって定義されるような値に制限するために、利得計算機404の数値実施に役立ち、それぞれの利得G(k)およびG(p)は、Gmaxの値に制限される。
Figure 0004704499
したがって、利得計算機モジュール404は、少なくともいくつかの入力サブバンド入力応答のマスキングの過程において失われるエネルギーを補償するためにエネルギーに関してマスクされたフィルタ・タップHM(n,k)を正規化する。換言すれば、フィルタ・デシメータ403の枠組みにおいてマスキングのため、マスクされたサブバンド・フィルタ・インパルス応答HM(n,k)に対応するサブバンド・フィルタ入力応答によってフィルタにかけられる信号は、サブバンド・フィルタ・インパルス応答H(n,k)を使用するサブバンド・フィルタと比較して、より小さいエネルギーを有する。
しかしながら、利得計算機モジュール404は、異なる利得スキームを適用するように構成されてもよい。一例として、エネルギーではなくむしろサブバンド・フィルタ・インパルス応答の絶対値の直接比較は、利得係数を決定するために使用することができる。付加的にまたは代わりに、利得係数Gは、方程式(6)および(8)との関連で説明されるように、個々のサブバンドまたはサブバンドの個々のサブグループのインパルス応答値よりむしろ、全体の数のサブバンド・フィルタ・インパルス応答値に基づいて、決定することができる。さらに、利得計算モジュール404が、必要なコンポーネントでなく、むしろ任意のコンポーネントである点に留意すべきである。
フィルタ・インパルス応答コンストラクタまたはフィルタ計算機モジュール305は、本発明のさらなる実施形態において、上述のように非選択のサブバンド・フィルタ・インパルス応答値をゼロに設定することによってだけでなく、圧縮サブバンド・フィルタ・インパルス応答を構成することができる。具体的な実施に応じて、フィルタ・インパルス応答コンストラクタ305は、例えば、圧縮サブバンド・フィルタ・インパルス応答を構成するために、適切な選択されまたは決定されたサブバンド・フィルタ・インパルス応答値を重み付け、コピーし、または取得することによって、これを達成することができる。
これに関連して、決定されていないかまたは選択されていないフィルタ・インパルス応答値をたとえ無視するかまたは含まないでも、時間においてフィルタの圧縮を導かない点に留意すべきである。本願記載の枠組みにおいて、選択されていないかまたは決定されていないフィルタ・インパルス応答値を放置し、無視しまたは用いないことは、遅延演算子z−1の係数への単なる修正は別として対応する(QMFフィルタバンク)多項式の多項式の個々の加数の順序の著しい変化を導かない。換言すれば、フィルタ・タップまたはフィルタ・インパルス応答を無視し、放置し、ゼロに設定しまたはその他にさらに注意しないことによって、遅延演算子z−1の累乗に関して、フィルタ・タップの新しい分布を導かない。選択されずまたは決定されないようなフィルタ・インパルス応答値に続く、選択されまたは決定されるフィルタ・タップまたはフィルタ・インパルス応答値は、遅延演算子の累乗に関して変えられない。
換言すれば、フィルタ・インパルス応答コンストラクタ305によって構成されるように圧縮サブバンド・フィルタ・インパルス応答は、非選択のフィルタ・インパルス応答値のフィルタにかけられたタップに対応するゼロ値の値を含むことができ、または、圧縮サブバンド・フィルタ・インパルス応答は、それぞれの非選択のフィルタ・インパルス応答値を全く含まないことができる。さらに換言すれば、フィルタ・インパルス応答コンストラクタ305は、例えば、増加した数のゼロ値を有する値を除いて、入力サブバンド・フィルタ・インパルス応答として同じ数のサブバンド・フィルタ・インパルス応答値を原則として有する圧縮サブバンド・フィルタ・インパルス応答を構成することができ、または、圧縮サブバンド・フィルタ・インパルス応答は、フィルタ・インパルス応答コンストラクタ305が選択された値をコピーしさらに非選択の値を無視するように、より短い全体の長さを有することができる。
実数値のフィルタ・インパルス応答値が複素数値のフィルタ・インパルス応答値と比較して著しい煩雑性低減を導くので、フィルタ・インパルス応答コンストラクタ305は、選択されたフィルタ・インパルス応答値のいくつかの絶対値を有利に出力することもできる。この動作モードは、人間の聴覚が位相関係に対して感受性が低いより高い周波数に対応するサブバンドにおいて特に魅力的である。
結果として、境界周波数より上の中心周波数に対応するサブバンドのサブバンド・インパルス応答値は、上述のエレメントのうちの少なくとも1つの絶対値、虚数部、実数部、位相、線形結合、多項式組合せまたは実数値式と任意に置換することができる。また、複素数値の虚数部は、本願記載の枠組みにおいて実数値の数であると考慮される。具体的な実施に応じて、境界周波数は、1kHz〜10kHzの範囲にあり得るが、多くのアプリケーションにおいて、1kHz〜5kHzまたは1kHz〜3kHzの間の範囲において境界周波数の実施は、人間の典型的な聴覚特性を考慮して利用することができる。さらに、フィルタ・コンプレッサの具体的な実施に応じて、複素数値のフィルタ・インパルス応答値に基づく実数値の値による複素数値のフィルタ・インパルス応答値の記載されている置換は、選択され若しくは決定された、選択されていない、または、決定されていないフィルタ・インパルス応答値に応じて実施することができる。代わりにまたは付加的に、境界周波数の上の中心周波数に対応するサブバンドに属するフィルタ・インパルス応答値は、通常、複素数値のフィルタ・インパルス応答値に基づいて、対応する実数値の値と置換することができる。これに関連して、決定されまたは選択されたフィルタ・インパルス応答値を用いることが、対応するフィルタ・インパルス応答値を置換するために、そのようなフィルタ・インパルス応答値に基づいて、(例えば実数値の)値を用いることを含む点に留意すべきである。
図5は、マルチプル・フィルタに同時に作動する本発明によるフィルタ・コンプレッサ501のさらなる実施形態を示す。図5において、異なる実施形態は、概説される。ここで、マルチプル・フィルタ(ν=0、・・・、(N−1)によって示されるN個のフィルタ)は、Nが正の整数であり、フィルタ・コンプレッサ501の実施形態に入力され、それぞれのフィルタは、個々の絶対値表現モジュール303に入力され、N個の表現は、フィルタ・マスク・ジェネレータ502に入力される。
具体的には、図5に示されるフィルタ・コンプレッサ501の実施形態は、1セットのN個のフィルタ・コンバータ101に接続されまたは結合され、それに1セットの実数値の時間ドメイン・インパルス応答Hν(n,k)が供給され、前に説明されるように、ν=0、・・・、(N−1)は、時間ドメインにおいて対応するフィルタのインデックスである。例えば、HRTFのようなシステムの枠組みにおいて5チャンネル入力信号の場合において、5つの入力チャンネルのそれぞれに対してさらに2つのヘッドホン・チャンネル(左右)のそれぞれに対して、個々の時間ドメイン・フィルタは、N=10の総数の時間ドメイン・フィルタを導くように使用される。
換言すれば、図5に示されるフィルタ・コンプレッサ501には、複数セットのインパルス応答が提供され、複数セットのフィルタ・インパルス応答のそれぞれのセットは、図5に図示される場合、異なるフィルタ・コンバータ101によって提供される。しかしながら、個々のフィルタ・コンバータ101によって提供されるように1セットのフィルタ・インパルス応答に関して、1セットのフィルタ・インパルス応答は、L個の個々のフィルタ・インパルス応答を含み、それぞれは、特定の数のフィルタ・タップまたはフィルタ・インパルス応答値を有する。中心周波数との関連で前に説明されるように、個々のサブバンドに対応するそれぞれのインパルス応答は、中心周波数に関連し、それによって、中心周波数は、複数の中心周波数を形成する。
また、同じサブバンド・インデックスkに対応するが、インデックスνによって示されるように異なるセットのフィルタ・インパルス応答に属するフィルタ・インパルス応答は、同じ中心周波数に対応する。換言すれば、(1セットのフィルタ・インパルス応答によって定義されるように)複数の中心周波数のそれぞれ中心周波数に、少なくとも圧縮の前に、それぞれのセットのフィルタ・インパルス応答において(正確に)1つのフィルタ・インパルス応答を対応する。
それぞれのフィルタ・コンバータ101は、それぞれの時間ドメイン・フィルタに対して1セットの複素数値のサブバンド・フィルタ・インパルス応答Hν(n,k)を提供し、それは、図5に示されるフィルタ・コンプレッサ501の実施形態に提供される。N個の異なる時間ドメイン・フィルタのためのそれぞれのサブバンド・フィルタ・インパルス応答は、個々の絶対値表現モジュール303に提供され、それは、N個の時間ドメイン・フィルタのそれぞれのための絶対値表現または評価表現をフィルタ・マスク・ジェネレータ502に提供する。絶対値表現モジュール303は、同じ引用符号によって示されるように、本願において概説される本発明のフィルタ・コンプレッサの他の実施形態のうちの1つから選ぶことができる。
Figure 0004704499
Figure 0004704499
この(共同の)絶対値表現は、正確に前の実施形態において単一のフィルタ・マスク・ジェネレータ304におけるように単一のマスク生成M(n,k)のための基礎を形成する。白色化ステップが実行される場合において、これは、個々の絶対値表現モジュール303のために実行することもできまたは共同の絶対値表現のために一度だけ実行することもできる。
図15との関連で、フィルタ・コンプレッサ501の実施形態が述べられ、そこにおいて、(スペクトル)白色化がそれぞれのフィルタν=0、・・・、(N−1)に対して個々に実行される。この実施形態におけるフィルタ・マスク・ジェネレータ502は、全てのフィルタのN個の絶対値表現に基づいて、全てのフィルタのための単一のフィルタ・マスクM(n,k)を作る。これは、本発明の実施形態の大きな利点であり、その理由は、フィルタ・マスク・ジェネレータ502が、圧縮フィルタが後の状態のおいてどのように組み合わされるかについて考慮することができるからである。それぞれの元のフィルタは、概説されるように、フィルタ計算機305に入力され、その後に、フィルタ・コンプレッサは、それぞれのフィルタ計算機に同じマスクM(n,k)が提供されるように、N個の新しいフィルタAWν(n,k)を作り出す。
Figure 0004704499
方程式(11)と比較して、方程式(11´)の(共同の)絶対値表現A(n,k)は、等しく分散された重み係数ω(ν)=1/Nを定義することによって方程式(11)の結果に変換することができる。換言すれば、方程式(11)による絶対値表現の計算は、インデックスνによって示されるそれぞれのフィルタの知覚的な重要性の重み付けを可能にするように、より大きな柔軟性を提供する方程式(11´)による絶対値表現の特殊な形式を表す。
時間ドメインにおいてN個の個々のフィルタのそれぞれに対して同じフィルタ・マスクM(n,k)を用いることによって、フィルタ・コンプレッサ501の実施形態は、フィルタ・コンプレッサ501の後のN個の個々のサブバンドの後処理さえ、他のフィルタのうちの1つにおいて対応する選択されたインパルス応答値を有しない関連したインパルス応答値を有するエントリーを有する結果として生じる圧縮サブバンド・フィルタ・インパルス応答を導かないように、N個のフィルタのそれぞれに対して1セットの圧縮サブバンド・フィルタ・インパルス応答を作り出すことができる。図5に示される実施形態のマスク・ジェネレータ502を図3および図4に示される実施形態のマスク・ジェネレータ304と比較して、マスク・ジェネレータ502は、時間ドメインだけにおいてN個の個々のフィルタのためのN個の入力サブバンド・フィルタ・インパルス応答が提供されるにもかかわらず、N個のサブバンド・フィルタ・インパルス応答の全てを示す単一のマスクM(n,k)を作り出す点に留意することが重要である。
フィルタ・コンプレッサ501のさらなる実施形態において、異なるマスク・ジェネレータ502が使用でき、それは、時間ドメインにおいてN個のフィルタの全てに対して共通の評価表現を提供するために異なるスキームを原則として用いることができる。換言すれば、方程式(11)に示すように、平均を適用することは別として、絶対値表現モジュール303によって提供されるように個々の評価表現は、例えば、関連するサブバンドに関する重み付けが実施できる、それぞれの値を合計することによって、それぞれの値を線形結合することによって、または、評価表現のそれぞれの値のさらに複雑な組合せ(例えば二次または高次の組合せ)を使用することによって、単一の評価表現に組み合わせることができる。
Figure 0004704499
すでに前に説明されるように、バイノーラル・デコーダ602は、10個(2つの音声出力チャネル(ステレオ)のための5つの音声入力チャンネル)を4個のHRTFフィルタに組み合わせ、それは、ステレオ入力信号603に直ちに適用することができる。しかしながら、HRTFフィルタは、バイノーラル・ステレオ信号605をレンダリングするためにバイノーラル・デコーダ602に提供される空間パラメータ604に依存する。前述のように、特にHRTFフィルタは、多くの場合に人間の耳および音源のためのバイノーラル・ステレオ出力信号間の非常に複雑な相互作用がモデル化されなければならないように、フィルタ・タップとしてかなりの数の非自明な、非ゼロのまたはゼロになることのないサブバンド・フィルタ・インパルス応答値を含む。それぞれのHRTFフィルタは、例えばモデル化される環境および他の影響の室内特性を効率的にモデル化するために大幅に長くなる得る。
特にこれに関連して、フィルタ・コンプレッサ501の実施形態は、著しくバイノーラル・デコーダ602に関して計算の複雑性を低減するために効率的に適用することができる。バイノーラル・デコーダ602の枠組みにおいて考慮される関連したサブバンド・フィルタ・インパルス応答値の数を低減することによって、バイノーラル・デコーダ602は、より小さい計算する能力で実施することができ、それは、例えば対応するバイノーラル・デコーダのクロック速度が所定の期間において低い数の計算のため低減され得るように、低いエネルギー消費量を最終的に導く。あるいは、バイノーラル・デコーダ602は、原則として第2の処理コアが回避できるように、同じ理由からより小さく構築することができる。
図7〜図13との関連でさらに詳細に概説されるように、10個の時間ドメインHRTFフィルタを複素QMFドメインまたは複素サブバンド・ドメインに変換するために用いられる192個(=3・64)のフィルタ・タップを有するフィルタ・コンバータを使用すると、896個(=14・64)のフィルタ・タップを有する時間ドメインにおけるHRTFフィルタは、例えば図1に示されるように、フィルタ・コンバータ601またはむしろ10個のフィルタ・コンバータ101によって、それそれが16個(=14+3−1)のフィルタ・タップを含む64個の個々のサブバンド・フィルタ・インパルス応答に転送される。10個の時間ドメインHRTFフィルタのそれぞれに対して結果として生じる1024個のフィルタ・タップは、フィルタ・コンプレッサ501の実施形態がフィルタ・タップの全体の数を例えば4〜256(=1024/4)倍だけ低減するために使用されない限り、バイノーラル・デコーダ602に対するかなりの計算負担をもたらす。この実施形態が複素QMFまたはサブバンド・ドメインにおいて10個のHRTFフィルタのそれぞれのためのL=64個のサブバンドを含むシステムに基づくにもかかわらず、原則としていかなる数のL個のサブバンドも使用され得る。
フィルタ・コンプレッサのさらなる実施形態および圧縮サブバンド・フィルタ・インパルス応答フィルタを作るための方法が述べられる前に、フィルタ・コンバータのための可能な解決策および複素サブバンド・ドメイン(QMFドメイン)において作動するフィルタがさらに詳細に説明される。しかしながら、特にフィルタ・コンバータについて、技術背景をさらに詳細に述べる前に、デジタル・フィルタを(時間ドメインにおいてまたはサブバンド・ドメインにおいて)デジタル音声入力に適用する一般概念が述べられるべきである。
図7は、フィルタまたはフィルタ・エレメント700のための可能な解決策を示し、それには、デジタル音声入力が提供される。原則としてデジタル音声入力は時間ドメイン信号および(複素)サブバンド・ドメインにおける信号の両方であり得る点に留意すべきである。フィルタ・エレメントは、出力でデジタル音声出力を提供し、それは、フィルタ定義信号またはそれぞれのフィルタ・インパルス応答信号に応じて、フィルタにかけられたデジタル音声入力を表す。
Figure 0004704499
フィルタ・コンバータ101は、図8に示されるように、対応するフィルタ・インパルス応答信号が提供される中心コンポーネントとして複素分析フィルタバンク710を含む。複素分析フィルタバンク710は、時間ドメインにおいてフィルタのインパルス応答信号を分析し、それは、1セットのL個の分析フィルタを有するフィルタリングによって、QMFドメインに転送され、その後に係数Lの任意のダウンサンプリングが続き、Lは、また正の整数であり、好ましくは1より大きくかつ複素分析フィルタバンク710のサブバンドの数を示す。分析フィルタは、プロトタイプ・フィルタq(n)の複素変調によって通常得られ、またnは、データの配列におけるインデックスまたは信号における値のインデックスを示す正の整数である。フィルタバンク710の出力は、L個のサブバンド信号からなり、全体として、複素QMFドメインの時間ドメインにおいてそのフィルタ・インパルス応答によって特徴づけられるフィルタを表す。具体的には、複素分析フィルタバンク710の出力は、1セットのサブバンド・フィルタ・インパルス応答であり、それは、複素QMFドメインにおいて音声入力信号のフィルタリングを実行するためにフィルタ・エレメント700に提供することができ、それは、時間ドメインにおいて直接のフィルタリングと比較して、音声出力信号の知覚的に見分けのつかない違いを導く。
プロトタイプ・フィルタq(n)および複素変調された分析フィルタバンクの基本設計は、それらの両方に関するさらなる詳細が概説され、その後にさらに詳細に説明される。さらに、以下において、サブバンドの数は、L=64個で固定されると仮定される。しかしながら、前に説明されるように、これは、本発明の実施形態の制限でなく、単に適切な例として働くだけである。
図9は、複素分析バンク710の可能な解決策をさらに詳細に示す。複素分析バンク710は、複素分析バンク710によって出力されるそれぞれのサブバンドのための複数のL個の中間分析フィルタ720を含む。具体的には、L個の中間分析フィルタ720のそれぞれは、処理される入力信号として時間ドメイン・インパルス応答信号が提供されるノード730に並列に接続される。中間分析フィルタ720のそれぞれは、それぞれのサブバンドの中心周波数に関して複素分析バンク710の入力信号をフィルタリングするために構成される。異なるサブバンドの中心周波数によれば、それぞれのサブバンドは、サブバンド・インデックスまたはインデックスkによって表示され、またkは、典型的に0から(L−1)の範囲において、非負の整数である。複素分析バンク710の中間分析フィルタ720は、中間分析フィルタ720が適用されるサブバンドのサブバンド・インデックスkによる複素変調によってプロトタイプ・フィルタp(n)から導き出すことができる。プロトタイプ・フィルタの複素変調に関するさらなる詳細が以下に説明される。
直接的に中間分析フィルタ720によってまたは(図9において点線によって示される)任意のダウンサンプラ740によって、中間分析フィルタ720によって出力される信号のサンプリング周波数は、係数L倍だけ低減される。前記のように、対応する中間分析フィルタ720によって出力されるそれぞれのサブバンド信号に供給されるダウンサンプラ740は、具体的な実施に応じて、ダウンサンプリングが中間分析フィルタ720の枠組みにおいて実施することもできるように、任意である。原則として、中間分析フィルタ720によって出力される信号のダウンサンプリングは必要でない。それにもかかわらず、明示的なまたは暗黙的なダウンサンプラ740の存在は、複素分析バンク710によって提供されるデータ量がデータの著しい冗長性を導くL倍に選択的に増加されるので、いくつかのアプリケーションにおいて有利なオプションであってもよい。
図10は、サブバンド・フィルタリング750およびフィルタ・コンバータ101とのその相互作用の可能な解決策をさらに詳細に示す。サブバンド・フィルタリング750は、複数の中間フィルタ760を含み、1つの中間フィルタ760には、サブバンド・フィルタリング750に提供される複素数値のそれぞれのサブバンド信号が提供される。そのため、サブバンド・フィルタリング750は、L個の中間フィルタ760を含む。
フィルタ・コンバータ101は、それぞれの中間フィルタ760に接続される。結果として、フィルタ・コンバータ101は、サブバンド・フィルタリング750のそれぞれの中間フィルタ760のためのフィルタ・タップを提供することができる。中間フィルタ760によって行われるフィルタリングに関するさらなる詳細が、アプリケーションのさらなる過程において説明される。そのため、フィルタ・コンバータ101によって出力されかつ異なる中間フィルタ760に提供されるフィルタ・タップは、中間フィルタ定義信号を形成する。
さらに、実施形態、解決策および実施が、図面において省略された、信号のいずれかまたは信号のサブセットを遅延するためのさらなるおよび/または任意の遅延を含むことができる点に留意すべきである。それにもかかわらず、遅延またはディレイヤは、それらの具体的な実施に応じて、全ての実施形態、解決策および実施において任意のエレメントとして示されまたは加えられるエレメント(例えばフィルタ)に含ませることができる。
図11は、複素合成バンク770のための可能な解決策を図示する。複素合成バンク770は、L個のサブバンド信号が提供されるL個の中間合成フィルタ780を含む。中間合成フィルタ780の枠組みにおいてフィルタリングより前の複素合成バンク770の具体的な実施に応じて、サブバンド信号は、L個のアップサンプラ790によってアップサンプリングされ、それは、サンプリング周波数をL倍に増加することによってサブバンド信号のサンプルされた周波数を再構成する。換言すれば、任意のアップサンプラ790は、それぞれのサブバンド信号に含まれる情報が保持される一方でサンプリング周波数がL倍に増加されるというようなやり方で、アップサンプラ790に提供されるサブバンド信号を再構成またはリフォームする。
それにもかかわらず、図9との関連ですでに説明されるように、アップサンプラ790は、アップサンプリングが中間合成フィルタ780の枠組みにおいて実施することができるように、任意のコンポーネントである。そのため、アップサンプラ790によって実施されるサブバンド信号をアップサンプリングするステップは、中間合成フィルタ780の枠組みにおいて同時に処理することができる。しかしながら、ダウンサンプラ740が明示的にも暗黙的にも実施されない場合、アップサンプラ790は、明示的にまたは暗黙的に実施される必要もない。
中間合成フィルタ780は、L個の中間合成フィルタ780によって出力されるフィルタにかけられたサブバンド信号を合計する加算器800に出力を介して接続される。加算器800は、実数部エクストラクタ810にさらに接続され、それは、加算器800によって提供される複素数値の信号に基づいて実数値の信号またはむしろ(実数値の)時間ドメイン出力信号を抽出しまたは形成する。実数部エクストラクタ810は、このタスクを、例えば、加算器810によって提供される複素数値の信号の実数部を抽出することによって、加算器810によって提供される複素数値の信号の絶対値を計算することによって、または、複素数値の入力信号に基づいて実数値の出力信号を形成する他の方法によって、実行することができる。
図12に示される複素合成バンク770のための第2の可能な解決策は、実数部エクストラクタ810および加算器800に関してだけ図11に示される第1の可能な解決策と異なる。具体的には、中間合成フィルタ780の出力は、それぞれのサブバンドから、中間合成フィルタ780によって出力される複素数値の信号に基づいて実数値の信号を抽出しまたは形成する実数部エクストラクタ810に別々に接続される。そして、実数部エクストラクタ810は、加算器800に接続され、それは、加算器800によって提供される実数値の出力信号を形成するためにL個のフィルタにかけられたサブバンド信号から導き出されるL個の実数値の信号を合計する。
前に説明されるように、図3は、フィルタ・コンバータ101の可能な選択を図示する。フィルタは、そのインパルス応答によって与えられると仮定される。このインパルス応答を離散時間信号として見ると、それは、L個のバンド複素分析(フィルタ)バンク710によって分析される。そして、結果として生じるサブバンド信号出力は、正確に図10に示されるサブバンド・フィルタリング750のそれぞれのサブバンドにおいて別々に適用されるフィルタのインパルス応答である。図8に示される場合において、フィルタ・コンバータ101およびその複素分析バンクまたは複素分析フィルタバンク710に提供されるフィルタ定義信号は、フィルタの振幅/周波数特性を示すインパルス応答信号であり、それは、サブバンド・ドメインに転送される。そのため、L個のサブバンドのそれぞれの複素分析(フィルタ)バンク710の出力は、サブバンド・フィルタリング750に含まれる中間フィルタのインパルス応答を表す。
複素分析バンク710は、音声出力信号のための分析バンクから原則として導き出されるが、異なるプロトタイプ・フィルタおよびわずかに異なる変調構成を有し、それの詳細が以下の記載に概説される。プロトタイプ・フィルタq(ν)の長さは、比較的小さいように設計することができる。また、係数Lによるダウンサンプリングのため、サブバンド・フィルタの長さは、所定の時間ドメイン・フィルタおよびプロトタイプ・フィルタq(ν)の長さの合計より小さいLの係数である。
本願において、ゼロになることのないタップまたは値は、理想的にゼロに等しくないタップまたは値である。それにもかかわらず、このアプリケーションの枠組みにおいて実施制限のため、ゼロになることのない値またはタップは、所定の閾値、例えば10-bまたは2-bより大きい絶対値を有する実数値または複素数値のタップまたは値であり、bは、具体的な実施の要求による正の整数である。デジタル・システムにおいて、この閾値は、バイナリー・システム(基数2)において好ましくは定義され、整数bは、実施の詳細に応じて所定の値を有する。典型的に、値bは、4、5、6、7、8、10、12、14、16または32である。
複素変調されたフィルタバンク
Figure 0004704499
Figure 0004704499
Figure 0004704499
方程式(13)および(14)において、θおよびψは、実数値の離散時間信号x(n)を複素数値のサブバンド信号にフィルタリングするための、および、複素数値のサブバンド信号dk(m)から実数値の出力サンプルy(n)を再構成するための(一定の)位相係数を表す。プロトタイプ・フィルタおよび一定の位相係数θおよびψは、サブバンド信号が不変であるdk(m)=ck(m)の場合において、完全な再構成y(n)=x(n)を与えるために選択することができることはよく知られている。実際には、完全な再構成特性は、遅延(および/または符号変換)に至るまで当てはまるが、続く計算において、この詳細は、PCT/SE02/00626「複素指数変調されたフィルタバンクを用いるエイリアシングの低減」におけるような設計の疑似QMFタイプの場合において説明されるように、非因果的プロトタイプ・フィルタの使用を可能にすることによって無視される。ここで、プロトタイプ・フィルタは、対称p(−n)=p(n)であり、さらにその離散時間フーリエ変換P(ω)は、インターバル|ω|=p/Lの外側で本質的にゼロになる。完全な再構成は、ほぼ完全な再構成特性とも置換される。後に続く導出に対して、説明を簡単にするために完全な再構成が保持しさらにp/L<|ω|=pに対してP(ω)=0であると仮定される。さらに、位相係数は、ψ−θが4Lの整数の倍数に等しい状態を満たすように仮定される。
きわめてサンプルされたフィルタバンクにおいて、合成より前のサブバンド信号の変更は、通常エイリアシング・アーチファクトの導入を導く。これは、係数2によるオーバーサンプリングが複素数値の信号を用いることによって導入されるという事実のため、ここで克服される。サブバンド・サンプルの総サンプリング・レートが離散時間入力信号のサンプリング・レートと同一であるにもかかわらず、入力信号は、実数値であり、さらにサブバンド・サンプルは、複素数値である。下に概説されるように、エイリアスのないことは、効率的な時間不変信号処理を可能にする。
複素変調されたフィルタバンクにおけるサブバンド・フィルタリング
Figure 0004704499
Figure 0004704499
Figure 0004704499
興味のある他の場合は、y(n)=x(n−L)のように、G(ω)=exp(iLω)を導くGk(ω)=exp(−iω)である。
サブバンド・フィルタリングによって所定のフィルタ応答の近似
Figure 0004704499
Figure 0004704499
Figure 0004704499
Figure 0004704499
この手順の利点は、いかなる所定のフィルタh(n)も中間サブバンド・フィルタ応答に効率的に変換することができるということである。q(n)がKQ・L個のタップを有する場合、KH・L個のタップの時間ドメイン・フィルタh(n)は、(KH+KQ−1)個のタップを有するサブバンド・ドメイン・フィルタ(24)に変換され、KHおよびKQは、正の整数である。KQが3(L・KQ=192)に等しくさらに時間ドメイン・フィルタのインパルス応答がKH・64(L=64)の長さに対応する場合、それぞれの中間サブバンド・フィルタ760は、KH+3−1=KH+2だけのタップのインパルス応答長を有する。
フィルタ・コンバータのためのプロトタイプ・フィルタの設計
Figure 0004704499
Figure 0004704499
Figure 0004704499
以下において、HRTFフィルタのマルチ・スロットQMF表現(サブバンド・ドメイン)の決定が記載される。時間ドメインから複素QMFサブバンド・ドメインへのフィルタ変換は、フィルタ・コンバータ101においてFIRフィルタによって実行される。具体的には、以下の記載が、複素QMFサブバンド・ドメインにおける長さNHの所定のFIRフィルタh(n)を実施するための方法を概説する。
それ自体をフィルタにかけるサブバンドは、サブバンド・フィルタリング750の内部で中間フィルタ760によって実施される。具体的には、サブバンド・フィルタリングは、インデックスk=0、1、・・・、63を有するそれぞれのQMFサブバンドに対して1つの複素数値のFIR中間フィルタgk(l)の別のアプリケーションからなる。換言すれば、以下の記載において、特別な参照は、L=64の異なるサブバンド信号の場合になされる。それにもかかわらず、サブバンド信号のこの特別な数は、本質的でなく、さらに、適切な方程式は、さらに一般の形式でも与えられる。
所定の時間ドメインFIRフィルタh(n)を複素サブバンド・ドメイン・フィルタgk(l)に変換するフィルタ・コンバータ101は、複素分析バンク710を含む。L=64のサブバンド信号の特別の場合のための長さ192(=3・64)のフィルタ・コンバータ101q(n)の複素分析フィルタバンク710のプロトタイプ・フィルタは、方程式(28)の過剰に決定されたシステムを最小二乗法において解決することによって作り出される。フィルタ係数q(n)は、L=64のサブバンドの場合について後にさらに詳細に記載される。
Figure 0004704499
Figure 0004704499
方程式に基づく方程式の下の本願の枠組みにおいて、さらなる遅延(l0およびn0を参照)係数、さらなる係数の導入、および、ウィンドウ関数または他の単関数の導入の導入が理解される点に留意すべきである。さらに、単純な定数、一定の加数などは、ドロップすることができる。さらに、全くまたは著しいやり方で方程式の結果を変えない代数変換、等価変換および近似(例えばテイラー近似)も、含まれる。換言すれば、結果として生じる一致に関して本質的に導くわずかな修正および変換の両方は、方程式または式が方程式または式が基づく場合において含まれる。
Figure 0004704499
Figure 0004704499
この場合において、整数k=0、1、・・・、63は、またサブバンドのインデックスであり、さらに、l=0、1、・・・、(KH+1)は、結果として生じる中間フィルタ760のタップを示す整数である。
方程式(24)と比較して方程式(32)において(−2)の特別な加数があり、なぜなら、方程式(24)は、フィルタの損失を考慮せずに開発されたからである。実際の実施は、遅延を常に生じる。そのため、具体的な実施に応じて、さらなるディレイヤまたは遅延は、実施することができ、それは、図において単純化のために省略されている。
多くの場合において、線形方程式(28)のシステムは、過度に決定される。それにもかかわらず、それは、プロトタイプ・フィルタ係数q(n)に関して最小二乗法において解決しまたは近似することができる。最小二乗法において線形方程式(28)のシステムを解決することは、0から191までの整数nのための以下の関係を満たすプロトタイプ・フィルタq(n)の以下のフィルタ・タップを導く。
q[0]=−0.2029343380
q[1]=−0.1980331588
q[2]=−0.1929411519
q[3]=−0.1876744222
q[4]=−0.1822474011
q[5]=−0.1766730202
q[6]=−0.1709628636
q[7]=−0.1651273005
q[8]=−0.1591756024
q[9]=−0.1531160455
q[10]=−0.1469560005
q[11]=−0.1407020132
q[12]=−0.1343598738
q[13]=−0.1279346790
q[14]=−0.1214308876
q[15]=−0.1148523686
q[16]=−0.1082024454
q[17]=−0.1014839341
q[18]=−0.0946991783
q[19]=−0.0878500799
q[20]=−0.0809381268
q[21]=−0.0739644174
q[22]=−0.0669296831
q[23]=−0.0598343081
q[24]=−0.0526783466
q[25]=−0.0454615388
q[26]=−0.0381833249
q[27]=−0.0308428572
q[28]=−0.0234390115
q[29]=−0.0159703957
q[30]=−0.0084353584
q[31]=−0.0008319956
q[32]=0.0068418435
q[33]=0.0145885527
q[34]=0.0224107648
q[35]=0.0303113495
q[36]=0.0382934126
q[37]=0.0463602959
q[38]=0.0545155789
q[39]=0.0627630810
q[40]=0.0711068657
q[41]=0.0795512453
q[42]=0.0881007879
q[43]=0.0967603259
q[44]=0.1055349658
q[45]=0.1144301000
q[46]=0.1234514222
q[47]=0.1326049434
q[48]=0.1418970123
q[49]=0.1513343370
q[50]=0.1609240126
q[51]=0.1706735517
q[52]=0.1805909194
q[53]=0.1906845753
q[54]=0.2009635191
q[55]=0.2114373458
q[56]=0.2221163080
q[57]=0.2330113868
q[58]=0.2441343742
q[59]=0.2554979664
q[60]=0.2671158700
q[61]=0.2790029236
q[62]=0.2911752349
q[63]=0.3036503350
q[64]=0.9025275713
q[65]=0.9103585196
q[66]=0.9176977825
q[67]=0.9245760683
q[68]=0.9310214581
q[69]=0.9370596739
q[70]=0.9427143143
q[71]=0.9480070606
q[72]=0.9529578566
q[73]=0.9575850672
q[74]=0.9619056158
q[75]=0.9659351065
q[76]=0.9696879297
q[77]=0.9731773547
q[78]=0.9764156119
q[79]=0.9794139640
q[80]=0.9821827692
q[81]=0.9847315377
q[82]=0.9870689790
q[83]=0.9892030462
q[84]=0.9911409728
q[85]=0.9928893067
q[86]=0.9944539395
q[87]=0.9958401318
q[88]=0.9970525352
q[89]=0.9980952118
q[90]=0.9989716504
q[91]=0.9996847806
q[92]=1.0002369837
q[93]=1.0006301028
q[94]=1.0008654482
q[95]=1.0009438063
q[96]=1.0008654482
q[97]=1.0006301028
q[98]=1.0002369837
q[99]=0.9996847806
q[100]=0.9989716504
q[101]=0.9980952118
q[102]=0.9970525352
q[103]=0.9958401318
q[104]=0.9944539395
q[105]=0.9928893067
q[106]=0.9911409728
q[107]=0.9892030462
q[108]=0.9870689790
q[109]=0.9847315377
q[110]=0.9821827692
q[111]=0.9794139640
q[112]=0.9764156119
q[113]=0.9731773547
q[114]=0.9696879297
q[115]=0.9659351065
q[116]=0.9619056158
q[117]=0.9575850672
q[118]=0.9529578566
q[119]=0.9480070606
q[120]=0.9427143143
q[121]=0.9370596739
q[122]=0.9310214581
q[123]=0.9245760683
q[124]=0.9176977825
q[125]=0.9103585196
q[126]=0.9025275713
q[127]=0.8941712974
q[128]=0.2911752349
q[129]=0.2790029236
q[130]=0.2671158700
q[131]=0.2554979664
q[132]=0.2441343742
q[133]=0.2330113868
q[134]=0.2221163080
q[135]=0.2114373458
q[136]=0.2009635191
q[137]=0.1906845753
q[138]=0.1805909194
q[139]=0.1706735517
q[140]=0.1609240126
q[141]=0.1513343370
q[142]=0.1418970123
q[143]=0.1326049434
q[144]=0.1234514222
q[145]=0.1144301000
q[146]=0.1055349658
q[147]=0.0967603259
q[148]=0.0881007879
q[149]=0.0795512453
q[150]=0.0711068657
q[151]=0.0627630810
q[152]=0.0545155789
q[153]=0.0463602959
q[154]=0.0382934126
q[155]=0.0303113495
q[156]=0.0224107648
q[157]=0.0145885527
q[158]=0.0068418435
q[159]=−0.0008319956
q[160]=−0.0084353584
q[161]=−0.0159703957
q[162]=−0.0234390115
q[163]=−0.0308428572
q[164]=−0.0381833249
q[165]=−0.0454615388
q[166]=−0.0526783466
q[167]=−0.0598343081
q[168]=−0.0669296831
q[169]=−0.0739644174
q[170]=−0.0809381268
q[171]=−0.0878500799
q[172]=−0.0946991783
q[173]=−0.1014839341
q[174]=−0.1082024454
q[175]=−0.1148523686
q[176]=−0.1214308876
q[177]=−0.1279346790
q[178]=−0.1343598738
q[179]=−0.1407020132
q[180]=−0.1469560005
q[181]=−0.1531160455
q[182]=−0.1591756024
q[183]=−0.1651273005
q[184]=−0.1709628636
q[185]=−0.1766730202
q[186]=−0.1822474011
q[187]=−0.1876744222
q[188]=−0.1929411519
q[189]=−0.1980331588
q[190]=−0.2029343380
q[191]=−0.2076267137
図13は、プロセッサ820およびフィルタ・インパルス応答コンストラクタ305を含むフィルタ・コンプレッサ102の実施形態の簡略化したブロック図を示し、それらは、フィルタ・コンプレッサ102の実施形態の入力および出力間に直列に接続される。フィルタ・コンプレッサ102の実施形態は入力で、プロセッサ820に提供される、フィルタ・タップでフィルタ・インパルス応答値を有する、1セットの入力サブバンド・フィルタ・インパルス応答を受信する。プロセッサ820は、入力サブバンド・フィルタ・インパルス応答のうちの少なくとも2つからフィルタ・インパルス応答値を調べ、さらに、図4との関連で、特にマスク・ジェネレータ304とともに、特に絶対値表現モジュール303および白色化モジュール402との関連で説明されるように、より高い絶対値を有するフィルタ・インパルス応答値を選択することができる。さらに、プロセッサ820は、少なくとも1つの選択されたフィルタ・インパルス応答と比較してより低い絶対値を有する、少なくとも1つのフィルタ・インパルス応答値を選択しないことができる。
換言すれば、図13に示される実施形態のプロセッサ820は、絶対値表現モジュール303およびマスク・ジェネレータ304の機能性を含む。フィルタ・インパルス応答コンストラクタまたはむしろフィルタ計算機モジュール305は、選択されたフィルタ・インパルス応答値を用いて圧縮サブバンド・フィルタ・インパルス応答を構成することができ、圧縮サブバンド・フィルタ・インパルス応答は、選択されていないフィルタ・インパルス応答値のフィルタ・タップに対応するフィルタ・インパルス応答値またはゼロ値の値を含まない。前に説明されるように、フィルタ・インパルス応答フィルタ305は、選択されていないインパルス応答値をゼロに設定するように、または、選択されたインパルス応答値だけをコピーすることによってまたは選択されていないフィルタ・インパルス応答値を無視するいくつかの他の手段によって圧縮サブバンド・フィルタ・インパルス応答を構成するように、構成することができる点に留意すべきである。
結果として、フィルタ・コンプレッサ102の実施形態は、図13に示されるように、フィルタ・タップでフィルタ・インパルス応答値を有するサブバンド・フィルタ・インパルス応答において入力から圧縮サブバンド・フィルタ・インパルス応答を作る本発明の方法の実施形態を実施することができる。圧縮サブバンド・フィルタ・インパルス応答との関連で、それを作ることは、圧縮サブバンド・フィルタ・インパルス応答をシステムとしてまたはコンピュータ読み取り可能な記憶媒体に生成しまたは提供するとして同様に理解することができる。
図4において白色化モジュール402の説明との関連で示されるように、方程式(4)に従って実施することができる、評価表現A(n,k)またはむしろ絶対値表現Aν(n,k)を白色化しまたは重み付ける記載されている方法が、図14との関連でさらに詳細に説明される。したがって、図14aは、時間ドメインにおいてフィルタの周波数の関数として、例となるフィルタ特性850の略図を示す。さらに、図14aは、対応する周波数バンド860−0、・・・、860−4の配列を概略的に示し、それは、インデックスk=0、・・・、4を有するサブバンドに対応する。それぞれのサブバンド・インデックスkを有するサブバンドのうちの1つに対応する(前に示されるように引用符号を要約することを用いて)それらの周波数バンド860のそれぞれは、中心周波数に関してさらに特徴づけられることができ、それは、図14aにおいて点線870−0、・・・、870−4として示される。中心周波数、およびそれぞれのサブバンドの周波数バンドは、フィルタ・コンバータ101において使用される複素変調されたフィルタバンクの内部構成によって決定される。具体的には、サブバンド・インデックスkによる中心周波数とともにプロトタイプ。フィルタq(n)は、例えば方程式(14)の場合において見られるように、それぞれのサブバンドの対応する周波数バンドを決定する。例えば、対応する複素変調されたフィルタバンクp(n)またはq(n)のプロトタイプ・フィルタは、インデックスk=0を有するサブバンドのためのローパス・フィルタである場合、方程式(14)において指数関数によって表現されるように複素変調のため、より高いサブバンド・インデックスk=1のためのバンドパス・フィルタに変換される。
図14bは、例えばフィルタ・コンバータ101によって提供されるように入力サブバンド・フィルタ・インパルス応答の略図を示す。具体的には、図14bは、1セットの矢印880として示される、異なるサブバンドのための評価表現A(k,n)を図解的に示す。単純化だけのために、それぞれのサブバンドに対して1セットの3つの矢印880が、それぞれのサブバンド890−0、・・・、890−4に対して図14bにおいて示される。括弧でくくられた括弧900−0、・・・、900−2によって示されるように、5つのサブバンド890−0、・・・、890−4は、サブバンド900−0、900−1、900−2の3つのサブグループに配列され、第1のサブグループ900−0は、第1のサブバンド890−0(k=0)だけを含み、一方、第2および第3のサブグループ900−1、900−2は、中心周波数に関して2つの隣接したサブバンド890−1および890−2と890−3および890−4とをそれぞれ含む。
図4に示される白色化モジュール402の枠組みにおいて実施される白色化またはスペクトル白色化によれば、サブバンド900のサブグループのそれぞれに関して方程式(4)に従って、評価表現の最大値は、決定され、さらに、その後、図14cに示されるように、白色化された評価表現AW(k,n)を得るために、評価表現値のそれぞれから減算される。評価表現の最大値を減算する結果として、サブグループ900のそれぞれに対して、評価表現の最大貢献は、図14cにおいてドット910によって示されるように、ゼロに設定される。
方程式(4)によるサブグループ900のそれぞれのための最大値の決定のため、サブバンド900のサブグループのそれぞれは、ゼロの値を有する少なくとも1つの白色化された評価表現値を含み、白色化された評価表現値AW(k,n)の残りは、ゼロ以下である。結果として、サブグループ900のそれぞれにおいて少なくとも1つの値は、ゼロに設定され、それによって最大値を表し、そのため、いくつかの実施形態において心理音響モデルに従って決定されたサブバンドのサブグループのそれぞれは、サブグループ900のそれぞれの少なくとも1つのフィルタ・インパルス応答値の圧縮の過程において保持される。
それによって、方程式(4)によって表されるようにスペクトル白色化の過程において、スペクトル重みまたはスペクトル・エネルギーは、白色化スキームを適用することによってより低い中心周波数を有するサブバンドからより高い周波数を有するサブバンドへ転送される。図14bおよび図14cの直接比較も、これを明確に示す。図14bにおいてサブグループ900−2における評価表現価値が、サブグループ900−1のそれらより著しく小さい一方、白色化手順を適用した後に、サブグループ900−2において結果として生じる白色化された評価表現値は、サブグループ900−1の評価表現の値の少なくともいくつかと比較して著しく大きい。これに関連してサブグループ900−1が、ドット910によって示されるように2つのゼロ値の評価表現値を含む点に留意すべきであり、それは、サブグループの図14bに示されるように評価表現A(k,n)が2つの同一の最大値を含むという事実によって生じる。しかしながら、これは、方程式(4)のアプリケーションの違反でない。方程式(4)は、それぞれのサブグループの評価表現の少なくとも1つの値がゼロに設定され、それによって白色化された評価表現AW(k.n)との関連で最大値を表すことを確実にするだけである。
図15は、フィルタ・コンプレッサ501のさらなる実施形態を示し、それは、1つを超える入力サブバンド・フィルタ・インパルス応答Hν(n,k)を処理することができる。図15に示されるフィルタ・コンプレッサの構成は、図5に示されるものと非常に類似し、絶対値表現モジュール303がそれぞれ絶対値および対数関数モジュール401および白色化モジュール402を含むという事実に関してだけ実施形態と異なり、それは、図4との関連で示されさらに説明される。さらに、フィルタ計算モジュールまたはフィルタ・インパルス応答コンストラクタ305は、それぞれ、図4との関連で任意のコンポーネントとして実施することができるフィルタ・デシメータ・モジュール403および利得計算機404を含む。
図15に図示される実施形態は、さらにマルチプル・フィルタのためのマスク・ジェネレータ502に関して図5示される実施形態と異なる。具体的には、図15のマスク・ジェネレータ502は、平均計算モジュール920を含み、それは、例えば、方程式(9)による個々の(任意に白色化された)絶対値表現Aν(n,k)に基づいて共同の絶対値表現A(n,k)を計算するを実施することができる。さらに具体的には、方程式(9)の枠組みにおいて、フィルタν=0、・・・、(N−1)のためのフィルタAν(n,k)のそれぞれのための個々の絶対値表現または評価表現は、白色化された評価表現値が白色化モジュール402によって平均計算モジュール920に提供されるように、適切な白色化された評価表現AWν(n,k)と置換される。フィルタ・コンプレッサ501の実施形態において、例えば図15に示されるように、異なるフィルタν=0、・・・、(N−1)のための個々のフィルタ・インパルス応答コンストラクタ305は、Nが実施形態501に提供されるフィルタの数であり、図15に点線によって示されるように、単一の(全体の)フィルタ・インパルス応答コンストラクタ305´として実施することができる。具体的には、具体的な実施および技術的な事情に応じて、N個の個々のフィルタ・インパルス応答コンストラクタ305よりむしろ単一のフィルタ・インパルス応答コンストラクタ305´を実施することが望ましい。これは、例えば、少なくともフィルタ・インパルス応答コンストラクタの枠組みにおいて、計算する能力が本質的な設計目標または要求でない場合であってもよい。換言すれば、図15に示される実施形態501は、プロセッサ820およびフィルタ・インパルス応答コンストラクタ305´がそれぞれのフィルタ・コンプレッサ501の入力および出力間に直列に接続される実施形態と見なすことができる。
さらに、方法の実施形態およびフィルタ・コンプレッサ102、501の実施形態によって実施される方法に関して、図1〜図6、図13および図15がそれぞれの方法のフローチャートと考慮することもできる点に留意すべきであり、「フローの方向」は、信号の方向に含まれる。換言すれば、上述の図は、フィルタ・コンプレッサ102、501の異なる実施形態を反映するだけでなく、これらの実施形態によって実施される方法および圧縮サブバンド・フィルタ・インパルス応答自体を生成のための方法の実施形態の両方を示す。
そのため、本発明の実施形態は、QMF(QMF=直交・ミラー・フィルタバンク)と呼ばれることもあるサブバンド・ドメインにおけるフィルタ・コンプレッサに関し、それは、例えばヘッドホン上のマルチチャンネル・サウンド体験のための頭部伝達関数(HRTF)のフィルタリングなどの音声アプリケーションの分野において使用することができる。
本発明は、QMFドメインにおいて長いフィルタを用いる計算の複雑性の問題に関する。本発明は、1つ以上のフィルタの時間周波数表現において最も関連したフィルタ係数を選択することによって、最も関連したフィルタ係数を示すフィルタ・マスクを作りことによって、または、フィルタ・マスクによってカバーされない係数を無視することによって、QMFドメインにおけるフィルタリングを適用する場合に、必要な計算を低減する新しいやり方を教示する。
しかしながら、フィルタ・コンプレッサ501の実施形態において、プロセッサ820は、フィルタ・コンプレッサによって出力される圧縮フィルタ・インパルス応答のためのフィルタ・インパルス応答値を調べさらに選択する場合に、フィルタ・コンプレッサ501に提供される全てのフィルタを考慮することを必要としない。しかしながら、この場合、フィルタ・コンプレッサの実施形態は、圧縮フィルタ・インパルス応答、または、フィルタ・インパルス応答値を調べさらに選択する枠組みにおいて考慮に入れられなかった1つ以上の入力フィルタ・インパルス応答のための複数の圧縮フィルタ・インパルス応答を構成するように構成することができる。これは、例えば、1つ以上のフィルタが計算のさらなる複雑性を低減するために知覚的にそれほど重要でない場合に望ましく、これらのフィルタは、フィルタ・インパルス応答値を調べさらに選択する場合に、考慮に入れられることを必要とされない。これは、例えば、1つ以上のフィルタが著しい量のエネルギーまたはボリュームを有しない場合に実施することができる。これらの場合、これらのフィルタに基づいてフィルタ・インパルス応答値を調べなくて選択しないことによって導入されるディストーションは、これらのフィルタの特別の事情に応じて受け入れることができる。
本発明のいくつかの実施形態は、以下の特徴を含む。
・時間ドメイン・フィルタまたはいくつかのフィルタを複素QMFフィルタ表現に変換すること
・QMFドメインにおいてフィルタの絶対値の時間/周波数表現を作ること
・絶対値の表現のスペクトル白色化を適用すること
・1つ以上のフィルタの絶対値の時間/周波数表現を与える所望のフィルタ係数を示すフィルタ・マスクを作ること
・フィルタ・マスクによって示される係数を含む新しい複素QMFフィルタを作ること
元のフィルタと同じ新しいフィルタの利得を得るために、新しいフィルタまたは複数のフィルタの利得を調整する。
フィルタの複素QMFドメイン表現を再計算するための装置の実施形態は、
・時間ドメイン・フィルタをQMFドメイン表現に変換すること、
・フィルタのQMF表現のフィルタ表現を作ること、
・フィルタのQMFドメイン表現の表現に基づいてフィルタ・マスクを作ること、さらに
・第1のQMFフィルタおよびフィルタ・マスクに基づいて新しいQMFフィルタを作ること
を実行することができる。
本発明のいくるかの実施形態は、長いフィルタのフィルタリングの高い計算の複雑性の問題を解決することができる。それらは、複素QMFドメインにおいて動作するフィルタ・コンプレッサを導入する。したがって、本発明のいくつかの実施形態は、フィルタリングの計算の複雑性の低減を提供することができる。本発明の実施形態は、例えば、フィルタ・コンプレッサ、圧縮サブバンド・フィルタ・インパルス応答を作るための方法、コンピュータ読み取り可能な記憶媒体、または、コンピュータプログラムとして実施することができる。
フィルタ・コンプレッサ102、501の実施形態は、多くの音声に関連したインパルス応答の特徴がかなりまばらな時間/周波数符号を有するけれども、全体の音質を著しく改善する機会を提供する。多くの場合により長い貢献は、低い周波数だけに存在し、効率的な持続時間は、より高い周波数のためのノーマルなフィルタ長より非常に短い。本発明の実施形態は、例えばフィルタ・コンプレッサの形式において、これらの特徴を利用することができる。
さらに、圧縮サブバンド・フィルタ・インパルス応答は、フィルタ・コンプレッサの実施形態によって提供されるように、それに記憶された同時に時間ドメインHRTFフィルタを近似しまたは表す1セットまたは複数のサブバンド・フィルタ・インパルス応答を有するコンピュータ読み取り可能な記憶媒体に記憶することができる点に留意すべきである。複素QMFドメインにおいてそれぞれのセットのHRTF関連のフィルタ・インパルス応答と比較して、コンピュータ読み取り可能な記憶媒体に記憶される複数の圧縮サブバンド・フィルタ・インパルス応答は、典型的により短いインパルス応答を有し、それは、より低い数のそれぞれのインパルス応答値を有することによってか、低減された数の非自明な若しくは非ゼロのフィルタ・タップまたは両方の組合せによって、実現することができる。
例えば、対応するHRTFフィルタ関数が時間ドメインにおいてKH個のフィルタ・タップを含み、さらに、コンピュータ読み取り可能な記憶媒体に記憶される圧縮サブバンド・フィルタ・インパルス応答がL個のサブバンドを有するサブシステムにおいて用いられることを使われることを目的とする場合、より短いインパルス応答は、典型的に、少なくとも1つのサブバンド・フィルタ・インパルス応答に関して(KH/L)より少なく含まれる。好ましくは、少なくとも1つのサブバンド・フィルタ・インパルス応答は、(KH/L−3)個より少ない非自明なまたは非ゼロのフィルタ・タップを含む。
さらに、コンピュータ読み取り可能な記憶媒体に、圧縮時間ドメインHRTFフィルタに対応する複数のセットのサブバンド・フィルタ・インパルス応答より多くが記憶される場合、対応するセットの圧縮サブバンド・フィルタ・インパルス応答は、共通データ・パターンを含み、共通データ・パターンは、インパルス応答値を示し、それは、コンピュータ読み取り可能な記憶媒体に記憶される少なくともいくつかのセットのサブバンド・フィルタ・インパルス応答において、自明な値を有するか欠けているインパルス応答値を示す。換言すれば、共通データ・パターンは、1より多いセットのフィルタ・インパルス応答において選択されていないフィルタ・インパルス応答値に関し、それは、フィルタ・コンプレッサの実施形態の一部としてのフィルタ・インパルス応答コンストラクタによって用いられなかった。そのような(類似の)データ・パターンは、例えば、マルチプル入力フィルタHν(n,k)のためのマスク・ジェネレータ502によって提供されるように共通フィルタ・マスクM(n,k)によって生じ得る。
さらに換言すれば、コンピュータ読み取り可能な記憶媒体は、異なるサブバンドのための単一セットの(圧縮)サブバンド・フィルタ・インパルス応答だけでなく、複数のフィルタ・インパルス応答を含んでもよい。これらのセットのフィルタ・インパルス応答のそれぞれは、全体として見られる場合に、共通データ・パターンを含み、それは、ゼロ値であるか全く欠けている対応するインパルス応答値によって与えられる。これらのセットのフィルタ・インパルス応答のそれぞれは、コンピュータ読み取り可能な記憶媒体に記憶される同じ共通のデータ・パターンを含む。例えば、1セットのフィルタ・インパルス応答値において、時間またはサンプル・インデックスnとサブバンド・インデックスkとによって示される特定の値が、欠けているかまたはゼロ値である場合、他のセットのサブバンド・インパルス応答の同じサンプルまたは時間インデックスnと同じサブバンド・インデックスkとによって識別されるインパルス応答値は、欠けているか、ゼロ値であるか、他の定義された値を有する。これに関連して、異なるセットのフィルタ・インパルス応答は、それぞれのインデックスnによって識別されまたは表示され、インデックスνは、例えば0から(N−1)の範囲においていずれかの整数値を得てもよく、Nは、またフィルタの数である。
換言すれば、上述のデータ・パターンは、フィルタ・インパルス応答値を指し、それは、例えば、フィルタ・コンプレッサ501の実施形態との関連で記載される意味において選択されない。そのため、データ・パターンは、全てがゼロに設定されているかまたは全てが欠けているそれぞれのフィルタ・インデックスνによって識別される異なるセットのフィルタ・インパルス応答のサンプルまたは時間インデックスnとサブバンド・インデックスkとに関するインデックス(n,k)に関して、認識できるかまたは定義することができる。
コンピュータ読み取り可能な記憶媒体は、例えばHRTF関連フィルタを含んでもよい。さらに、コンピュータ読み取り可能な記憶媒体に記憶される複数のセットのサブバンド・フィルタ・インパルス応答は、空間オーディオ・システムのための1セットのフィルタ・インパルス応答であり得る。
コンピュータ読み取り可能な記憶媒体が原則としていかなるコンピュータ読み取り可能な記憶媒体でもあり得る点に留意することが重要である。そのようなコンピュータ読み取り可能な記憶媒体のための例は、例えば、フロッピー(登録商標)・ディスク、CD、CD−ROM、DVDのような持ち運び可能な記憶媒体または他のいかなる記憶媒体であり、それは、コンピュータ読み取り可能なやり方で情報を記憶することができる。さらに、RAM(ランダム・アクセス・メモリ)、ROM(読み出し専用メモリ)、ハード・ディスク・メモリ、NVM(不揮発性メモリ)またはフラッシュ・メモリのような内蔵メモリが用いられ得る。換言すれば、本願の意味においてコンピュータ読み取り可能な記憶媒体は、持ち運び可能な記憶媒体だけでなく、内蔵記憶媒体でもある。さらに、コンピュータ読み取り可能な記憶媒体とは、データまたは情報が変えられまたは変更され得るような媒体も、それぞれのデータ情報が変更できないそれらのメモリも指す。
そのため、本発明の実施形態によれば、コンピュータ読み取り可能な記憶媒体は、それに記憶されるとともに時間ドメイン頭部伝達関数を近似する、複数のサブバンド・フィルタ・インパルス応答を有してもよく、複数のサブバンド・フィルタ・インパルス・フィルタ応答は、時間ドメイン頭部伝達関数と比較して、より短いインパルス応答を有する。
本発明の方法の実施形態の特定の実現要求によっては、本発明の方法の実施形態は、ハードウェアにおいてまたはソフトウェアにおいて実施することができる。この実施は、本発明の方法の実施形態が実行されるように、プロセッサと協動する、それに記憶される電子的に読み取ることができる制御信号を有する、デジタル記憶媒体、コンピュータ読み取り可能な記憶媒体、例えば、ディスク、CDまたはDVDを用いて実行することができる。そのため、本発明の実施形態は、一般に、機械で読み取り可能なキャリアに記憶されたプログラムコードを有するコンピュータプログラム製品であり、プログラムコードは、コンピュータプログラムがプロセッサ上で実行される場合に本発明の方法の実施形態を実行するように作動する。したがって、換言すれば、本発明の方法の実施形態は、コンピュータプログラムがコンピュータ上で実行される場合に、本発明の方法のうちの少なくとも1つの実施形態を実行するためのプログラムコードを有するコンピュータプログラムである。これに関連して、プロセッサは、プログラム可能なコンピュータシステム、プログラム可能なコンピュータ、中央演算処理装置(CPU)、特定用途向け集積回路(ASIC)、プロセッサまたは他の集積回路(IC)によって形成することができる。
上述には本発明の特定の実施形態に関して特に示され記載されたが、形式や詳細においてさまざまな他の変更が本発明の精神および範囲から逸脱することなくできるということは、当業者にとって理解されよう。さまざまな変更が本願明細書において開示されさらに特許請求の範囲によって理解される上位概念から逸脱することなく異なる実施形態に適応する際にできることを理解すべきである。

Claims (53)

  1. フィルタ・タップでフィルタ・インパルス応答値を含む、サブバンドに対応する入力サブバンド・フィルタ・インパルス応答から圧縮サブバンド・フィルタ・インパルス応答を生成するためのフィルタ・コンプレッサ(102、501)であって、
    所定の値を有するフィルタ・インパルス応答値および前記所定の値より低い値を有する少なくとも1つのフィルタ・インパルス応答値を見つけるために、少なくとも2つの入力サブバンド・フィルタ・インパルス応答から前記フィルタ・インパルス応答値を調べるためのプロセッサ(820)、および
    前記所定の値を有する前記フィルタ・インパルス応答値を用いて前記圧縮サブバンド・フィルタ・インパルス応答を構成するためのフィルタ・インパルス応答コンストラクタ(305)を含み、前記圧縮サブバンド・フィルタ・インパルス応答は、
    前記より低い値を有する前記少なくとも1つのフィルタ・インパルス応答値のフィルタ・タップに対応するフィルタ・インパルス応答値を含まず、または
    前記より低い値を有する前記少なくとも1つのフィルタ・インパルス応答値のフィルタ・タップに対応するゼロ値のフィルタ・インパルス応答値を含む、フィルタ・コンプレッサ。
  2. 前記フィルタ・インパルス応答値を調べるための前記プロセッサ(820)は、複素数値のフィルタ・インパルス応答値を処理するように構成され、さらに前記フィルタ・インパルス応答コンストラクタ(305)は、複素数値のインパルス応答値を処理するように構成される、請求項1に記載のフィルタ・コンプレッサ(102、501)。
  3. 前記プロセッサ(820)は、前記所定の値がより高い絶対値であり、さらに前記より低い値がより低い絶対値であるように、絶対値に基づいて前記フィルタ・インパルス応答値を調べるように構成される、請求項1または請求項2に記載のフィルタ・コンプレッサ(102、501)。
  4. 前記プロセッサ(820)は、前記フィルタ・インパルス応答値の前記複素数値の絶対値、実数部、前記実数部の絶対値、虚数部、前記虚数部の絶対値または位相に基づいて前記フィルタ・インパルス応答値を調べるように構成される、請求項2に記載のフィルタ・コンプレッサ(102、501)。
  5. 前記プロセッサ(820)は、前記入力フィルタ応答の前記フィルタ・インパルス応答値に基づいて評価表現を計算するように構成される、請求項1ないし請求項4のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  6. 前記プロセッサ(820)は、心理音響モデルまたは人間の耳の特性に基づくモデルに基づいて前記評価表現を計算するように構成される、請求項5に記載のフィルタ・コンプレッサ(102、501)。
  7. 前記プロセッサ(820)は、前記評価表現を得るために前記フィルタ・インパルス応答値に基づいて絶対値を計算するように構成される、請求項5または請求項6に記載のフィルタ・コンプレッサ(102、501)。
  8. 前記プロセッサ(820)は、前記評価表現を得るために前記フィルタ・インパルス応答値に基づいて対数値を計算するように構成される、請求項5ないし請求項7のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  9. Figure 0004704499
  10. Figure 0004704499
  11. 前記プロセッサ(820)は、白色化された評価表現を得るために前記入力サブバンド・フィルタ・インパルス応答に対応する前記サブバンドの中心周波数に基づく心理音響モデルに基づいて前記評価表現を重み付けるように構成される、請求項5ないし請求項10のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  12. 前記プロセッサ(820)は、サブバンドの少なくとも1つのサブグループに基づいて前記評価表現を重み付けるように構成され、それぞれのサブバンドは、多くてもサブバンドの1つのサブグループに属する、請求項5ないし請求項11のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  13. 前記プロセッサ(820)は、サブバンドの少なくとも1つのサブグループに基づいて前記評価表現を重み付けるように構成され、サブバンドのそれぞれのサブグループは、少なくとも1つのサブバンドを含み、さらにそれぞれのサブバンドは、サブバンドの1つのサブグループに正確に属する、請求項12に記載のフィルタ・コンプレッサ(102、501)。
  14. 前記プロセッサ(820)は、サブバンドの少なくとも1つのサブグループに基づいて前記評価表現を重み付けるように構成され、少なくとも2つのサブバンドを含むそれぞれのサブグループは、前記サブバンドのそれぞれの中心周波数に従って順序付けられる全てのサブバンドの1セットの中心周波数に関して隣接した中心周波数を有するサブバンドだけを含む、請求項12または請求項13に記載のフィルタ・コンプレッサ(102、501)。
  15. 前記プロセッサ(820)は、それぞれのサブバンドまたはサブバンドのそれぞれのサブグループが、1つのインパルス応答値に対応しかつ所定の、適合性のある、プログラム可能なまたは一定の値を含む白色化された評価表現の少なくとも1つの値を含むように、白色化された評価表現を得るために前記評価表現を重み付けるように構成される、請求項5ないし請求項14のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  16. 前記プロセッサ(820)は、それぞれのサブバンドに対して個々に前記評価表現を重み付けるように構成される、請求項5ないし請求項15のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  17. 前記プロセッサ(820)は、重み付けが、サブバンドのそれぞれのサブグループに対してまたはそれぞれのサブバンドに対して最大値を決定することと、サブバンドの前記それぞれのサブグループに対してまたは前記それぞれのサブバンドに対して前記評価表現のそれぞれの値から前記決定された最大値を減算することとを含むように、前記評価表現を重み付けるように構成される、請求項5ないし請求項16のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  18. Figure 0004704499
  19. 前記プロセッサ(820)は、重み付けが、サブバンドのそれぞれのサブグループに対してまたはそれぞれのサブバンドに対して最大値を決定することと、サブバンドの前記それぞれのサブグループに対して前記決定された最大値若しくは導き出される値でまたは前記それぞれのサブバンドに対して前記決定された最大値で、サブバンドの前記それぞれのサブグループのまたは前記それぞれのサブバンドの前記評価表現のそれぞれの値を除算することとを含むように、前記評価表現を重み付けるように構成される、請求項5ないし請求項16のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  20. 前記プロセッサ(820)は、サブバンドまたはサブバンドのサブグループのインパルス応答値の絶対値に関係なくより高い値を有するそれぞれのサブバンドの少なくとも1つのフィルタ・インパルス応答値またはサブバンドのそれぞれのサブグループの少なくとも1つのフィルタ・インパルス応答値を見つけるように構成される、請求項1ないし請求項19のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  21. 前記プロセッサ(820)は、前記評価表現に基づいて前記フィルタ・インパルス応答値を見つけるように構成される、請求項5ないし請求項20のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  22. 前記プロセッサ(820)は、それぞれのフィルタ・インパルス応答値の全体の数の50%未満の少なくとも1つのサブバンドに関してまたはサブバンドの少なくとも1つのサブグループに関して、前記所定の値より低い値を有するように、前記フィルタ・インパルス応答値を調べるように構成される、請求項1ないし請求項21のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  23. 前記プロセッサ(820)は、少なくとも1つのサブバンドに関して前記所定の値より低い値を有するインパルス応答値の数がKQより小さいように、フィルタ・インパルス応答値を見つけるように構成され、前記入力サブバンド・フィルタ・インパルス応答に対応する時間ドメインにおけるフィルタのフィルタ・インパルス応答値の数は、少なくともKQ・Lであり、Lは、サブバンドの数であり、さらにKQおよびLは、正の整数である、請求項1ないし請求項22のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  24. 前記プロセッサ(820)は、前記少なくとも1つのサブバンドに関してフィルタ・インパルス応答値の数が(KQ−3)以下であるように、前記フィルタ・インパルス応答値を調べるように構成される、請求項23に記載のフィルタ・コンプレッサ(102、501)。
  25. 前記プロセッサ(820)は、前記評価表現または前記白色化された評価表現に基づいて、所定の、調整可能な、一定のまたはプログラム可能な数のインパルス応答値が前記所定の値を有するように、前記フィルタ・インパルス応答値を調べるように構成される、請求項5ないし請求項24のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  26. 前記プロセッサ(820)は、前記所定の、調整可能な、一定のまたはプログラム可能な数が、サブバンドの数以上であり、または、サブバンドのサブグループの数以上であるように構成される、請求項25に記載フィルタ・コンプレッサ(102、501)。
  27. 前記プロセッサ(820)は、前記フィルタ・インパルス応答値、前記評価表現の対応する値または前記白色化された評価表現の対応する値が閾値より下の場合に、前記所定の値より小さいフィルタ・インパルス応答値を見つけるように構成される、請求項1ないし請求項26のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  28. 前記プロセッサ(820)は、前記フィルタ・インパルス応答値の値が前記入力サブバンド・フィルタ・インパルス応答に対応するフィルタバンクのエイリアシング・レベルに近い場合に、前記所定の値より低い少なくとも1つのフィルタ・インパルス応答値を見つけるように構成される、請求項1ないし請求項27のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  29. 前記プロセッサ(820)は、前記所定の値を有する前記インパルス応答値を示すマスクM(n,k)を提供するように構成され、nは、サンプルまたは時間インデックスを示す整数であり、さらにkは、前記少なくとも2つの入力サブバンド・フィルタ・インパルス応答の前記サブバンドのインデックスを示す整数である、請求項1ないし請求項28のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  30. 前記プロセッサは、前記整数n、kによって示される前記インパルス応答値がより高い値を有するかまたは前記所定の値より低い値を有するかどうかを示す2進値を有する前記マスクM(n,k)を提供するように構成される、請求項29に記載のフィルタ・コンプレッサ(102、501)。
  31. 前記プロセッサ(820)は、前記フィルタ・インパルス応答値を調べることが前記所定の値を有する前記フィルタ・インパルス応答を選択することを含むように構成される、請求項1ないし請求項30のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  32. 前記フィルタ・インパルス応答コンストラクタ(305)は、前記圧縮サブバンド・フィルタ・インパルス応答値としてそれぞれのサブバンド・フィルタ・インパルス応答値またはそれに基づく値を提供することによって、さらに
    前記所定の値より低い値を有する前記インパルス応答値をゼロに設定すること、
    前記所定の値より低い値を有する前記インパルス応答値を無視すること、および
    前記フィルタ・インパルス応答値が複素数値である場合に、前記所定の値より低い値を有する複素数値のフィルタ・インパルス応答値に基づいて実数値の値を提供すること
    の少なくとも1つによって、
    り高い値を有する前記フィルタ・インパルス応答値を用いて前記圧縮サブバンド・フィルタ・インパルス応答を構成するように構成される、請求項1ないし請求項31のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  33. 前記フィルタ・インパルス応答コンストラクタ(305)は、それぞれのインパルス応答値を取得することおよびコピーすることの少なくとも1つによってより高い値を有する前記フィルタ・インパルス応答値を用いて前記圧縮サブバンド・フィルタ・インパルス応答を構成するように構成される、請求項1ないし請求項32のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  34. Figure 0004704499
  35. 前記フィルタ・インパルス応答コンストラクタ(305)は、少なくとも1つの調整されたフィルタ・インパルス応答値が対応するフィルタ・インパルス応答値の絶対値と比較してより大きい絶対値を含むように、圧縮サブバンド・フィルタ・インパルス応答の少なくとも1つのフィルタ・インパルス応答値を調整するように構成される、請求項1ないし請求項34のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  36. 前記フィルタ・インパルス応答コンストラクタ(305)は、それぞれのサブバンドに応じてサブバンドに特有の利得係数をそれぞれのインパルス応答値に乗算することによってより高い値を有する前記インパルス応答値を調整するように構成される、請求項1ないし請求項35のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  37. 前記フィルタ・インパルス・コンストラクタ(305)は、サブバンドのそれぞれのサブグループに応じてサブグループに特有の利得係数をそれぞれのインパルス応答値に乗算することによってより高い値を有する前記インパルス応答値を調整するように構成される、請求項1ないし請求項36のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  38. Figure 0004704499
  39. Figure 0004704499
  40. 前記フィルタ・インパルス・コンストラクタ(305)は、複素数値の入力フィルタ応答値が境界周波数より上の中心周波数に対応する場合に、対応する圧縮サブバンド・フィルタ・インパルス応答値として複素数値のフィルタ・インパルス応答値に基づいて実数値の値を提供することによって前記圧縮サブバンド・フィルタ・インパルス応答値を構成するように構成される、請求項1ないし請求項39のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  41. 前記フィルタ・インパルス・コンストラクタ(305)は、前記複素数値のフィルタ・インパルス応答値に基づく前記実数値の値が、実数部、虚数部、絶対値、位相、それに基づく線形結合、それに基づく多項式およびそれに基づく実数値の式のうちの少なくとも1つであるように構成される、請求項40に記載のフィルタ・コンプレッサ(102、501)。
  42. 前記フィルタ・インパルス・コンストラクタ(305)は、前記複素数値の入力フィルタ応答値を前記実数値の値に置換することによって前記実数値の値を提供するように構成される、請求項40に記載のフィルタ・コンプレッサ(102、501)。
  43. 前記フィルタ・インパルス・コンストラクタ(305)は、前記境界周波数が1kHzおよび10kHzの範囲内にあるように構成される、請求項40ないし請求項42のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  44. 前記フィルタ・インパルス・コンストラクタ(305)は、前記フィルタ・インパルス応答値がより高い値を有する場合に、前記圧縮フィルタ・インパルス応答の対応する圧縮インパルス応答値として前記複素数値の入力フィルタ応答値に基づいて前記実数値の値を提供するように構成される、請求項40ないし請求項43のいずれかに記載のフィルタ・コンプレッサ(102、501)。
  45. 前記フィルタ・コンプレッサ(501)は、複数セットの入力フィルタ・インパルス応答に基づいて複数セットの圧縮フィルタ・インパルス応答を生成するように構成され、1セットの圧縮フィルタ・インパルス応答のそれぞれの圧縮フィルタ・インパルス応答は、複数の中心周波数の1つの中心周波数に正確に対応し、前記複数の中心周波数のそれぞれの中心周波数に前記複数セットの圧縮フィルタ・インパルス応答のそれぞれのセットの1つの圧縮フィルタ・インパルス応答を正確に対応し、1セットの入力フィルタ・インパルス応答のそれぞれの入力フィルタ・インパルス応答は、前記複数の中心周波数の1つの中心周波数に正確に対応し、前記複数の中心周波数のそれぞれの中心周波数に前記複数セットの入力フィルタ・インパルス応答のそれぞれのセットの1つの入力フィルタ・インパルス応答を正確に対応する、請求項1ないし請求項44のいずれかに記載のフィルタ・コンプレッサ(502)。
  46. 前記プロセッサ(820)は、複数セットのうちの少なくとも1セットの入力フィルタ・インパルス応答の少なくとも2つの入力サブバンド・フィルタ・インパルス応答から前記フィルタ・インパルス応答値を調べるように構成され、さらにプロセッサ(820)は、同じ中心周波数に対応する少なくとも2セットの入力フィルタ・インパルス応答から前記所定の値を有するフィルタ・インパルス応答値を見つけるようにさらに構成される、請求項45に記載のフィルタ・コンプレッサ(501)。
  47. 前記プロセッサ(820)は、同じ中心周波数に対応する全セットの入力フィルタ・インパルス応答から前記所定の値を有するフィルタ・インパルス応答値を見つけるように構成される、請求項46に記載のフィルタ・コンプレッサ(501)。
  48. 前記プロセッサ(820)は、同じサンプルまたは時間インデックスnに対応する複数セットの入力フィルタ・インパルス応答のうちの少なくとも2セットの入力フィルタ・インパルス応答の前記所定の値を有するフィルタ・インパルス応答値を見つけるように構成され、nは、整数である、請求項46または請求項47に記載のフィルタ・コンプレッサ(501)。
  49. 前記プロセッサ(820)は、それぞれのセットの入力フィルタ・インパルス応答に対して評価表現Aνn(n,k)または白色化された評価表現AWν(n,k)を計算するように構成され、νは、前記セットの入力フィルタ・インパルス応答を示す整数であり、nは、サンプルまたは時間インデックスを示す整数であり、kは、前記サブバンドのインデックスを示す整数であり、さらに前記プロセッサ(820)は、少なくとも2つの評価表現Aν(n,k)に基づいてまたは少なくとも2つの白色化された評価表現AWν(n,k)に基づいて前記評価表現A(n,k)を計算するようにさらに構成される、請求項45ないし請求項48のいずれかに記載のフィルタ・コンプレッサ(501)。
  50. Figure 0004704499
  51. 前記フィルタ・インパルス応答コンストラクタ(305)は、同じ中心周波数と同じサンプルまたは時間インデックスとに対応する前記圧縮フィルタ・インパルス応答の前記フィルタ・インパルス応答値が、ゼロに設定され、前記複数セットの圧縮フィルタ・インパルス応答の前記圧縮フィルタ・インパルス応答に含まれなく、または、対応するフィルタ・インパルス応答値が複素数値である場合に、それぞれの実数値の値に置換されるように、前記複数セットの圧縮フィルタ・インパルス応答の前記圧縮サブバンド・フィルタ・インパルス応答を構成するように構成される、請求項45ないし請求項50のいずれかに記載のフィルタ・コンプレッサ(501)。
  52. フィルタ・タップでフィルタ・インパルス応答値を含む、サブバンドに対応する入力サブバンド・フィルタ・インパルス応答から圧縮サブバンド・フィルタ・インパルス応答を作るための方法であって、
    所定の値を有するフィルタ・インパルス応答値および前記所定の値より低い値を有する少なくとも1つのフィルタ・インパルス応答値を見つけるために、少なくとも2つの入力サブバンド・フィルタ・インパルス応答から前記フィルタ・インパルス応答値を調べるステップ、および
    前記所定の値を有する前記フィルタ・インパルス応答値を用いて前記圧縮サブバンド・フィルタ・インパルス応答を構成するステップを含み、
    前記圧縮サブバンド・フィルタ・インパルス応答は、
    前記より低い値を有する前記少なくとも1つのフィルタ・インパルス応答値のフィルタ・タップに対応するフィルタ・インパルス応答値を含まず、または
    前記より低い値を有する前記少なくとも1つのフィルタ・インパルス応答値のフィルタ・タップに対応するゼロ値のフィルタ・インパルス応答値を含む、方法。
  53. プロセッサ上で実行されるときに、請求項52に記載の方法を実行するためのコンピュータプログラム。
JP2009517033A 2006-07-04 2007-07-03 圧縮サブバンド・フィルタ・インパルス応答を作るためのフィルタ・コンプレッサおよび方法 Active JP4704499B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
SE0601462-5 2006-07-04
SE0601462 2006-07-04
US80660706P 2006-07-05 2006-07-05
US60/806,607 2006-07-05
PCT/EP2007/005887 WO2008003467A1 (en) 2006-07-04 2007-07-03 Filter unit and method for generating subband filter impulse responses

Publications (2)

Publication Number Publication Date
JP2009542137A JP2009542137A (ja) 2009-11-26
JP4704499B2 true JP4704499B2 (ja) 2011-06-15

Family

ID=41003589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009517033A Active JP4704499B2 (ja) 2006-07-04 2007-07-03 圧縮サブバンド・フィルタ・インパルス応答を作るためのフィルタ・コンプレッサおよび方法

Country Status (15)

Country Link
US (1) US8255212B2 (ja)
EP (6) EP2337224B1 (ja)
JP (1) JP4704499B2 (ja)
KR (1) KR101201167B1 (ja)
CN (1) CN101512899B (ja)
AR (1) AR061807A1 (ja)
DK (1) DK2337224T3 (ja)
ES (4) ES2905764T3 (ja)
HK (1) HK1246013B (ja)
HU (2) HUE057855T2 (ja)
MY (1) MY151651A (ja)
PL (1) PL2337224T3 (ja)
TR (1) TR201902417T4 (ja)
TW (1) TWI351022B (ja)
WO (1) WO2008003467A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001874A1 (ja) * 2007-06-27 2008-12-31 Nec Corporation オーディオ符号化方法、オーディオ復号方法、オーディオ符号化装置、オーディオ復号装置、プログラム、およびオーディオ符号化・復号システム
JP5678048B2 (ja) 2009-06-24 2015-02-25 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ カスケード化されたオーディオオブジェクト処理ステージを用いたオーディオ信号デコーダ、オーディオ信号を復号化する方法、およびコンピュータプログラム
CN102696070B (zh) * 2010-01-06 2015-05-20 Lg电子株式会社 处理音频信号的设备及其方法
JP5882917B2 (ja) 2010-02-26 2016-03-09 インダストリー−ユニバーシティーコオペレーション ファウンデーション ハンヤン ユニバーシティー 周波数再構成が可能なデジタルフィルタとフィルタリング方法及びこれを用いたイコライザとその設計方法
EP2365630B1 (en) * 2010-03-02 2016-06-08 Harman Becker Automotive Systems GmbH Efficient sub-band adaptive fir-filtering
CN102013879B (zh) * 2010-09-10 2014-09-03 建荣集成电路科技(珠海)有限公司 Mp3音乐均衡调节装置及方法
US9173025B2 (en) 2012-02-08 2015-10-27 Dolby Laboratories Licensing Corporation Combined suppression of noise, echo, and out-of-location signals
US8712076B2 (en) 2012-02-08 2014-04-29 Dolby Laboratories Licensing Corporation Post-processing including median filtering of noise suppression gains
CN103004086B (zh) 2012-09-27 2016-06-08 华为技术有限公司 基于误差子带的自适应滤波方法及系统
EP4372602A3 (en) 2013-01-08 2024-07-10 Dolby International AB Model based prediction in a critically sampled filterbank
ES2617314T3 (es) 2013-04-05 2017-06-16 Dolby Laboratories Licensing Corporation Aparato de compresión y método para reducir un ruido de cuantización utilizando una expansión espectral avanzada
WO2014171791A1 (ko) 2013-04-19 2014-10-23 한국전자통신연구원 다채널 오디오 신호 처리 장치 및 방법
CN103269212B (zh) * 2013-05-14 2016-05-18 泉州市天龙电子科技有限公司 低成本低功耗可编程多级fir滤波器实现方法
FR3006535A1 (fr) * 2013-05-28 2014-12-05 France Telecom Procede et dispositif de modulation delivrant un signal a porteuses multiples, procede et dispositif de demodulation et programme d’ordinateur correspondants.
EP2830050A1 (en) 2013-07-22 2015-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for enhanced spatial audio object coding
EP2830049A1 (en) 2013-07-22 2015-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for efficient object metadata coding
EP2830061A1 (en) 2013-07-22 2015-01-28 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for encoding and decoding an encoded audio signal using temporal noise/patch shaping
EP2830045A1 (en) 2013-07-22 2015-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Concept for audio encoding and decoding for audio channels and audio objects
US9319819B2 (en) * 2013-07-25 2016-04-19 Etri Binaural rendering method and apparatus for decoding multi channel audio
KR101782916B1 (ko) * 2013-09-17 2017-09-28 주식회사 윌러스표준기술연구소 오디오 신호 처리 방법 및 장치
WO2015060654A1 (ko) 2013-10-22 2015-04-30 한국전자통신연구원 오디오 신호의 필터 생성 방법 및 이를 위한 파라메터화 장치
US9286902B2 (en) * 2013-12-16 2016-03-15 Gracenote, Inc. Audio fingerprinting
WO2015099429A1 (ko) * 2013-12-23 2015-07-02 주식회사 윌러스표준기술연구소 오디오 신호 처리 방법, 이를 위한 파라메터화 장치 및 오디오 신호 처리 장치
CN108600935B (zh) 2014-03-19 2020-11-03 韦勒斯标准与技术协会公司 音频信号处理方法和设备
KR101856127B1 (ko) 2014-04-02 2018-05-09 주식회사 윌러스표준기술연구소 오디오 신호 처리 방법 및 장치
CN106537942A (zh) * 2014-11-11 2017-03-22 谷歌公司 3d沉浸式空间音频系统和方法
EP3048608A1 (en) * 2015-01-20 2016-07-27 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Speech reproduction device configured for masking reproduced speech in a masked speech zone
CN105553893B (zh) * 2016-01-07 2021-04-09 广东新岸线科技有限公司 一种时域信道冲激响应的估计方法和装置
US9742599B2 (en) * 2016-01-19 2017-08-22 Hughes Network Systems, Llc Partial response signaling techniques for single and multi-carrier nonlinear satellite systems

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11503882A (ja) * 1994-05-11 1999-03-30 オーリアル・セミコンダクター・インコーポレーテッド 複雑性を低減したイメージングフィルタを用いた3次元仮想オーディオ表現
JP2000507762A (ja) * 1996-03-30 2000-06-20 セントラル リサーチ ラボラトリーズ リミティド ステレオ信号の処理用装置
JP2000338998A (ja) * 1999-03-23 2000-12-08 Nippon Telegr & Teleph Corp <Ntt> オーディオ信号符号化方法及び復号化方法、これらの装置及びプログラム記録媒体
JP2002033667A (ja) * 1993-05-31 2002-01-31 Sony Corp 信号復号化方法及び装置
WO2005043511A1 (en) * 2003-10-30 2005-05-12 Koninklijke Philips Electronics N.V. Audio signal encoding or decoding
JP2006512617A (ja) * 2003-01-02 2006-04-13 ドルビー・ラボラトリーズ・ライセンシング・コーポレーション 格子基ポスト処理技術を用いるmpeg−2アドバンスドオーディオコーディング(aac)のためのスケール因子伝達コスト低減

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4692801A (en) * 1985-05-20 1987-09-08 Nippon Hoso Kyokai Bandwidth compressed transmission system
US6252909B1 (en) * 1992-09-21 2001-06-26 Aware, Inc. Multi-carrier transmission system utilizing channels of different bandwidth
CA2140779C (en) * 1993-05-31 2005-09-20 Kyoya Tsutsui Method, apparatus and recording medium for coding of separated tone and noise characteristics spectral components of an acoustic signal
US5923273A (en) 1996-11-18 1999-07-13 Crystal Semiconductor Corporation Reduced power FIR filter
SE512719C2 (sv) * 1997-06-10 2000-05-02 Lars Gustaf Liljeryd En metod och anordning för reduktion av dataflöde baserad på harmonisk bandbreddsexpansion
GB2343801B (en) * 1997-08-21 2001-09-12 Data Fusion Corp Method and apparatus for acquiring wide-band pseudorandom noise encoded waveforms
US6029126A (en) * 1998-06-30 2000-02-22 Microsoft Corporation Scalable audio coder and decoder
US6442197B1 (en) 1999-02-26 2002-08-27 Texas Instruments Incorporated Phase-shift calculation method, and system implementing it, for a finite-impulse-response (FIR) filter
US6658382B1 (en) 1999-03-23 2003-12-02 Nippon Telegraph And Telephone Corporation Audio signal coding and decoding methods and apparatus and recording media with programs therefor
US7043423B2 (en) * 2002-07-16 2006-05-09 Dolby Laboratories Licensing Corporation Low bit-rate audio coding systems and methods that use expanding quantizers with arithmetic coding
EP1691348A1 (en) * 2005-02-14 2006-08-16 Ecole Polytechnique Federale De Lausanne Parametric joint-coding of audio sources

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033667A (ja) * 1993-05-31 2002-01-31 Sony Corp 信号復号化方法及び装置
JPH11503882A (ja) * 1994-05-11 1999-03-30 オーリアル・セミコンダクター・インコーポレーテッド 複雑性を低減したイメージングフィルタを用いた3次元仮想オーディオ表現
JP2000507762A (ja) * 1996-03-30 2000-06-20 セントラル リサーチ ラボラトリーズ リミティド ステレオ信号の処理用装置
JP2000338998A (ja) * 1999-03-23 2000-12-08 Nippon Telegr & Teleph Corp <Ntt> オーディオ信号符号化方法及び復号化方法、これらの装置及びプログラム記録媒体
JP2006512617A (ja) * 2003-01-02 2006-04-13 ドルビー・ラボラトリーズ・ライセンシング・コーポレーション 格子基ポスト処理技術を用いるmpeg−2アドバンスドオーディオコーディング(aac)のためのスケール因子伝達コスト低減
WO2005043511A1 (en) * 2003-10-30 2005-05-12 Koninklijke Philips Electronics N.V. Audio signal encoding or decoding

Also Published As

Publication number Publication date
HUE057855T2 (hu) 2022-06-28
TW200813981A (en) 2008-03-16
EP2337224A3 (en) 2012-01-25
KR101201167B1 (ko) 2012-11-13
EP3447916B1 (en) 2020-07-15
TWI351022B (en) 2011-10-21
EP3985873A1 (en) 2022-04-20
CN101512899B (zh) 2012-12-26
EP3739752B1 (en) 2021-12-15
MY151651A (en) 2014-06-30
EP3739752A1 (en) 2020-11-18
JP2009542137A (ja) 2009-11-26
ES2623226T3 (es) 2017-07-10
ES2638269T3 (es) 2017-10-19
EP3447916A1 (en) 2019-02-27
EP2337224A2 (en) 2011-06-22
DK2337224T3 (en) 2017-10-02
ES2712457T3 (es) 2019-05-13
EP2036201A1 (en) 2009-03-18
WO2008003467A1 (en) 2008-01-10
US20100017195A1 (en) 2010-01-21
PL2337224T3 (pl) 2017-11-30
TR201902417T4 (tr) 2019-03-21
EP2337224B1 (en) 2017-06-21
HK1246013B (zh) 2019-11-29
ES2905764T3 (es) 2022-04-12
EP2036201B1 (en) 2017-02-01
AR061807A1 (es) 2008-09-24
KR20090028755A (ko) 2009-03-19
HUE043155T2 (hu) 2019-08-28
EP3236587A1 (en) 2017-10-25
CN101512899A (zh) 2009-08-19
EP3236587B1 (en) 2018-11-21
US8255212B2 (en) 2012-08-28

Similar Documents

Publication Publication Date Title
JP4704499B2 (ja) 圧縮サブバンド・フィルタ・インパルス応答を作るためのフィルタ・コンプレッサおよび方法
RU2507678C2 (ru) Эффективная фильтрация банком комплексно-модулированных фильтров
US8175280B2 (en) Generation of spatial downmixes from parametric representations of multi channel signals
RU2376726C2 (ru) Устройство и способ для формирования закодированного стереосигнала аудиочасти или потока данных аудио

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110309

R150 Certificate of patent or registration of utility model

Ref document number: 4704499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250