JP4703708B2 - 加圧流動層ボイラの脱塵方法 - Google Patents

加圧流動層ボイラの脱塵方法 Download PDF

Info

Publication number
JP4703708B2
JP4703708B2 JP2008264810A JP2008264810A JP4703708B2 JP 4703708 B2 JP4703708 B2 JP 4703708B2 JP 2008264810 A JP2008264810 A JP 2008264810A JP 2008264810 A JP2008264810 A JP 2008264810A JP 4703708 B2 JP4703708 B2 JP 4703708B2
Authority
JP
Japan
Prior art keywords
cyclone
fluidized bed
dust
exhaust gas
pressurized fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008264810A
Other languages
English (en)
Other versions
JP2009063288A (ja
Inventor
宏昭 細井
洋二 升本
恭一 村上
祐治 福田
正治 倉本
真一 大下
孝行 石田
知彦 宮本
寛 橋本
春男 荒川
秀雄 幸福
徹 西岡
隆治 車地
元六 仲尾
徳幸 一ノ瀬
修平 秋元
重信 大嶋
滋 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2008264810A priority Critical patent/JP4703708B2/ja
Publication of JP2009063288A publication Critical patent/JP2009063288A/ja
Application granted granted Critical
Publication of JP4703708B2 publication Critical patent/JP4703708B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Treating Waste Gases (AREA)

Description

本発明は加圧流動層ボイラの脱塵方法に関し、さらに詳しくは加圧流動層ボイラから排出される高温排ガス中の煤塵濃度を効果的に低減するのに好適な加圧流動層ボイラの脱塵方法に関する。
加圧流動層ボイラ複合発電プラントは、微粉炭燃焼ボイラの代わりに加圧下のボイラ内において微細に砕いた石炭を流動燃焼させ、流動層内に敷設された水管から発生する蒸気により蒸気タービンを駆動するとともに、ボイラより排出する高圧の燃焼排ガスによりガスタービンを駆動し、蒸気タービンとガスタービンの両方で、それぞれ発電を行うものである。図11は、従来技術による加圧流動層ボイラ複合発電プラントの系統図である。
この複合発電プラントは、石炭を流動層に供給して燃焼を行う加圧流動層ボイラ1と、該燃焼により発生した蒸気により発電を行う蒸気タービン2と、前記加圧流動層ボイラ1から排出される高温排ガスの除塵を行うサイクロン7、8と、該除塵された高温排ガスにより発電を行うガスタービン10とを備える。このような構成において、加圧流動層ボイラ1内での石炭の燃焼によって発生した蒸気は蒸気タービン2に供給され、蒸気タービン用発電機3により発電を行う。蒸気タービン2を駆動した蒸気は復水器4で冷却されて、ボイラ給水となり、給水ポンプ5より加圧流動層ボイラ1にボイラ給水として再供給される。また加圧流動層ボイラ1で発生した高温高圧の含塵排ガスは、高温ガス配管6より一次サイクロン7にて粗脱塵を行い、次いで二次サイクロン8にて精密脱塵を行う。二次サイクロン8より排出されるガスは、高温ガス配管9よりガスタービン10に供給されてこれを駆動し、ガスタービン用発電機11により発電を行う。ガスタービン10を出た排ガスは、排ガスクーラ12により冷却され、低温集塵装置13で微細な煤塵が除去されて煙突14より大気に放出される。なお、図11中の15、16はそれぞれ一次サイクロン7、二次サイクロン8を収納する格納容器、17は空気圧縮機、18は灰処理装置を示す。
上記プラントを運転するに際し、石炭の燃焼に伴って生じる煤塵によるガスタービン10のブレードの摩耗が問題となるため、ガスタービン10のブレードの摩耗が問題とならないように十分低いダスト濃度まで脱塵を行う必要があり、高温高圧下で使用できる遠心式集塵方法であるサイクロン型集塵器が用いられている。しかし、このようなサイクロン型集塵器の使用により、均質な石炭を用いて燃焼しているときには、ガスタービン10のブレードの摩耗が問題とならない程度にまでダスト濃度を下げることができるが、燃焼する炭種が違った場合、または燃焼状態の変化等により煤塵の粒径が細かくなった場合には、集塵性能が低下し、ガスタービン10に流れ込む煤塵が多くなり、ガスタービン10のブレードに摩耗を与えるという問題があった。
図12は、サイクロン型集塵器として用いられる、複数のサイクロンを格納したサイクロン容器の説明図である。図12において、加圧流動層ボイラから排出される、例えば平均粒径が数10μmの燃焼灰や石灰石等を含み、灰濃度数10g/Nm3 の800〜900℃の高温の含塵ガス39は、数10m/s の流速でサイクロンエレメント32に供給され、その内部での気流旋回により、脱塵され、清澄ガスがサイクロン容器33上部のプレナム38に集められ、サイクロン出口排ガス40としてサイクロン容器の外部に排出される。捕集した灰35は容器下部ホッパより重力沈降により排出される。しかし、このようなサイクロン型集塵器では、プラント運転中に火炉飛散ダストの粒子径またはダスト濃度等の性状が変動した場合には、サイクロン自体に脱塵性能の調節機能が設けられていないため、サイクロン出口排ガス中のダスト濃度が変動するという問題点があった。このため、従来では、入り口ダスト濃度が増加する方向に変動した場合には、ガスタービンを保護するために一旦プラントの出力を下げてダスト負荷を低減するか、またはプラントを停止してサイクロンを高効率のものに取り替える等の施策が必要であった。
また上記ガスタービン発電系において加圧流動層ボイラからガスタービンに導かれる高温高圧排ガス(温度約850℃、圧力8〜10気圧)中には、石炭灰、脱硫剤としての石灰石(生石灰も一部含まれる)、脱硫反応で生じた石膏が含まれ、これらが排ガスラインの機器に摩耗損傷を与えるという問題があった(以下、上記のボイラから飛散する石炭灰、石灰石、石膏等をフライアッシュという)。この摩耗の対象となる部位には、高温ガス配管、サイクロン、ガスタービンのブレード等が含まれ、いずれも重要な機能が要求される機器である。従来、これら機器の摩耗対策としては、耐摩耗性の優れた高級材料を選定する、摩耗のための余肉を考慮した設計を行う、摩耗が生じたら取り替えを行うことを前提として取り替えやすい構造とするといった方法が採用され、また摩耗が生じ難いようにガスの流速を遅くするなどの方法が取られていた。しかし、上述のような対策方法では、(1) 高温ガス配管は事業用プラント(250〜350MW)では200〜300m の長さに及ぶので、高級材料の使用や余肉を大きくとる方式を採用するとプラント製作コストが増大する、(2) 高温ガス配管の流速を遅くすると、配管の直径が大きくなり、外表面積が増えてヒートロスが大きくなり、ガスタービン入り口の温度が下がりガスタービン効率が低下するなどの問題があった。
本発明の課題は、上記従来技術の問題点を解決し、燃焼する炭種の違い、燃焼状態の変化、煤塵の粒径分布の変化などによる高温排ガス中のフライアッシュ組成を適性化して高温排ガス中の煤塵による配管やサイクロンの摩耗を防止することにより、ガスタービンに供給される高温排ガス中のダスト濃度を効果的に低減することができる加圧流動層ボイラの脱塵方法を提供することにある。
本願で特許請求される発明は以下のとおりである。
(1)加圧流動層ボイラから排出される高温排ガスをサイクロンに供給し、該排ガス中の煤塵を除去した後、系外に排出する方法において、前記サイクロンに入る排ガス中のフライアッシュ成分を測定し、該測定値に基づいて排ガス中のフライアッシュ成分が下記式(1) 〜(3) のいずれかを満足するように、加圧流動層ボイラに供給する燃料としての石炭類の供給量、脱硫剤としての石灰微粒子の添加量、および石炭類と石灰微粒子の混合割合を調節することを特徴とする加圧流動層ボイラの脱塵方法。
(1) SiO2(化学分析値)≦40重量%
(2) SiO2-1.3Al2O3 (化学分析値)≦15重量%
(3) (SiO2-1.3Al2O3)-CaO-CaCo3-CaSO4-Fe2O3(化学分析値) ≦−20重量%
本発明の加圧流動層ボイラ用脱塵方法によれば、加圧流動層ボイラから排出される排ガスのフライアッシュ組成を適性化することにより、PFBCプラントの高温ガス配管、サイクロンおよびガスタービンブレードの摩耗を防止することができ、安定した運用が可能である。また流速を速くできるため、高温ガス配管の熱損失が少なくなりガスタービン効率を高くできる。また、サイクロンにおいては、流速を速くできるため、高効率の脱塵ができる。
以下、本発明を図面により詳しく説明する。図1は、本発明の一実施例を示す加圧流動層ボイラ用脱塵装置の説明図、図2は、図1のサイクロン縦断面図、図3は、該サイクロンのA−A′矢視断面図である。図1〜図3において、従来技術の図11と異なる点は、サイクロン7、8をそれぞれ収納した格納容器15、16に並列に高温排ガス中の煤塵粒径分布を測定する測定器24を備えたカスケードインパクター23を設け、かつサイクロン入口にガス流量調節器としてダンパ29を設け、該測定器24で測定した高温排ガス中の煤塵粒径分布に基づいてダンパ29の開閉を行うようにした点である。加圧流動層ボイラ1より排出される燃焼排ガスには、1m3N 当たり、約32gの煤塵が含まれ、煤塵の粒径はおよそ0.1〜100μmに分布している。ガス温度は850〜900℃である。
図1において、加圧流動層ボイラ1からの排出ガスは、まず、一次サイクロン7によって粗脱塵され、二次サイクロン8により精密脱塵され、ガスタービン10のブレードの摩耗に問題がない燃焼排ガスとして供給される。一次サイクロン7の入口側の高温ガス配管6と二次サイクロン8の出口側の高温ガス配管9の間には、一次サイクロン7と二次サイクロン8による排ガスの圧力損失があるため、排ガスの差圧が生じている。そのため、一次サイクロン7、二次サイクロン8に並列に設けたカスケードインパクター23には、上記排ガスの差圧により排ガスが流れ、煤塵の粒径ごとに煤塵を捕集することができる。このカスケードインパクター23により粒径ごとに捕集された煤塵は、計測器24によりその重量が測定され、粒径分布を測定することができる。
図2および図3において、サイクロン入口管25より流入したガスは、サイクロン本体26内をガス流れ28のように旋回しながら下降し、ダストホッパ27付近で反転して上昇し、サイクロン出口管21から排出される。一方、煤塵は遠心力により、ダストホッパ27の内壁に沿って下降し、捕集灰22として排出される。なお、21はサイクロン出口管、28はガス流れである。煤塵は、サイクロン本体26内に生じるガス流れ28の遠心力の違いにより集塵効率が異なり、煤塵の粒径が細かいほど、集塵するために必要なガス流速を速くする必要がある。従って、煤塵の粒径が細かくなった場合は、サイクロン本体26の入口のダンパ29を閉じ、ガス流速を速くすることにより集塵効率を上げることができる。ダンパー29の開閉は、カスケードインパクター23で測定した排ガス中の煤塵の粒径分布に基づき、所定の粒径分布の範囲になるように行うが、制御装置を設けて上記信号に基づいて自動的にダンパ29の開閉の調節することもできる。
例えば、煤塵の粒径が大きくなったときにはダンパ29を開方向として排ガスのガス流速を遅くすることで、サイクロン内部のキャスタブルの摩耗を防ぎ、煤塵の粒径が細かくなったときには、ダンパ29を閉方向とし、ガス流速を速めることで、集塵効率の低下を防ぎ、ガスタービン10のブレードの摩耗を防ぐことができる。このようにサイクロンの入口部にガス流速を調節するためのダンパを備え、カスケードインパクターで測定した煤塵の粒径分布に基づいてサイクロン入口の調節ダンパを開閉を調節してサイクロン入口のガス流速を、煤塵の粒径分布に適したガス流速とすることにより、燃焼させる炭種の変化および燃焼状態の変化による煤塵の粒径分布の変化によって起こる集塵効率の低下を防ぐことができ、ガスタービンのブレードの摩耗を効果的に防ぐことができる。
図4は、本発明の他の実施例を示す脱塵装置に使用するサイクロン容器の説明図である。図4において、サイクロン容器33に格納されたサイクロンエレメント32のサイクロン内筒37には、該内筒37を上下方向にスライドさせる内筒スライド機構34が設けられており、サイクロンエレメント32に供給される排ガス中のダスト性状に応じてサイクロン内筒37の入口ダクト床面からの挿入深さを調節できるようになっている。含塵排ガスは、容器入り口座30より流入する。流入したガスは個々のサイクロンエレメント32に分配流入し、サイクロン内を旋回しながら下降し、レグ36近傍で反転上昇しサイクロン内筒37を経て、出口プレナム37において他のエレメントからのガスと混合され、容器出口座31から排出される。排ガス中のダストはサイクロン内の気流旋回により壁側に移動し、壁面に到達し、捕集したダストは壁面を沿って降下し、レグ36より容器ホッパに集合し、灰排出座35より外部へ排出される。プラント運転中に火炉飛散ダストの粒子径またはダスト濃度等の性状が変動した場合、内筒スライド機構34により内筒37の挿入深さを調節することにより、プラントを停止することなく、入り口ダスト条件に対して最適な脱塵効率を得るように調節することができる。
すなわち、含塵排ガスは、サイクロンエレメント32の入口に設けられたダクト床面より下方に導入されるが、内筒の挿入深さが不十分な場合には、流入したダストの一部が直ちに内筒側へショートパスしてしまい、捕集されないために、全体の脱塵効率が低下する現象が起こりうる。また、内筒を過剰に深く挿入した場合には、サイクロンの圧力損失のみ増加するが脱塵効率は頭打ちとなってプラント全体の発電効率は低下することになる。このようなサイクロン内筒の挿入深さが脱塵効率に及ぼす影響を図5に示すサイクロンを用いて調べ、その結果を図6に示した。入り口ダクトの高さBに対する内筒挿入深さhの比(内筒長比)を0.04〜0.22の範囲で変化させて実験を行ったが、サイクロンの脱塵効率の調節に関してはサイクロン内筒の挿入深さを変化させることが有効であり、特にh/B=0.12とした際にもっとも高い脱塵効率が得られることがわかった。内筒スライド機構34をサイクロン容器ホッパ部に設けて内筒37の挿入深さを調節できるようにしたサイクロン容器を図7に示したが、このようにした場合にも上記と同様の効果が得られる。
図8は、本発明のさらに他の実施例を示す加圧流動層ボイラ用脱塵装置の説明図である。加圧流動層ボイラ(PFBC)用燃料としては、石炭をドライの状態で供給する方式と、CWP( Coal Water Paste ) として供給する方式が知られているが、ここではCWP方式を用いた場合について説明する。図8において、PFBCの燃料としての原炭は、原炭バンカー61から粗粉砕機62に送られ、粒径2〜3mm程度に粗粉砕される。この2〜3mmの粗粉砕炭を燃料として用いる理由は、燃焼が充分に行われるためには、層内に充分な時間滞留する必要があるためである。しかし、粗粉炭のみでCWPを構成すると配管での閉塞等のトラブルを誘発しやすいため、微粉砕機63で微粉砕された微粉炭と上記粗粉炭を混練機64で混練する。この時、脱硫剤としての石灰石が粗粒石灰石タンク65より同時に供給され混練される。石灰石が粗粒(普通1〜3mm)で供給されるのは、層内で脱硫反応を生じさせるのに充分な滞留時間が必要なためである。このようにして混練された燃料は、CWPタンク66に一旦貯蔵され、CWPポンプ67で流動層内に送り込まれる。
燃料は流動層内で燃焼し、飛散しうる粒径になった石炭灰および脱硫剤CaCO3 (一部脱炭酸反応で生じたCaOも含む)や脱硫反応生成物であるCaSO4 がフライアッシュとなって排ガスと共に高温ガス配管68を通ってサイクロン69や高精度脱塵装置70(セラミックスフィルタまたは高精度サイクロン)へと運ばれ、さらにガスタービンへと導かれる。この時、高温ガス配管、サイクロンおよびガスタービンの摩耗が問題となるが、摩耗量は時間と共に増加する現象であるため、フライアッシュ組成を定期的にフライアッシュサンプリング装置72でサンプリングし、分析装置73で調べることにより、摩耗現象に対処することが可能である。以下にフライアッシュ組成と摩耗現象の関係を詳しく説明する。
表1は、フライアッシュの化学成分および摩耗試験結果を示す図であり、小型パイロットプラントにて、種々の石炭を燃焼させ、フライアッシュを採取して高温下でフライアッシュ衝突摩耗実験を行った結果である。表1において、フライアッシュG、H、Iは小型パイロットプラントから採取したフライアッシュに微粒石英(平均粒径約40ミクロン)を添加したものであり、フライアッシュJは純微粒石英である。この表1から、ライアッシュの種類によって、摩耗現象が生じたり、または摩耗は生じずフライアッシュが付着するという2つの形態に分かれることが確認できる。
この現象はフライアッシュの組成と関連していると考え、(1)フライアッシュ組成と摩耗、付着の区別、(2)フライアッシュ組成と摩耗速度の関連を整理して図9(a) 、(b) および(c) に示した。すなわち、図9における(a) は単に化学分析で得られたSiO2 と摩耗速度との関連について、(b) は摩耗を起こす主要鉱物である石英が化学分析値としてのSiO2 −1.3Al2 3 で近似できるということを考慮して(文献:EPRICS-5071 Report 2711-1 Final Report Feb. 1987 ”Fire Side Corrosion andFly Ash Erosion in Boiler ”)、SiO2 −1.3Al2 3 の値で整理したもの、および(c) は上記石英の摩耗性に対し、Ca成分としてのCaO、CaCO3 、CaSO4 およびFe2 3 はその温度でメタルより軟らかい組成なので摩耗を抑制するとして、石英相当量(SiO2 −1.3Al2 3)からこの成分を差し引いたもの、具体的には(SiO2 −1.3Al2 3) −CaO、CaCO3 、CaSO4 −Fe2 3 で整理したものである。
図9から、いずれの方法で整理しても摩耗および付着現象を支配する限界のパラメータ値が存在し、そのパラメータ値を用いると摩耗および付着現象を明確に判定でき、またある程度摩耗速度とも対応していることが明らかとなった。このことは、PFBC排ガス系機器の摩耗をフライアッシュの組成を適切にコントロールすることで防止できることを意味している。このフライアッシュの組成が石炭中の灰成分と脱硫剤として添加したCa成分に由来し、図9(c) で示したようにコントロール可能な脱硫剤成分(Ca成分)も因子として含まれていることに着目した。なお、図9(a) 、(b) は単にSiO2 、SiO2 −1.3Al2 3 で整理したものであるが、脱硫剤成分を多くすれば、この両者の値は少なくなるので摩耗しない成分範囲にすることは可能である。
次に、フライアッシュ中の組成を摩耗しない範囲にコントロールするためにCa成分を添加する手段について以下述べる。まず、Ca成分としてどのような化学組成のものが適切であるかについては、脱硫作用を有しているという点でCaCO3 、CaO、Ca(OH)2を添加するのが適切である。次にCa成分を添加する場所としては高温ガス配管入り口(火炉出口)と火炉内に入れる2つの方式が考えられるが、脱硫反応にも寄与させるほうがより有効であるため、火炉内にいれるほうが得策である。なお、火炉内に添加するに際しては、フライアッシュとして飛散する粒径以下にするのが適切であるが、CaCO3 の場合、空塔速度1.0m/s 、圧力8.5atg 、温度850℃で飛散する粒子径は約0.2mmとなる。こうした最大粒径は、粒子に作用する重力と流体から受ける浮力が釣り合う流速(終末速度)から一般に決定できる。
摩耗現象は、メタルより硬くしかも角ばった形状をしている石英がメタルに衝突し、引き裂き傷を生ぜしめ、これが累積して減肉していく現象であり、一方、CaO、CaCO3 、CaSO4 等のCa成分はメタルより軟らかいため、摩耗の作用はなく、むしろ表面に薄く堆積していく。図10にSiO2 量の大小によって摩耗が生じたり、付着が生じたりする現象のメカニズムをモデル図として示す。図10(a) はCa化合物に対しSiO2 量が少ない場合のモデル図であるが、Ca化合物77の割合が多いため、メタル75にはCa化合物77が付着して薄い膜76を形成し、温度が850℃と高いため軽微な焼結も生じ、膜厚δが大きくなる。従って、生成した膜の上から石英(SiO2 )78が衝突するが、衝突損傷が母地のメタル75に届かない。一方、(b) に示すようにCa化合物の割合が少なくなると、膜厚δが薄くなり、石英78の衝突損傷がメタル75に届くようになり、摩耗が進行すると考えられる。このようにして、摩耗から付着に転ずる限界値が存在するものと考えられる。
次に実用実際に供給するCaCO3 の量がどの程度のものになるかについて説明する。PFBC小型パイロットプラントで採取されたフライアッシュで摩耗性の最も大きなものは、SiO2 が44%であるが、摩耗性のないフライアッシュとするためには、上述のようにSiO2 量を40%以下にする必要がある。このために供給する微粒CaCO3 の量は以下の前提をもとに計算すると、供給石炭量に対し2.3%になる。
(1) SiO2 を44%から40%にするためには、SiO2 44に対し、10の割合、すなわちSiO2 に対し23%の割合で微粒CaCO3 を添加すれば良い。
(2) SiO2 は全て石炭灰に由来するものであるが、B炭の場合、石炭中に灰分が15%存在する。
(3) その灰分中にSiO2 が65%存在する。
なお、脱硫剤として供給するCaCO3 の量は石炭に対し約10%である。(S量が0.6〜1%であり、Ca/S=3から4を供給するとして)微粒石灰石タンク混入後の組成の分析を時間を経過して、数回繰り返すことにより摩耗性のない限界の組成にコントロールすることが可能である。また、フライアッシュの分析を行うタイミングとしては、(a) 使用石炭が変わった時(灰分、SiO2 量が変化するので)、(b) 使用脱硫剤が変わった時(脱硫剤の風化率がことなるので)、(c) 負荷変化を行った時(層高が変化するので脱硫剤の風化率が変化するので)等が考えられる。上記では微粒石灰石をCWPに混入する例について述べたが、微粒石灰石としては、ロックホッパを利用して火炉内に乾式で供給することも可能である。混入するCa成分としては、CaCO3 以外にCaOやCa(OH)2を用いることも可能である。
サンプルの分析装置73としては、Si、Ca、Al、FeおよびCO3 根、SO4 根が分析できるものであればよいが、Si、Ca、Al、Feの分析を比較的短時間に高精度に行うには、プラズマ発光分析(ICP)が好ましい。またCO3 根やSO4 の分析法としては公知の滴定法が採用できる。分析結果から計算される(SiO2 −1.3Al2 3)−CaO−CaCO3 −CaSO4 −Fe2 3 の値が−20%以上になれば、微粒石灰石タンク71から混練機4に微粒石灰石を混入させて、フライアッシュ中のCa成分を増やすようにする。なお、組成制御指標としては、前述のようにSiO2 の値そのもの、あるいはSiO2 −1.3Al2 3 の値を用いてもよい。
本発明の一実施例を示す加圧流動層ボイラ用脱塵装置の説明図。 図1のサイクロンの縦断面図。 図2のサイクロンのA−A′矢視断面図。 本発明の他の実施例を示す加圧流動層ボイラ用脱塵装置の説明図。 図4のサイクロン内筒の挿入深さと脱塵効率に及ぼす影響を示す図。 図4のサイクロン内筒の挿入深さと脱塵効率に及ぼす影響を示す図。 本発明の他の実施例を示す加圧流動層ボイラ用脱塵装置の説明図。 本発明の他の実施例を示す加圧流動層ボイラ用脱塵装置の説明図。 フライアッシュ組成と摩耗速度の関係を示す図。 フライアッシュ成分による摩耗の進行を示す図。 従来技術による加圧流動層ボイラ用脱塵装置の説明図。 従来技術のサイクロンの説明図。
符号の説明
1…加圧流動層ボイラ、2…蒸気タービン、6…高温ガス配管、7…一次サイクロン、8…二次サイクロン、9…コウオンガス配管、10…ガスターン、13低温集塵器、23…カスケードインパクター、24…計測器、26…サイクロン本体、27…ダストホッパ、29…ダンパ、32…サイクロンエレメント、33…サイクロン容器、34…内筒スライド機構、37…サイクロン内筒、41…サイクロン本体、43…ケーシング、44…耐火材、45網目状金物アンカ、53…アンカつめ、54…耐摩耗層、56…突起部、64…混練機、71…微粒石灰石タンク、72…フライアッシュサンプリング装置、73…フライアッシュ分析装置、74…コントロールバルブ、122…緊急脱塵装置、123…ミストセパレータ、126…脱塵塔スプレ水上部タンク、201…ダクトケーシング、202…スプレー配管、205…遮蔽板、210…ベローズ、215…スリット、218…楕円穴、

Claims (1)

  1. 加圧流動層ボイラから排出される高温排ガスをサイクロンに供給し、該排ガス中の煤塵を除去した後、系外に排出する方法において、前記サイクロンに入る排ガス中のフライアッシュ成分を測定し、該測定値に基づいて排ガス中のフライアッシュ成分が下記式(1) 〜(3) のいずれかを満足するように、加圧流動層ボイラに供給する燃料としての石炭類の供給量、脱硫剤としての石灰微粒子の添加量、および石炭類と石灰微粒子の混合割合を調節することを特徴とする加圧流動層ボイラの脱塵方法。
    (1) SiO2(化学分析値)≦40重量%
    (2) SiO2-1.3Al2O3 (化学分析値)≦15重量%
    (3) (SiO2-1.3Al2O3)-CaO-CaCO3-CaSO4-Fe2O3(化学分析値) ≦−20重量%
JP2008264810A 2008-10-14 2008-10-14 加圧流動層ボイラの脱塵方法 Expired - Lifetime JP4703708B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008264810A JP4703708B2 (ja) 2008-10-14 2008-10-14 加圧流動層ボイラの脱塵方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008264810A JP4703708B2 (ja) 2008-10-14 2008-10-14 加圧流動層ボイラの脱塵方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP06914899A Division JP4287941B2 (ja) 1999-03-15 1999-03-15 加圧流動層ボイラ用脱塵装置および脱塵方法

Publications (2)

Publication Number Publication Date
JP2009063288A JP2009063288A (ja) 2009-03-26
JP4703708B2 true JP4703708B2 (ja) 2011-06-15

Family

ID=40558008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008264810A Expired - Lifetime JP4703708B2 (ja) 2008-10-14 2008-10-14 加圧流動層ボイラの脱塵方法

Country Status (1)

Country Link
JP (1) JP4703708B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10822442B2 (en) 2017-07-17 2020-11-03 Ecolab Usa Inc. Rheology-modifying agents for slurries

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114294647B (zh) * 2021-12-21 2022-09-20 湖州南太湖电力科技有限公司 一种带返料功能的锅炉燃烧系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1122902A (ja) * 1997-07-04 1999-01-26 Babcock Hitachi Kk 流動層燃焼ボイラ用機器の構成材料の摩耗量予測方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10822442B2 (en) 2017-07-17 2020-11-03 Ecolab Usa Inc. Rheology-modifying agents for slurries

Also Published As

Publication number Publication date
JP2009063288A (ja) 2009-03-26

Similar Documents

Publication Publication Date Title
RU2632016C2 (ru) Установка сухого тушения кокса
JP2010216721A (ja) ショットクリーニング装置の鋼球回収装置及び鋼球回収方法
JP4703708B2 (ja) 加圧流動層ボイラの脱塵方法
CN105841141A (zh) 一种切向燃烧摆动喷嘴附加进风的运行评估方法
KR102126663B1 (ko) 배기 가스 처리 장치
JP4287941B2 (ja) 加圧流動層ボイラ用脱塵装置および脱塵方法
EP0865815B1 (en) Method for collecting dust
JP2013117316A (ja) 石炭焚きボイラプラント
CN105921226B (zh) 湿式球磨机、用于湿式球磨机的入料装置及其入料方法
CN103611368A (zh) 一种脱硝热风除尘装置及方法
CN100494659C (zh) 煤粉燃气轮机发电系统以及产生煤粉两相流燃料的工艺方法
WO2017022519A1 (ja) 石炭火力発電設備
JP7123569B2 (ja) 粉体燃料供給装置、ガス化炉設備およびガス化複合発電設備ならびに粉体燃料供給装置の制御方法
JPH1122902A (ja) 流動層燃焼ボイラ用機器の構成材料の摩耗量予測方法
Muschelknautz et al. Separation efficiency of recirculating cyclones in circulating fluidized bed combustions
Wenglarz Deposition, erosion and corrosion protection for coal-fired gas turbines
JP2016094647A (ja) 高炉設備のガス置換装置
JP2000304239A (ja) ボイラ装置
Davis et al. Operation of the PSDF transport gasifier
JP5202560B2 (ja) 多炭種燃焼試験時の加圧流動床複合発電プラントの運転方法及び運転管理装置
JP4050895B2 (ja) 加圧流動層燃焼装置における流動粒子の磨耗速度の推定方法及び加圧流動層燃焼装置における流動粒子の粒度分布の予測方法
WO2020213587A1 (ja) ボイラ及びファウリング抑制方法
JP3041263B2 (ja) 加圧流動床ボイラ燃焼排ガス中の窒素酸化物の抑制方法
Collings et al. High-temperature Heat Exchanger Testing in A Pilot-Scale Slagging Furnace System
KR101735621B1 (ko) 탈황장치의 가이드 베인 보호 구조물

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term