JP4686935B2 - Epoxy resin composition for semiconductor encapsulation and semiconductor device - Google Patents

Epoxy resin composition for semiconductor encapsulation and semiconductor device Download PDF

Info

Publication number
JP4686935B2
JP4686935B2 JP2001249971A JP2001249971A JP4686935B2 JP 4686935 B2 JP4686935 B2 JP 4686935B2 JP 2001249971 A JP2001249971 A JP 2001249971A JP 2001249971 A JP2001249971 A JP 2001249971A JP 4686935 B2 JP4686935 B2 JP 4686935B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
semiconductor
general formula
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001249971A
Other languages
Japanese (ja)
Other versions
JP2003055438A (en
Inventor
典久 星加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001249971A priority Critical patent/JP4686935B2/en
Publication of JP2003055438A publication Critical patent/JP2003055438A/en
Application granted granted Critical
Publication of JP4686935B2 publication Critical patent/JP4686935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体封止用エポキシ樹脂組成物、及びこれを用いた半導体装置に関するものである。
【0002】
【従来の技術】
従来、ダイオード、トランジスタ、集積回路等の半導体装置は、主にエポキシ樹脂組成物で封止されているが、これらのエポキシ樹脂組成物中には、難燃性を付与するために通常、臭素含有有機化合物及び三酸化アンチモン、四酸化アンチモン等のアンチモン化合物が配合されている。
ところが、環境・衛生の点から臭素含有有機化合物及びアンチモン化合物を使用しなくても難燃性に優れたエポキシ樹脂組成物の開発が望まれている。
又半導体装置をプリント回路基板への実装時する際、鉛を含有する半田(スズ−鉛合金)が使用されており、同様に環境・衛生の点から鉛を含有する半田(スズ−鉛合金)を使用しないことが望まれている。鉛を含有する半田(スズ−鉛合金)の融点は183℃で、実装時の半田処理の温度は220〜240℃である。これに対し、スズ−銀合金に代表される鉛を含有しない半田では融点が高く、半田処理時の温度が260℃程度となるため、より高温域での耐半田ストレス性に優れたエポキシ樹脂組成物の開発が望まれている。
又、近年の電子機器の小型化、軽量化、高機能化の市場動向において、半導体素子の高集積化が年々進み、又半導体装置の表面実装化が促進されるなかで、新規にエリア実装型半導体装置が開発され、従来構造の半導体装置から移行し始めている。
エリア実装型半導体装置としてはボールグリッドアレイ(以下、BGAという)、あるいは更に小型化を追求したチップサイズパッケージ(以下、CSPという)等が代表的であるが、これらは従来のQFP、SOPに代表される表面実装型半導体装置では限界に近づいている多ピン化・高速化への要求に対応するために開発されたものである。構造としては、ビスマレイミド・トリアジン樹脂(以下、BT樹脂という)/銅箔回路基板に代表される硬質回路基板、あるいはポリイミド樹脂フィルム/銅箔回路基板に代表されるフレキシブル回路基板等の片面上に半導体素子を搭載し、その半導体素子搭載面、即ち基板の片面のみがエポキシ樹脂組成物等で成形・封止されている。又基板の半導体素子搭載面の反対面には半田ボールを2次元的に並列して形成し、半導体装置を実装する基板との接合を行う特徴を有している。更に、半導体素子を搭載する基板としては、上記有機基板以外にもリードフレーム等の金属基板を用いる構造も考案されている。
【0003】
これらエリア実装型半導体装置を赤外線リフロー、ベーパーフェイズソルダリング、半田浸漬等の手段で半田接合を行う場合、エポキシ樹脂組成物の硬化物並びに有機基板からの吸湿により半導体装置内部に存在する水分が高温で急激に気化することによる応力で半導体装置にクラックが発生したり、基板の半導体素子搭載面とエポキシ樹脂組成物の硬化物との界面で剥離が発生することもあり、硬化物の高強度化、低応力化、低吸湿化とともに、基板との高密着が求められる。
従来のBGAやCSP等のエリア実装型半導体装置には、トリフェノールメタン型エポキシ樹脂とトリフェノールメタン型フェノール樹脂を樹脂成分とするエポキシ樹脂組成物が用いられてきた。このエポキシ樹脂組成物は、Tgが高く、硬化性、熱時曲げ強度に優れた特性を有しているが、硬化物の吸湿率が高く、又エポキシ樹脂組成物の溶融粘度が比較的高く、無機充填材の高充填化には限界があり、低吸湿化が不十分で、耐半田ストレス性には問題があった。
このため、基板との密着性が高く、難燃性、耐半田ストレス性に優れるエポキシ樹脂組成物の開発が望まれている。
【0004】
【発明が解決しようとする課題】
本発明は、密着性、難燃性、耐半田ストレス性に優れる半導体封止用エポキシ樹脂組成物、及びこれを用いた半導体装置を提供するものである。
【0005】
【課題を解決するための手段】
本発明は、
[1](A)一般式(1)で示されるエポキシ樹脂、(B)一般式(2)で示されるフェノール樹脂、(C)全無機物、(D)硬化促進剤、及び(E)ベンゾチアゾール骨格を有する化合物を必須成分とし、全無機物が全エポキシ樹脂組成物中に84〜94重量%であり、ベンゾチアゾール骨格を有する化合物が2−(N,N−ジエチルチオカルバモイルチオ)ベンゾチアゾールで、かつ全エポキシ樹脂組成物中に0.01〜0.1重量%であり、全エポキシ樹脂組成物中の臭素原子及びアンチモン原子がそれぞれ0.05重量%以下であることを特徴とする半導体封止用エポキシ樹脂組成物、
【化5】

Figure 0004686935
(R1、R2は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。aは0〜3の整数、bは0〜4の整数。nは平均値で、1〜5の正数)
【0006】
【化6】
Figure 0004686935
(R1、R2は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。aは0〜3の整数、bは0〜4の整数。nは平均値で、1〜5の正数)
【0007】
[2]一般式(1)で示されるエポキシ樹脂が、式(3)で示されるエポキシ樹脂である第[1]項記載の半導体封止用エポキシ樹脂組成物、
【化7】
Figure 0004686935
(nは平均値で、1〜5の正数)
【0008】
[3]一般式(2)で示されるフェノール樹脂が、式(4)で示されるエポキシ樹脂である第[1]項又は第[2]項記載の半導体封止用エポキシ樹脂組成物、
【化8】
Figure 0004686935
(nは平均値で、1〜5の正数)
[4]第[1]〜[3]項のいずれかに記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、である。
【0009】
【発明の実施の形態】
本発明で用いられる一般式(1)で示されるエポキシ樹脂は、エポキシ基間に疎水性で剛直なビフェニル骨格を有しており、これを用いたエポキシ樹脂組成物の硬化物は吸湿率が低く、ガラス転移温度(以下、Tgという)を越えた高温域での弾性率が低く、半導体素子、有機基板、及び金属基板との密着性に優れる。又架橋密度が低い割には耐熱性が高いという特徴を有している。従って、このエポキシ樹脂を用いた樹脂組成物で封止された半導体装置は、耐半田ストレス性に優れる。
一般式(1)中のnは平均値で、好ましくは1〜5の正数、特に好ましくは1〜3である。nが1未満だとエポキシ樹脂組成物の硬化性が低下するので好ましくない。nが5を越えると、粘度が高くなりエポキシ樹脂組成物の流動性が低下するので好ましくない。一般式(1)で示されるエポキシ樹脂は、1種類を単独で用いても2種類以上を併用してもよい。
一般式(1)で示されるエポキシ樹脂の内では、式(3)で示されるエポキシ樹脂が特に好ましい。
一般式(1)で示されるエポキシ樹脂の本来の特性を損なわない範囲で、他のエポキシ樹脂を併用してもよい。併用する場合は、分子中にエポキシ基を有するモノマー、オリゴマー、ポリマー全般で、極力低粘度のものを使用することが望ましく、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂(フェニレン骨格を有する)、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
一般式(1)で示されるエポキシ樹脂の使用量は、これを調節することにより、耐半田ストレス性を最大限に引き出すことができる。耐半田ストレス性の効果を引き出すためには、一般式(1)で示されるエポキシ樹脂を全エポキシ樹脂中に30重量%以上含むことが好ましく、特に50重量%以上が好ましい。30重量%未満だと、耐半田ストレス性が不十分となる可能性がある。
【0010】
本発明で用いられる一般式(2)で示されるフェノール樹脂は、フェノール性水酸基間に疎水性で剛直なビフェニル骨格を有しており、これを用いたエポキシ樹脂組成物の硬化物は吸湿率が低く、Tgを越えた高温域での弾性率が低く、半導体素子、有機基板、及び金属基板との密着性に優れる。又架橋密度が低い割には耐熱性が高いという特徴を有している。従って、このフェノール樹脂を用いた樹脂組成で封止された半導体装置は、耐半田ストレス性に優れる。
一般式(2)中のnは平均値で、好ましくは1〜5の正数、特に好ましくは1〜3である。nが1未満だとエポキシ樹脂組成物の硬化性が低下するので好ましくない。nが5を越えると、粘度が高くなりエポキシ樹脂組成物の流動性が低下するので好ましくない。一般式(2)で示されるフェノール樹脂は、1種類を単独で用いても2種類以上を併用してもよい。
一般式(2)で示されるフェノール樹脂の内では、式(4)で示されるフェノール樹脂が特に好ましい。
本発明で用いられる一般式(2)で示されるフェノール樹脂の特性を損なわない範囲で他のフェノール樹脂を併用してもよい。併用する場合は、分子中にフェノール性水酸基を有するモノマー、オリゴマー、ポリマー全般で、極力低粘度のものを使用することが望ましく、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂(フェニレン骨格を有する)、ナフトールアラルキル樹脂、トリフェノールメタン樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
一般式(2)で示されるフェノール樹脂の使用量は、これを調節することにより、耐半田ストレス性を最大限に引き出すことができる。耐半田ストレス性の効果を引き出すためには、一般式(2)で示されるフェノール樹脂を、全フェノール樹脂中に30重量%以上含むことが好ましく、特に50重量%以上が好ましい。30重量%未満だと、耐半田ストレス性が不十分となる可能性がある。
全エポキシ樹脂のエポキシ基と全フェノール樹脂のフェノール性水酸基の当量比としては、好ましくは0.5〜2であり、特に0.7〜1.5がより好ましい。0.5〜2の範囲を外れると、耐湿性、硬化性等が低下する可能性がある。
【0011】
本発明で用いられる全無機物とは、一般に封止材料に用いられている無機充填材と、必要に応じて添加される難燃剤としてのアンチモン化合物、無機イオン交換体等の無機物とを加算したものである。
本発明で用いる無機充填材の種類については特に限定しないが、例えば、溶融破砕シリカ、溶融球状シリカ、結晶シリカ、2次凝集シリカ、アルミナ、チタンホワイト、水酸化アルミニウム等が挙げられ、特に溶融球状シリカが好ましい。溶融球状シリカの形状としては、流動性改善のために限りなく真球状であり、かつ粒度分布がブロードであることが好ましい。
全無機物の含有量としては、全エポキシ樹脂組成物中に84〜94重量%が好ましい。84重量%未満だと、エポキシ樹脂組成物の硬化物の低吸湿性が得られず耐半田ストレス性が不十分となり、又臭素化オルソクレゾールノボラック型エポキシ樹脂、臭素化ビスA型エポキシ樹脂等の臭素含有有機化合物及び三酸化アンチモン、四酸化アンチモン等のアンチモン化合物等の難燃剤を添加しないと難燃性が不足し好ましくない。94重量%を越えると、エポキシ樹脂組成物の流動性が低下し、成形時に充填不良等が生じたり、高粘度化による半導体装置内の金線変形等の不都合が生じるおそれがあるので好ましくない。
【0012】
本発明において、全エポキシ樹脂組成物中の臭素原子及びアンチモン原子は、それぞれ0.05重量%以下が好ましい。これは意図してこれらの元素を含む難燃剤を添加しない場合であっても、原料や製造段階において混入するレベルを0ppmにすることは経済上の理由から困難であるため現実的な指標として定めるもので、従って0ppmであっても0ppbであっても本発明の機能は有効である。
本発明に用いる無機充填材は、予め十分に混合しておくことが好ましい。又必要に応じて無機充填材をカップリング剤やエポキシ樹脂あるいはフェノール樹脂で予め処理して用いてもよく、処理の方法としては、溶剤を用いて混合した後に溶媒を除去する方法や直接無機充填材に添加し、混合機を用いて処理する方法等がある。
【0013】
本発明で用いられる硬化促進剤としては、エポキシ基とフェノール性水酸基の反応を促進するものであれば特に限定しないが、例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体、トリブチルアミン、ベンジルジメチルアミン等のアミン系化合物、2−メチルイミダゾール等のイミダゾール化合物、トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・テトラ安息香酸ボレート、テトラフェニルホスホニウム・テトラナフトイックアシッドボレート、テトラフェニルホスホニウム・テトラナフトイルオキシボレート、テトラフェニルホスホニウム・テトラナフチルオキシボレート等のテトラ置換ホスホニウム・テトラ置換ボレート等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
【0014】
本発明で用いられるベンゾチアゾール骨格を有する化合物は、これを用いたエポキシ樹脂組成物の硬化物とBT樹脂/銅箔回路基板に代表される硬質回路基板、ポリイミド樹脂フィルム/銅箔回路基板に代表されるフレキシブル回路基板、又はリードフレーム等の金属基板との界面での親和性向上や化学結合形成による界面での接着性向上に効果がある。又、難燃性を有している。
ベンゾチアゾール骨格を有する化合物の融点としては、70〜120℃が好ましい。70℃未満だと、常温で液状又は半固形状であり作業性に劣るので好ましくない。120℃を越えると、溶融混練時に十分融解せず均一分散できないので成形性及び硬化性が低下し、不均一な成形品となり、強度が各部分によって異なるために半導体装置の性能が低下するので好ましくない。
本発明におけるベンゾチアゾール骨格を有する化合物の融点は、示差走査熱量計(セイコー電子工業(株)・製)を用いて、常温から昇温速度5℃/分で昇温したときの融解ピークの頂点の温度を示す。
融点が70〜120℃であるベンゾチアゾール骨格を有する化合物としては、特に限定しないが、入手のし易さ、性能、原料価格等の点から、2−(N,N−ジエチルチオカルバモイルチオ)ベンゾチアゾールが特に好ましい。
更に、半導体装置の長期信頼性の点から、不純物として含有される塩素イオン、ナトリウムイオン、その他のフリーのイオンは、極力少ないことが望ましい。
ベンゾチアゾール骨格を有する化合物の配合量としては、全エポキシ樹脂組成物中に0.01〜0.1重量%が好ましい。0.01重量%未満だと、難燃性、耐半田ストレス性が不十分となるので好ましくない。0.1重量%を越えると、樹脂組成物の硬化性が低下し、耐半田ストレス性が不十分となるので好ましくない。
【0015】
本発明のエポキシ樹脂組成物は、(A)〜(E)成分の他、必要に応じてγ−グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック、ベンガラ等の着色剤、シリコーンオイル、シリコーンゴム等の低応力化成分、天然ワックス、合成ワックス、高級脂肪酸及びその金属塩類もしくはパラフィン等の離型剤、酸化防止剤等の各種添加剤を適宜配合しても差し支えない。
本発明のエポキシ樹脂組成物は、(A)〜(E)成分、及びその他の添加剤等をミキサーを用いて常温混合し、ロール、ニーダー、押出機等の混練機で溶融混練し、冷却後粉砕して得られる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で硬化成形すればよい。
【0016】
【実施例】
以下に、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。配合割合は重量部とする。
Figure 0004686935
を常温でミキサーを用いて混合し、70〜120℃で2軸ロールを用いて混練し、冷却後粉砕してエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を以下の方法で評価した。結果を表1に示す。
【0017】
評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用い、金型温度175℃、注入圧力7.4MPa、硬化時間120秒で測定した。単位はcm。
硬化トルク:キュラストメータ((株)オリエンテック・製、JSRキュラストメータIVPS型)を用いて、金型温度175℃、加熱開始90秒後のトルクを求めた。キュラストメータにおけるトルクは硬化性のパラメータであり、数値の大きい方が硬化性が良好である。単位はN・m。
吸湿率:トランスファー成形機を用いて、金型温度175℃、注入圧力7.4MPa、硬化時間120秒で直径50mm、厚さ3mmの成形品を成形し、ポストキュアとして175℃で8時間処理した後、得られた成形品を30℃、相対湿度60%の環境下で696時間放置し、重量変化を測定して吸湿率を求めた。単位は%。
難燃性:トランスファー成形機を用いて、金型温度175℃、注入圧力7.4MPa、硬化時間120秒で長さ127mm、幅12.7mm、厚さ1.6mmの成形品を成形し、UL−94に準じて難燃性試験を行った。
密着性:42合金フレーム、42合金フレームの表面にポリメチルメタクリレート・ソルダーレジストを塗布したもの(以下、PMMAという)、又は42合金フレームの表面にAgメッキしたもの(以下、Agメッキという)の上に、2mm×2mm×2mmのテストピースを、トランスファー成形機を用いて、金型温度175℃、注入圧力7.4MPa、硬化時間60秒で成形し、ポストキュアとして175℃で8時間処理した後、30℃、相対湿度60%の環境下で696時間処理した後、IRリフロー処理(260℃)を行った。自動せん断強度測定装置(DAGE社・製、PC2400)を用いて、エポキシ樹脂組成物の硬化物とフレームとのせん断強度を測定した。単位はN/mm2
耐半田ストレス性:トランスファー成形機を用いて、金型温度175℃、注入圧力7.4MPa、硬化時間60秒で225pBGA(基板は厚さ0.36mmのBT樹脂/ガラスクロス基板、パッケージサイズは24mm×24mm、厚さ1.17mm、シリコンチップはサイズ9mm×9mm、厚さ0.35mm、チップと回路基板のボンディングパッドとを25μm径の金線でボンディングしている)を成形した。ポストキュアとして175℃で8時間処理したパッケージ8個を、30℃、相対湿度60%の環境下で696時間処理した後、IRリフロー処理(260℃)を行った。処理後の内部の剥離又はクラックの有無を超音波探傷機で観察し、不良パッケージの個数を数えた。不良パッケージの個数がn個であるとき、n/8と表示する。
臭素原子、アンチモン原子含有量:圧力5.9MPaで直径40mm、厚さ5〜7mmに圧縮成形し、得られた成形品を蛍光X線分析装置を用いて、全エポキシ樹脂組成物中の臭素原子、アンチモン原子の含有量を定量した。単位は重量%。
【0018】
実施例2、比較例1〜7
表1の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を得て、実施例1と同様にして評価した。結果を表1に示す。
比較例5、6ではフェノールアラルキル樹脂(三井化学(株)・製XL−225、軟化点75℃、水酸基当量174)を用いた。
比較例7ではジベンゾチアジルジスルフィド(融点173℃)を用いた。
【0019】
【表1】
Figure 0004686935
【0020】
【発明の効果】
本発明に従うと、良好な密着性を有するエポキシ樹脂組成物が得られ、これを用いた半導体装置は臭素含有有機化合物、アンチモン化合物を含まなくとも難燃性、耐半田ストレス性に優れている。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device using the same.
[0002]
[Prior art]
Conventionally, semiconductor devices such as diodes, transistors, and integrated circuits are mainly sealed with an epoxy resin composition, but these epoxy resin compositions usually contain bromine in order to impart flame retardancy. Organic compounds and antimony compounds such as antimony trioxide and antimony tetraoxide are blended.
However, development of an epoxy resin composition excellent in flame retardancy without using bromine-containing organic compounds and antimony compounds is desired from the viewpoint of environment and hygiene.
In addition, when semiconductor devices are mounted on printed circuit boards, lead-containing solder (tin-lead alloy) is used. Similarly, lead-containing solder (tin-lead alloy) is used from the viewpoint of environment and hygiene. It is desired not to use. The melting point of the lead-containing solder (tin-lead alloy) is 183 ° C., and the soldering temperature during mounting is 220-240 ° C. On the other hand, the solder containing no lead represented by tin-silver alloy has a high melting point, and the temperature during solder processing is about 260 ° C., so that the epoxy resin composition has excellent resistance to solder stress at higher temperatures. Development of things is desired.
In recent years, the trend toward smaller, lighter, and more sophisticated electronic devices has led to the progress of higher integration of semiconductor elements and the promotion of surface mounting of semiconductor devices. Semiconductor devices have been developed and are beginning to migrate from semiconductor devices having a conventional structure.
Typical examples of area-mounted semiconductor devices include a ball grid array (hereinafter referred to as BGA) or a chip size package (hereinafter referred to as CSP) in pursuit of further miniaturization, but these are representative of conventional QFP and SOP. The surface mount type semiconductor device to be developed has been developed to meet the demand for higher pin count and higher speed, which are approaching the limit. The structure is on one side of a hard circuit board typified by bismaleimide / triazine resin (hereinafter referred to as BT resin) / copper foil circuit board or a flexible circuit board typified by polyimide resin film / copper foil circuit board. A semiconductor element is mounted, and only the semiconductor element mounting surface, that is, one side of the substrate is molded and sealed with an epoxy resin composition or the like. In addition, solder balls are two-dimensionally formed in parallel on the surface opposite to the semiconductor element mounting surface of the substrate, and are joined to the substrate on which the semiconductor device is mounted. Furthermore, as a substrate on which a semiconductor element is mounted, a structure using a metal substrate such as a lead frame in addition to the organic substrate has been devised.
[0003]
When these area-mounted semiconductor devices are soldered by means such as infrared reflow, vapor phase soldering, or solder dipping, the moisture present in the semiconductor device is high due to moisture absorption from the cured epoxy resin composition and organic substrate. Cracks may occur in the semiconductor device due to stress caused by rapid vaporization in the process, or peeling may occur at the interface between the semiconductor element mounting surface of the substrate and the cured product of the epoxy resin composition, increasing the strength of the cured product. In addition to low stress and low moisture absorption, high adhesion to the substrate is required.
An epoxy resin composition containing a triphenolmethane type epoxy resin and a triphenolmethane type phenolic resin as resin components has been used in conventional area-mounted semiconductor devices such as BGA and CSP. This epoxy resin composition has a high Tg, and has excellent curability and bending properties when heated, but the cured product has a high moisture absorption rate, and the epoxy resin composition has a relatively high melt viscosity. There is a limit to the high filling of the inorganic filler, the low moisture absorption is insufficient, and there is a problem in the resistance to solder stress.
For this reason, development of an epoxy resin composition having high adhesion to the substrate and excellent in flame retardancy and solder stress resistance is desired.
[0004]
[Problems to be solved by the invention]
The present invention provides an epoxy resin composition for semiconductor encapsulation which is excellent in adhesion, flame retardancy and solder stress resistance, and a semiconductor device using the same.
[0005]
[Means for Solving the Problems]
The present invention
[1] (A) Epoxy resin represented by general formula (1), (B) phenol resin represented by general formula (2), (C) total inorganic substance, (D) curing accelerator, and (E) benzothiazole A compound having a skeleton is an essential component, the total inorganic substance is 84 to 94% by weight in the total epoxy resin composition, the compound having a benzothiazole skeleton is 2- (N, N-diethylthiocarbamoylthio) benzothiazole , And 0.01 to 0.1% by weight in the total epoxy resin composition, and bromine atom and antimony atom in the total epoxy resin composition are each 0.05% by weight or less. Epoxy resin composition for
[Chemical formula 5]
Figure 0004686935
(R1 and R2 are alkyl groups having 1 to 4 carbon atoms, which may be the same or different. A is an integer of 0 to 3, b is an integer of 0 to 4. n is an average value, 1 to 5 positive number)
[0006]
[Chemical 6]
Figure 0004686935
(R1 and R2 are alkyl groups having 1 to 4 carbon atoms, which may be the same or different. A is an integer of 0 to 3, b is an integer of 0 to 4. n is an average value, 1 to 5 positive number)
[0007]
[2] The epoxy resin composition for semiconductor encapsulation according to item [1], wherein the epoxy resin represented by the general formula (1) is an epoxy resin represented by the formula (3);
[Chemical 7]
Figure 0004686935
(N is an average value, a positive number from 1 to 5)
[0008]
[3] The epoxy resin composition for semiconductor encapsulation according to item [1] or [2], wherein the phenol resin represented by the general formula (2) is an epoxy resin represented by the formula (4);
[Chemical 8]
Figure 0004686935
(N is an average value, a positive number from 1 to 5)
[4] A semiconductor device, wherein a semiconductor element is sealed using the epoxy resin composition for sealing a semiconductor according to any one of [1] to [3] .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The epoxy resin represented by the general formula (1) used in the present invention has a hydrophobic and rigid biphenyl skeleton between epoxy groups, and a cured product of an epoxy resin composition using the epoxy resin has a low moisture absorption rate. The elastic modulus in a high temperature range exceeding the glass transition temperature (hereinafter referred to as Tg) is low, and the adhesiveness with a semiconductor element, an organic substrate, and a metal substrate is excellent. In addition, the heat resistance is high for a low crosslink density. Therefore, the semiconductor device sealed with the resin composition using this epoxy resin is excellent in resistance to solder stress.
N in the general formula (1) is an average value, preferably a positive number of 1 to 5, particularly preferably 1 to 3. When n is less than 1, the curability of the epoxy resin composition is lowered, which is not preferable. If n exceeds 5, the viscosity becomes high and the fluidity of the epoxy resin composition decreases, which is not preferable. The epoxy resin represented by the general formula (1) may be used alone or in combination of two or more.
Among the epoxy resins represented by the general formula (1), the epoxy resin represented by the formula (3) is particularly preferable.
You may use another epoxy resin together in the range which does not impair the original characteristic of the epoxy resin shown by General formula (1). When used in combination, it is desirable to use monomers, oligomers, and polymers having an epoxy group in the molecule as low as possible in general. For example, phenol novolac type epoxy resins, cresol novolac type epoxy resins, biphenyl type epoxy resins Bisphenol type epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, phenol aralkyl type epoxy resin (with phenylene skeleton), naphthol type epoxy resin, naphthalene type epoxy resin, alkyl-modified triphenolmethane type epoxy resin, triazine Examples thereof include a nucleus-containing epoxy resin and a dicyclopentadiene-modified phenol type epoxy resin, and these may be used alone or in combination of two or more.
By adjusting the amount of the epoxy resin represented by the general formula (1), solder stress resistance can be maximized. In order to bring out the effect of resistance to solder stress, the epoxy resin represented by the general formula (1) is preferably contained in the total epoxy resin by 30% by weight or more, particularly preferably 50% by weight or more. If it is less than 30% by weight, the solder stress resistance may be insufficient.
[0010]
The phenol resin represented by the general formula (2) used in the present invention has a hydrophobic and rigid biphenyl skeleton between phenolic hydroxyl groups, and a cured product of an epoxy resin composition using the phenol resin has a moisture absorption rate. It has a low elastic modulus in a high temperature range exceeding Tg, and has excellent adhesion to a semiconductor element, an organic substrate, and a metal substrate. In addition, the heat resistance is high for a low crosslink density. Therefore, a semiconductor device sealed with a resin composition using this phenol resin is excellent in resistance to solder stress.
N in General formula (2) is an average value, Preferably it is a positive number of 1-5, Most preferably, it is 1-3. When n is less than 1, the curability of the epoxy resin composition is lowered, which is not preferable. If n exceeds 5, the viscosity becomes high and the fluidity of the epoxy resin composition decreases, which is not preferable. The phenol resin represented by the general formula (2) may be used alone or in combination of two or more.
Of the phenol resins represented by the general formula (2), the phenol resin represented by the formula (4) is particularly preferable.
You may use together other phenol resin in the range which does not impair the characteristic of the phenol resin shown by General formula (2) used by this invention. When used in combination, it is desirable to use monomers, oligomers, and polymers having a phenolic hydroxyl group in the molecule, and those having as low a viscosity as possible. For example, phenol novolak resins, cresol novolak resins, phenol aralkyl resins (phenylene skeletons) Naphthol aralkyl resin, triphenol methane resin, terpene-modified phenol resin, dicyclopentadiene-modified phenol resin, and the like. These may be used alone or in combination of two or more.
By adjusting the amount of the phenol resin represented by the general formula (2), solder stress resistance can be maximized. In order to bring out the effect of resistance to solder stress, the phenol resin represented by the general formula (2) is preferably contained in an amount of 30% by weight or more, more preferably 50% by weight or more in the total phenol resin. If it is less than 30% by weight, the solder stress resistance may be insufficient.
The equivalent ratio of the epoxy groups of all epoxy resins to the phenolic hydroxyl groups of all phenol resins is preferably 0.5 to 2, and more preferably 0.7 to 1.5. When outside the range of 0.5 to 2, moisture resistance, curability and the like may be reduced.
[0011]
The total inorganic substance used in the present invention is a sum of inorganic fillers generally used for sealing materials and inorganic substances such as antimony compounds and inorganic ion exchangers as flame retardants added as necessary. It is.
The type of inorganic filler used in the present invention is not particularly limited, and examples thereof include fused crushed silica, fused spherical silica, crystalline silica, secondary agglomerated silica, alumina, titanium white, aluminum hydroxide, and the like. Silica is preferred. The shape of the fused spherical silica is preferably infinitely spherical to improve fluidity and has a broad particle size distribution.
The total inorganic content is preferably 84 to 94% by weight in the total epoxy resin composition. If it is less than 84% by weight, the low hygroscopicity of the cured product of the epoxy resin composition cannot be obtained and the solder stress resistance becomes insufficient, and brominated orthocresol novolac type epoxy resin, brominated bis A type epoxy resin, etc. Unless a bromine-containing organic compound and a flame retardant such as an antimony compound such as antimony trioxide and antimony tetroxide are not added, the flame retardancy is insufficient, which is not preferable. If it exceeds 94% by weight, the fluidity of the epoxy resin composition is lowered, and there is a possibility that defective filling or the like may occur at the time of molding, or inconvenience such as deformation of the gold wire in the semiconductor device due to high viscosity may occur.
[0012]
In the present invention, bromine atoms and antimony atoms in all epoxy resin compositions are each preferably 0.05% by weight or less. Even if a flame retardant containing these elements is not intentionally added, it is difficult to make the level mixed in the raw material and the production stage 0 ppm because of economic reasons, so this is determined as a realistic index. Therefore, the function of the present invention is effective even at 0 ppm or 0 ppb.
The inorganic filler used in the present invention is preferably mixed well in advance. If necessary, an inorganic filler may be used after pretreatment with a coupling agent, epoxy resin or phenol resin. The treatment method may be a method of removing the solvent after mixing with a solvent or direct inorganic filling. There is a method of adding to a material and processing using a mixer.
[0013]
The curing accelerator used in the present invention is not particularly limited as long as it accelerates the reaction between an epoxy group and a phenolic hydroxyl group. For example, 1,8-diazabicyclo (5,4,0) undecene-7 is used. Diazabicycloalkene and its derivatives, amine compounds such as tributylamine and benzyldimethylamine, imidazole compounds such as 2-methylimidazole, organic phosphines such as triphenylphosphine and methyldiphenylphosphine, tetraphenylphosphonium tetraphenylborate, Tetraphenylphosphonium ・ tetrabenzoic acid borate, tetraphenylphosphonium ・ tetranaphthoic acid borate, tetraphenylphosphonium ・ tetranaphthoyloxyborate, tetraphenylphosphonium ・ tetranaphthyloxy Tetra-substituted phosphonium tetra-substituted borate borate, and the like. These may be used in combination of two or more be used one kind alone.
[0014]
The compound having a benzothiazole skeleton used in the present invention is represented by a cured product of an epoxy resin composition using the benzothiazole skeleton, a hard circuit board represented by BT resin / copper foil circuit board, and a polyimide resin film / copper foil circuit board. It is effective in improving the affinity at the interface with a flexible circuit board or a metal substrate such as a lead frame, and improving the adhesion at the interface by forming a chemical bond. Moreover, it has a flame retardance.
The melting point of the compound having a benzothiazole skeleton is preferably 70 to 120 ° C. If it is less than 70 ° C., it is not preferable because it is liquid or semi-solid at normal temperature and is inferior in workability. If the temperature exceeds 120 ° C., it is not melted sufficiently during melt kneading and cannot be uniformly dispersed, so the moldability and curability are reduced, resulting in a non-uniform molded product. Absent.
The melting point of the compound having a benzothiazole skeleton in the present invention is the peak of the melting peak when the temperature is raised from room temperature at a heating rate of 5 ° C./minute using a differential scanning calorimeter (Seiko Electronics Co., Ltd.). Indicates the temperature.
The compound having a benzothiazole skeleton having a melting point of 70 to 120 ° C. is not particularly limited, but 2- (N, N-diethylthiocarbamoylthio) benzo is used in terms of availability, performance, raw material price, and the like. Thiazole is particularly preferred.
Furthermore, from the viewpoint of long-term reliability of the semiconductor device, it is desirable that chlorine ions, sodium ions, and other free ions contained as impurities are as small as possible.
As a compounding quantity of the compound which has a benzothiazole skeleton, 0.01 to 0.1 weight% is preferable in all the epoxy resin compositions. If it is less than 0.01% by weight, the flame retardancy and solder stress resistance become insufficient, which is not preferable. If it exceeds 0.1% by weight, the curability of the resin composition is lowered and the solder stress resistance becomes insufficient, which is not preferable.
[0015]
In addition to the components (A) to (E), the epoxy resin composition of the present invention includes a coupling agent such as γ-glycidoxypropyltrimethoxysilane, a colorant such as carbon black and bengara, silicone oil as necessary. In addition, various additives such as a low stress component such as silicone rubber, a natural wax, a synthetic wax, a higher fatty acid and a metal salt thereof or a release agent such as paraffin, and an antioxidant may be appropriately added.
In the epoxy resin composition of the present invention, the components (A) to (E) and other additives are mixed at room temperature using a mixer, melt-kneaded in a kneader such as a roll, a kneader, or an extruder, and then cooled. It is obtained by grinding.
In order to seal an electronic component such as a semiconductor element and manufacture a semiconductor device using the epoxy resin composition of the present invention, it may be cured by a molding method such as a transfer mold, a compression mold, or an injection mold.
[0016]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The blending ratio is parts by weight.
Figure 0004686935
Were mixed at room temperature using a mixer, kneaded at 70 to 120 ° C. using a biaxial roll, cooled and pulverized to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 1.
[0017]
Evaluation Method Spiral Flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 7.4 MPa, and a curing time of 120 seconds. The unit is cm.
Curing torque: The torque at a mold temperature of 175 ° C. and 90 seconds after the start of heating was determined using a curast meter (manufactured by Orientec Co., Ltd., JSR curast meter IVPS type). The torque in the curast meter is a curability parameter, and the larger the value, the better the curability. The unit is N · m.
Moisture absorption: Using a transfer molding machine, a molded product having a mold temperature of 175 ° C., an injection pressure of 7.4 MPa, a curing time of 120 seconds and a diameter of 50 mm and a thickness of 3 mm was molded and treated as a post cure at 175 ° C. for 8 hours. Thereafter, the obtained molded product was allowed to stand for 696 hours in an environment of 30 ° C. and a relative humidity of 60%, and a change in weight was measured to obtain a moisture absorption rate. Units%.
Flame retardancy: Using a transfer molding machine, a molded product having a mold temperature of 175 ° C., an injection pressure of 7.4 MPa, a curing time of 120 seconds and a length of 127 mm, a width of 12.7 mm, and a thickness of 1.6 mm is formed. A flame retardancy test was conducted according to -94.
Adhesion: 42 alloy frame, 42 alloy frame surface coated with polymethylmethacrylate solder resist (hereinafter referred to as PMMA), or 42 alloy frame surface plated with Ag (hereinafter referred to as Ag plating) 2 mm × 2 mm × 2 mm test pieces were molded using a transfer molding machine at a mold temperature of 175 ° C., an injection pressure of 7.4 MPa, a curing time of 60 seconds, and post-cured at 175 ° C. for 8 hours. After performing the treatment for 696 hours in an environment of 30 ° C. and 60% relative humidity, IR reflow treatment (260 ° C.) was performed. The shear strength between the cured product of the epoxy resin composition and the frame was measured using an automatic shear strength measuring device (manufactured by DAGE, PC2400). The unit is N / mm 2 .
Resistance to solder stress: 225 pBGA using a transfer molding machine with a mold temperature of 175 ° C., an injection pressure of 7.4 MPa, a curing time of 60 seconds (the substrate is a BT resin / glass cloth substrate with a thickness of 0.36 mm, and the package size is 24 mm) × 24 mm, thickness 1.17 mm, silicon chip size 9 mm × 9 mm, thickness 0.35 mm, chip and circuit board bonding pad are bonded with a 25 μm diameter gold wire). Eight packages treated as post-cure at 175 ° C. for 8 hours were treated in an environment of 30 ° C. and a relative humidity of 60% for 696 hours, followed by IR reflow treatment (260 ° C.). The presence or absence of internal peeling or cracks after the treatment was observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages is n, n / 8 is displayed.
Bromine atom and antimony atom content: compression molding to a diameter of 40 mm and a thickness of 5 to 7 mm at a pressure of 5.9 MPa, and the resulting molded product was subjected to bromine atoms in the total epoxy resin composition using a fluorescent X-ray analyzer. The content of antimony atoms was quantified. The unit is% by weight.
[0018]
Example 2, Comparative Examples 1-7
According to the composition of Table 1, an epoxy resin composition was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.
In Comparative Examples 5 and 6, a phenol aralkyl resin (Mitsui Chemicals, Inc., XL-225, softening point 75 ° C., hydroxyl group equivalent 174) was used.
In Comparative Example 7, dibenzothiazyl disulfide (melting point: 173 ° C.) was used.
[0019]
[Table 1]
Figure 0004686935
[0020]
【The invention's effect】
According to the present invention, an epoxy resin composition having good adhesion is obtained, and a semiconductor device using the epoxy resin composition is excellent in flame retardancy and solder stress resistance even without containing a bromine-containing organic compound or antimony compound.

Claims (4)

(A)一般式(1)で示されるエポキシ樹脂、(B)一般式(2)で示されるフェノー
ル樹脂、(C)全無機物、(D)硬化促進剤、及び(E)ベンゾチアゾール骨格を有する化合物を必須成分とし、全無機物が全エポキシ樹脂組成物中に84〜94重量%であり、ベンゾチアゾール骨格を有する化合物が2−(N,N−ジエチルチオカルバモイルチオ)ベンゾチアゾールで、かつ全エポキシ樹脂組成物中に0.01〜0.1重量%であり、全エポキシ樹脂組成物中の臭素原子及びアンチモン原子がそれぞれ0.05重量%以下であることを特徴とする半導体封止用エポキシ樹脂組成物。
Figure 0004686935
(R1、R2は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。aは0〜3の整数、bは0〜4の整数。nは平均値で、1〜5の正数)
Figure 0004686935
(R1、R2は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。aは0〜3の整数、bは0〜4の整数。nは平均値で、1〜5の正数)
(A) An epoxy resin represented by the general formula (1), (B) a phenol resin represented by the general formula (2), (C) a total inorganic substance, (D) a curing accelerator, and (E) a benzothiazole skeleton. The compound is an essential component, the total inorganic content is 84 to 94% by weight in the total epoxy resin composition, the compound having a benzothiazole skeleton is 2- (N, N-diethylthiocarbamoylthio) benzothiazole , and the total epoxy Epoxy resin for semiconductor encapsulation, characterized in that it is 0.01 to 0.1% by weight in the resin composition and bromine atoms and antimony atoms in the total epoxy resin composition are each 0.05% by weight or less Composition.
Figure 0004686935
(R1 and R2 are alkyl groups having 1 to 4 carbon atoms, which may be the same or different. A is an integer of 0 to 3, b is an integer of 0 to 4. n is an average value, 1 to 5 positive number)
Figure 0004686935
(R1 and R2 are alkyl groups having 1 to 4 carbon atoms, which may be the same or different. A is an integer of 0 to 3, b is an integer of 0 to 4. n is an average value, 1 to 5 positive number)
一般式(1)で示されるエポキシ樹脂が、式(3)で示されるエポキシ樹脂である請求項1記載の半導体封止用エポキシ樹脂組成物。
Figure 0004686935
(nは平均値で、1〜5の正数)
The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the epoxy resin represented by the general formula (1) is an epoxy resin represented by the formula (3).
Figure 0004686935
(N is an average value, a positive number from 1 to 5)
一般式(2)で示されるフェノール樹脂が、式(4)で示されるフェノール樹脂である請求項1又は2記載の半導体封止用エポキシ樹脂組成物。
Figure 0004686935
(nは平均値で、1〜5の正数)
The epoxy resin composition for semiconductor encapsulation according to claim 1 or 2, wherein the phenol resin represented by the general formula (2) is a phenol resin represented by the formula (4).
Figure 0004686935
(N is an average value, a positive number from 1 to 5)
請求項1〜3のいずれかに記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。 A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition for semiconductor sealing according to claim 1 .
JP2001249971A 2001-08-21 2001-08-21 Epoxy resin composition for semiconductor encapsulation and semiconductor device Expired - Fee Related JP4686935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001249971A JP4686935B2 (en) 2001-08-21 2001-08-21 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001249971A JP4686935B2 (en) 2001-08-21 2001-08-21 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Publications (2)

Publication Number Publication Date
JP2003055438A JP2003055438A (en) 2003-02-26
JP4686935B2 true JP4686935B2 (en) 2011-05-25

Family

ID=19078884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001249971A Expired - Fee Related JP4686935B2 (en) 2001-08-21 2001-08-21 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Country Status (1)

Country Link
JP (1) JP4686935B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038374A (en) * 1983-07-16 1985-02-27 アクゾ・エヌ・ヴエー Manufacture of benzothiazolylsulfenamide
JPH04154830A (en) * 1990-10-19 1992-05-27 Yokohama Rubber Co Ltd:The Epoxy resin composition
JPH1112446A (en) * 1997-06-24 1999-01-19 Toshiba Chem Corp Sealing resin composition and semiconductor device sealed therewith
JPH1112437A (en) * 1997-06-24 1999-01-19 Toshiba Chem Corp Sealing resin composition and sealed semiconductor device
JPH11166103A (en) * 1997-12-02 1999-06-22 Toshiba Chem Corp Resin composition for packing and semiconductor packing device
JPH11181240A (en) * 1997-12-22 1999-07-06 Toshiba Chem Corp Resin composition for sealing and semiconductor sealer
JPH11323089A (en) * 1998-05-15 1999-11-26 Shin Etsu Chem Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
JP2000034393A (en) * 1998-05-15 2000-02-02 Shin Etsu Chem Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor apparatus
JP2001172365A (en) * 1999-12-15 2001-06-26 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038374A (en) * 1983-07-16 1985-02-27 アクゾ・エヌ・ヴエー Manufacture of benzothiazolylsulfenamide
JPH04154830A (en) * 1990-10-19 1992-05-27 Yokohama Rubber Co Ltd:The Epoxy resin composition
JPH1112446A (en) * 1997-06-24 1999-01-19 Toshiba Chem Corp Sealing resin composition and semiconductor device sealed therewith
JPH1112437A (en) * 1997-06-24 1999-01-19 Toshiba Chem Corp Sealing resin composition and sealed semiconductor device
JPH11166103A (en) * 1997-12-02 1999-06-22 Toshiba Chem Corp Resin composition for packing and semiconductor packing device
JPH11181240A (en) * 1997-12-22 1999-07-06 Toshiba Chem Corp Resin composition for sealing and semiconductor sealer
JPH11323089A (en) * 1998-05-15 1999-11-26 Shin Etsu Chem Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
JP2000034393A (en) * 1998-05-15 2000-02-02 Shin Etsu Chem Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor apparatus
JP2001172365A (en) * 1999-12-15 2001-06-26 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Also Published As

Publication number Publication date
JP2003055438A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
WO2006059542A1 (en) Epoxy resin composition and semiconductor devices
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP4622221B2 (en) Epoxy resin composition and semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP4686935B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2004285316A (en) Epoxy resin composition and semiconductor device
JP2006225464A (en) Epoxy resin composition and semiconductor device
JP2005272739A (en) Epoxy resin composition and semiconductor device
JP2006104393A (en) Epoxy resin composition and semiconductor device
JP4736406B2 (en) Epoxy resin composition and semiconductor device
JP2005154717A (en) Epoxy resin composition and semiconductor device
JP2005281584A (en) Epoxy resin composition and semiconductor device
JP2005314566A (en) Epoxy resin composition and semiconductor device
JP2004143346A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP5093977B2 (en) Area mounted semiconductor device
JP2005263883A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP5055778B2 (en) Epoxy resin composition, epoxy resin molding material and semiconductor device
JP2005263872A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP5142427B2 (en) Epoxy resin composition and semiconductor device
JP2005264042A (en) Epoxy resin composition and semiconductor device
JP2003096270A (en) Semiconductor sealing epoxy resin composition and semiconductor device
JP2003192877A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2005132887A (en) Epoxy resin composition and semiconductor device
JP2004067774A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees