JP4694408B2 - 電力線搬送通信システム - Google Patents

電力線搬送通信システム Download PDF

Info

Publication number
JP4694408B2
JP4694408B2 JP2006116576A JP2006116576A JP4694408B2 JP 4694408 B2 JP4694408 B2 JP 4694408B2 JP 2006116576 A JP2006116576 A JP 2006116576A JP 2006116576 A JP2006116576 A JP 2006116576A JP 4694408 B2 JP4694408 B2 JP 4694408B2
Authority
JP
Japan
Prior art keywords
communication
data
time
period
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006116576A
Other languages
English (en)
Other versions
JP2007288719A (ja
Inventor
靖之 橋詰
禎之 井上
淳子 貴島
正博 内藤
美樹 菅野
直樹 木津
裕志 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006116576A priority Critical patent/JP4694408B2/ja
Publication of JP2007288719A publication Critical patent/JP2007288719A/ja
Application granted granted Critical
Publication of JP4694408B2 publication Critical patent/JP4694408B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

本発明は、電力線搬送通信システムに関するものである。
複数の通信機を電力線に結合し、通信機相互間で前記電力線を介して情報を伝送する電力線搬送システムでは、通信用の信号線を用いた情報通信に比べて損失の大きい伝送線路を通して通信を行なうので、遠距離の通信では信号の減衰が極めて大きくなる。そこで、通信可能な距離以下毎に中継器を設置し、一方向から送信された通信情報を、他の方向に再送信することで、長距離の通信を行うことができる。この場合に、受信する周波数と再送信する周波数を異なるものとすることで、この中継器の一方の側における通信と、他方の側における通信の相互干渉を防ぐこととしている(例えば特許文献1、特許文献2参照)。
さらに長い距離の通信では、複数の中継器を設置し、互いに異なる第1及び第2の周波数帯f1及びf2を用いる通信区間を交互に設置し、さらに、中継器と電力線との間で通信信号を授受するための結合器の間に、通信に用いる周波数帯の信号を減衰させるフィルタを設置する。
特開2004−336642公報 特開平10−154950公報
このような中継器を含む通信システムにおいては、同じ周波数帯を用いる他の通信区間からの信号が雑音として働く。その結果、中継器で受信する際の信号雑音比が低下するので、データ誤り率が高くなってデータの再送信の頻度が高くなり、あるいはデータの誤り率を低くするためには通信データの多値化を低く抑える、すなわち通信速度を遅くしなければならないという問題があった。
この発明は、上記のような問題点を解決するためになされたものであり、データ誤りの少ない高速な通信システムを得ることを目的としている。
本発明は、
無線周波数の通信信号を重畳して通信をおこなう電力線を複数の通信区間に分け、通信区間相互間に中継器を設け、各中継器の一方の側に位置する通信区間と他方の側に位置する通信区間とでは異なる互いに異なる周波数帯でデータ通信を行い、
前記データ通信は、ある周期Tの通信サイクルを繰り返すことにより行われ、
前記通信サイクルの各々は、
第1の方向へのデータが通信できる第1の単方向データ通信期間と、
前記第1の単方向データ通信期間に続いて、前記第1の方向とは逆の第2の方向へのデータが通信できる第2の単方向データ通信期間とを有し、
ある周波数帯を用いる一つの通信区間での、前記通信サイクルが開始するタイミングは、前記ある周波数帯とは異なる別の周波数帯を用いる他の通信区間を間に挟んで隣接する前記ある周波数帯を使うさらに他の通信区間の前記通信サイクルが開始するタイミングと、前記通信サイクルの周期Tの1/2の期間だけずれるように制御される
ことを特徴とする電力線搬送通信システムを提供する。
以上のような構成を備えているので、無線周波数の通信信号を重畳して通信をおこなう電力線を複数の通信区間に分け、隣接する通信区間では異なる周波数帯でデータ通信を行い、各通信区間の境界に中継器を設けた通信システムにおいて、同じ周波数帯を用いる他の通信区間からの信号に起因する雑音が少なくなるように通信を行うことができ、これにより誤り率の低い通信システムを実現することができる。
実施の形態1.
図1(a)〜(c)は、この発明の実施の形態1に係る電力線搬送通信システムにおける、電力線と中継器とで構成される通信経路の構成例とそこでの通信信号と干渉信号の関係を示す模式図である。
図1(a)において、電線20は、例えば商用電力を供給する単相あるいは3相交流の電力線の1本である。一般に、商用電力は50Hz又は60Hzの交流電流である。
電線20は、電力線搬送通信に用いられるものであり、通信を行う電力線が複数の通信区間21a、22a、21b、22b、21c、22cなどに分割され、通信区間相互の境界に中継器10a〜10eなどが設けられている。
後述のように、一つ置きの通信区間21a、21b、21cでは、第1の周波数帯f1で通信が行われ、上記の一つ置きの通信区間21a、21b、21cの間に位置する通信区間22a、22b、22cでは、第1の周波数帯f1とは異なる第2の周波数帯f2で通信が行われる。従って、第1の周波数帯f1による通信を行なう区間21a、21b、21cと、第2の周波数帯f2による通信を行なう区間22a、22b、22cは交互に配置されている。
なお、以下の説明で、図1(a)において、電線20の上方向が情報の流れの上流(インターネット網に接続している方向)であるとし、その反対側が下流であるとする。
図示の電力線搬送通信システムは、半二重通信を行うものであり、各中継器(10a〜10eの各々)は、その一方の側に位置する通信区間(例えば21a)のための第1の周波数帯f1で該通信区間を介して他の中継器又は通信装置から受信した通信信号から通信データを復調し、上記一方の側とは反対の側に位置する通信区間(例えば22a)のための第2の周波数帯f2で変調し、この変調した信号を、上記一方の側とは反対の側に位置する通信区間(例えば22a)を介して、他の中継器又は通信装置に送信するものである。
具体的には、中継器10a、10c、10eは、上流側から第1の周波数帯f1で受信したデータの内容を下流側に第2の周波数帯f2で送信し、逆に下流側から第2の周波数帯f2で受信したデータの内容を上流側に第1の周波数帯f1で送信し、中継器10b、10dは、上流側から第2の周波数帯f2で受信したデータの内容を第1の周波数帯f1で送信し、逆に下流側から第1の周波数帯f1で受信したデータの内容上流側に第2の周波数帯f2で送信する。
中継器10a〜10eは、第1の周波数帯f1での通信信号を授受する第1の結合器11a〜11eと、第1の周波数帯f1とは異なる第2の周波数帯f2での通信信号を授受する第2の結合器12a〜12eとを備えている。また、第1の結合器11a〜11eと第2の結合器12a〜12eの間には、通信に用いる周波数帯、例えば2〜30MHzの信号を減衰させるフィルタ13a〜13eが設けられている。
また、中継器10a〜10eには、電線20上の電力の電圧波形を検出する電圧波形検出用端子14a〜14eを備えている。
フィルタ13a〜13eは、通信区間相互の境界に配置され、電力の送電に用いられる例えば50Hz程度の低周波は通過させ、通信に用いられる例えば数十KHzから数十MHzの高周波は減衰させる。具体的には、図1(a)に示すように、各中継器(10a〜10e)の第1の結合器(11a〜11e)と第2の結合器(12a〜12e)の間に挿入されている。
図2は中継器10a〜10eの一つの詳細を示す図である。図2では、中継器10a〜10eが符号10で示され、中継器に関連する第1及び第2の結合器並びに電圧波形検出器も、添え字無しの符号11,12、14で示されている。以下の説明でも同様に、複数の中継器や通信区間のいずれにも当てはまる説明の際には、添え字無しの符号を用いることがある。
図2に示すように、中継器10は、電線20との間で高周波の通信信号を授受するための第1及び第2の結合器11及び12と、OSI(Open Systems Interconnection)階層モデルにおける物理層の機能を担う物理層処理手段211、212と、OSI階層モデルにおけるデータリンク層を担うデータリンク層処理手段221、222と、二つのデータリンク層処理手段221、221の一方から通信データを受け取り、他方へ渡すまでの期間に通信データを蓄積する通信データバッファ処理手段230と、上記の物理層処理手段211、211、データリンク層処理手段221、222と、通信データバッファ処理手段230を協調動作させるための機器制御部240と、電力線に接続した端子14から取り込んだ商用電力の電圧波形から、通信サイクルの基準となるタイミングを決定する同期タイミング決定手段280を備えている。
物理層処理手段211、212は、その内部に、アナログの高周波信号をディジタル情報に変換するアナログ・デジタル・コンバータ(ADC)251、252と、ディジタル処理で作成した高周波信号の波形情報をアナログ信号に変換するデジタル・アナログ・コンバータ(DAC)261、262と、送信時にはデータリンク層処理手段221、222から受け取ったデータに対しディジタル処理で変調などを行なってその変調されたデータをDAC261、262に供給し、受信時にはADC251、252から受け取った波形データに対してディジタル処理で復調などを行ってデータリンク層処理手段221、222にデータを渡す、ディジタル信号処理手段271、272とを備えており、送信時には結合器11、12と、DAC261、262とが接続され、受信時には結合器11、12とADC251、252とが接続される。
データリンク層処理手段221、222は受信したデータの誤り検出を含む再送制御を行う。図3は、中継器10bと中継器10cとの間での再送制御のためのデータのやり取りを示す。
図示の例では、中継器10bから通信区間21bを介してデータData1が送信され、このデータが中継器10cで受信されると、中継器10cにおいて、データリンク層221で、受信したデータに誤りがないかを検査し、誤りがあった場合は、機器制御部240による制御の下で、データリンク層221及び物理層211により、否定応答(NAK:Negative Acknowledge)を中継器10cが送信し、これを受けて中継器10bは、同じデータData1を再送信する。
中継器10cにおいて、受信したデータData1に誤りがないときは、そのことがデータリンク層221で確認され、機器制御部240による制御の下で、データリンク層221及び物理層211により肯定応答(ACK:Acknowledge)を中継器10cが送信する。
中継器10bでは、肯定応答(ACK)を受けると次のデータData2を送信する。
逆に中継器10cから中継器10bにデータData3を送信する場合には、中継器10bにおいて誤りの有無の検査が行われる。
以下同様にしてデータData4、Data5、Data6などの通信が行われる。
データの送信に誤りがあったときに再送を行うのは、リアルタイム性のない或いはリアルタイム性の低い(リアルタイムで送信する必要性がない或いは低い)データの場合には問題がないが、リアルタイム性の高いデータの場合、例えばIP電話における音声データの場合には、再送により時間遅れが生じるので不都合である。このようなデータは「再送を許容できないデータ」として扱われ、本発明では、優先度の高いデータとしてノイズが発生しにくい期間(タイミング)に送信され、逆に再送を許容できるデータは優先度のより低いデータとして、優先度のより高いデータが送信される期間(タイミング)以外の期間(タイミング)に送信される。
電線20には商用電力、一般に50Hz又は60Hzの交流とともに例えば2MHz〜30MHzの高周波信号が重畳して流れる。この電線20から高周波信号のみを取り出したり、あるいは高周波信号を注入したりするための各中継器10は二つの結合器11、12を備えている。これらの結合器11、12は、例えば高周波信号を通過させるキャパシタを用いて構成する。
電線20に端子14で接続される同期タイミング決定手段280は、例えば、電線20の電圧から、図示しないローパスフィルタで高周波信号を取り除いた後に、電圧がゼロになるタイミング(ゼロクロス点)を検出する機能を有する。例えば商用電力が50Hzであれば、100Hzのタイミング信号が生成できる。50Hzを送電する場合の波長が約5000Kmであるので、同じ周波数帯を使う通信区間の間が1km程度であれば、この電圧が0Vとなるタイミングは数マイクロ秒程度であり、100Hz即ち10ミリ秒、あるいはその数倍、あるいはその数分の一の通信サイクルのタイミングを合わせるのには十分な精度が得られる。
そこで、各中継器10a〜10eでは、各中継器が接続されている電力線の交流の正弦波に同期したタイミング信号、又はその整数倍又は整数分の一の周期のタイミング信号に、前記通信サイクルを同期させることとしている。
第1の周波数帯f1として例えば2MHz〜16MHz、第2の周波数帯f2として例えば16MHz〜30MHzを使用するものとする。このような広い帯域を用いる変調方式としては、例えばOFDM(Orthogonal Frequency Division Multiplexing、直交周波数分割多重)が使用できる。使用可能な全周波数帯域を2つ以上の帯域に分けて、それらの帯域を、同一の電線に設けた通信帯域に割り当てる場合、この通信システムの通信量のボトルネックになるのは、最も帯域幅の狭い通信区間となるので、このシステムに用いることが可能な周波数帯を同じ帯域幅の2つの領域としてこの周波数帯f1とf2とを交互に使用するようにすることで、このシステム全体の通信帯域を大きくすることができる。
図4(a)〜(c)に、第1の周波数帯f1を用いる通信区間21a、21b、21cにおける通信のサイクルを示す。第1の周波数帯f1を用いる通信区間21a、21b、21cにおける全ての通信区間は、時間Tの通信サイクルを繰り返す。
第1の周波数帯f1を用いる通信区間21a、21b、21cの各々(例えば21b)における通信サイクル(図4(b)に符号C2で示される)は、第2の周波数帯f2を用いる一つの通信区間(22a、22b)のみによって隔てられている、第1の周波数帯f1を用いる他の通信区間(21a、21c)における通信サイクル(図4(a)、(c)に符号C1で示される)とは位相がT/2だけずれている。言い換えると、第1の周波数帯を用いる通信区間21bでの、通信サイクルが開始するタイミングは、第2の周波数帯を用いる通信区間22a、22bを間に挟んで隣接している、第1の周波数帯f1を用いる他の通信区間21a、21cの通信サイクルが開始するタイミングと、通信サイクルの1/2の期間だけずれている。
そのために、例えば、通信区間21a、21cでは、同期タイミング決定手段280が生成するタイミング信号で通信のサイクルを始め、通信区間21bでは同期タイミング決定手段280が生成するタイミング信号から、時間T/2だけ経過した後に通信のサイクルを始めるような制御が機器制御部240により行われる。
通信サイクルC1の中の下流向きの単方向データ通信期間P3が、上流向きの単方向データ通信期間P4よりも長く、その切り換えのタイミングが、時点x・T(通信サイクルC1の開始から時間x・Tの経過後の時刻)であり、x>T/2であるとする。このような構成は、下流方向への通信量を多くするためのものであり、例えばインターネット上のサイトを見る場合など、下流から上流に向けて送信する情報量に比べて、上流から下流に向けて送られる情報量の方が多いことが想定される場合にとられるものである。
図5に、時間Tの通信サイクルC2のみを拡大して示す。
時点0から時点(x−0.5)・Tまでの期間81においては、(異なる周波数帯を用いる通信区間を間に挟んで)隣接する同一周波数帯を使用する通信区間21a、21cにおいても下流向きの通信が行なわれる。
時点(x−0.5)・Tから時点T/2までの期間82においては、(異なる周波数帯を用いる通信区間を間に挟んで)隣接する同一周波数帯を使用する通信区間21a、21cでは上流向きの通信が行なわれる。
時点T/2から時点x・Tまでの期間83においては、(異なる周波数帯を用いる通信区間を間に挟んで)隣接する同一周波数帯を使用する通信区間21a、21cにおいても下流向きの通信が行なわれる。
時点x・Tから時点Tまでの期間84は、図4(b)の期間P4と同じであり、この期間84においては、(異なる周波数帯を用いる通信区間を間に挟んで)隣接する同一周波数帯を使用する通信区間21a、21cにおいても下流向きの通信が行なわれる。
第1の周波数帯f1を用いて通信区間21bで下流向きの通信を行なう場合に、通信区間21cから中継器10cに到達する信号の大きさは、通信区間21cでの通信の方向により変わる。図5の期間82では、図1(c)に示すように通信区間21cにおいて上流向きの通信が行われ中継器10eからの信号が中継器10cに到達したもの34が、中継器10cにおいては雑音となり、図5の期間81および期間83では、図1(b)に示すように通信区間21cにおいては下流向きの通信が行われ中継器10dからの信号が中継器10cに到達したもの44が、中継器10cにおいては雑音となる。従って、期間81及び期間83における雑音は、期間82における雑音よりも大きく、このため中継器10cでは通信の誤り率が高くなる。
なお、期間84では、期間82と同様の影響、即ち、図1(c)と同様に、反対向きの通信を行なう通信区間の相互間の影響であり、雑音が小さい。
上記の様に、例えば通信区間21a、21b、21cで互いに同期した(通信サイクルのタイミングが互いに関係付けられた)通信動作を行なうためには、それぞれの通信区間に属する中継器10が、基準となる共通のタイミングを持つ必要がある。その基準となるタイミングとして、例えば、電線20の電圧信号を用いることができる。図2の構成では、同期タイミング決定手段280が電線20の電圧が0Vのときのタイミング(ゼロクロス点)を機器制御部240に伝え、機器制御部240はこのタイミングを受けてから、0秒又はT/2秒経過した後に通信のサイクルを開始するように、物理層処理手段211、212、データリンク層処理手段221、222、通信データバッファ処理手段231、232の制御を行なう。
例えば、図1(a)の結合器11a、11d、11eを用いる通信サイクルの開始を、電線20の電圧が0Vのタイミングとし、結合器11b、11cの結合器を用いる通信サイクルの開始を、電線20の電圧が0Vのタイミングから時間T/2後とすればよい。
以上の様に、それぞれの中継器10での通信開始のタイミングを、同期タイミング決定手段280で検出したゼロクロス点とする通信区間と、同期タイミング決定手段280で検出したゼロクロス点から時間T/2後とする通信区間が、電線20に沿って交互に位置するように、中継器10それぞれのタイミングを、予め設定しておくことで、どの通信区間でも、下り方向の雑音の小さい期間が、時点(x−0.5)・Tから時点T/2までの間に一意的に定まるので、この雑音の小さい期間内にすべてのデータが収まる場合には、この期間のみを用いて通信を行い、収まらない場合にも、この期間内にできるだけ多く通信を行なうようにすることで、誤りによる再送信の確率が低減でき、平均的な通信速度の向上を達成することができる。また、上記した雑音の小さい期間にリアルタイムで送信する必要性の高いデータを優先的に割り当てて通信を行うことにより、総合的により好適な通信システムを構築することができる。
図6を用いて、実際の通信データの通信タイミングを説明する。なお、前述の様に、上流への通信を行なう期間84は常に雑音が小さい期間となるので、その中のどこで通信を行なってもよい。そこで、ここでは下流への通信を行なう時点0から時点x・Tまでの期間に関して説明する。
図6において、91〜96で示す6個の矩形が、時点0から時点x・Tの間に通信を行なうデータであり、番号の小さいものほど優先度が高いものとする。この場合優先度の高いもの、即ち番号の小さいものから順に通信のタイミングを決めていく。まず、最初のデータ91は、時点T/2に通信が終わるタイミングでの通信とする。次のデータ(92、93、94)は順次その終了タイミングが、それ以前で最も遅く通信のタイミングが決められたデータ(93)の通信開始のタイミング、言い換えると、それ以前に通信のタイミングが決められたデータ(91、92、93)のうちの通信開始のタイミングが最も早いものの通信開始タイミングに一致するように配置する。ただし、例えばデータ94の次のデータ95が、データ94の前には収まらない場合(データ95の通信の終了タイミングをデータ94の通信の開始タイミングに一致させるとデータ95の通信の開始タイミングが時点0よりも前になってしまう場合)には、既に通信タイミングを決めたもの(91〜94)の直後に通信をおこなうものとする。図6のデータ95は、この規則によって、データ91の直後に通信のタイミングが決められたものとする。その後のデータ96が、図示のようにデータ94よりも前に通信可能であれば、ここで通信を行なう(データ96の通信の終了タイミングが、それ以前で最も遅く通信のタイミングが決められたデータ(93)の通信開始のタイミング、言い換えると、それ以前に通信のタイミングが決められたデータ(91、92、93)のうちの通信開始のタイミングが最も早いものの通信開始タイミングに一致するように通信を行なう)ものとする。このようにして、雑音の少ない期間82にできるだけ通信を行ない、通信をしない斜線でハッチングした期間が雑音の多い期間81又は83になるように通信のタイミングを決めることができる。
このような通信タイミングの決定は、図2の通信データバッファ処理手段230に蓄えられている通信すべき通信データを参照して、それらの通信に要する時間を元に、その単方向データ通信期間が始まるよりも前に予め決定する。その単方向データ通信期間に送りきれないデータは、次の通信サイクルに持ち越せばよい。
上記した通信タイミングの割り当ての規則は、通信サイクルの各々において、第1の単方向データ通信期間(xT)と、第2の単方向データ通信期間((1−x)T)とを切り換えるタイミング(W)が、各通信サイクルの開始時点からx・T(ここで、xは0.5以上1未満の係数)で表される時間が経過した時点にある場合に適用されるものであり、以下のように要約することができる。
(a) 各通信サイクルにおいて、第1の単方向データ通信期間に通信するのに要する時間が、(1−x)・T以下であれば、当該通信サイクルの開始時点から時間(x−0.5)・Tが経過した時点から、当該通信サイクルの開始時点から時間T/2が経過する時点までの期間に通信を行うようにデータ通信のタイミングを割り当て、
(b) 各通信サイクルにおいて、第1の単方向データ通信期間に通信するのに要する時間が、(1−x)・Tよりも大きい場合は、当該通信サイクルの開始時点から時間(x−0.5)・Tが経過した時点から、当該通信サイクルの開始時点から時間T/2が経過するまでの期間を通して通信を行い、この期間で通信し切れなかった分を、当該通信サイクルの開始時点から時間(x−0.5)・Tが経過した時点から、当該通信サイクルの開始時点から時間T/2が経過する時点までの期間を除いた第1の単方向データ通信期間に通信を行うようにデータ通信のタイミングを割り当てる。
この通信システムにおいて、扱うデータが例えばIP電話のデータである場合には、低遅延であることが必要なために、誤っていたときに再送信を行なっても、遅れてきたデータは利用できず、音声通話であればその音が途切れるといった問題が起きる。このようなデータが含まれる場合は、上記通信サイクルの決定において、まずその再送信できないデータの通信タイミングを先に決め、その後に通常の再送信を行なっても問題の無いデータのタイミングを決めるようにすれば(言い換えれば、再送信できないデータの通信タイミングを優先的に雑音の小さい期間に割り当て)、このデータは図6の期間82の間に通信されるので、誤りによりこのデータが使えなくなることを少なくすることができる。
図7(a)〜(c)及び図8は、通信サイクルC1、C2の中の下流向きの単方向データ通信期間(第1の単方向データ通信期間)P3が、上流向きの単方向データ通信期間(第2の単方向データ通信期間)P4よりも短く、その切り換えのタイミングx・Tが通信サイクルの開始点と終了点の中間時刻0.5・Tよりも前である、即ちx<T/2である場合を示す。
時点0から時点x・Tまでの期間85においては、(異なる周波数帯を用いる通信区間を間に挟んで)隣接する同一周波数帯を使用する通信区間21a、21cにおいては上流向きの通信が行なわれる。
時点x・Tから時点T/2までの期間86においては、(異なる周波数帯を用いる通信区間を間に挟んで)隣接する同一周波数帯を使用する通信区間21a、21cにおいても上流向きの通信が行なわれる。
時点T/2から時点(0.5+x)・Tまでの期間87においては、(異なる周波数帯を用いる通信区間を間に挟んで)隣接する同一周波数帯を使用する通信区間21a、21cにおいては下流向きの通信が行なわれる。
時点(0.5+x)・Tまでの期間88においては、(異なる周波数帯を用いる通信区間を間に挟んで)隣接する同一周波数帯を使用する通信区間21a、21cにおいても上流向きの通信が行われる。
このように、二つの単方向データ通信期間のうち、最初の方が短い場合(切り換え点x・Tが、通信サイクル中の中間点(時点0.5・T)よりも前に位置する場合)にも、上記と同様な理由から、図8の期間87では、図1(c)に示すように中継器10eからの信号が中継器10cに到達したもの34が雑音となり、図8の期間86および期間88では、図1(b)に示すように中継器10dからの信号が中継器10cに到達したもの44が雑音となる。従って、期間86及び期間88における雑音は、期間87における雑音が大きく、このため中継器10cでは通信においては誤り率が高くなる。
なお、期間85では、期間87と同様の影響、即ち図1(c)と同様に、反対向きの通信を行なう通信区間の間の影響であり、雑音が小さい。
従って、第2の単方向データ通信期間P4においてはできるだけ期間87に通信を行なうように、実際の通信データの通信タイミングを決めればよく、図6で説明したのと同様に、図9の期間87にすべてのデータが収まる場合には期間87内にすべてのデータの通信を行い、収まらない場合には、この期間87内にできるだけ配置し、次いで期間88にできるだけ配置し、配置できない分を期間86に配置することで、より多くのデータを雑音の少ない期間に通信できる。また、再送信できないデータの通信タイミングを先に決めることで、その後に通常の再送信を行なっても問題の無いデータのタイミングを決めるようにすれば、このデータが使えなくなることを少なくすることができるのも、二つの単方向データ通信期間のうち、最初の方が長い場合と同様である。
上記した通信タイミングの割り当ての規則は、通信サイクルの各々において、第1の単方向データ通信期間(xT)と、第2の単方向データ通信期間((1−x)T)とを切り換えるタイミング(W)が、各通信サイクルの開始時点からx・T(ここで、xは0よりも大きく0.5未満の係数である)で表される時間が経過した時点にある場合に適用されるものであり、以下のように要約することができる。即ち、
(a) 各通信サイクルにおいて、第2の単方向データ通信期間に通信するのに要する時間が、x・T以下であれば、当該通信サイクルの開始時点から時間T/2が経過した時点から、当該通信サイクルの開始時点から時間(x+0.5)・Tが経過する時点までの期間に通信を行うようにデータ通信のタイミングを割り当て、
(b) 各通信サイクルにおいて、第2の単方向データ通信期間に通信するのに要する時間が、x・Tよりも大きい場合は、当該通信サイクルの開始時点から時間T/2が経過した時点から、当該通信サイクルの開始時点から時間(x+0.5)・Tが経過するまでの期間を通して通信を行い、この期間で通信し切れない分を、当該通信サイクルの開始時点から時間T/2が経過した時点から、当該通信サイクルの開始時点から時間(x+0.5)・Tが経過する時点までの期間を除いた第2の単方向データ通信期間に通信を行うようにデータ通信のタイミングを割り当てる。
実施の形態2.
図10(a)〜(c)はこの発明の実施の形態2に係る通信システムの、送受信のタイミングを示す模式図である。この実施の形態2では、時間Tの通信サイクルの、第1の単方向データ通信期間P3と、その直後の第1の単方向データ通信期間とは逆方向への通信を行なう第2の単方向データ通信期間P4との切り換え点(x・T)が、時点T/2であるようにしたもの(x=0.5であるようにしたもの)である。
前述の図1(a)のように同じ周波数帯f1を用いる通信区間21a、21b、21cが配置され、各通信区間が時間Tの通信サイクルで通信を行なうとするときに、図10(a)〜(c)に示すように隣の通信区間とは、通信サイクルC101、C102の開始タイミングが1/2だけずれるようにする。
このように構成すると、図10(a)〜(c)から明らかなように、(異なる周波数帯を用いる通信区間を間に挟んで)互いに隣接する通信区間では、常に反対方向の通信が行なわれるようになるので、必ず図1(c)に示す状態又はこれと同様のに示す状態となり、図1(b)に示すような雑音の大きな状態となることが無く、(異なる周波数帯を用いる通信区間を間に挟んで)隣接した同じ周波数帯を用いる通信区間からの影響を、常に最小にできる。
従って、実施の形態1の説明で図6及び図9を用いて説明したような手順での通信タイミングを決める必要も無く、通信の制御が簡便になる。
また、図1(a)のフィルタ13a〜13eが設けられていない場合には、図1(b)のように同じ方向の通信を行なった場合に、中継器10cで受信すべき信号43と、これに対して雑音となる信号44のレベルが同じになり、通信ができない状態になるが、実施の形態2においては、図1(c)の様に、必ず異なる方向の通信になるので、フィルタ13が無くても、中継器10cで受信すべき信号33に対して、雑音となる信号34のレベルが必ず低くなるため、フィルタ13を必ずしも設けなくてもよくなり、より簡便な構成で通信システムを組めるという利点がある。
実施の形態3.
図11(a)及び(b)は、この発明の実施の形態2に係る通信システムの、送受信のタイミングを示す模式図である。この実施の形態3では、第1の単方向データ通信期間P101、P111,P121と、その直後の第1の単方向データ通信期間とは逆方向への通信を行なう第2の単方向データ通信期間P102、P112、P122との切り換え点W103、W113、W123が、固定されたタイミングではなく、可変である。
この場合の中継器10の構成は、前述の図2に示すのと同じものであるが、各中継器の通信データバッファ処理手段230に蓄えられている、送信前の上流向きの通信のデータ量と、送信前の下流向きの通信のデータ量とから、その双方を時間Tで通信できるのであれば、それが可能であるタイミングに二つの単方向データ通信期間の切り換え点を設定し、その双方を時間Tで通信できないのであれば、それぞれに蓄えられている量で按分することにより、通信量の変動に対応可能な通信システムとするものである。
図11(a)及び(b)に示すように、通信サイクル毎に、二つの単方向データ通信期間の切り換え点は符号W103、W113、W123で示すように異なったものとなる。
通信区間21aの通信サイクルC100において、単方向データ通信の切り換え点W103が、時点T/2(通信サイクルC100の開始時点から時間T/2が経過した時点T104)よりも後である場合(x>0.5である場合)を仮定して、これと(異なる周波数帯を用いる通信区間を間に挟んで)隣接する通信区間21bからの雑音が少ない期間が現れるタイミングを、図11(a)及び(b)を用いて説明する。前述の図1(a)〜(c)で説明したように、通信区間21aと通信区間21bとが逆方向に通信を行なう場合に(図1(c))雑音が小さくなる。
まず、単方向データ通信期間P101では、時点T/2の直後は必ず通信区間21bと通信方向が一致する。これは、隣接通信区間21bの通信サイクルC120における切り換えタイミングW123に依存しない。一方、時点T/2の直前は必ず通信区間21bと通信方向が逆向きとなり、雑音が少ない通信が可能である。この雑音が少ない通信が可能となる時間が始まるのは、隣接通信区間21bの通信サイクルC110における切り換えタイミングW113である。図11(a)の切り換え点W103以降の期間P102では、隣接通信区間21bの通信サイクルC120における切り換えタイミングが非常に早い場合、即ち、切り換え点W103よりも前に切り換え点W123が位置する場合には、切り換え点W103の直前に通信状態の良い期間ができる。
従って、単方向データ通信期間P101に通信を行なうタイミングを設定する場合は、まず、時点T/2から前のタイミングに向けて通信を順に割り当て(時点T/2から前方向に次第に遠ざかる方向に順に割り当てる)、この割り当てができず(即ち、この割り当てで足りなくなり)、時点0よりも前に通信を開始しなければならない割り当てが必要な状況では、時点Tから前にさかのぼるタイミングに順に割り当てる(時点Tから前方向に次第に遠ざかる方向に順に割り当てる)ことで、通信サイクルC120における切り換えタイミングW123によっては雑音が小さくなることがありうる。
上記した通信タイミングの割り当ての規則は、以下のように要約することができる。即ち、
(a) 通信サイクルの各々において、第1の単方向データ通信期間(xT)と、第2の単方向データ通信期間((1−x)T)とを切り換えるタイミング(W)がタイミングが当該通信サイクルの開始時点から時間T/2が経過した時点よりも後ろにある場合に、第1の単方向データ通信期間において複数のデータの通信タイミングを当該複数のデータの優先度に従って順に割り当てるに当たり、
(a1) 優先度が最も高いデータの通信の終了の時点が、当該通信サイクルの開始時点から時間T/2が経過した時点に一致するように決定し、
(a2) 優先度のより低いデータがあり、該データの通信に要する時間が、当該通信サイクルの開始時点から、それよりも前に通信タイミングが割り当てられたデータのうちの通信の開始の時点が最も早いものの通信の開始の時点までの期間に収まる場合には、その終了の時点が上記それよりも前に通信タイミングが割り当てられたデータのうちの通信の開始の時点が最も早いものの通信の開始の時点に一致するように、その通信のタイミングを割り当て、
(a3) 優先度のより低いデータがあり、該データの通信に要する時間が、当該通信サイクルの開始時点から、それよりも前に通信タイミングが割り当てられたデータのうちの通信の開始の時点が最も早いものの通信の開始時点までの期間に収まらない場合には、その開始の時点が上記切り換えるタイミング又はそれよりも前に通信タイミングが割り当てられたデータのうちの通信の終了の時点が最も遅いものの通信の終了の時点に一致するように、その通信のタイミングを割り当て、
(b) 通信サイクルの各々において、第1の単方向データ通信期間(xT)と、第2の単方向データ通信期間((1−x)T)とを切り換えるタイミング(W)が当該通信サイクルの開始時点から時間T/2が経過した時点よりも前にある場合に、第2の単方向データ通信期間において複数のデータの通信タイミングを当該複数のデータの優先度に従って順に割り当てるに当たり、
(b1) 優先度が最も高いデータの通信の開始の時点が、当該通信サイクルの開始時点から時間T/2が経過した時点に一致するように決定し、
(b2) 優先度のより低いデータがあり、該データの通信に要する時間が、それよりも前に通信タイミングが割り当てられたデータのうちの通信の終了の時点が最も遅いものの通信の終了の時点から当該通信サイクルの終了時点までの期間に収まる場合には、その開始の時点が上記それよりも前に通信タイミングが割り当てられたデータのうちの通信の終了の時点が最も遅いものの通信の終了の時点に一致するように、その通信のタイミングを割り当て、
(b3) 優先度のより低いデータがあり、該データの通信に要する時間が、それよりも前に通信タイミングが割り当てられたデータのうちの通信の終了の時点が最も遅いものの通信の終了の時点から当該通信サイクルの終了時点までの期間に収まらない場合には、その終了の時点が上記切り換えるタイミング又はそれよりも前に通信タイミングが割り当てられたデータのうちの通信の開始の時点が最も早いものの通信の開始の時点に一致するように、その通信のタイミングを割り当てる。
単方向データ通信期間P102では、この期間の切り換え点W103の直後は、隣接通信区間21bの通信サイクルC120における切り換えタイミングW123が非常に早い場合、即ち、切り換え点W103よりも前に切り換え点W123がある場合には、この単方向データ通信期間P102の最初(切り換え点W103)から最後の時点Tまでの期間の全体において、雑音が大きな状態となる。切り換え点W103よりも切り換え点W123が後である場合には、切り換え点W103の直後は雑音が少なく、時点TあるいはタイミングW123のいずれか早い方まで、雑音が少ない状態が継続し、その後は雑音が大きくなる。
したがって、単方向データ通信期間に通信を行なうタイミングを設定する場合は、その最初から順に通信タイミングを割り当てることにより、雑音が小さいタイミングでの通信時間を長くすることができる。
上記した通信タイミングの割り当ての規則は、以下のように要約することができる。即ち、
(c) 通信サイクルの各々において、第1の単方向データ通信期間(xT)と、第2の単方向データ通信期間((1−x)T)とを切り換えるタイミング(W)が当該通信サイクルの開始時点から時間T/2が経過した時点よりも後ろにある場合に、第2の単方向データ通信期間において複数のデータの通信タイミングを当該複数のデータの優先度に従って順に割り当てるに当たり、
(c1) 優先度の最も高いデータの通信を、第1の単方向データ通信期間と最も近いタイミングにし、
(c2) 以下各データの通信のタイミングを当該データの優先度の順に次第に第1の単方向データ通信期間から次第に遠くなるように決定する。
なお、ここでの説明では簡単のために、(異なる周波数帯を用いる通信区間を間に挟んで)隣接する通信区間のうち片側のみからの影響で説明を行なったが、その反対側も通信サイクルの開始タイミングは同じであるので、ここまで説明した通信時の雑音が小さい通信時間を長くするための、通信タイミングの設定方法は、同様に考えればよく、これにより雑音が小さいタイミングでの通信時間を長くすることができる。
(a)〜(c)は、本発明の実施の形態1の電力線と中継器とで構成される通信経路の構成例とそこでの通信信号と干渉信号の関係を示す模式図である。 本発明の実施の形態1のこの通信システムの中継器の構成例を示す模式図である。 中継器10bと中継器10cとの間での再送制御のためのデータのやり取りを示す。 (a)〜(c)は、本発明の実施の形態1の通信のタイミングの一例を示す模式図である。 図4(b)の一部を拡大して示す図である。 図5の通信サイクルにおける通信データの送信タイミングの例を示す図である。 (a)〜(c)は、本発明の実施の形態1の通信のタイミングの他の例を示す模式図である。 図4(b)の一部を拡大して示す図である。 図8の通信サイクルにおける通信データの送信タイミングの例を示す図である。 (a)〜(c)は、本発明の実施の形態2の通信のタイミングを示す模式図である。 (a)〜(b)は、本発明の実施の形態3の通信のタイミングを示す模式図である。
符号の説明
10、10a〜10e 中継器、 11、11a〜11e 結合器、 12、12a〜12e 結合器、 13a〜13e フィルタ、 21a、21b、21c 第1の周波数帯を用いる通信区間、 22a、22b、22b 第2の周波数帯を用いる通信区間、 C1 通信サイクル、 C2 通信サイクル、 P3 下流方向の単方向データ通信期間、 P4 上流方向の単方向データ通信期間。

Claims (10)

  1. 無線周波数の通信信号を重畳して通信をおこなう電力線を複数の通信区間に分け、通信区間相互間に中継器を設け、各中継器の一方の側に位置する通信区間と他方の側に位置する通信区間とでは異なる互いに異なる周波数帯でデータ通信を行い、
    前記データ通信は、ある周期Tの通信サイクルを繰り返すことにより行われ、
    前記通信サイクルの各々は、
    第1の方向へのデータが通信できる第1の単方向データ通信期間と、
    前記第1の単方向データ通信期間に続いて、前記第1の方向とは逆の第2の方向へのデータが通信できる第2の単方向データ通信期間とを有し、
    ある周波数帯を用いる一つの通信区間での、前記通信サイクルが開始するタイミングは、前記ある周波数帯とは異なる別の周波数帯を用いる他の通信区間を間に挟んで隣接する前記ある周波数帯を使うさらに他の通信区間の前記通信サイクルが開始するタイミングと、前記通信サイクルの周期Tの1/2の期間だけずれるように制御される
    ことを特徴とする電力線搬送通信システム。
  2. 互いに異なる第1及び第2の無線周波数帯を用いて通信を行う電力線に沿って、前記第1の周波数帯で通信を行う通信区間と前記第2の周波数帯で通信を行う通信区間とが交互に設けられたことを特徴とする請求項1に記載の電力線搬送通信システム。
  3. 前記通信サイクルの各々において、
    前記第1の単方向データ通信期間と、前記第2の単方向データ通信期間とを切り換えるタイミングが、各通信サイクルの開始時点と終了時点の中間の時点であることを特徴とする請求項1又は請求項2に記載の電力線搬送通信システム。
  4. 前記通信サイクルの各々において、
    前記第1の単方向データ通信期間と、前記第2の単方向データ通信期間とを切り換えるタイミングが、各通信サイクルの開始時点からx・T(ここで、xは0.5以上1未満の係数)で表される時間が経過した時点にあり、
    各通信サイクルにおいて、前記第1の単方向データ通信期間に通信するのに要する時間が、(1−x)・T以下であれば、当該通信サイクルの開始時点から時間(x−0.5)・Tが経過した時点から、当該通信サイクルの開始時点から時間T/2が経過する時点までの期間に通信を行うようにデータ通信のタイミングを割り当て、
    各通信サイクルにおいて、前記第1の単方向データ通信期間に通信するのに要する時間が、(1−x)・Tよりも大きい場合は、当該通信サイクルの開始時点から時間(x−0.5)・Tが経過した時点から、当該通信サイクルの開始時点から時間T/2が経過するまでの期間を通して通信を行い、この期間で通信し切れなかった分を、当該通信サイクルの開始時点から時間(x−0.5)・Tが経過した時点から、当該通信サイクルの開始時点から時間T/2が経過する時点までの期間を除いた第1の単方向データ通信期間に通信を行うようにデータ通信のタイミングを割り当てる
    ことを特徴とする請求項1又は請求項2に記載の電力線搬送通信システム。
  5. 前記通信サイクルの各々において、
    前記第1の単方向データ通信期間と、前記第2の単方向データ通信期間とを切り換えるタイミングが、各通信サイクルの開始時点からx・T(ここで、xは0よりも大きく0.5未満の係数である)で表される時間が経過した時点にあり、
    各通信サイクルにおいて、前記第2の単方向データ通信期間に通信するのに要する時間が、x・T以下であれば、当該通信サイクルの開始時点から時間T/2が経過した時点から、当該通信サイクルの開始時点から時間(x+0.5)・Tが経過する時点までの期間に通信を行うようにデータ通信のタイミングを割り当て、
    各通信サイクルにおいて、前記第2の単方向データ通信期間に通信するのに要する時間が、x・Tよりも大きい場合は、当該通信サイクルの開始時点から時間T/2が経過した時点から、当該通信サイクルの開始時点から時間(x+0.5)・Tが経過するまでの期間を通して通信を行い、この期間で通信し切れない分を、当該通信サイクルの開始時点から時間T/2が経過した時点から、当該通信サイクルの開始時点から時間(x+0.5)・Tが経過する時点までの期間を除いた第2の単方向データ通信期間に通信を行うようにデータ通信のタイミングを割り当てる
    ことを特徴とする請求項1又は請求項2に記載の電力線搬送通信システム。
  6. 通信データを受信した際にデータの誤りを検出する手段を備え、
    この誤りを検出した際にデータの再送信が許容されるデータと、データの再送信が許容されないデータとが混在したデータの通信が行われ、
    各通信サイクルにおいて、前記再送信が許容されないデータのうち、前記第1の単方向データ通信により通信されるものを、当該通信サイクルの開始時点から時間(x−0.5)・Tが経過した時点から、当該通信サイクルの開始時点から時間T/2が経過するまでの期間に通信する
    ことを特徴とする請求項4に記載の電力線搬送通信システム。
  7. 通信データを受信した際にデータの誤りを検出する手段を備え、
    この誤りを検出した際にデータの再送信が許容されるデータと、データの再送信が許容されないデータとが混在したデータの通信が行われ、
    各通信サイクルにおいて、前記再送信が許容されないデータのうち、前記第2の単方向データ通信により通信されるものを、当該通信サイクルの開始時点から時間T/2が経過した時点から、当該通信サイクルの開始時点から時間(x+0.5)・Tが経過するまでの期間に通信する
    ことを特徴とする請求項5に記載の電力線搬送通信システム。
  8. 前記通信サイクルの各々において、
    前記第1の単方向データ通信期間と、前記第2の単方向データ通信期間とを切り換えるタイミングが可変であり、
    (c) 前記切り換えるタイミングが当該通信サイクルの開始時点から時間T/2が経過した時点よりも後ろにある場合に、前記第2の単方向データ通信期間において複数のデータの通信タイミングを当該複数のデータの優先度に従って順に割り当てるに当たり、
    (c1) 優先度の最も高いデータの通信を、前記第1の単方向データ通信期間と最も近いタイミングにし、
    (c2) 以下各データの通信のタイミングを当該データの優先度の順に次第に前記第1の単方向データ通信期間から次第に遠くなるように決定する
    ことを特徴とする請求項1又は請求項2に記載の電力線搬送通信システム。
  9. 通信データを受信した際にデータの誤りを検出する手段を備え、
    この誤りを検出した際にデータの再送信が許容されるデータと、データの再送信が許容されないデータとが混在したデータの通信が行われ、
    前記再送信が許容されないデータを前記優先度の最も高いデータとして扱う
    ことを特徴とする請求項8に記載の電力線搬送通信システム。
  10. 前記中継器が、接続されている電力線の交流の正弦波に同期したタイミング信号、又はその整数倍又は整数分の一の周期のタイミング信号に、前記通信サイクルを同期させることを特徴とする請求項1乃至のいずれかに記載の電力線搬送通信システム。
JP2006116576A 2006-04-20 2006-04-20 電力線搬送通信システム Expired - Fee Related JP4694408B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006116576A JP4694408B2 (ja) 2006-04-20 2006-04-20 電力線搬送通信システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006116576A JP4694408B2 (ja) 2006-04-20 2006-04-20 電力線搬送通信システム

Publications (2)

Publication Number Publication Date
JP2007288719A JP2007288719A (ja) 2007-11-01
JP4694408B2 true JP4694408B2 (ja) 2011-06-08

Family

ID=38760040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006116576A Expired - Fee Related JP4694408B2 (ja) 2006-04-20 2006-04-20 電力線搬送通信システム

Country Status (1)

Country Link
JP (1) JP4694408B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010171578A (ja) * 2009-01-21 2010-08-05 Toyo Networks & System Integration Co Ltd 電力線搬送通信システム及び電力線搬送通信装置
JP5286514B2 (ja) * 2009-01-21 2013-09-11 ネッツエスアイ東洋株式会社 電力線搬送通信システム
WO2011016689A2 (en) * 2009-08-06 2011-02-10 Korea Research Institute Of Standards And Science Apparatus and method for transmitting and receiving time broadcasting information using power line
CN104285384B (zh) * 2012-05-25 2016-09-07 株式会社吉川Rf半导体 电力线通信系统
JP5861126B2 (ja) * 2013-11-12 2016-02-16 パナソニックIpマネジメント株式会社 電力量計
JP5861125B2 (ja) * 2013-11-12 2016-02-16 パナソニックIpマネジメント株式会社 電力量計及び通信モジュール

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316886A (ja) * 1995-03-30 1996-11-29 Northern Telecom Ltd 通信方法及びシステム及びそれに用いられる中継器
JPH11127092A (ja) * 1997-10-24 1999-05-11 Mitsubishi Electric Corp 電力線搬送通信システム及びこれに用いる電力線搬送通信装置、周波数相互変換器ならびに電力線特性検出装置
JP2004336642A (ja) * 2003-05-12 2004-11-25 Mitsubishi Electric Corp 電力線通信ブリッジ装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007017934A1 (ja) * 2005-08-10 2009-02-19 三菱電機株式会社 電力線搬送通信システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316886A (ja) * 1995-03-30 1996-11-29 Northern Telecom Ltd 通信方法及びシステム及びそれに用いられる中継器
JPH11127092A (ja) * 1997-10-24 1999-05-11 Mitsubishi Electric Corp 電力線搬送通信システム及びこれに用いる電力線搬送通信装置、周波数相互変換器ならびに電力線特性検出装置
JP2004336642A (ja) * 2003-05-12 2004-11-25 Mitsubishi Electric Corp 電力線通信ブリッジ装置

Also Published As

Publication number Publication date
JP2007288719A (ja) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4694408B2 (ja) 電力線搬送通信システム
US10856243B2 (en) System, method, and apparatus for end-to-end synchronization, adaptive link resource reservation and data tunneling
EP2164211B1 (en) Distributed scheduling
JP5106394B2 (ja) 電力線ネットワークにおけるスケジュールとネットワーク情報の伝達
US10135492B2 (en) Compatible communication between devices using different communication protocols
US7801034B2 (en) System and method for bandwidth allocation in an optical light-trail
KR101944848B1 (ko) 디지털 통신 오버헤드 및 레이턴시를 감소시키는 프레이밍 스킴 및 방법
WO2011066146A1 (en) Dual transmission for communication networks
EP2493085A1 (en) Coexistence in communication system
US20100315956A1 (en) Radio communication relay device, radio communication base station device, radio communication system, and radio communication method
US9450643B2 (en) Method and apparatus for relaying messages in a PLC network
JP5513554B2 (ja) 制御装置及びその制御方法、通信装置及びその制御方法、無線通信システム、及びプログラム
US8644267B2 (en) Wireless communication system and method of calling terminal
JP5164613B2 (ja) 電力線搬送通信システム
JP2005269416A (ja) 通信装置および通信システム
WO2001089136A1 (fr) Procede et dispositif de communication
EP1146659A1 (en) Communication method and communication device
JPH11136307A (ja) 通信装置
JP2006352300A (ja) 通信装置
JP2005064874A (ja) Dslモデム装置及び通信制御方法
JP2003273822A (ja) Adslアネックスc送受信機のttr同期
JP2006033874A (ja) 通信装置および通信方法
JP2002077298A (ja) 通信方法および通信装置
Hayes et al. Protocols and Facilities
JP2012060303A (ja) デジタル放送信号再送信システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4694408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees