JP4703009B2 - グリコサミノグリカン機能化高分子及びそれを用いた医療器具並びに医薬 - Google Patents

グリコサミノグリカン機能化高分子及びそれを用いた医療器具並びに医薬 Download PDF

Info

Publication number
JP4703009B2
JP4703009B2 JP2000609473A JP2000609473A JP4703009B2 JP 4703009 B2 JP4703009 B2 JP 4703009B2 JP 2000609473 A JP2000609473 A JP 2000609473A JP 2000609473 A JP2000609473 A JP 2000609473A JP 4703009 B2 JP4703009 B2 JP 4703009B2
Authority
JP
Japan
Prior art keywords
heparin
functionalized polymer
glycosaminoglycan
sugar chain
sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000609473A
Other languages
English (en)
Inventor
洋文 由良
芳夫 斎藤
雅之 石原
克明 小野
啓一 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NeTech Inc
Original Assignee
NeTech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NeTech Inc filed Critical NeTech Inc
Priority to JP2000609473A priority Critical patent/JP4703009B2/ja
Application granted granted Critical
Publication of JP4703009B2 publication Critical patent/JP4703009B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F246/00Copolymers in which the nature of only the monomers in minority is defined
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Materials For Medical Uses (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Polyamides (AREA)

Description

発明の分野
本発明は、各種細胞成長因子やサイトカイン等と結合して細胞増殖等を制御する作用を持つ天然多糖類であるグリコサミノグリカンの構造をビニル系高分子に導入した新規な高分子材料、並びにその医療への応用に関する。
発明の背景
ヘパリン/ヘパラン硫酸(HS)、コンドロイチン硫酸、デルマタン硫酸、ケラタン硫酸、ヒアルロン酸などのグリコサミノグリカン(GAG)と呼ばれる酸性多糖類群は、コア蛋白質と共有結合的に集合化しプロテオグリカン(PG)として結合組織や細胞膜などに存在している。PGは他の細胞接着性の蛋白質とともに細胞外マトリックスを構成し、細胞が生存し生物学的機能を果たすために広く分布している。特に、ヘパラン硫酸プロテオグリカン(HS−PG)はほとんどの動物組織に存在し、細胞の接着、形態形成、機能維持に極めて重要な役割を果たしている。
また、PGに含まれるヘパリン/HSは、様々な細胞成長因子と相互作用し、細胞の分化や増殖を制御することに深く関わっていることが明らかになってきた。線維芽細胞成長因子(FGF)はヘパリン/HSと高親和性を有するFGFファミリー(現在FGF1〜FGF10程度まで報告されている)を構成しており、そのタイプによって血管内皮細胞、カポジ肉腫細胞、表皮角化細胞等に特異的に作用する。これらのFGFの活性は、細胞表面のFGF受容体(FGFR)と特異的に結合することによって起こるものと考えられている。即ち、図1に模式的に示すように、膜を貫通して存在するヘパリン/HSは細胞の近傍で不安定なFGF分子を安定な状態で保持・蓄積し、蛋白質分解酵素や酸化的分解からFGFを保護しながら必要に応じて細胞の受容体(FGFR)への結合をサポートするものである。FGFがFGFRに結合することにより増殖シグナルが送られて細胞増殖が促進されることになる。このような作用は、ヘパリン/HSが存在しなければFGFとFGFRとが結合できないことを示唆した多くの研究によって証明されている(例えば、M.Ishihara,Glycobiology,4,817−824(1994)参照)。
ヘパリン/HSはカルボキシル基を有するウロン酸とアセチル基を有するグルコサミンとを含む二糖類の繰り返し構造によって構成されており、分子内に存在するヒドロキシル基とアミノ基が様々な割合で硫酸化されているのが大きな特徴である。二糖類の硫酸化のタイプは約10程度が同定されており、これらの硫酸化の違いによってヘパリンとHSとに分類される。また、細胞は、その種類や状態に応じて硫酸化の程度やその分子鎖長が異なる様々なタイプのヘパリン/HSを自ら用意してFGFファミリーの活性を制御していると考えられている。
上記のように、多様な硫酸化構造を取りうるヘパリン/HSは、FGFの活性を制御する他にも、細胞の遊走や増殖、さらには免疫細胞が関与する炎症作用まで幅広い生体反応に関与しているサイトカイン類の約80%、あるいはマトリックス接着分子、代謝関連物質、さらには血液凝固因子等とも相互作用し、生体内で極めて多彩な役割を果たしている。しかしながら、ヘパリン/HSはこのように多機能性であるが故に、その分子全体を用いた場合に不要な副作用等を誘発することがあり、医薬及び医療の分野でのヘパリン/HSの利用は制限されていた。
一方、ヘパリン/HSの多彩な機能は、その分子鎖長によって劇的に変化することも知られている。例えば、血液凝固を阻害するアンチトロンビンIIIは、ヘパリン/HSに含まれる3−O−硫酸基を有する特徴的な構造ドメインに結合するが、抗凝固活性を発現するためにはこれを含む5糖配列以上が必須であり、現実には低分子化は著しい活性低下を余儀なくさせる。また、FGF1及びFGF4の活性発現には、2−O−硫酸基と6−O−硫酸基を豊富に含む10糖配列以上の構造ドメインが必要である。
近年、ヘパリン/HSの多様な複合機能のなかでも細胞成長因子活性のみを制御することを目的に、ヘパリン/HSの分子の活性ドメインを酸化的に断片化したヘパリノイドとして利用することが試みられた(M.Ishihara,他、J.Biol.Chem.268,4675−4683(1993))。しかしながら、これらの研究では、ヘパリノイド断片による各種成長因子の活性の制御が不十分であり、所望の活性を維持するためにヘパリノイドの濃度を増加させることにより出血傾向等の副作用を誘発する問題があった。
さらに、ヘパリン/HSを含むGAG類を種々の分野で応用するためには、ポリスチレンやポリカーボネートのような医療分野で広く用いられている疎水的な樹脂製品に効率よく固定化することが求められるが、GAG類及びその断片は概して水溶性が高く、各種樹脂製品に良好に吸着・固定化することは困難であり、例えば、GAG類を診断用ビーズや培養皿に適用し、医学的基礎研究や臨床医療に汎用的に応用することが困難であった。
発明の概要
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、ビニル系高分子主鎖に、グリコサミノグリカン基本骨格の少なくとも一部に相当する構造を含む糖鎖を導入したことを特徴とする機能化高分子とすることにより、副作用を伴わず所望の活性のみを十分に発揮できるとともに、特に医学分野で利用されている疎水的な樹脂製品に対して容易かつ高密度に吸着・固定化できることを見いだし、本発明を完成するに至った。
本発明の機能化高分子は、ビニル系高分子を主鎖とし、当該主鎖にグリコサミノグリカン(GAG)基本骨格の少なくとも一部に相当する構造を含む糖鎖を導入した構造を有する。即ち、本発明の機能化高分子は、一分子中にGAG類の活性ドメインを少なくとも一つ、好ましくは複数個含有することにより、その活性ドメインが有する生理活性、例えばヘパリン/HS類では特に、各種細胞成長因子やサイトカインに対する相互作用が一層強化されている。
また、本発明は前記機能化高分子で表面を修飾した医療器具も提供する。このような医療器具は、表面にGAG類が固定化されているため、例えば細胞培養や診断用器具として有用である。
さらに、本発明の機能化高分子は、GAG類の細胞成長抑制効果に基づく医薬、特に抗腫瘍剤を含む細胞成長制御薬も提供する。
好ましい実施態様の詳細な説明
以下、本発明の機能化高分子についてさらに詳細に説明する。
本発明の機能化高分子の主鎖として用いられるビニル系高分子は、重合性のモノマーから構成され、例えば、化学便覧(561頁、応用化学編I、日本化学会、丸善(昭和61年))に記載された付加重合系、縮重合系、重付加系、付加縮合系、開環重合系のモノマーから任意に選択したモノマーを含むホモポリマー又はコポリマーでよく、特に限定されない。好ましくは、少なくとも1つの不飽和結合を有する付加重合系のモノマー、例えばエチレン、プロピレン、スチレン、酢酸ビニル、アクリル酸、アクリルアミド等のポリマーが挙げられ、それらは任意に置換されていてもよい。
このような高分子主鎖にグリコサミノグリカン基本骨格の少なくとも一部に相当する構造を含む糖鎖が結合している。即ち、本発明の機能化高分子は、下記一般式(1)で表される単位を少なくとも1つ含む。
−(CWX−CYZ)n− (1)
上記式中、Wは糖鎖を表し、X、Y及びZは水素原子を含む任意の置換基を表し、nは1以上の繰り返し単位数を示す。
本発明の機能化高分子を構成する糖鎖は、ヘパリン/HS、コンドロイチン硫酸、デルマタン硫酸、ケラタン硫酸などのGAG類を構成する基本骨格の少なくとも一部に相当する構造を有し、その構成二糖体の数が2〜50個以上、より好ましくは4〜25個の二糖類以上の糖類、オリゴ糖類もしくは多糖類であって、その構成二糖体が平均1個以上の硫酸基を有するものである。例えば、ヘパリン/HSに含まれる3−O−硫酸基を有する特徴的な構造ドメインに相当する5糖配列以上からなる糖鎖は、血液凝固を阻害するアンチトロンビンIIIと特異的に結合し、2−O−硫酸基と6−O−硫酸基を豊富に含む10糖配列以上の構造ドメインに相当する糖鎖はFGF1及びFGF4の活性発現に関与する。
前記糖鎖は、N−硫酸基を選択的に脱硫酸化した修飾体や化学的に合成したものでも天然のものでもよい。ただし、天然グリコサミノグリカンの化学分解によって得られる分解糖鎖であり、当該分解糖鎖が、その化学分解によって生じた官能基を介して高分子主鎖に結合しているのが製造上好ましい。
これらの天然グリコサミノグリカンとしては、ヘパリン/HS、コンドロイチン硫酸、デルマタン硫酸、ケラタン硫酸などのGAG類等が挙げられるが、特に構成糖の硫酸化のパターンが豊富なヘパリン/HSがより好適に用いられるが、他のGAG類でも何ら支障はない。また、セルロース、アミロース、ラミナラン、アガロース、カラゲナン、イヌリン、レバン、キシラン、マンナン、キチン、ペクチン、アミロペクチン、ガラクタン、トリチシン、アラビナン、コロミン酸などのホモ多糖類や、グルコマンノグリカン、ガラクトグルコマンノグリカン、グアゴム、アラビノガラクトグリカン、アラビアゴム、トラガント酸、アルギン酸などのヘテロ多糖類に対し酵素的あるいは化学合成的に硫酸基を導入したものを用いてもよい。
前記天然グリコサミノグリカンの化学分解は、例えば、上記の多糖類を、pH6.5〜8.0以外の非生理的な条件、好ましくはpH5以下またはpH10以上の酸及び/またはアルカリ性領域で、亜硝酸や過ヨウ素酸などを用いて糖鎖結合を切断して分画糖鎖を得ることによって好ましく調製される。また、ヘパラナーゼ、ヘパリチナーゼ、コンドロイチナーゼ、ケラタナーゼなどの選択的な糖鎖分解酵素や、場合によっては、熱、プラズマ放電、あるいはラジカル反応性試薬に基づく化学的な分解等で得られた分画糖鎖を用いることもできる。
本発明の機能化高分子における糖鎖は、共有結合によって高分子主鎖に結合している。その結合は特に限定されることはなく、高分子主鎖及び糖鎖が有する官能基の組み合わせに従って、適当な反応条件で、任意に触媒などを用いて両者の官能基同士をカップリングさせる。また、高分子主鎖を構成するモノマーと糖鎖とを結合させて糖鎖誘導モノマーとし、そのモノマーを重合させても、反応性基を有する高分子に糖鎖を結合させてもよいが、一分子中の糖鎖含有量を調節できることから、糖鎖誘導モノマーを重合するのが好ましい。中でも、分画された親水性の糖鎖を疎水性のモノマー単位に導入し、それを重合して得られた機能化高分子は、一つの分子中に高密度の糖鎖を有する水溶性のポリマーでありながら疎水性の樹脂製品に容易に吸着できる特性を有する。
本発明の機能化高分子における糖鎖の導入は、該高分子を構成するアミノ基を有するモノマーに対して、例えば、化学的に分解されたGAG類に生成したアルデヒド基やカルボニル基を介したシッフ結合により行うことができる。さらには、酸クロリド基、N−ヒドロキシコハク酸イミドエステル基、あるいはエポキシ基などを有するカップリング剤をビニルモノマーと糖鎖の官能基とを結合する方法等のいずれも好適に用いられ得る。特に、化学的な分解によってGAG類に生成したアルデヒド基を用いる方法は、簡便でGAG類の活性を保存しやすいという点で、より好適に用いることができる。
かくして、本発明によれば、天然のGAG類の活性ドメインを一分子中に複数個含有することにより、その活性ドメインが有する生理活性、ヘパリン/HS類では特に、各種細胞成長因子やサイトカインに対する相互作用を、より一層強化したGAG誘導機能化高分子が提供される。
従って、本発明の機能化高分子は、高分子主鎖に基づく疎水性により、医療用に広く用いられている合成樹脂製品、例えばポリスチレン、ポリカーボネート、ポリアミド、ポリスルホン、ポリエステル製品などの疎水的樹脂表面に吸着し表面を改質するので、これらの製品表面の組織適合性や血液適合性を向上させることができる。さらに、これらの樹脂製品で構成されるミクロ微粒子や培養皿あるいは検査用プレートにコーティングされ、糖鎖を介した細胞成長因子の定量や効率的な細胞培養などを可能にする。
よって本発明は、上記機能化高分子でポリスチレンやポリカーボネートなどの疎水的樹脂表面を修飾した医療器具も提供する。このような医療器具は、シャーレ、プレート、ビーズなどの器具表面に本発明の機能化高分子水溶液を適用し乾燥させることによって容易に製造することができ、その表面には、高密度にGAG類が吸着・固定化されている。例えば、微小樹脂ビーズに本発明の機能化高分子をコーティングした場合は、効率よく各種細胞成長因子を結合させ、これらが関わる病態をスクリーニングする診断用器具となり、樹脂製培養皿にコーティングした場合は効果的に細胞の成長を制御する培養システムとなるため、基礎医学や各種臨床分野で幅広く利用することができる。
また、コンドロイチン硫酸やデルマタン硫酸は、構造そのものに細胞接着抑制機能が存在するので、冠動脈拡張術後の再狭窄防止のための血管やステントの表面処理剤としても有効である。
さらに、本発明の機能化高分子は、遊離の状態で各種細胞成長因子と強く結合でき、腫瘍組織中で癌細胞が増殖するために用いられている細胞成長因子やサイトカイン、血管成長因子やFGF類を選択的に吸収して癌細胞や血管内皮細胞の成長を阻害し腫瘍の成長を抑制する。よって本発明は、上記機能化高分子からなる細胞成長制御薬、特に抗腫瘍剤(抗癌剤)も提供する。例えば、急性リンパ性白血病等の血液癌では、増加した癌細胞の一部が分解されて血流に障害を起こし、腎不全等を惹起することが知られているが、その際にヘパリン等が点滴されて血流が保全される。このとき芽球化した癌細胞が一時的に減少することがしばしば観察され、この現象はヘパリンによる増殖抑制作用によるものと考えられる。即ち、ヘパリン類似活性ドメインを複数具備している本発明の抗腫瘍剤は、固形癌のみならず白血病等の血液癌の治療にも有効であることは明らかである。
特に、本発明の機能化高分子は疎水性高分子主鎖に親水性(水溶性)の糖鎖が複数結合しているため、水溶液中では高分子主鎖をコアとし、その周囲に糖鎖を広げた形で存在しているものと思われる(図2、ポリビニル化ヘパリン(PV−ヘパリン))。従って、このような構造を持つ機能化高分子(抗腫瘍剤)は、図2に模式的に示すように、細胞近傍に存在するFGF等を捕捉・吸収し、それらのレセプターへの結合を阻害するものと考えられる。よって、本発明の抗腫瘍剤は、細胞に対する毒性に基づくものではなく、主として血管成長因子を吸収することによって腫瘍細胞による血管新生を阻害し、その結果腫瘍細胞の成長を阻害するという新たな作用機序に従うものと考えられ、従来の抗癌剤のような副作用を示さない安全な抗腫瘍剤として使用することが期待できる。
実施例
以下、本発明を実施例によりさらに詳細に説明する。
実施例1:ポリビニル化ヘパリン類の合成
25gのヘパリンナトリウム(Scientific Protein Laboratories,USA製)を過ヨウ素酸を添加した酢酸緩衝液400ml(0.1M、pH5)に溶解し、5℃以下で数日間撹拌した。これに、20mlのグリセロールを添加し、さらに数時間撹拌した後、反応液を2日間透析し脱塩した。回収した反応液に水酸化ナトリウムを添加することによってpHを7.5とし、21gの反応物を得た。このうち10gを分取し、水酸化ナトリウムでpH12に調整した水溶液を作成し、室温で数時間撹拌した。反応液に対し、上記と同様の透析操作を行った後、ゲル濾過カラム(Bio−Gel、Bio−Rad製)を用いて低分子ヘパリンを分画し、ビッターらによるカルバゾール定量法(T.Bitter,and H.A.Muir,Anal.Biochem.,4330−334(1962))から、20糖鎖を分子量の中心に有する過ヨウ素酸分解ヘパリン(以下、I−20という)を得た。
上記の未処理のヘパリンナトリウム1gを10mlの水に溶解させ、1N希塩酸でpH2以下に調整した。調製されたヘパリン溶液に20mgの亜硝酸ナトリウムを添加し、2時間反応させた。2日間の透析後、ゲル濾過カラム(Bio−Gel、Bio−Rad製)を用いて低分子ヘパリンを分画した。分画されたそれぞれの糖鎖を、上記のカルバゾール法で定量し、6、8、10、及び12糖鎖の亜硝酸分解ヘパリン(以下、各々N−6、N−8、N−10、N−12という)を得た。
小林らの方法(K.Kobayashi,等,Plym.J.,17,567−575(1985))に準じて ビニルベンジルアミンを合成した。得られたI−20、N−6、N−8、N−10、またはN−12の各300mgずつを、各々10mlのテトラエチルメチレンジアミン緩衝液(TEMED、pH5)に溶解し、それぞれのTEMED溶液に300mgのビニルベンジルアミンを添加した。調製された溶液に、30mgのシアノ水素化ホウ素ナトリウム水溶液を加えて室温で24時間撹拌した。反応溶液を透析によって脱塩し、不溶解物を濾過した後に凍結乾燥し、糖鎖(I−20、N−6、N−8、N−10、及びN−12)を誘導したビニルモノマーを得た。
得られた糖鎖誘導ビニルモノマーを3mlの水に溶解し、ペルオキソ二硫酸カリウム4mgを添加した。脱気後、窒素置換をしてから密封し、63℃で一晩反応させた。反応溶液をメタノールに滴下し生成物を沈殿させ、沈殿物を濾過し回収した。回収物を水に再度溶解させ透析を行い、限外濾過(YM10、分画分子量1万、アミコン社製)によって未反応物を除去し、凍結乾燥により精製されたポリビニル化ヘパリン(PV−ヘパリン)を得た。これらのPV−ヘパリンを、各々、P−I−20、P−N−6、P−N−8、P−N−10、及びP−N−12とする。
実施例2:ポリビニル化N脱硫酸ヘパリン類の合成
10gのヘパリン(ピリニジウム塩)を20mlの蒸留水と380mlのジメチルスルフォキシド(DMSO)混合溶液に溶解させ、50℃で90分間撹拌反応させた。透析後凍結乾燥させて得られたO−硫酸は保存しているがN−脱硫酸化されたヘパリン1gを30mlの10重量%メタノールを含む炭酸ナトリウム溶液(50mM)に溶解させ、氷上で1mlの無水酢酸を加えた後水酸化ナトリウムでpHを7〜8に調整した。この操作を30分おきに5回繰り返しN−アセチル化ヘパリンとし、透析後凍結乾燥させた。この反応生成物を実施例1の過ヨウ素酸酸化に基づく高分子化を行い、平均20糖鎖のP−I−DSA20を得た。
実施例3:ポリビニル化コンドロイチン硫酸の合成
0.5gのコンドロイチン硫酸C(生化学工業、鮫軟骨由来)を50mgの硫酸ヒドラジニウムを含む5mlのヒドラジン1水和物に溶解させ、95℃で3.5時間反応させた。部分的ヒドラジン分解された生成物を流水下1日透析後凍結乾燥させ、適当量のヨウ素酸溶液で不純物を酸化除去した。再び流水下2日透析後凍結乾燥した生成物を、実施例1に従って亜硝酸分解し、20糖鎖のP−N−20Cを得た。
実施例4:ポリビニル化デルマタン硫酸の合成
0.5gのコンドロイチン硫酸Cをデルマタン硫酸に変える以外は、実施例3に従って、亜硝酸分解20糖鎖のP−N−20Dを得た。
低分子化ヘパリンを誘導したPV−ヘパリンモノマーの合成
反応はHNMRのビニル基由来ピークから、また、モノマーの単独重合による高分子化は、1HNMRのブロード化とゲル濾過による分子量分画より確認した。例えば、Bio−Gel P−100(Bio−Rad製)によるP−I−20、未処理のヘパリン、酸分解I−20のゲル濾過では、均一な高分子化P−I−20、未処理の(native)ヘパリン、過ヨウ素酸分解I−20の順で分画できた。このようなゲル濾過パターンは、全てのタイプのポリビニル化GAG類で確認できた(図3参照)。
実施例5:樹脂製品に対する吸着性
ポリスチレン製の96穴マルチウェル(住友ベークライト社製)にP−I−20と未処理のヘパリンの水溶液を所定濃度添加し、24時間後ポリスチレン表面に吸着した糖濃度を前記のカルバゾール法を用いて評価した。結果を図4に示す。
図4に示されるごとく、本発明のポリビニル化ヘパリン(P−I−20)はポリスチレン表面に効率よく吸着したが、未処理のヘパリンは、樹脂表面にほとんど吸着しなかった。また、P−I−20以外のポリビニル化ヘパリン、例えばP−N−12、P−N−10、P−N−8、及びP−N−6では、0.5mg/mlの添加濃度において20〜80μg/mlの吸着量が観察された。また、ポリビニル化N−脱硫酸ヘパリン、ポリビニル化コンドロイチン硫酸、およびポリビニル化デルマタン硫酸でもほぼ同一の吸着プロフィールを示した。
さらに、ポリスチレンの他、ポリカーボネート、ポリスルホン、ポリウレタンなどでも、同様の吸着性が確認された。このことから、本発明のポリビニル化ヘパリンは、医療用の樹脂製品にヘパリン分子を吸着・固定化させるための有効な手段であることが示された。なお、本発明に係る機能化高分子は、ガラス製の素材に対しても、このような効率的な吸着性を示した。
実施例6:ポリビニル化ヘパリンコーティングプレートに対する細胞成長因子の結合
実施例1で調製したP−I−20で処理したポリスチレン製96穴マルチウェル(住友ベークライト社製)に、細胞増殖因子(FGF−2、HGF、VEGF165)を溶解させた燐酸緩衝液(0.1%ウシ胎児血清加、pH7.2)を100μl添加し、各細胞成長因子の結合性をP−I−20をコートしていない未処理のマルチウェルと比較した。
各増殖因子に対する抗体(抗−FGF−2、抗−HGF、抗−VEGF(R&D System社製)をマルチウェルに結合した成長因子と反応させ、さらに反応した抗体をペルオキシダーゼを標識した抗体と反応させ、ホースラディッシュペルオキシダーゼ基質(Bio−Rad社製)を加え発色させた。各増殖因子の結合量は414nmのOD値から見積った。OD値の変化を図5(1)、(2)及び(3)に示す。
図5(1)、(2)及び(3)に示されるように、本発明のP−I−20で処理されたディッシュでは、細胞成長因子の添加濃度が500pg/0.1ml以上で、各成長因子の結合に基づくペルオキシダーゼの発色が確認できたが、未処理のディッシュでは結合が観察されなかった。これは、本発明のポリビニル化ヘパリンが、各種増殖因子と特異的に結合できることを示しており、このような増殖因子の結合に基づく発色は、天然のヘパリンの添加によって競争的に阻害された。以上の結果は、本発明のポリビニル化ヘパリンで処理されたプレートは、ガンや創傷などの障害時に増加する細胞成長因子やサイトカインを、簡便かつ高精度に検知することができることを示している。
一方、このような特徴的な増殖因子結合活性は、ポリビニル化N−脱硫酸ヘパリン、ポリビニル化コンドロイチン硫酸、およびポリビニル化デルマタン硫酸類では弱かった。
実施例7:PV−ヘパリンコーティングディッシュ上での細胞培養
本発明のP−I−20及びP−N−12水溶液(0.5mg/ml)、さらに2%ゼラチン、10μg/mlヒトファイブロネクチン溶液でポリスチレン製96穴マルチウェルをコーティングし、ダルベッコ変法イーグル培地(10%ウシ胎児血清添加)に浮遊させた6,000個のヒト冠動脈内皮細胞(CEC)を播種し、細胞成長因子としてFGF2あるいはVEGF165を添加して、3日間培養した。培養後、WST−1試薬(セルカウンティングキット、同仁堂)を用いて増加した細胞数を計測し、増殖率を評価した結果を表1に示す。
Figure 0004703009
表1に示されるがごとく、本発明のポリビニル化ヘパリン上での成長因子依存的な血管内皮細胞の増殖率は、細胞接着蛋白質であるファイブロネクチンと同等以上であることが明らかとなった。このことから、ポリビニル化ヘパリン上で細胞成長因子が安定に相互作用したために、良好な細胞増殖が維持されたことが示唆された。
実施例8:ポリビニル化ヘパリンによる細胞成長因子の阻害
実施例7の細胞成長因子依存的なCECを、5ng/mlの濃度でFGF2あるいはVEGF165添加した培地中に浮遊させ、細胞培養用の96穴マルチウェル(住友ベークライト社製)で培養した。また、培地には、0から512μg/mlの濃度で本発明のポリビニル化ヘパリンであるP−I−20とP−N−12、未処理のヘパリン、過ヨウ素酸酸化I−20、及び亜硝酸分解N−12を同時に添加し、細胞増殖への影響を調べた。各細胞成長因子に基づく細胞増殖を30%抑制させるのに要したヘパリン関連物質の添加濃度を表2に示す。
Figure 0004703009
表2に示されるように、本発明のポリビニル化ヘパリンは、溶液状態では効率よく細胞成長因子と相互作用し、細胞の増殖を抑制することが解った。この様な細胞成長因子に対する吸収作用は、未処理のヘパリンや単純な低分子化ヘパリンに比べ、少なくとも10倍以上の活性であることも示された。
この結果は、本発明のポリビニル化ヘパリンが、腫瘍組織中から誘導される細胞成長因子や血管成長因子を効率よく吸収し、腫瘍細胞や血管の成長を効果的に抑制する抗腫瘍剤として利用できることを示している。
次に、2種類の細胞成長因子を添加しないこと以外は前項と同じ条件で培養した、ヒト冠動脈由来平滑筋細胞(SMC)、及びヒト腎臓由来のメサンギウム細胞(MGC)の増殖性を調べた。この結果を表3に示す。
Figure 0004703009
表3に示されるように、少なくとも生体外の培養において細胞成長因子に非依存的に増殖できる平滑筋細胞やメサンギウム細胞の増殖も、ポリビニル化ヘパリンの添加によって効果的に抑制された。このような高い増殖抑制効果は、細胞成長因子の他、培地中に含まれているものや細胞が増殖する際に誘導するサイトカイン類も、ポリビニル化ヘパリンとの相互作用によって吸収されたためであることを示している。以上から、本発明のポリビニル化ヘパリンは、腫瘍の成長を抑制する他、循環器の領域における冠動脈拡張術後の再狭窄を予防する材料となりうることも示唆している。
実施例9:腫瘍の成長抑制作用
6から8週齢のBALB/Cマウスの側腹部の皮下にマウス大腸癌細胞Colone26を10個注入した。2週間後、径5mm大の腫瘍が形成されたのを確認し、コントロールとして3例に生理食塩水のみを、他の3例に本発明のP−I−14を含む生理食塩水(10mg/ml)を、各々0.1mlずつ、腫瘍付近の皮下に連日注射した。腫瘍の成長の比較を表4に示す。
Figure 0004703009
表4に示されるように、本発明のポリビニル化ヘパリンを投与した場合、腫瘍の成長が効果的に抑制されることが解った。さらに、4週間後では、コントロール群は癌悪液質の状態となり、極度の体重減少、後ろ足の麻痺、及び毛並みの異常が観察され、重篤な衰弱状態を呈した。これに対して本発明のポリビニル化ヘパリン(P−I−20)投与群の全身状況は極めて良好であった。また、投与群は、腎機能及び肝機能(血中のクレアチニン、BUN、総ビリルビン、GOT、GPT、総蛋白質量)が健常なマウスと何ら変わりが無く、ポリビニル化ヘパリン投与によると思われる副作用は観察されなかった。以上の結果は、本発明のポリビニル化ヘパリンが、固形癌による腫瘍の成長を有効に抑制する抗腫瘍剤(抗癌剤)として用いられることを示している。
実施例10:ポリビニル化GAG類における細胞との相互作用の比較
前記、実施例に基づき各ポリビニル化GAG類をコーティングしたディッシュに対する細胞接着の比較を行った。この場合、メサンギウム細胞の代わりにヒト由来皮膚線維芽細胞(SFB)と角化細胞(SKC)を加え比較した。また、CECには、10ng/mlのhrFGF−2を添加した。
6時間後の播種した細胞に対する接着細胞の比率(%)を表5に示す。
Figure 0004703009
表5に示されるように、各種機能化グリコサミノグリカン類に対する細胞接着は、ヘパリン類では各細胞とも高い接着を示したが、N−脱硫酸されたものは脱硫酸されないものよりも若干抑制された。一方、コンドロイチン硫酸やデルマタン硫酸では接着が強く抑制された。
上記、細胞接着に加え、7日間に渡る細胞培養を行い、各種機能化グリコサミノグリカン類に対する細胞の増殖性を比較した。増殖性は前記実施例における細胞カウンティング試薬に基づくOD540値で評価した。表6は各素材に対する細胞の増殖性を比較したものである。
Figure 0004703009
表6に示されるように、ヘパリン系の機能化材料における線維芽細胞、血管内皮細胞、皮膚角化細胞の増殖性が高かったのに対し、デルマタン硫酸、コンドロイチン硫酸系の機能化素材においてその増殖性は低かった。このような増殖性の違いは、各素材に対する接着性と高い相関を示している。一方、ヘパリンは平滑筋細胞の増殖に対し抑制的に働くことが知られているが、ヘパリン系の機能化材料においてもデルマタン硫酸、コンドロイチン硫酸系の機能化材料と同等の抑制された増殖性を示した。これに対し、N−脱硫酸されたヘパリン系機能化材料は、N−脱硫酸の影響と思われる増殖抑制効果の減少が認められた。
以上から、本発明による機能化GAG類は、細胞増殖因子との結合性が増強されるので細胞増殖を効果的に制御すること、さらには、GAG類の糖鎖構造そのものやGAG類の硫酸基の量や位置などに基づいた細胞接着から増殖の制御が可能となることなどが明らかとなった。
産業上の利用可能性
本発明の機能化材料は、副作用無しにGAGの有する機能を発揮するため、例えば細胞増殖を制御する医薬品として用いられる他、各種プラスチック製品に被覆することが容易になるため医療用素材の改良や用途拡大にも寄与できる。
【図面の簡単な説明】
図1は、細胞増殖のメカニズムを説明する模式図である。
図2は、本発明の抗腫瘍剤の作用機序の一例を示す模式図である。
図3は、実施例1におけるゲル濾過パターンを示すグラフである。
図4は、実施例2における本発明の機能化高分子の吸着性を示すグラフである。
図5は、実施例3における本発明の機能化高分子を介した細胞成長因子の接着性を示すグラフである。

Claims (6)

  1. 下記一般式(1):
    −(CWX−CYZ)n− (1)
    (上記式中、Wはグリコサミノグリカンを構成する基本骨格の少なくとも一部に相当する構造を有する糖鎖を表し、X、Y及びZは水素原子を含む任意の置換基を表し、nは1以上の繰り返し単位数を示す)で表される構造を有し、前記糖鎖が、天然グリコサミノグリカンの化学分解によって得られる分解糖鎖であり、2〜50個の構成二糖体から構成され、当該構成二糖体が平均1個以上の硫酸基を有するものであることを特徴とする機能化高分子。
  2. 前記分解糖鎖が、その化学分解によって生じた官能基を介して高分子主鎖に結合していることを特徴とする請求項1記載の機能化高分子。
  3. 前記グリコサミノグリカンが、ヘパリン/ヘパラン硫酸、コンドロイチン硫酸、デルマタン硫酸、あるいはそれらの部分的脱硫酸化修飾体であることを特徴とする請求項1または2記載の機能化高分子。
  4. 請求項1から3のいずれかに記載の機能性高分子で表面修飾したことを特徴とする医療器具。
  5. 請求項1から3のいずれかに記載の機能化高分子を含んでなることを特徴とする細胞成長制御薬。
  6. 請求項1から3のいずれかに記載の機能化高分子を含んでなることを特徴とする血管再狭窄防止剤。
JP2000609473A 1999-04-02 2000-03-30 グリコサミノグリカン機能化高分子及びそれを用いた医療器具並びに医薬 Expired - Fee Related JP4703009B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000609473A JP4703009B2 (ja) 1999-04-02 2000-03-30 グリコサミノグリカン機能化高分子及びそれを用いた医療器具並びに医薬

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1999097062 1999-04-02
JP9706299 1999-04-02
PCT/JP2000/002012 WO2000059967A1 (fr) 1999-04-02 2000-03-30 Polymere de glycosaminoglycane fonctionnalise et leur utilisation en medecine et en pharmacie
JP2000609473A JP4703009B2 (ja) 1999-04-02 2000-03-30 グリコサミノグリカン機能化高分子及びそれを用いた医療器具並びに医薬

Publications (1)

Publication Number Publication Date
JP4703009B2 true JP4703009B2 (ja) 2011-06-15

Family

ID=14182171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000609473A Expired - Fee Related JP4703009B2 (ja) 1999-04-02 2000-03-30 グリコサミノグリカン機能化高分子及びそれを用いた医療器具並びに医薬

Country Status (8)

Country Link
US (1) US7005513B1 (ja)
EP (1) EP1172386B1 (ja)
JP (1) JP4703009B2 (ja)
AT (1) ATE284424T1 (ja)
AU (1) AU771610B2 (ja)
CA (1) CA2367288A1 (ja)
DE (1) DE60016581T2 (ja)
WO (1) WO2000059967A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081619A1 (fr) * 2001-04-02 2002-10-17 Netech Inc. Complexes de glycosaminoglycane/collagene et utilisation
US7273607B2 (en) * 2002-07-01 2007-09-25 Karl G. Schakel, legal representative Health enhancement method
US8673333B2 (en) 2002-09-25 2014-03-18 The Johns Hopkins University Cross-linked polymer matrices, and methods of making and using same
WO2004029137A2 (en) * 2002-09-25 2004-04-08 Johns Hopkins University School Of Medicine Cross-linked polymer matrices, and methods of making and using same
JP6901253B2 (ja) * 2015-10-21 2021-07-14 株式会社日本触媒 接着性細胞培養用基材、ならびにこれを利用した細胞培養容器および細胞培養方法
CN113004436A (zh) * 2021-04-30 2021-06-22 山东万邦赛诺康生化制药股份有限公司 一种达肝素钠的制备方法及所述方法在制备低分子肝素钠中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05507298A (ja) * 1990-04-10 1993-10-21 ケムバイオメッド,リミテッド 非トロンボゲン性グリコサミノグリカン共重合体
JPH06510783A (ja) * 1991-09-26 1994-12-01 コルリーネ・システムズ・アクチエボラーグ 新規接合体、その調製および使用ならびにその接合体を用いて調製された基体
JPH0885704A (ja) * 1994-07-22 1996-04-02 Seikagaku Kogyo Co Ltd グリコサミノグリカン誘導体、該誘導体のアクリルアミド共重合体ゲル及び酵素同定法
JPH08504841A (ja) * 1992-07-03 1996-05-28 ミニステーロ・デル・ウニベルシタ・エ・デルラ・リシェルカ・シエンティフィカ・エ・テクノロジカ 相互貫入ポリマー網(ipn)におけるヒアルロン酸およびその誘導体
JPH10324702A (ja) * 1997-05-15 1998-12-08 Huels Ag ヘパリン類似ホモポリマーまたはコポリマー、その製造および使用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415490A (en) * 1979-07-24 1983-11-15 Nippon Zeon Co., Ltd. Non-thrombogenic material
CH665954A5 (fr) * 1985-07-08 1988-06-30 Battelle Memorial Institute Substrat dont la surface presente une activite antithrombogenique.
US5250519A (en) * 1991-03-29 1993-10-05 Glycomed Incorporated Non-anticoagulant heparin derivatives

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05507298A (ja) * 1990-04-10 1993-10-21 ケムバイオメッド,リミテッド 非トロンボゲン性グリコサミノグリカン共重合体
JPH06510783A (ja) * 1991-09-26 1994-12-01 コルリーネ・システムズ・アクチエボラーグ 新規接合体、その調製および使用ならびにその接合体を用いて調製された基体
JPH08504841A (ja) * 1992-07-03 1996-05-28 ミニステーロ・デル・ウニベルシタ・エ・デルラ・リシェルカ・シエンティフィカ・エ・テクノロジカ 相互貫入ポリマー網(ipn)におけるヒアルロン酸およびその誘導体
JPH0885704A (ja) * 1994-07-22 1996-04-02 Seikagaku Kogyo Co Ltd グリコサミノグリカン誘導体、該誘導体のアクリルアミド共重合体ゲル及び酵素同定法
JPH10324702A (ja) * 1997-05-15 1998-12-08 Huels Ag ヘパリン類似ホモポリマーまたはコポリマー、その製造および使用

Also Published As

Publication number Publication date
WO2000059967A1 (fr) 2000-10-12
US7005513B1 (en) 2006-02-28
AU771610B2 (en) 2004-04-01
EP1172386B1 (en) 2004-12-08
DE60016581T2 (de) 2006-03-02
CA2367288A1 (en) 2000-10-12
EP1172386A1 (en) 2002-01-16
ATE284424T1 (de) 2004-12-15
EP1172386A4 (en) 2002-07-10
DE60016581D1 (de) 2005-01-13
AU3455800A (en) 2000-10-23

Similar Documents

Publication Publication Date Title
Li et al. Bioactive polysaccharides from natural resources including Chinese medicinal herbs on tissue repair
Köwitsch et al. Medical application of glycosaminoglycans: a review
Paluck et al. Heparin-mimicking polymers: synthesis and biological applications
JP5165298B2 (ja) 新規なヘパリン様硫酸化多糖類
Arlov et al. Engineered sulfated polysaccharides for biomedical applications
Alban et al. Anticoagulant sulfated polysaccharides: Part I. Synthesis and structure–activity relationships of new pullulan sulfates
Presta et al. Heparin derivatives as angiogenesis inhibitors
Li et al. The influence of polysaccharides‐based material on macrophage phenotypes
JPWO2002081619A1 (ja) グリコサミノグリカン類とコラーゲンの複合体及びその用途
AU2005259077B2 (en) Use of low-molecular-weight highly sulfated polysaccharide derivatives for modulating angiogenesis
Huang et al. Synthesis and anticoagulant activity of polyureas containing sulfated carbohydrates
Ma et al. In vitro and in vivo anticoagulant activity of heparin-like biomacromolecules and the mechanism analysis for heparin-mimicking activity
JP2001522385A (ja) N−硫酸化ヒアルロン酸化合物、その誘導体および製造方法
Liu et al. Chemical synthesis of glycosaminoglycan-mimetic polymers
Place et al. Synthesis and characterization of proteoglycan-mimetic graft copolymers with tunable glycosaminoglycan density
Arlov et al. The impact of chain length and flexibility in the interaction between sulfated alginates and HGF and FGF-2
JP4703009B2 (ja) グリコサミノグリカン機能化高分子及びそれを用いた医療器具並びに医薬
KR20020093845A (ko) 글루탐산 n-유도체의 다당류 에스테르
Wang et al. Anticoagulant macromolecules
Esposito et al. Glycosaminoglycan-like sulfated polysaccharides from Vibrio diabolicus bacterium: Semi-synthesis and characterization
CN111247174B (zh) 在炎症状态的治疗中的官能化的透明质酸或其衍生物
CN113164660A (zh) 固定化的生物实体
Gupta et al. Recent advances in the design and immobilization of heparin for biomedical application: A review
EP2560661B1 (en) Use of the modified polysaccharides for heparin neutralization
JP2006347883A (ja) 糖鎖含有キトサン誘導体及びグリコサミノグリカンを含有する医療用組成物

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110308

R150 Certificate of patent or registration of utility model

Ref document number: 4703009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees