JP4687084B2 - Method for manufacturing printed wiring board with built-in passive element - Google Patents

Method for manufacturing printed wiring board with built-in passive element Download PDF

Info

Publication number
JP4687084B2
JP4687084B2 JP2004350802A JP2004350802A JP4687084B2 JP 4687084 B2 JP4687084 B2 JP 4687084B2 JP 2004350802 A JP2004350802 A JP 2004350802A JP 2004350802 A JP2004350802 A JP 2004350802A JP 4687084 B2 JP4687084 B2 JP 4687084B2
Authority
JP
Japan
Prior art keywords
forming
layer
wiring board
resist pattern
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004350802A
Other languages
Japanese (ja)
Other versions
JP2006165083A (en
Inventor
隆之 深田
達広 岡野
由香 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2004350802A priority Critical patent/JP4687084B2/en
Publication of JP2006165083A publication Critical patent/JP2006165083A/en
Application granted granted Critical
Publication of JP4687084B2 publication Critical patent/JP4687084B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は受動素子が内蔵された各種電子機器のプリント配線板に係わり、さらに詳しくは素子定数が安定し、安価に製造できる受動素子(特に、抵抗素子)内蔵プリント配線板の製造方法に関するものである。   The present invention relates to a printed wiring board of various electronic devices having a built-in passive element, and more particularly to a method of manufacturing a printed wiring board with a built-in passive element (especially a resistance element) that has a stable element constant and can be manufactured at low cost. is there.

近年、携帯電話やデジタルカメラなどの機器の小型化と軽量化が進むにつれて、部品の小型化や部品の間隔の削減といった従来の実装技術では対応が難しくなり、部品を内蔵したプリント配線基板製造技術への期待が高まっている。受動部品(キャパシタ、抵抗、インダクタ)は既存の部品を用いれば機器メーカーが必要とする特性を比較的容易に満たすことができるが、部品を内蔵した基板が厚くなってしまうという問題点がある。
小型、薄型の部品で十分に特性を満たすことができる材料の開発が急がれている。
In recent years, as devices such as mobile phones and digital cameras have become smaller and lighter, conventional mounting technologies such as component miniaturization and component spacing have become difficult to cope with. Expectations are growing. Passive components (capacitors, resistors, inductors) can satisfy the characteristics required by device manufacturers relatively easily if existing components are used, but there is a problem that the substrate containing the components becomes thick.
There is an urgent need to develop materials that can sufficiently satisfy the characteristics of small and thin parts.

プリント配線板に抵抗素子を形成する方法としては、銅箔上に金属薄膜で抵抗層を形成する方法、絶縁性基板上にめっきで形成する方法、導電性粒子を樹脂に混ぜて印刷・焼成する方法などがある。
抵抗値精度、形状、価格などから用途に応じて形成方法を選択していく必要がある。厚膜ポリマーを印刷する方法では、高抵抗なものを形成できるが、微細な寸法になると形成が困難であり、また温度や吸湿などによる抵抗値変化が大きく、高精度の抵抗素子を得るのが困難である。金属材料を用いた薄膜タイプは、厚膜タイプに比べ、抵抗値範囲が低抵抗に制約されるが、小さいサイズで高精度に形成できる。
As a method of forming a resistance element on a printed wiring board, a method of forming a resistance layer with a metal thin film on a copper foil, a method of forming by plating on an insulating substrate, a method in which conductive particles are mixed with a resin, and printing and baking are performed. There are methods.
It is necessary to select a forming method according to the application from the resistance value accuracy, shape, price, and the like. In the method of printing a thick film polymer, a high resistance can be formed, but it is difficult to form at a fine size, and the resistance value changes greatly due to temperature, moisture absorption, etc., and a highly accurate resistance element can be obtained. Have difficulty. The thin film type using a metal material is restricted to a low resistance range as compared with the thick film type, but can be formed with a small size and high accuracy.

また、携帯電話に代表されるモバイル機器においては、様々な環境で使用することが想定され、温度変化や湿度変化などに左右されない精度の高い素子であることが望まれる。   In addition, mobile devices typified by mobile phones are expected to be used in various environments, and are desired to be highly accurate elements that are not affected by temperature changes or humidity changes.

銅箔上に金属薄膜で抵抗層を形成する方法として、Ohmega ElectoronicsよりOhmega-Plyという方法が提案されている(例えば、特許文献1参照。)。
これは、銅箔上に電解ニッケル・リンめっきにより薄膜抵抗層を形成したものを絶縁材料に積層成形したもので、配線パターンの形成はサブトラクティブ法に限られる。この工法では素子を形成するまでに、抵抗体であるニッケル・リン皮膜をエッチング液にさらす工程が入るため、そのエッチングの状態によって抵抗値にばらつきが発生する問題がある。また、配線パターンの形成がセミアディティブ法でできないため、高密度配線の基板に用いるのは困難であるという問題も有している。
米国特許4808967号公報
As a method of forming a resistance layer with a metal thin film on a copper foil, a method called Ohmega-Ply has been proposed by Ohmega Electoronics (see, for example, Patent Document 1).
In this method, a thin film resistance layer formed by electrolytic nickel / phosphorous plating on a copper foil is laminated and formed on an insulating material, and the formation of a wiring pattern is limited to the subtractive method. This method involves a step of exposing the nickel-phosphorus film, which is a resistor, to an etching solution before forming an element, and there is a problem in that the resistance value varies depending on the etching state. In addition, since the wiring pattern cannot be formed by the semi-additive method, there is a problem that it is difficult to use the wiring pattern for a high-density wiring substrate.
U.S. Pat. No. 4,808,967

本発明は、素子内蔵プリント配線板において、従来の方法より、抵抗値のばらつきが少なく、安価な抵抗素子を有する素子内蔵プリント配線板の製造方法を提供することを目的とする。   It is an object of the present invention to provide a method for manufacturing an element-embedded printed wiring board having resistance elements with less variation in resistance value than conventional methods in an element-embedded printed wiring board.

本発明は、上記課題を達成するために、まず請求項1においては、受動素子として、抵抗体と素子電極からなる抵抗素子を内蔵する多層プリント配線板の製造方法において、少なくとも以下の(a)〜()の工程を具備することを特徴とする受動素子内蔵プリント配線板の製造方法としたものである。
(a)絶縁基材の両面に配線パターンを形成し、両面配線板を作製する工程。
(b)前記両面配線板の両面に絶縁層を形成する工程。
(c)前記絶縁層にビア用孔を形成する工程。
(d)前記絶縁層及びビア用孔内にめっき下地導電層を形成し、さらにレジストパターンを形成する工程。
(e)前記めっき下地導電層をカソードにして電解銅めっきを行い、導体層及びビアを形成する工程。
(f)前記レジストパターンを剥離し、さらに該レジストパターン下部の前記めっき下地導電層を除去し、一方の面に配線パターン及び素子電極を形成し、他方の面にパッド電極を形成する工程。
(g)前記配線パターン及び前記絶縁層上に感光層を形成し、さら前記パッド電極及び前記絶縁層上に感光層を形成する工程。
(h)前記工程より得られた配線パターン及び絶縁層上に形成した前記感光層に開口部を有するレジストパターンを形成し、前記工程より得られたパッド電極及び絶縁層上に形成した前記感光層にレジストを形成する工程。
(i)前記レジストパターン上及び前記開口部内に抵抗層を形成する工程。
(j)前記レジストパターン及び前記レジストを剥離し、一方の面の前記素子電極間に抵抗体が形成された抵抗素子を形成し、他方の面にパッド電極を形成する工程。
また、請求項2においては、受動素子として、抵抗体と素子電極からなる抵抗素子を内蔵する多層プリント配線板の製造方法において、少なくとも以下の(a)〜()の工程を具備することを特徴とする受動素子内蔵プリント配線板の製造方法としたものである。
(a)絶縁基材の両面に配線パターンを形成し、両面配線板を作製する工程。
(b)前記両面配線板の両面に絶縁層を形成する工程。
(c)前記絶縁層にビア用孔を形成する工程。
(d)前記絶縁層上及びビア用孔内にめっき下地導電層を形成し、さらにレジストパターンを形成する工程。
(e)前記めっき下地導電層をカソードにして電解銅めっきを行い、導体層及びビアを形成する工程。
(f)前記レジストパターンを剥離し、さらに該レジストパターン下部の前記めっき下地導電層を除去し、一方の面に配線パターン及び素子電極を形成し、他方の面にパッド電極を形成する工程。
(g)前記配線パターン及び前記絶縁層上に抵抗層を形成し、さらに前記パッド電極及び前記絶縁層上にレジストを形成する工程。
(h)前記抵抗層上に感光層を形成する工程。
(i)前記感光層にレジストパターンを形成する工程。
(j)前記レジストパターンをマスクにして前記抵抗層を除去し、さらに、該レジストパターン及び前記レジストを剥離し、一方の面の前記素子電極間に抵抗体が形成された抵抗素子を形成し、他方の面にパッド電極を形成する工程。
In order to achieve the above object, according to the first aspect of the present invention, in a method for manufacturing a multilayer printed wiring board in which a resistive element including a resistor and an element electrode is incorporated as a passive element, at least the following (a): A method for manufacturing a printed wiring board with a built-in passive element, comprising the steps ( j ) to ( j ).
(A) A step of forming a double-sided wiring board by forming a wiring pattern on both sides of an insulating substrate.
(B) A step of forming insulating layers on both sides of the double-sided wiring board.
(C) A step of forming a via hole in the insulating layer.
(D) A step of forming a plating base conductive layer in the insulating layer and the via hole, and further forming a resist pattern.
(E) A step of forming a conductor layer and a via by performing electrolytic copper plating using the plating base conductive layer as a cathode.
(F) A step of removing the resist pattern, further removing the plating base conductive layer below the resist pattern, forming a wiring pattern and an element electrode on one surface, and forming a pad electrode on the other surface.
(G) forming a photosensitive layer on the wiring pattern and the insulating layer, and further forming a photosensitive layer on the pad electrode and the insulating layer;
(H) The photosensitive layer formed on the pad electrode and the insulating layer obtained by forming the resist pattern having an opening in the photosensitive layer formed on the wiring pattern and the insulating layer obtained by the step. Forming a resist on the substrate.
(I) A step of forming a resistance layer on the resist pattern and in the opening.
(J) A step of peeling the resist pattern and the resist, forming a resistance element in which a resistor is formed between the element electrodes on one surface, and forming a pad electrode on the other surface.
According to a second aspect of the present invention, in the method of manufacturing a multilayer printed wiring board in which a resistive element composed of a resistor and an element electrode is incorporated as a passive element, at least the following steps (a) to ( j ) are provided. This is a method of manufacturing a printed wiring board with a built-in passive element.
(A) A step of forming a double-sided wiring board by forming a wiring pattern on both sides of an insulating substrate.
(B) A step of forming insulating layers on both sides of the double-sided wiring board.
(C) A step of forming a via hole in the insulating layer.
(D) A step of forming a plating base conductive layer on the insulating layer and in the via hole, and further forming a resist pattern.
(E) A step of forming a conductor layer and a via by performing electrolytic copper plating using the plating base conductive layer as a cathode.
(F) A step of removing the resist pattern, further removing the plating base conductive layer below the resist pattern, forming a wiring pattern and an element electrode on one surface, and forming a pad electrode on the other surface.
(G) forming a resistance layer on the wiring pattern and the insulating layer, and further forming a resist on the pad electrode and the insulating layer;
(H) A step of forming a photosensitive layer on the resistance layer.
(I) A step of forming a resist pattern on the photosensitive layer.
(J) removing the resistance layer using the resist pattern as a mask, further peeling the resist pattern and the resist, and forming a resistance element in which a resistor is formed between the element electrodes on one surface; Forming a pad electrode on the other surface;

また、請求項3においては、前記抵抗層はめっきにより形成されることを特徴とする請求項1または2記載の受動素子内蔵プリント配線板の製造方法としたものである。   According to a third aspect of the present invention, in the method for manufacturing a printed wiring board with a built-in passive element according to the first or second aspect, the resistance layer is formed by plating.

さらにまた、請求項4においては、前記抵抗層はニッケル・リン二元系合金またはニッケル・リン三元系合金であることを特徴とする請求項1乃至3のいずれか一項に記載の受動素子内蔵プリント配線板の製造方法としたものである。   The passive element according to any one of claims 1 to 3, wherein the resistance layer is a nickel-phosphorus binary alloy or a nickel-phosphorus ternary alloy. This is a method for manufacturing a built-in printed wiring board.

本願の受動素子内蔵プリント配線板の製造方法では、配線パターンを形成した後に、抵抗層をめっきで全面に形成し、不要部を取り除く製造方法である。そのため、めっき膜の酸化や腐食を起こすような工程を通さずにすみ、抵抗体形状や膜厚、つまりは抵抗値の変動を抑えることができる。また、抵抗層を無電解めっきにて全面に形成するため、抵抗素子の面積によるめっき厚みのばらつきを抑えることができる。   The manufacturing method of the passive element built-in printed wiring board of the present application is a manufacturing method in which after forming a wiring pattern, a resistance layer is formed on the entire surface by plating, and unnecessary portions are removed. Therefore, it is not necessary to go through a process that causes oxidation or corrosion of the plating film, and it is possible to suppress the variation of the resistor shape and film thickness, that is, the resistance value. Further, since the resistance layer is formed on the entire surface by electroless plating, variations in plating thickness due to the area of the resistance element can be suppressed.

本発明は、配線パターンを形成した後、抵抗素子をめっきによって絶縁性基板上の配線パターン間に形成するので、抵抗層の酸化や腐食を起こすような工程を通さずにすむため、抵抗値の変動を抑えることができる。
また、めっきにて抵抗層を全面に形成するため、抵抗素子の面積によるめっき厚みばらつき、つまり抵抗値の変動を抑えることができる。
In the present invention, since the resistance element is formed between the wiring patterns on the insulating substrate by plating after the wiring pattern is formed, it is not necessary to go through a process that causes oxidation or corrosion of the resistance layer. Variation can be suppressed.
Further, since the resistance layer is formed on the entire surface by plating, variations in plating thickness due to the area of the resistance element, that is, fluctuations in resistance value can be suppressed.

以下に、本発明の実施の形態を詳細に説明する。
図1(a)〜(e)及び図2(f)〜(j)は、請求項1に係わる受動素子内蔵配線基板の製造方法の一実施例を示す模式構成断面図である。
まず、絶縁基材11の両面に配線パターン21a、21bを形成し、両面配線板10を作製する(図1(a)参照)。
配線パターンの形成方法は、サブトラクティブ法、めっきによるセミアディティブ法やフルアディティブ法のいずれでもかまわない。
Hereinafter, embodiments of the present invention will be described in detail.
1 (a) to 1 (e) and FIGS. 2 (f) to 2 (j) are schematic cross-sectional views showing an embodiment of a method for producing a passive element built-in wiring board according to claim 1. FIG.
First, the wiring patterns 21a and 21b are formed on both surfaces of the insulating substrate 11, and the double-sided wiring board 10 is manufactured (see FIG. 1A).
As a method for forming the wiring pattern, any of a subtractive method, a semi-additive method by plating, and a full additive method may be used.

次に、両面配線板10の両面に樹脂フィルムを積層、加熱する等の方法で絶縁層31を形成する(図1(b)参照)。
次に、レーザー加工等により孔明け加工して、絶縁層31の所定位置にビア用孔32を形成する(図1(c)参照)。
Next, the insulating layer 31 is formed by a method of laminating and heating a resin film on both surfaces of the double-sided wiring board 10 (see FIG. 1B).
Next, drilling is performed by laser processing or the like to form a via hole 32 at a predetermined position of the insulating layer 31 (see FIG. 1C).

次に、ビア用孔32内のデスミア処理及び活性化処理を行って、無電解銅めっき等により絶縁層31上及びビア用孔32内にめっき下地導電層(特に、図示せず)を形成する。さらに、ドライフィルムをラミネートする等の方法で感光層を形成し、パターン露光、現像等の一連のパターニング処理を行って、レジストパターン41及び42を形成する(図1(d)参照)。   Next, a desmear process and an activation process in the via hole 32 are performed, and a plating base conductive layer (not shown) is formed on the insulating layer 31 and in the via hole 32 by electroless copper plating or the like. . Further, a photosensitive layer is formed by a method such as laminating a dry film, and a series of patterning processes such as pattern exposure and development are performed to form resist patterns 41 and 42 (see FIG. 1D).

次に、めっき下地導電層をカソードにして電解銅めっきを行って、所定厚の導体層51及びビア52を形成する(図1(e)参照)。   Next, electrolytic copper plating is performed using the plating base conductive layer as a cathode to form a conductor layer 51 and a via 52 having a predetermined thickness (see FIG. 1E).

次に、レジストパターン41及び42を専用の剥離液で剥離し、レジストパターン41及び42の下部にあっためっき下地導電層をフラッシュエッチングにて除去して、一方の面に配線パターン51a及び素子電極51cを、他方の面にパッド電極51bを形成する(図2(f)参照)。
ここで、配線パターン51aの先端部の抵抗体形成領域を素子電極51cと呼ぶ。
Next, the resist patterns 41 and 42 are stripped with a dedicated stripping solution, and the plating base conductive layer under the resist patterns 41 and 42 is removed by flash etching, and the wiring pattern 51a and the element electrode are formed on one surface. 51c and a pad electrode 51b are formed on the other surface (see FIG. 2F).
Here, the resistor formation region at the tip of the wiring pattern 51a is referred to as a device electrode 51c.

次に、ドライフィルムをラミネートする等の方法で感光層43を形成する(図2(g)参照)。
さらに、パターン露光、現像等の一連のパターニング処理を行って、感光層43の所定位置に開口部(抵抗体形成領域)43bが形成されたレジストパターン43a及びレジスト43cを形成する(図2(h)参照)。
Next, the photosensitive layer 43 is formed by a method such as laminating a dry film (see FIG. 2G).
Further, a series of patterning processes such as pattern exposure and development are performed to form a resist pattern 43a and a resist 43c in which an opening (resistor forming region) 43b is formed at a predetermined position of the photosensitive layer 43 (FIG. 2 (h) )reference).

次に、レジストパターン43a上及び開口部(抵抗体形成領域)43b内を活性化処理し、無電解めっきにてレジストパターン43a上及び開口部(抵抗体形成領域)43b内にニッケル・リン二元系合金またはニッケル・リン三元系合金被膜からなる抵抗層61を形成する(図2(i)参照)。   Next, activation processing is performed on the resist pattern 43a and the opening (resistor forming region) 43b, and nickel / phosphorous binary is formed on the resist pattern 43a and the opening (resistor forming region) 43b by electroless plating. A resistance layer 61 made of a nickel alloy or a nickel-phosphorus ternary alloy film is formed (see FIG. 2I).

次に、レジストパターン43a及び43cを専用の剥離液で剥離し、配線パターン51aの先端部の素子電極51c間に抵抗体61aが形成された抵抗素子60を作製し、配線基板の一方の面に配線パターン51a及び抵抗素子60が、他方の面にパッド電極51bが形成された4層の受動素子内蔵配線基板100を得る(図2(j)参照)。
ここでは、受動素子内蔵配線基板の一例として、4層の多層配線基板を例にして説明したが、配線基板の配線パターンの層数に限定されるものではない。
Next, the resist patterns 43a and 43c are stripped with a dedicated stripping solution to produce a resistance element 60 in which a resistor 61a is formed between the element electrodes 51c at the tip of the wiring pattern 51a, and is formed on one surface of the wiring board. The wiring pattern 51a and the resistance element 60 obtain a four-layer passive element built-in wiring board 100 in which the pad electrode 51b is formed on the other surface (see FIG. 2J).
Here, a four-layer multilayer wiring board has been described as an example of a wiring board with a built-in passive element, but the number of wiring patterns on the wiring board is not limited.

図3(a)〜(e)及び図4(f)〜(j)は、請求項2に係わる受動素子内蔵配線基板の製造方法の一実施例を示す模式構成断面図である。
まず、絶縁基材11の両面に配線パターン21a、21bを形成し、両面配線板10を作製する(図3(a)参照)。
配線パターンの形成方法は、サブトラクティブ法、めっきによるセミアディティブ法やフルアディティブ法のいずれでもかまわない。
3 (a) to 3 (e) and FIGS. 4 (f) to 4 (j) are schematic cross-sectional views showing an embodiment of a manufacturing method of a passive element built-in wiring board according to claim 2.
First, the wiring patterns 21a and 21b are formed on both surfaces of the insulating substrate 11, and the double-sided wiring board 10 is manufactured (see FIG. 3A).
As a method for forming the wiring pattern, any of a subtractive method, a semi-additive method by plating, and a full additive method may be used.

次に、両面配線板10の両面に樹脂フィルムを積層、加熱する等の方法で絶縁層31を形成する(図3(b)参照)。
次に、レーザー加工等により孔明け加工して、絶縁層31の所定位置にビア用孔32を形成する(図3(c)参照)。
Next, the insulating layer 31 is formed by a method of laminating and heating resin films on both surfaces of the double-sided wiring board 10 (see FIG. 3B).
Next, drilling is performed by laser processing or the like to form a via hole 32 at a predetermined position of the insulating layer 31 (see FIG. 3C).

次に、ビア用孔32内のデスミア処理及び活性化処理を行って、無電解銅めっき等により絶縁層31上及びビア用孔32内にめっき下地導電層(特に、図示せず)を形成する。さらに、ドライフィルムをラミネートする等の方法で感光層を形成し、パターン露光、現像等の一連のパターニング処理を行って、レジストパターン41及び42を形成する(図3(d)参照)。   Next, a desmear process and an activation process in the via hole 32 are performed, and a plating base conductive layer (not shown) is formed on the insulating layer 31 and in the via hole 32 by electroless copper plating or the like. . Further, a photosensitive layer is formed by a method such as laminating a dry film, and a series of patterning processes such as pattern exposure and development are performed to form resist patterns 41 and 42 (see FIG. 3D).

次に、めっき下地導電層をカソードにして電解銅めっきを行って、所定厚の導体層51及びビア52を形成する(図3(e)参照)。
次に、レジストパターン41及び42を専用の剥離液で剥離し、レジストパターン41及び42の下部にあっためっき下地導電層をフラッシュエッチングにて除去して、一方の面に配線パターン51a及び素子電極51cを、他方の面にパッド電極51bを形成する(図4(f)参照)。
ここで、配線パターン51aの先端部の抵抗体形成領域を素子電極51cと呼ぶ。
Next, electrolytic copper plating is performed using the plating base conductive layer as a cathode to form a conductor layer 51 and a via 52 having a predetermined thickness (see FIG. 3E).
Next, the resist patterns 41 and 42 are stripped with a dedicated stripping solution, and the plating base conductive layer located under the resist patterns 41 and 42 is removed by flash etching. 51c and a pad electrode 51b are formed on the other surface (see FIG. 4F).
Here, the resistor formation region at the tip of the wiring pattern 51a is referred to as a device electrode 51c.

次に、配線パターン51a及び絶縁層31上への触媒付与、活性化処理を行って、無電解めっきにて配線パターン51a及び絶縁層31上にニッケル・リン二元系合金またはニッケル・リン三元系合金被膜からなる抵抗層62を形成する(図4(g)参照)。   Next, a catalyst is applied and activated on the wiring pattern 51a and the insulating layer 31, and nickel / phosphorus binary alloy or nickel / phosphorus ternary is formed on the wiring pattern 51a and insulating layer 31 by electroless plating. A resistance layer 62 made of a system alloy film is formed (see FIG. 4G).

次に、抵抗層62上にドライフィルムをラミネートする等の方法で感光層45を形成し(図4(h)参照)、パターン露光、現像等の一連のパターニング処理を行って、レジストパターン45aを形成する(図4(i)参照)。   Next, a photosensitive layer 45 is formed on the resistance layer 62 by a method such as laminating a dry film (see FIG. 4H), and a series of patterning processes such as pattern exposure and development are performed to form a resist pattern 45a. It forms (refer FIG.4 (i)).

次に、レジストパターン45aをマスクにして、抵抗層62をエッチングで除去する。抵抗層62のエッチング液はレジストパターン45aが耐えるように、酸性系のニッケルエッチング液が望ましい。
さらに、レジストパターン45a及びレジスト44を専用の剥離液で剥離処理して、配線パターン51aの先端部の素子電極51c間に抵抗体62aが形成された抵抗素子60を作製し、配線基板の一方の面に配線パターン51a及び抵抗素子60が、他方の面にパッド電極51bが形成された4層の受動素子内蔵配線基板200を得る(図2(j)参照)。
ここでは、受動素子内蔵配線基板の一例として、4層の多層配線基板を例にして説明したが、配線基板の配線パターンの層数に限定されるものではない。
Next, the resistance layer 62 is removed by etching using the resist pattern 45a as a mask. The etching solution for the resistance layer 62 is preferably an acidic nickel etching solution so that the resist pattern 45a can withstand.
Further, the resist pattern 45a and the resist 44 are stripped with a dedicated stripping solution to produce a resistance element 60 in which a resistor 62a is formed between the element electrodes 51c at the tip of the wiring pattern 51a. A four-layer passive element built-in wiring board 200 having a wiring pattern 51a and a resistance element 60 on the surface and a pad electrode 51b on the other surface is obtained (see FIG. 2J).
Here, a four-layer multilayer wiring board has been described as an example of a wiring board with a built-in passive element, but the number of wiring patterns on the wiring board is not limited.

まず、厚さ0.4mm厚のBT(ビスマレイミドトリアジン)樹脂からなる絶縁基材11の両面に18μm厚の銅箔を積層した両面銅張り積層板を用い、銅箔表面を150g/Lの過硫酸アンモニウム水溶液と10vol%の硫酸水溶液で処理し、水洗、乾燥を行った。次に、ネガ型ドライフィルムレジスト(RY−3215:日立化成工業製)をラミネートして感光層を形成し、フォトマスクにてパターン露光を行い、30℃の1%炭酸ナトリウム水溶液からなる現像液を用いて現像処理してレジストパターンを形成した。さらに、レジストパターンをマスクにして銅箔を塩化第二鉄液(45℃、比重1.4)にてエッチングし、レジストパターンを剥離液(3%水酸化ナトリウム水溶液、40℃)にて剥離し、配線パターン21a及び21bを形成し、両面配線板10を作製した(図1(a)参照)。   First, a double-sided copper-clad laminate in which 18 μm-thick copper foil is laminated on both sides of an insulating base material 11 made of BT (bismaleimide triazine) resin having a thickness of 0.4 mm is used. The mixture was treated with an aqueous ammonium sulfate solution and a 10 vol% sulfuric acid aqueous solution, washed with water and dried. Next, a negative dry film resist (RY-3215: manufactured by Hitachi Chemical Co., Ltd.) is laminated to form a photosensitive layer, pattern exposure is performed with a photomask, and a developer composed of a 1% aqueous sodium carbonate solution at 30 ° C. A resist pattern was formed by developing the resist pattern. Furthermore, using the resist pattern as a mask, the copper foil is etched with ferric chloride solution (45 ° C., specific gravity 1.4), and the resist pattern is peeled off with a stripping solution (3% sodium hydroxide aqueous solution, 40 ° C.). Patterns 21a and 21b were formed to produce a double-sided wiring board 10 (see FIG. 1A).

次に、両面配線板10の両面にエポキシ系の絶縁樹脂シートを真空加圧ラミネートし、絶縁層31を形成した(図1(b)参照)。
次に、レーザー加工により孔明け加工して、絶縁層31の所定位置にビア用孔32を形成し、ビア用孔32内のデスミア処理及び活性化処理を行って、無電解銅めっきにより絶縁層31上及びビア用孔32内にめっき下地導電層(特に、図示せず)を形成した(図1(c)参照)。
Next, an epoxy insulating resin sheet was vacuum-pressurized and laminated on both sides of the double-sided wiring board 10 to form an insulating layer 31 (see FIG. 1B).
Next, drilling is performed by laser processing to form a via hole 32 at a predetermined position of the insulating layer 31, and a desmear process and an activation process in the via hole 32 are performed, and an insulating layer is formed by electroless copper plating. A plating base conductive layer (not shown) was formed on 31 and in via hole 32 (see FIG. 1C).

次に、ネガ型ドライフィルムレジスト(RY−3215:日立化成工業製)をラミネートして感光層を形成し、フォトマスクを通してパターン露光を行い、30℃の1%炭酸ナトリウム水溶液からなる現像液を用いて現像処理してレジストパターン41及び42を形成した(図1(d)参照)。   Next, a negative dry film resist (RY-3215: manufactured by Hitachi Chemical Co., Ltd.) is laminated to form a photosensitive layer, pattern exposure is performed through a photomask, and a developer composed of a 1% sodium carbonate aqueous solution at 30 ° C. is used. Then, development processing was performed to form resist patterns 41 and 42 (see FIG. 1D).

次に、めっき下地導電層をカソードにして、電解銅めっきを行って、15μm厚の導体層51及びビア52を形成した(図1(e)参照)。   Next, electrolytic copper plating was performed using the plating base conductive layer as a cathode to form a conductor layer 51 and a via 52 having a thickness of 15 μm (see FIG. 1E).

次に、レジストパターン41及び42を専用の剥離液で剥離し、レジストパターン41及び42の下部にあっためっき下地導電層をフラッシュエッチングにて除去して、一方の面に配線パターン51a及び素子電極51cを、他方の面にパッド電極51bを形成した(図2(f)参照)。   Next, the resist patterns 41 and 42 are stripped with a dedicated stripping solution, and the plating base conductive layer under the resist patterns 41 and 42 is removed by flash etching, and the wiring pattern 51a and the element electrode are formed on one surface. 51c and pad electrode 51b were formed on the other surface (see FIG. 2 (f)).

次に、ネガ型ドライフィルムレジスト(RY−3215:日立化成工業製)をラミネートして感光層43を形成した(図2(g)参照)。
さらに、パターン露光、現像等の一連のパターニング処理を行って、感光層43の所定位置に開口部(抵抗体形成領域)43bが形成されたレジストパターン43a及びレジスト43cを形成した(図2(h)参照)。
Next, a negative dry film resist (RY-3215: manufactured by Hitachi Chemical Co., Ltd.) was laminated to form a photosensitive layer 43 (see FIG. 2G).
Further, a series of patterning processes such as pattern exposure and development are performed to form a resist pattern 43a and a resist 43c in which an opening (resistor forming region) 43b is formed at a predetermined position of the photosensitive layer 43 (FIG. 2 (h) )reference).

次に、レジストパターン43a上及び開口部(抵抗体形成領域)43b内をPd-Snコロイド溶液(OPC80キャタリスト:奥野製薬工業製)でPd触媒を付与し、活性化剤(OPC555アクセレーターM:奥野製薬工業製)を用いて活性化処理した。さらに、無電解ニッケル・リン合金めっき液(トップニコロンNAC:奥野製薬工業製)にてレジストパターン43a上及び開口部(抵抗体形成領域)43b内に無電解めっきして、0.3μm厚のニッケル・リン二元系合金被膜からなる抵抗層61を形成した(図2(i)参照)。   Next, a Pd catalyst is applied on the resist pattern 43a and in the opening (resistor formation region) 43b with a Pd—Sn colloid solution (OPC80 catalyst: manufactured by Okuno Pharmaceutical Co., Ltd.), and an activator (OPC555 accelerator M: It was activated using Okuno Seiyaku Kogyo). Furthermore, electroless plating is performed on the resist pattern 43a and in the opening (resistor forming region) 43b with an electroless nickel / phosphorus alloy plating solution (Top Nicolon NAC: manufactured by Okuno Pharmaceutical Co., Ltd.). A resistance layer 61 made of a nickel-phosphorus binary alloy film was formed (see FIG. 2 (i)).

次に、レジストパターン43a及び43cを40℃に加熱した3%水酸化ナトリウム水溶液で剥離し、配線パターン51aの先端部の素子電極51c間に抵抗体61aが形成された抵抗素子60を作製し、配線基板の一方の面に配線パターン51a及び抵抗素子60が、他方の面にパッド電極51bが形成された4層の受動素子内蔵配線基板100を得た(図2(j)参照)。   Next, the resist patterns 43a and 43c are peeled off with a 3% aqueous sodium hydroxide solution heated to 40 ° C. to produce a resistance element 60 in which a resistor 61a is formed between the element electrodes 51c at the tip of the wiring pattern 51a. A four-layer passive element built-in wiring board 100 having a wiring pattern 51a and a resistance element 60 formed on one surface of the wiring board and a pad electrode 51b formed on the other surface was obtained (see FIG. 2J).

まず、厚さ0.4mm厚のBT(ビスマレイミドトリアジン)樹脂からなる絶縁基材11の両面に18μm厚の銅箔を積層した両面銅張り積層板を用い、銅箔表面を150g/Lの過硫酸アンモニウム水溶液と10vol%の硫酸水溶液で処理し、水洗、乾燥を行った。次に、ネガ型ドライフィルムレジスト(RY−3215:日立化成工業製)をラミネートして感光層を形成し、フォトマスクにてパターン露光を行い、30℃の1%炭酸ナトリウム水溶液からなる現像液を用いて現像処理してレジストパターンを形成した。さらに、レジストパターンをマスクにして銅箔を塩化第二鉄液(45℃、比重1.4)にてエッチングし、レジストパターンを剥離液(3%水酸化ナトリウム水溶液、40℃)にて剥離し、配線パターン21a及び21bを形成し、両面配線板10を作製した(図3(a)参照)。   First, a double-sided copper-clad laminate in which 18 μm-thick copper foil is laminated on both sides of an insulating base material 11 made of BT (bismaleimide triazine) resin having a thickness of 0.4 mm is used. The mixture was treated with an aqueous ammonium sulfate solution and a 10 vol% sulfuric acid aqueous solution, washed with water and dried. Next, a negative dry film resist (RY-3215: manufactured by Hitachi Chemical Co., Ltd.) is laminated to form a photosensitive layer, pattern exposure is performed with a photomask, and a developer composed of a 1% aqueous sodium carbonate solution at 30 ° C. A resist pattern was formed by developing the resist pattern. Furthermore, using the resist pattern as a mask, the copper foil is etched with ferric chloride solution (45 ° C., specific gravity 1.4), and the resist pattern is peeled off with a stripping solution (3% sodium hydroxide aqueous solution, 40 ° C.). Patterns 21a and 21b were formed to produce a double-sided wiring board 10 (see FIG. 3A).

次に、両面配線板10の両面にエポキシ系の絶縁樹脂シートを真空加圧ラミネートし、絶縁層31を形成した(図3(b)参照)。
次に、レーザー加工により孔明け加工して、絶縁層31の所定位置にビア用孔32を形成し、ビア用孔32内のデスミア処理及び活性化処理を行って、無電解銅めっきにより絶縁層31上及びビア用孔32内にめっき下地導電層(特に、図示せず)を形成した(図3(c)参照)。
Next, an epoxy insulating resin sheet was vacuum-pressurized and laminated on both surfaces of the double-sided wiring board 10 to form an insulating layer 31 (see FIG. 3B).
Next, drilling is performed by laser processing to form a via hole 32 at a predetermined position of the insulating layer 31, and a desmear process and an activation process in the via hole 32 are performed, and an insulating layer is formed by electroless copper plating. A plating base conductive layer (not shown) was formed on 31 and in the via hole 32 (see FIG. 3C).

次に、ネガ型ドライフィルムレジスト(RY−3215:日立化成工業製)をラミネートして感光層を形成し、フォトマスクを通してパターン露光を行い、30℃の1%炭酸ナトリウム水溶液からなる現像液を用いて現像処理してレジストパターン41及び42を形
成した(図3(d)参照)。
Next, a negative dry film resist (RY-3215: manufactured by Hitachi Chemical Co., Ltd.) is laminated to form a photosensitive layer, pattern exposure is performed through a photomask, and a developer composed of a 1% sodium carbonate aqueous solution at 30 ° C. is used. Then, development processing was performed to form resist patterns 41 and 42 (see FIG. 3D).

次に、めっき下地導電層をカソードにして、電解銅めっきを行って、15μm厚の導体層51及びビア52を形成した(図3(e)参照)。   Next, electrolytic copper plating was performed using the plating base conductive layer as a cathode to form a conductor layer 51 and a via 52 having a thickness of 15 μm (see FIG. 3E).

次に、レジストパターン41及び42を専用の剥離液で剥離し、レジストパターン41及び42の下部にあっためっき下地導電層をフラッシュエッチングにて除去して、一方の面に配線パターン51a及び素子電極51cを、他方の面にパッド電極51bを形成した(図4(f)参照)。   Next, the resist patterns 41 and 42 are stripped with a dedicated stripping solution, and the plating base conductive layer under the resist patterns 41 and 42 is removed by flash etching, and the wiring pattern 51a and the element electrode are formed on one surface. 51c and pad electrode 51b were formed on the other surface (see FIG. 4F).

次に、配線パターン51a及び絶縁層31上をンディショニングクリーナー(OPC−380コンディクリーンM:奥野製薬工業製)で洗浄し、Pd-Snコロイド溶液(OPC−80キャタリスト:奥野製薬工業製)でPd触媒を付与し、活性化剤(OPC−555アクセレーターM:奥野製薬工業製)を用いて活性化処理した。
さらに、無電解ニッケル・リン合金めっき液(トップニコロンNAC:奥野製薬工業製)にて配線パターン51a及び絶縁層31上に無電解めっきして、0.3μm厚のニッケル・リン二元系合金被膜からなる抵抗層62を形成した(図4(g)参照)。
Next, the wiring pattern 51a and the insulating layer 31 are washed with a conditioning cleaner (OPC-380 Condy Clean M: manufactured by Okuno Pharmaceutical Co., Ltd.), and with a Pd-Sn colloid solution (OPC-80 catalyst: manufactured by Okuno Pharmaceutical Co., Ltd.). A Pd catalyst was applied, and activation treatment was performed using an activator (OPC-555 accelerator M: manufactured by Okuno Pharmaceutical Co., Ltd.).
Further, the electroless nickel / phosphorus alloy plating solution (Top Nicolon NAC: manufactured by Okuno Pharmaceutical Co., Ltd.) is electrolessly plated on the wiring pattern 51a and the insulating layer 31 to form a 0.3 μm thick nickel / phosphorus binary alloy. A resistance layer 62 made of a film was formed (see FIG. 4G).

次に、抵抗層62上にネガ型ドライフィルムレジスト(RY−3215:日立化成工業製)をラミネートして感光層45を形成した(図4(h)参照)。
さらに、パターン露光、現像等の一連のパターニング処理を行って、レジストパターン45aを形成した(図2(h)参照)。
Next, a negative dry film resist (RY-3215: manufactured by Hitachi Chemical Co., Ltd.) was laminated on the resistance layer 62 to form a photosensitive layer 45 (see FIG. 4H).
Further, a series of patterning processes such as pattern exposure and development were performed to form a resist pattern 45a (see FIG. 2H).

次に、レジストパターン45aをマスクにして、抵抗層62を酸性系のニッケルエッチング液にてエッチングした。
さらに、レジストパターン45a及びレジスト44を40℃に加熱した3%水酸化ナトリウム水溶液で剥離処理して、配線パターン51aの先端部の素子電極51c間に抵抗体62aが形成された抵抗素子60を作製し、配線基板の一方の面に配線パターン51a及び抵抗素子60が、他方の面にパッド電極51bが形成された4層の受動素子内蔵配線基板200を得た(図2(j)参照)。
Next, using the resist pattern 45a as a mask, the resistance layer 62 was etched with an acidic nickel etching solution.
Further, the resist pattern 45a and the resist 44 are stripped with a 3% aqueous sodium hydroxide solution heated to 40 ° C. to produce a resistance element 60 in which a resistor 62a is formed between the element electrodes 51c at the tip of the wiring pattern 51a. As a result, a four-layer passive element built-in wiring substrate 200 in which the wiring pattern 51a and the resistance element 60 were formed on one surface of the wiring substrate and the pad electrode 51b was formed on the other surface was obtained (see FIG. 2 (j)).

(a)〜(e)は、受動素子内蔵配線基板100の本発明の製造方法における工程の一部を示す説明図である。(A)-(e) is explanatory drawing which shows a part of process in the manufacturing method of this invention of the wiring board 100 with a built-in passive element. (f)〜(j)は、受動素子内蔵配線基板100の本発明の製造方法における工程の一部を示す説明図である。(F)-(j) is explanatory drawing which shows a part of process in the manufacturing method of this invention of the wiring board 100 with a built-in passive element. (a)〜(e)は、受動素子内蔵配線基板200の本発明の製造方法における工程の一部を示す説明図である。(A)-(e) is explanatory drawing which shows a part of process in the manufacturing method of this invention of the wiring board 200 with a built-in passive element. (f)〜(j)は、受動素子内蔵配線基板200の本発明の製造方法における工程の一部を示す説明図である。(F)-(j) is explanatory drawing which shows a part of process in the manufacturing method of this invention of the wiring board 200 with a built-in passive element.

符号の説明Explanation of symbols

10……両面配線基板
11……絶縁基材
21a、21b……配線パターン
31……絶縁層
32……ビア用孔
41、42、43a、45a……レジストパターン
43……感光層
43b……開口部(抵抗体形成領域)
43c、44……レジスト
51……導体層
52……ビア
51a……配線パターン
51b……パッド電極
51c……素子電極
60……抵抗素子
61、62……抵抗層
61a、62a……抵抗体
100、200……受動素子内蔵配線基板
10 ... Double-sided wiring board 11 ... Insulating base material 21a, 21b ... Wiring pattern 31 ... Insulating layer 32 ... Via hole 41, 42, 43a, 45a ... Resist pattern 43 ... Photosensitive layer 43b ... Opening Part (resistor formation region)
43c, 44 ... resist 51 ... conductor layer 52 ... via 51a ... wiring pattern 51b ... pad electrode 51c ... element electrode 60 ... resistance elements 61, 62 ... resistance layers 61a, 62a ... resistance element 100 200 …… Wiring board with built-in passive element

Claims (4)

受動素子として、抵抗体と素子電極からなる抵抗素子を内蔵する多層プリント配線板の製造方法において、少なくとも以下の(a)〜()の工程を具備することを特徴とする受動素子内蔵プリント配線板の製造方法。
(a)絶縁基材の両面に配線パターンを形成し、両面配線板を作製する工程。
(b)前記両面配線板の両面に絶縁層を形成する工程。
(c)前記絶縁層にビア用孔を形成する工程。
(d)前記絶縁層及びビア用孔内にめっき下地導電層を形成し、さらにレジストパターンを形成する工程。
(e)前記めっき下地導電層をカソードにして電解銅めっきを行い、導体層及びビアを形成する工程。
(f)前記レジストパターンを剥離し、さらに該レジストパターン下部の前記めっき下地導電層を除去し、一方の面に配線パターン及び素子電極を形成し、他方の面にパッド電極を形成する工程。
(g)前記配線パターン及び前記絶縁層上に感光層を形成し、さら前記パッド電極及び前記絶縁層上に感光層を形成する工程。
(h)前記工程より得られた配線パターン及び絶縁層上に形成した前記感光層に開口部を有するレジストパターンを形成し、前記工程より得られたパッド電極及び絶縁層上に形成した前記感光層にレジストを形成する工程。
(i)前記レジストパターン上及び前記開口部内に抵抗層を形成する工程。
(j)前記レジストパターン及び前記レジストを剥離し、一方の面の前記素子電極間に抵抗体が形成された抵抗素子を形成し、他方の面にパッド電極を形成する工程。
In the manufacturing method of the multilayer printed wiring board which incorporates the resistive element which consists of a resistor and an element electrode as a passive element, it comprises at least the following processes (a)-( j ), The passive element built-in printed wiring characterized by the above-mentioned A manufacturing method of a board.
(A) A step of forming a double-sided wiring board by forming a wiring pattern on both sides of an insulating substrate.
(B) A step of forming insulating layers on both sides of the double-sided wiring board.
(C) A step of forming a via hole in the insulating layer.
(D) A step of forming a plating base conductive layer in the insulating layer and the via hole, and further forming a resist pattern.
(E) A step of forming a conductor layer and a via by performing electrolytic copper plating using the plating base conductive layer as a cathode.
(F) A step of removing the resist pattern, further removing the plating base conductive layer below the resist pattern, forming a wiring pattern and an element electrode on one surface, and forming a pad electrode on the other surface.
(G) forming a photosensitive layer on the wiring pattern and the insulating layer, and further forming a photosensitive layer on the pad electrode and the insulating layer;
(H) The photosensitive layer formed on the pad electrode and the insulating layer obtained by forming the resist pattern having an opening in the photosensitive layer formed on the wiring pattern and the insulating layer obtained by the step. Forming a resist on the substrate.
(I) A step of forming a resistance layer on the resist pattern and in the opening.
(J) A step of peeling the resist pattern and the resist, forming a resistance element in which a resistor is formed between the element electrodes on one surface, and forming a pad electrode on the other surface.
受動素子として、抵抗体と素子電極からなる抵抗素子を内蔵する多層プリント配線板の製造方法において、少なくとも以下の(a)〜()の工程を具備することを特徴とする受動素子内蔵プリント配線板の製造方法。
(a)絶縁基材の両面に配線パターンを形成し、両面配線板を作製する工程。
(b)前記両面配線板の両面に絶縁層を形成する工程。
(c)前記絶縁層にビア用孔を形成する工程。
(d)前記絶縁層上及びビア用孔内にめっき下地導電層を形成し、さらにレジストパターンを形成する工程。
(e)前記めっき下地導電層をカソードにして電解銅めっきを行い、導体層及びビアを形成する工程。
(f)前記レジストパターンを剥離し、さらに該レジストパターン下部の前記めっき下地導電層を除去し、一方の面に配線パターン及び素子電極を形成し、他方の面にパッド電極を形成する工程。
(g)前記配線パターン及び前記絶縁層上に抵抗層を形成し、さらに前記パッド電極及び前記絶縁層上にレジストを形成する工程。
(h)前記抵抗層上に感光層を形成する工程。
(i)前記感光層にレジストパターンを形成する工程。
(j)前記レジストパターンをマスクにして前記抵抗層を除去し、さらに、該レジストパターン及び前記レジストを剥離し、一方の面の前記素子電極間に抵抗体が形成された抵抗素子を形成し、他方の面にパッド電極を形成する工程。
In the manufacturing method of the multilayer printed wiring board which incorporates the resistive element which consists of a resistor and an element electrode as a passive element, it comprises at least the following processes (a)-( j ), The passive element built-in printed wiring characterized by the above-mentioned A manufacturing method of a board.
(A) A step of forming a double-sided wiring board by forming a wiring pattern on both sides of an insulating substrate.
(B) A step of forming insulating layers on both sides of the double-sided wiring board.
(C) A step of forming a via hole in the insulating layer.
(D) A step of forming a plating base conductive layer on the insulating layer and in the via hole, and further forming a resist pattern.
(E) A step of forming a conductor layer and a via by performing electrolytic copper plating using the plating base conductive layer as a cathode.
(F) A step of removing the resist pattern, further removing the plating base conductive layer below the resist pattern, forming a wiring pattern and an element electrode on one surface, and forming a pad electrode on the other surface.
(G) forming a resistance layer on the wiring pattern and the insulating layer, and further forming a resist on the pad electrode and the insulating layer;
(H) A step of forming a photosensitive layer on the resistance layer.
(I) A step of forming a resist pattern on the photosensitive layer.
(J) removing the resistance layer using the resist pattern as a mask, further peeling the resist pattern and the resist, and forming a resistance element in which a resistor is formed between the element electrodes on one surface; Forming a pad electrode on the other surface;
前記抵抗層はめっきにより形成されることを特徴とする請求項1または2記載の受動素子内蔵プリント配線板の製造方法。   The method for manufacturing a printed wiring board with a built-in passive element according to claim 1, wherein the resistance layer is formed by plating. 前記抵抗層はニッケル・リン二元系合金またはニッケル・リン三元系合金であることを特徴とする請求項1乃至3のいずれか一項に記載の受動素子内蔵プリント配線板の製造方法。   The method for manufacturing a printed wiring board with a built-in passive element according to any one of claims 1 to 3, wherein the resistance layer is a nickel-phosphorus binary alloy or a nickel-phosphorus ternary alloy.
JP2004350802A 2004-12-03 2004-12-03 Method for manufacturing printed wiring board with built-in passive element Expired - Fee Related JP4687084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004350802A JP4687084B2 (en) 2004-12-03 2004-12-03 Method for manufacturing printed wiring board with built-in passive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004350802A JP4687084B2 (en) 2004-12-03 2004-12-03 Method for manufacturing printed wiring board with built-in passive element

Publications (2)

Publication Number Publication Date
JP2006165083A JP2006165083A (en) 2006-06-22
JP4687084B2 true JP4687084B2 (en) 2011-05-25

Family

ID=36666773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004350802A Expired - Fee Related JP4687084B2 (en) 2004-12-03 2004-12-03 Method for manufacturing printed wiring board with built-in passive element

Country Status (1)

Country Link
JP (1) JP4687084B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111295044A (en) * 2018-12-06 2020-06-16 庆鼎精密电子(淮安)有限公司 Method for manufacturing embedded resistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154587A (en) * 1987-12-11 1989-06-16 Nec Corp Manufacture of hybrid integrated circuit
JPH06291258A (en) * 1993-04-07 1994-10-18 Oki Electric Ind Co Ltd Formation of thin-film resistor
JPH10135608A (en) * 1996-10-16 1998-05-22 Macdermid Inc Manufacture of printed wiring board provided with plated resistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154587A (en) * 1987-12-11 1989-06-16 Nec Corp Manufacture of hybrid integrated circuit
JPH06291258A (en) * 1993-04-07 1994-10-18 Oki Electric Ind Co Ltd Formation of thin-film resistor
JPH10135608A (en) * 1996-10-16 1998-05-22 Macdermid Inc Manufacture of printed wiring board provided with plated resistor

Also Published As

Publication number Publication date
JP2006165083A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
JP2004335807A (en) Manufacturing method of wiring circuit substrate
JP2003234572A (en) Method of manufacturing double-sided wiring board
JP4687084B2 (en) Method for manufacturing printed wiring board with built-in passive element
JP2007317904A (en) Resistive element and wiring circuit board with built-in resistive element
JP4705972B2 (en) Printed wiring board and manufacturing method thereof
JP2003008204A (en) Method of manufacturing double-sided printed wiring board
JP4507779B2 (en) Method for manufacturing printed wiring board with built-in resistance element
JP4792761B2 (en) Method for forming resistance element
JP2005240127A (en) Resistance element and printing circuit board
JPH06252529A (en) Manufacture of printed wiring board
JP4676376B2 (en) Circuit board manufacturing method
JP4626282B2 (en) Manufacturing method of resistance element built-in substrate
JP2622848B2 (en) Manufacturing method of printed wiring board
JP4552624B2 (en) Resistor built-in wiring board and manufacturing method thereof
JPH03225894A (en) Manufacture of printed wiring board
JP2003188535A (en) Double-sided flexible wiring board and manufacturing method therefor
JPH0851282A (en) Method for manufacturing multilayer printed wiring board
KR100625883B1 (en) Method for manufacturing dry printed circuit board
JP4645212B2 (en) Wiring circuit board built-in resistance element
JP3648753B2 (en) Wiring board manufacturing method
JP2008140827A (en) Method for manufacturing printed circuit board, and printed circuit board
JPH10335786A (en) Manufacture of high-density printed wiring board
KR20100068787A (en) Printed circuit board and method for fabricating the same
JP2006086269A (en) Method of manufacturing printed wiring board incorporating resistor
JPS5858833B2 (en) High quality pattern

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees