JP2004143346A - Epoxy resin composition for semiconductor sealing and semiconductor device - Google Patents

Epoxy resin composition for semiconductor sealing and semiconductor device Download PDF

Info

Publication number
JP2004143346A
JP2004143346A JP2002311809A JP2002311809A JP2004143346A JP 2004143346 A JP2004143346 A JP 2004143346A JP 2002311809 A JP2002311809 A JP 2002311809A JP 2002311809 A JP2002311809 A JP 2002311809A JP 2004143346 A JP2004143346 A JP 2004143346A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
semiconductor
represented
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002311809A
Other languages
Japanese (ja)
Inventor
Norihisa Hoshika
星加 典久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002311809A priority Critical patent/JP2004143346A/en
Publication of JP2004143346A publication Critical patent/JP2004143346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an epoxy resin composition excellent in adhesiveness to substrates, flame retardance and resistance to stress by soldering without using a bromine-containing organic compound and an antimony compound. <P>SOLUTION: The epoxy resin composition for semiconductor sealing comprises (A) an epoxy resin represented by formula (1), (B) a phenol resin represented by formula (2), (C) an inorganic filler, (D) a hardening accelerator and (E) phenoxathiin as essential components, and total inorganic material is contained in an amount of ≥84 wt.% and ≤94 wt.% based on the total epoxy resin composition. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体封止用エポキシ樹脂組成物、及びこれを用いた半導体装置に関するものである。
【0002】
【従来の技術】
従来、ダイオード、トランジスタ、集積回路等の半導体装置は、主にエポキシ樹脂組成物で封止されているが、これらのエポキシ樹脂組成物中には、難燃性を付与するために通常、臭素含有有機化合物及び三酸化アンチモン、四酸化アンチモン等のアンチモン化合物が配合されている。
ところが、環境・衛生の点から臭素含有有機化合物及びアンチモン化合物を使用しなくても難燃性に優れたエポキシ樹脂組成物の開発が望まれている。
また半導体装置をプリント回路基板への実装時する際、鉛を含有する半田(スズ−鉛合金)が使用されてきたが、同様に環境・衛生の点から鉛を含有する半田(スズ−鉛合金)を使用しないことが望まれている。鉛を含有する半田(スズ−鉛合金)の融点は183℃で、実装時の半田処理の温度は220〜240℃であるのに対し、スズ−銀合金に代表される鉛を含有しない半田では融点が高く、半田処理時の温度が260℃程度となるため、より高温域での耐半田ストレス性に優れたエポキシ樹脂組成物の開発が望まれている。
また、近年の電子機器の小型化、軽量化、高機能化の市場動向において、半導体素子の高集積化が年々進み、また半導体装置の表面実装化が促進されるなかで、新規にエリア実装型半導体装置が開発され、従来構造の半導体装置から移行し始めている。
【0003】
エリア実装型半導体装置としてはボールグリッドアレイ(以下、BGAという)、あるいは更に小型化を追求したチップサイズパッケージ(以下、CSPという)等が代表的であるが、これらは従来のQFP、SOPに代表される表面実装型半導体装置では限界に近づいている多ピン化・高速化への要求に対応するために開発されたものである。構造としては、ビスマレイミド・トリアジン樹脂(以下、BT樹脂という)/銅箔回路基板に代表される硬質回路基板、あるいはポリイミド樹脂フィルム/銅箔回路基板に代表されるフレキシブル回路基板等の片面上に半導体素子を搭載し、その半導体素子搭載面、即ち基板の片面のみがエポキシ樹脂組成物等で成形・封止されている。また基板の半導体素子搭載面の反対面には半田ボールを2次元的に並列して形成し、半導体装置を実装する基板との接合を行う特徴を有している。更に、半導体素子を搭載する基板としては、上記有機基板以外にもリードフレーム等の金属基板を用いる構造も考案されている。
【0004】
これらエリア実装型半導体装置を赤外線リフロー、ベーパーフェイズソルダリング、半田浸漬等の手段で半田接合を行う場合、エポキシ樹脂組成物の硬化物並びに有機基板からの吸湿により半導体装置内部に存在する水分が高温で急激に気化することによる応力で半導体装置にクラックが発生したり、基板の半導体素子搭載面とエポキシ樹脂組成物の硬化物との界面で剥離が発生することもあり、硬化物の高強度化、低応力化、低吸湿化とともに、基板との高密着化が求められる。
従来のBGAやCSP等のエリア実装型半導体装置には、トリフェノールメタン型エポキシ樹脂とトリフェノールメタン型フェノール樹脂を樹脂成分とするエポキシ樹脂組成物が用いられてきた(例えば、特許文献1、特許文献2参照。)。このエポキシ樹脂組成物は、Tgが高く、硬化性、熱時曲げ強度に優れた特性を有しているが、硬化物の吸湿率が高く、またエポキシ樹脂組成物の溶融粘度が比較的高く、無機充填材の高充填化には限界があり、低吸湿化が不十分で、耐半田ストレス性には問題があった。
このため、基板との密着性が高く、難燃性、耐半田ストレス性に優れるエポキシ樹脂組成物の開発が望まれている。
【0005】
【特許文献1】
特開平09−124905号公報(第2〜11頁)
【特許文献2】
特開平10−45874号公報(第2〜10頁)
【0006】
【発明が解決しようとする課題】
本発明は、臭素含有有機化合物及びアンチモン化合物を使用せずに、基板との密着性、難燃性、耐半田ストレス性に優れる半導体封止用エポキシ樹脂組成物、及びこれを用いた半導体装置を提供するものである。
【0007】
【課題を解決するための手段】
本発明は、
[1](A)一般式(1)で示されるエポキシ樹脂、(B)一般式(2)で示されるフェノール樹脂、(C)無機充填材、(D)硬化促進剤、及び(E)フェノキサチインを必須成分とし、全無機物が全エポキシ樹脂組成物中に84重量%以上、94重量%以下でであることを特徴とする半導体封止用エポキシ樹脂組成物、
【0008】
【化5】

Figure 2004143346
(R1、R2は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。aは0〜3の整数、bは0〜4の整数。nは平均値で、1〜5の正数)
【0009】
【化6】
Figure 2004143346
(R1、R2は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。aは0〜3の整数、bは0〜4の整数。nは平均値で、1〜5の正数)
【0010】
[2]一般式(1)で示されるエポキシ樹脂が、式(3)で示されるエポキシ樹脂である第[1]項記載の半導体封止用エポキシ樹脂組成物、
【0011】
【化7】
Figure 2004143346
(nは平均値で、1〜5の正数)
【0012】
[3]一般式(2)で示されるフェノール樹脂が、式(4)で示されるフェノール樹脂である第[1]又は[2]項記載の半導体封止用エポキシ樹脂組成物、
【0013】
【化8】
Figure 2004143346
(nは平均値で、1〜5の正数)
【0014】
[4]フェノキサチインを全エポキシ樹脂組成物中に0.01重量%以上、0.1重量%以下含有する第[1]、[2]又は[3]項記載の半導体封止用エポキシ樹脂組成物、
[5]第[1]〜[4]項のいずれかに記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
【0015】
【発明の実施の形態】
本発明で用いられる一般式(1)で示されるエポキシ樹脂は、エポキシ基間に疎水性で剛直なビフェニレン骨格を有しており、これを用いたエポキシ樹脂組成物の硬化物は吸湿率が低く、ガラス転移温度(以下、Tgという)を越えた高温域での弾性率が低く、半導体素子、有機基板、及び金属基板との密着性に優れる。また架橋密度が低い割には耐熱性が高いという特徴を有している。従って、このエポキシ樹脂を用いた樹脂組成物で封止された半導体装置は、耐半田ストレス性に優れる。
一般式(1)中のnは平均値で、1〜5の正数、好ましくは1〜3である。nが下限値を下回るとエポキシ樹脂組成物の硬化性が低下する。nが上限値を越えると、粘度が高くなりエポキシ樹脂組成物の流動性が低下する。一般式(1)で示されるエポキシ樹脂は、1種類を単独で用いても2種類以上を併用してもよい。
一般式(1)で示されるエポキシ樹脂の内では、式(3)で示されるエポキシ樹脂が特に好ましい。
【0016】
一般式(1)で示されるエポキシ樹脂の本来の特性を損なわない範囲で、他のエポキシ樹脂を併用してもよい。併用する場合は、分子中にエポキシ基を有するモノマー、オリゴマー、ポリマー全般で、極力低粘度のものを使用することが望ましく、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂(フェニレン骨格を有する)、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
一般式(1)で示されるエポキシ樹脂の使用量は、これを調節することにより、耐半田ストレス性を最大限に引き出すことができる。耐半田ストレス性の効果を引き出すためには、一般式(1)で示されるエポキシ樹脂を全エポキシ樹脂中に30重量%以上含むことが好ましく、特に50重量%以上が好ましい。下限値を下回ると、耐半田ストレス性が不十分となる可能性がある。
【0017】
本発明で用いられる一般式(2)で示されるフェノール樹脂は、フェノール性水酸基間に疎水性で剛直なビフェニレン骨格を有しており、これを用いたエポキシ樹脂組成物の硬化物は吸湿率が低く、Tgを越えた高温域での弾性率が低く、半導体素子、有機基板、及び金属基板との密着性に優れる。また架橋密度が低い割には耐熱性が高いという特徴を有している。従って、このフェノール樹脂を用いた樹脂組成で封止された半導体装置は、耐半田ストレス性に優れる。
一般式(2)中のnは平均値で、1〜5の正数、好ましくは1〜3である。nが下限値を下回るとエポキシ樹脂組成物の硬化性が低下する。nが上限値を越えると、粘度が高くなりエポキシ樹脂組成物の流動性が低下する。一般式(2)で示されるフェノール樹脂は、1種類を単独で用いても2種類以上を併用してもよい。
一般式(2)で示されるフェノール樹脂の内では、式(4)で示されるフェノール樹脂が特に好ましい。
【0018】
本発明で用いられる一般式(2)で示されるフェノール樹脂の特性を損なわない範囲で他のフェノール樹脂を併用してもよい。併用する場合は、分子中にフェノール性水酸基を有するモノマー、オリゴマー、ポリマー全般で、極力低粘度のものを使用することが望ましく、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂(フェニレン骨格を有する)、ナフトールアラルキル樹脂、トリフェノールメタン樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
一般式(2)で示されるフェノール樹脂の使用量は、これを調節することにより、耐半田ストレス性を最大限に引き出すことができる。耐半田ストレス性の効果を引き出すためには、一般式(2)で示されるフェノール樹脂を、全フェノール樹脂中に30重量%以上含むことが好ましく、特に50重量%以上が好ましい。下限値を下回ると、耐半田ストレス性が不十分となる可能性がある。
全エポキシ樹脂のエポキシ基と全フェノール樹脂のフェノール性水酸基の当量比としては、好ましくは0.5〜2であり、特に0.7〜1.5がより好ましい。上記範囲を外れると、耐湿性、硬化性等が低下する可能性がある。
【0019】
本発明で用いる無機充填材の種類については特に限定しないが、例えば、溶融破砕シリカ、溶融球状シリカ、結晶シリカ、2次凝集シリカ、アルミナ、チタンホワイト、水酸化アルミニウム等が挙げられ、特に溶融球状シリカが好ましい。溶融球状シリカの形状としては、流動性改善のために限りなく真球状であり、かつ粒度分布がブロードであることが好ましい。
【0020】
無機充填材及び必要に応じて添加する金属水酸化物等の難燃剤、無機イオン交換耐等を含めた全無機物の含有量としては、全エポキシ樹脂組成物中に84重量%以上、94重量%以下である。下限値を下回ると、エポキシ樹脂組成物の硬化物の低吸湿性が得られず耐半田ストレス性が不十分となったり、難燃性が不足したりする。また、上限値を越えると、エポキシ樹脂組成物の流動性が低下し、成形時に充填不良等が生じたり、高粘度化により半導体装置内の金線変形等の不都合が生じるおそれがある。
【0021】
本発明は、臭素含有有機化合物及びアンチモン化合物を使用せずに難燃性を達成するものである。本発明における全エポキシ樹脂組成物中の臭素原子及びアンチモン原子は、それぞれ0.05重量%以下となっている。これは経済上の理由から原料や製造段階において混入する微量の成分以外には、臭素原子及びアンチモン原子を添加しないことを意味している。
本発明に用いる無機充填材は、予め十分に混合しておくことが好ましい。また必要に応じて無機充填材をカップリング剤やエポキシ樹脂あるいはフェノール樹脂で予め被覆処理して用いてもよく、被覆処理の方法としては、溶剤を用いて混合した後に溶媒を除去する方法や直接無機充填材に添加し、混合機を用いて混合する方法等が挙げられる。
【0022】
本発明で用いられる硬化促進剤としては、エポキシ基とフェノール性水酸基の反応を促進するものであれば特に限定しないが、例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体、トリブチルアミン、ベンジルジメチルアミン等のアミン系化合物、2−メチルイミダゾール等のイミダゾール化合物、トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・テトラ安息香酸ボレート、テトラフェニルホスホニウム・テトラナフトイックアシッドボレート、テトラフェニルホスホニウム・テトラナフトイルオキシボレート、テトラフェニルホスホニウム・テトラナフチルオキシボレート等のテトラ置換ホスホニウム・テトラ置換ボレート等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
【0023】
本発明で用いられるフェノキサチインは、これを用いたエポキシ樹脂組成物の硬化物とBT樹脂/銅箔回路基板に代表される硬質回路基板、ポリイミド樹脂フィルム/銅箔回路基板に代表されるフレキシブル回路基板、又はリードフレーム等の金属基板との界面での親和性向上や化学結合形成による界面での接着性向上に効果がある。また、難燃性を有している。
更に、半導体装置の長期信頼性の点から、不純物として含有される塩素イオン、ナトリウムイオン、硫酸イオン、その他のフリーのイオンは、極力少ないことが望ましい。
フェノキサチインの配合量としては、全エポキシ樹脂組成物中に0.01重量%以上、0.1重量%以下が好ましい。下限値を下回ると、難燃性、耐半田ストレス性が不十分となる可能性がある。上限値を越えると、樹脂組成物の硬化性が低下し、耐半田ストレス性が不十分となる可能性がある。
【0024】
本発明のエポキシ樹脂組成物は、(A)〜(E)成分の他、必要に応じてγ−グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック、ベンガラ等の着色剤、シリコーンオイル、シリコーンゴム等の低応力化成分、天然ワックス、合成ワックス、高級脂肪酸及びその金属塩類もしくはパラフィン等の離型剤、酸化防止剤等の各種添加剤を適宜配合しても差し支えない。
本発明のエポキシ樹脂組成物は、(A)〜(E)成分、及びその他の添加剤等をミキサーを用いて常温混合し、ロール、ニーダー、押出機等の混練機で溶融混練し、冷却後粉砕して得られる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で硬化成形すればよい。
【0025】
【実施例】
以下に、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。配合割合は重量部とする。
Figure 2004143346
を常温でミキサーを用いて混合し、70〜120℃で2軸ロールを用いて混練し、冷却後粉砕してエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を以下の方法で評価した。結果を表1に示す。
【0026】
評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用い、金型温度175℃、注入圧力6.9MPa、硬化時間120秒で測定した。単位はcm。
トルク比:キュラストメータ((株)オリエンテック・製、JSRキュラストメータIVPS型)を用いて、金型温度175℃、加熱開始90秒後、300秒後のトルクを求め、トルク比:(90秒後のトルク)/(300秒後のトルク)を計算した。キュラストメータにおけるトルクは熱剛性のパラメータであり、トルク比の大きい方が硬化性が良好である。
吸湿率:トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒で直径50mm、厚さ3mmの成形品を成形し、ポストキュアとして175℃で8時間加熱処理した後、得られた成形品を30℃、相対湿度60%の環境下で696時間加湿処理し、重量変化を測定して吸湿率を求めた。単位は%。
【0027】
難燃性:トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒で長さ127mm、幅12.7mm、厚さ1.6mmの成形品を成形し、ポストキュアとして175℃で8時間加熱処理した後、得られた成形品を23℃、相対湿度50%の環境下で48時間加湿処理し、UL−94に準じて難燃性試験を行った。
密着性:42合金フレーム、42合金フレームの表面にポリメチルメタクリレート・ソルダーレジストを塗布したもの(以下、PMMAという)、又は42合金フレームの表面にAgメッキしたもの(以下、Agメッキという)の上に、2mm×2mm×2mmのテストピースを、トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒で成形し、ポストキュアとして175℃で8時間加熱処理した後、30℃、相対湿度60%の環境下で696時間加湿処理した後、IRリフロー処理(260℃)を行った。自動せん断強度測定装置(DAGE社・製、PC2400)を用いて、エポキシ樹脂組成物の硬化物とフレームとのせん断強度を測定した。単位はN/mm
【0028】
耐半田ストレス性:トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒で225pBGA(基板は厚さ0.36mmのBT樹脂/ガラスクロス基板、パッケージサイズは24mm×24mm、厚さ1.17mm、シリコンチップはサイズ9mm×9mm、厚さ0.35mm、チップと回路基板のボンディングパッドとを25μm径の金線でボンディングしている)を成形した。ポストキュアとして175℃で8時間加熱処理したパッケージ8個を、30℃、相対湿度60%の環境下で696時間加湿処理した後、IRリフロー処理(260℃)を行った。処理後の内部の剥離又はクラックの有無を超音波探傷機で観察し、不良パッケージの個数を数えた。不良パッケージの個数がn個であるとき、n/8と表示する。
臭素原子、アンチモン原子含有量:トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間2分で、直径50mm、厚さ3mmの試験片を成形し、得られた成形品を蛍光X線分析装置を用いて、全エポキシ樹脂組成物中の臭素原子、アンチモン原子の含有量を定量した。単位は重量%。
【0029】
実施例2〜5、比較例1〜6
表1の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を得て、実施例1と同様にして評価した。結果を表1に示す。
実施例4ではビフェニル型エポキシ樹脂(ジャパンエポキシレジン(株)・製YX4000H、融点105℃、エポキシ当量197)を用いた。
実施例5では式(5)の硬化促進剤を用いた。
【0030】
【化9】
Figure 2004143346
【0031】
実施例4、比較例5、6ではフェノールアラルキル樹脂(三井化学(株)・製XL−225、軟化点75℃、水酸基当量174)を用いた。
【0032】
【表1】
Figure 2004143346
【0033】
【発明の効果】
本発明に従うと、臭素含有有機化合物、アンチモン化合物を使用せずとも、基板との良好な密着性、難燃性を有するエポキシ樹脂組成物が得られ、これを用いた半導体装置は耐半田ストレス性に優れている。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation, and a semiconductor device using the same.
[0002]
[Prior art]
Conventionally, semiconductor devices such as diodes, transistors, and integrated circuits are mainly sealed with an epoxy resin composition, but these epoxy resin compositions usually contain bromine to impart flame retardancy. It contains an organic compound and an antimony compound such as antimony trioxide and antimony tetroxide.
However, development of an epoxy resin composition excellent in flame retardancy without using a bromine-containing organic compound and an antimony compound is desired from the viewpoint of environment and hygiene.
In addition, when a semiconductor device is mounted on a printed circuit board, lead-containing solder (tin-lead alloy) has been used. Similarly, lead-containing solder (tin-lead alloy) is used from the viewpoint of environment and sanitation. ) Is not desired. The melting point of lead-containing solder (tin-lead alloy) is 183 ° C., and the soldering temperature during mounting is 220 to 240 ° C., whereas lead-free solder typified by tin-silver alloy does not. Since the melting point is high and the temperature at the time of soldering is about 260 ° C., development of an epoxy resin composition having excellent solder stress resistance in a higher temperature range is desired.
In recent years, with the market trend of miniaturization, weight reduction, and high functionality of electronic devices, the integration of semiconductor elements has been increasing year by year, and the surface mounting of semiconductor devices has been promoted. Semiconductor devices have been developed and have begun to shift from semiconductor devices of conventional structure.
[0003]
A ball grid array (hereinafter, referred to as BGA) or a chip size package (hereinafter, referred to as CSP) pursuing further miniaturization is representative of the area mounting type semiconductor device, and these are typically represented by conventional QFP and SOP. The surface mount type semiconductor device has been developed in order to meet the demand for higher pin count and higher speed, which are approaching the limit. The structure is as follows: Bismaleimide triazine resin (hereinafter referred to as BT resin) / hard circuit board represented by copper foil circuit board, or polyimide resin film / flexible circuit board represented by copper foil circuit board etc. A semiconductor element is mounted, and only the semiconductor element mounting surface, that is, one side of the substrate is molded and sealed with an epoxy resin composition or the like. Further, on the surface opposite to the semiconductor element mounting surface of the substrate, solder balls are formed two-dimensionally in parallel and joined to the substrate on which the semiconductor device is mounted. Further, as a substrate on which a semiconductor element is mounted, a structure using a metal substrate such as a lead frame has been devised in addition to the organic substrate.
[0004]
When soldering these area-mounted semiconductor devices by means such as infrared reflow, vapor phase soldering, or solder immersion, the moisture present inside the semiconductor device due to absorption of moisture from the cured epoxy resin composition and the organic substrate is high. Cracking of the semiconductor device due to the stress caused by rapid vaporization at the surface, and separation at the interface between the semiconductor element mounting surface of the substrate and the cured product of the epoxy resin composition may occur, resulting in increased strength of the cured product In addition to low stress and low moisture absorption, high adhesion to the substrate is required.
2. Description of the Related Art Conventional area-mounted semiconductor devices such as BGA and CSP use an epoxy resin composition containing a triphenolmethane-type epoxy resin and a triphenolmethane-type phenol resin as resin components (for example, Patent Document 1, Patent Document 1). Reference 2). This epoxy resin composition has high Tg, curability, and has excellent properties of bending strength during heating, but the cured product has a high moisture absorption rate, and the epoxy resin composition has a relatively high melt viscosity. There is a limit to increasing the amount of the inorganic filler, and insufficient moisture absorption is required, and there is a problem in resistance to solder stress.
Therefore, development of an epoxy resin composition having high adhesion to a substrate, excellent flame retardancy, and excellent solder stress resistance has been desired.
[0005]
[Patent Document 1]
JP-A-09-124905 (pages 2 to 11)
[Patent Document 2]
JP-A-10-45874 (pages 2 to 10)
[0006]
[Problems to be solved by the invention]
The present invention provides an epoxy resin composition for semiconductor encapsulation which does not use a bromine-containing organic compound and an antimony compound, and has excellent adhesion to a substrate, flame retardancy, and solder stress resistance, and a semiconductor device using the same. To provide.
[0007]
[Means for Solving the Problems]
The present invention
[1] (A) an epoxy resin represented by the general formula (1), (B) a phenol resin represented by the general formula (2), (C) an inorganic filler, (D) a curing accelerator, and (E) phenoki. An epoxy resin composition for semiconductor encapsulation, wherein satiin is an essential component, and the total amount of inorganic substances is 84% by weight or more and 94% by weight or less in all epoxy resin compositions.
[0008]
Embedded image
Figure 2004143346
(R1 and R2 are alkyl groups having 1 to 4 carbon atoms, which may be the same or different. A is an integer of 0 to 3, b is an integer of 0 to 4. n is an average value of 1 to 5 positive number)
[0009]
Embedded image
Figure 2004143346
(R1 and R2 are alkyl groups having 1 to 4 carbon atoms, which may be the same or different. A is an integer of 0 to 3, b is an integer of 0 to 4. n is an average value of 1 to 5 positive number)
[0010]
[2] The epoxy resin composition for semiconductor encapsulation according to [1], wherein the epoxy resin represented by the general formula (1) is an epoxy resin represented by the formula (3):
[0011]
Embedded image
Figure 2004143346
(N is an average value and a positive number from 1 to 5)
[0012]
[3] The epoxy resin composition for semiconductor encapsulation according to [1] or [2], wherein the phenol resin represented by the general formula (2) is a phenol resin represented by the formula (4):
[0013]
Embedded image
Figure 2004143346
(N is an average value and a positive number from 1 to 5)
[0014]
[4] The epoxy resin for semiconductor encapsulation according to [1], [2] or [3], wherein phenoxathiin is contained in the entire epoxy resin composition in an amount of 0.01% by weight or more and 0.1% by weight or less. Composition,
[5] A semiconductor device obtained by sealing a semiconductor element with the epoxy resin composition for semiconductor sealing according to any one of [1] to [4].
It is.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The epoxy resin represented by the general formula (1) used in the present invention has a hydrophobic and rigid biphenylene skeleton between epoxy groups, and a cured product of the epoxy resin composition using the epoxy resin has a low moisture absorption rate. It has a low elastic modulus in a high temperature range exceeding a glass transition temperature (hereinafter, referred to as Tg) and has excellent adhesion to a semiconductor element, an organic substrate, and a metal substrate. In addition, it has a feature that heat resistance is high in spite of low crosslinking density. Therefore, a semiconductor device sealed with a resin composition using this epoxy resin has excellent solder stress resistance.
N in the general formula (1) is an average value and is a positive number of 1 to 5, preferably 1 to 3. When n is less than the lower limit, the curability of the epoxy resin composition decreases. If n exceeds the upper limit, the viscosity increases and the fluidity of the epoxy resin composition decreases. As the epoxy resin represented by the general formula (1), one type may be used alone, or two or more types may be used in combination.
Among the epoxy resins represented by the general formula (1), the epoxy resin represented by the formula (3) is particularly preferable.
[0016]
Other epoxy resins may be used in combination as long as the intrinsic properties of the epoxy resin represented by the general formula (1) are not impaired. When used in combination, it is desirable to use, as a whole, monomers, oligomers and polymers having an epoxy group in the molecule, which have as low a viscosity as possible, for example, phenol novolak type epoxy resin, cresol novolak type epoxy resin, biphenyl type epoxy resin , Bisphenol type epoxy resin, stilbene type epoxy resin, triphenol methane type epoxy resin, phenol aralkyl type epoxy resin (having a phenylene skeleton), naphthol type epoxy resin, naphthalene type epoxy resin, alkyl-modified triphenol methane type epoxy resin, triazine Examples thereof include a nucleus-containing epoxy resin and a dicyclopentadiene-modified phenol type epoxy resin, and these may be used alone or in combination of two or more.
By adjusting the amount of the epoxy resin represented by the general formula (1), the solder stress resistance can be maximized. In order to bring out the effect of resistance to soldering stress, it is preferable that the epoxy resin represented by the general formula (1) is contained in the entire epoxy resin in an amount of 30% by weight or more, particularly preferably 50% by weight or more. Below the lower limit, the solder stress resistance may be insufficient.
[0017]
The phenolic resin represented by the general formula (2) used in the present invention has a hydrophobic and rigid biphenylene skeleton between phenolic hydroxyl groups, and a cured product of an epoxy resin composition using this has a low moisture absorption. It is low, has a low elastic modulus in a high temperature range exceeding Tg, and has excellent adhesion to a semiconductor element, an organic substrate, and a metal substrate. In addition, it has a feature that heat resistance is high in spite of low crosslinking density. Therefore, a semiconductor device sealed with a resin composition using this phenol resin has excellent solder stress resistance.
N in the general formula (2) is an average value and is a positive number of 1 to 5, preferably 1 to 3. When n is less than the lower limit, the curability of the epoxy resin composition decreases. If n exceeds the upper limit, the viscosity increases and the fluidity of the epoxy resin composition decreases. The phenolic resin represented by the general formula (2) may be used alone or in combination of two or more.
Among the phenol resins represented by the general formula (2), the phenol resin represented by the formula (4) is particularly preferable.
[0018]
Other phenol resins may be used in combination as long as the properties of the phenol resin represented by the general formula (2) used in the present invention are not impaired. When used in combination, it is desirable to use, as a whole, monomers, oligomers and polymers having a phenolic hydroxyl group in the molecule that have the lowest possible viscosity. For example, phenol novolak resin, cresol novolak resin, phenol aralkyl resin (phenylene skeleton ), A naphthol aralkyl resin, a triphenolmethane resin, a terpene-modified phenol resin, a dicyclopentadiene-modified phenol resin, and the like. These may be used alone or in combination of two or more.
By adjusting the amount of the phenolic resin represented by the general formula (2), it is possible to maximize the solder stress resistance. In order to bring out the effect of resistance to soldering stress, it is preferable that the phenolic resin represented by the general formula (2) is contained in an amount of 30% by weight or more, and more preferably 50% by weight or more in all the phenolic resins. Below the lower limit, the solder stress resistance may be insufficient.
The equivalent ratio of the epoxy groups of all epoxy resins to the phenolic hydroxyl groups of all phenolic resins is preferably 0.5 to 2, and more preferably 0.7 to 1.5. If the ratio is out of the above range, moisture resistance, curability and the like may be reduced.
[0019]
The type of the inorganic filler used in the present invention is not particularly limited. Examples thereof include fused silica, fused spherical silica, crystalline silica, secondary agglomerated silica, alumina, titanium white, and aluminum hydroxide. Silica is preferred. It is preferable that the shape of the fused spherical silica is infinitely spherical in order to improve the fluidity, and that the particle size distribution is broad.
[0020]
The content of the inorganic filler, the flame retardant such as metal hydroxide added as necessary, and the inorganic content including inorganic ion exchange resistance is 84% by weight or more and 94% by weight in the total epoxy resin composition. It is as follows. If the value is below the lower limit, the cured product of the epoxy resin composition may not have low moisture absorption, resulting in insufficient solder stress resistance or insufficient flame retardancy. On the other hand, if the upper limit is exceeded, the fluidity of the epoxy resin composition may be reduced, which may lead to defective filling during molding, or may cause inconvenience such as deformation of gold wires in the semiconductor device due to high viscosity.
[0021]
The present invention achieves flame retardancy without using a bromine-containing organic compound and an antimony compound. The bromine atom and antimony atom in the total epoxy resin composition in the present invention are each 0.05% by weight or less. This means that, for economic reasons, bromine atoms and antimony atoms are not added except for the raw materials and the trace components mixed in the production stage.
It is preferable that the inorganic filler used in the present invention is sufficiently mixed in advance. If necessary, the inorganic filler may be coated beforehand with a coupling agent, an epoxy resin or a phenol resin, and used as a coating method. A method of removing the solvent after mixing using a solvent or a direct method. A method of adding to an inorganic filler and mixing using a mixer is exemplified.
[0022]
The curing accelerator used in the present invention is not particularly limited as long as it promotes the reaction between the epoxy group and the phenolic hydroxyl group. For example, 1,8-diazabicyclo (5,4,0) undecene-7 and the like can be used. Diazabicycloalkenes and derivatives thereof, tributylamine, amine compounds such as benzyldimethylamine, imidazole compounds such as 2-methylimidazole, organic phosphines such as triphenylphosphine and methyldiphenylphosphine, tetraphenylphosphonium tetraphenylborate, Tetraphenylphosphonium / tetrabenzoic acid borate, tetraphenylphosphonium / tetranaphthoic acid borate, tetraphenylphosphonium / tetranaphthoyloxyborate, tetraphenylphosphonium / tetranaphthyloxy Tetra-substituted phosphonium tetra-substituted borate borate, and the like. These may be used in combination of two or more be used one kind alone.
[0023]
Phenoxathiin used in the present invention is a cured product of an epoxy resin composition using the same and a rigid circuit board represented by a BT resin / copper circuit board, and a flexible circuit represented by a polyimide resin film / copper circuit board. This is effective in improving affinity at the interface with a metal substrate such as a circuit board or a lead frame, and improving adhesion at the interface by forming a chemical bond. In addition, it has flame retardancy.
Further, from the viewpoint of long-term reliability of the semiconductor device, it is desirable that chlorine ions, sodium ions, sulfate ions, and other free ions contained as impurities be as small as possible.
The compounding amount of phenoxathiin is preferably 0.01% by weight or more and 0.1% by weight or less in the whole epoxy resin composition. Below the lower limit, the flame retardancy and solder stress resistance may be insufficient. If it exceeds the upper limit, the curability of the resin composition may be reduced, and the solder stress resistance may be insufficient.
[0024]
The epoxy resin composition of the present invention comprises, in addition to the components (A) to (E), if necessary, a coupling agent such as γ-glycidoxypropyltrimethoxysilane, a coloring agent such as carbon black and red iron, and a silicone oil. In addition, various additives such as a stress-reducing component such as silicone rubber, a natural wax, a synthetic wax, a higher fatty acid and a releasing agent such as a metal salt thereof or paraffin, and an antioxidant may be appropriately compounded.
The epoxy resin composition of the present invention is prepared by mixing components (A) to (E), other additives, and the like at room temperature using a mixer, melt-kneading with a kneader such as a roll, a kneader, an extruder, and cooling. Obtained by grinding.
In order to manufacture a semiconductor device by encapsulating an electronic component such as a semiconductor element using the epoxy resin composition of the present invention, it is sufficient to cure and mold by a molding method such as a transfer mold, a compression mold, and an injection mold.
[0025]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The mixing ratio is by weight.
Figure 2004143346
Was mixed at room temperature using a mixer, kneaded at 70 to 120 ° C. using a biaxial roll, cooled and pulverized to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following method. Table 1 shows the results.
[0026]
Evaluation method Spiral flow: Measurement was performed at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds using a mold for spiral flow measurement according to EMMI-1-66. The unit is cm.
Torque ratio: Using a curast meter (manufactured by Orientec Co., Ltd., JSR Curast Meter IVPS type), determine the torque at a mold temperature of 175 ° C., 90 seconds after the start of heating, and 300 seconds after the start of heating. The torque after 90 seconds) / (torque after 300 seconds) was calculated. The torque in the curast meter is a parameter of thermal rigidity, and the higher the torque ratio, the better the curability.
Moisture absorption: Using a transfer molding machine, a molded product having a diameter of 50 mm and a thickness of 3 mm is molded at a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds, and is post-cured at 175 ° C. for 8 hours. After that, the obtained molded article was subjected to a humidifying treatment in an environment of 30 ° C. and a relative humidity of 60% for 696 hours, and a change in weight was measured to determine a moisture absorption rate. Units%.
[0027]
Flame retardancy: Using a transfer molding machine, a molded product having a length of 127 mm, a width of 12.7 mm, and a thickness of 1.6 mm is molded at a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds, and a post is formed. After a heat treatment at 175 ° C. for 8 hours as a cure, the obtained molded article was humidified for 48 hours in an environment of 23 ° C. and a relative humidity of 50%, and subjected to a flame retardancy test according to UL-94.
Adhesion: on a 42 alloy frame, one coated with polymethyl methacrylate solder resist on the surface of the 42 alloy frame (hereinafter referred to as PMMA), or one plated with Ag on the surface of the 42 alloy frame (hereinafter referred to as Ag plating) Then, a test piece of 2 mm × 2 mm × 2 mm was molded using a transfer molding machine at a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds, and heat-treated at 175 ° C. for 8 hours as post cure. Then, after performing a humidification process in an environment of 30 ° C. and a relative humidity of 60% for 696 hours, an IR reflow process (260 ° C.) was performed. The shear strength between the cured product of the epoxy resin composition and the frame was measured using an automatic shear strength measuring device (PC2400, manufactured by DAGE). The unit is N / mm 2 .
[0028]
Solder stress resistance: 225 pBGA using a transfer molding machine at a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds (substrate is a 0.36 mm thick BT resin / glass cloth substrate, package size is 24 mm × 24 mm, thickness 1.17 mm, silicon chip size 9 mm × 9 mm, thickness 0.35 mm, and the chip was bonded to the bonding pad of the circuit board with a gold wire having a diameter of 25 μm). Eight packages subjected to heat treatment at 175 ° C. for 8 hours as post cure were humidified in an environment of 30 ° C. and 60% relative humidity for 696 hours, and then subjected to IR reflow treatment (260 ° C.). The presence or absence of peeling or cracking inside after the treatment was observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages is n, n / 8 is displayed.
Content of bromine atom and antimony atom: A test piece having a diameter of 50 mm and a thickness of 3 mm was molded using a transfer molding machine at a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 2 minutes. Using a fluorescent X-ray analyzer, the content of bromine atoms and antimony atoms in all the epoxy resin compositions was quantified. The unit is% by weight.
[0029]
Examples 2 to 5, Comparative Examples 1 to 6
According to the formulation in Table 1, an epoxy resin composition was obtained in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 1 shows the results.
In Example 4, a biphenyl type epoxy resin (YX4000H, manufactured by Japan Epoxy Resins Co., Ltd., melting point 105 ° C., epoxy equivalent 197) was used.
In Example 5, the curing accelerator of the formula (5) was used.
[0030]
Embedded image
Figure 2004143346
[0031]
In Example 4 and Comparative Examples 5 and 6, a phenol aralkyl resin (XL-225, manufactured by Mitsui Chemicals, Inc., softening point 75 ° C., hydroxyl equivalent 174) was used.
[0032]
[Table 1]
Figure 2004143346
[0033]
【The invention's effect】
According to the present invention, an epoxy resin composition having good adhesion to a substrate and flame retardancy can be obtained without using a bromine-containing organic compound or an antimony compound, and a semiconductor device using the same has a soldering stress resistance. Is excellent.

Claims (5)

(A)一般式(1)で示されるエポキシ樹脂、(B)一般式(2)で示されるフェノール樹脂、(C)無機充填材、(D)硬化促進剤、及び(E)フェノキサチインを必須成分とし、全無機物が全エポキシ樹脂組成物中に84重量%以上、94重量%以下であることを特徴とする半導体封止用エポキシ樹脂組成物。
Figure 2004143346
(R1、R2は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。aは0〜3の整数、bは0〜4の整数。nは平均値で、1〜5の正数)
Figure 2004143346
(R1、R2は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。aは0〜3の整数、bは0〜4の整数。nは平均値で、1〜5の正数)
(A) an epoxy resin represented by the general formula (1), (B) a phenol resin represented by the general formula (2), (C) an inorganic filler, (D) a curing accelerator, and (E) phenoxathiin. An epoxy resin composition for semiconductor encapsulation, which is an essential component, wherein the total amount of inorganic substances is 84% by weight or more and 94% by weight or less in the total epoxy resin composition.
Figure 2004143346
(R1 and R2 are alkyl groups having 1 to 4 carbon atoms, which may be the same or different. A is an integer of 0 to 3, b is an integer of 0 to 4. n is an average value of 1 to 5 positive number)
Figure 2004143346
(R1 and R2 are alkyl groups having 1 to 4 carbon atoms, which may be the same or different. A is an integer of 0 to 3, b is an integer of 0 to 4. n is an average value of 1 to 5 positive number)
一般式(1)で示されるエポキシ樹脂が、式(3)で示されるエポキシ樹脂である請求項1記載の半導体封止用エポキシ樹脂組成物。
Figure 2004143346
(nは平均値で、1〜5の正数)
The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the epoxy resin represented by the general formula (1) is an epoxy resin represented by the formula (3).
Figure 2004143346
(N is an average value and a positive number from 1 to 5)
一般式(2)で示されるフェノール樹脂が、式(4)で示されるフェノール樹脂である請求項1又は2記載の半導体封止用エポキシ樹脂組成物。
Figure 2004143346
(nは平均値で、1〜5の正数)
3. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the phenol resin represented by the general formula (2) is a phenol resin represented by the formula (4).
Figure 2004143346
(N is an average value and a positive number from 1 to 5)
フェノキサチインを全エポキシ樹脂組成物中に0.01重量%以上、0.1重量%以下含有する請求項1,2又は3記載の半導体封止用エポキシ樹脂組成物。The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the total amount of the phenoxathiin is 0.01% by weight or more and 0.1% by weight or less in the total epoxy resin composition. 請求項1〜4のいずれかに記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。A semiconductor device comprising a semiconductor element encapsulated with the epoxy resin composition for semiconductor encapsulation according to claim 1.
JP2002311809A 2002-10-25 2002-10-25 Epoxy resin composition for semiconductor sealing and semiconductor device Pending JP2004143346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002311809A JP2004143346A (en) 2002-10-25 2002-10-25 Epoxy resin composition for semiconductor sealing and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002311809A JP2004143346A (en) 2002-10-25 2002-10-25 Epoxy resin composition for semiconductor sealing and semiconductor device

Publications (1)

Publication Number Publication Date
JP2004143346A true JP2004143346A (en) 2004-05-20

Family

ID=32456920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002311809A Pending JP2004143346A (en) 2002-10-25 2002-10-25 Epoxy resin composition for semiconductor sealing and semiconductor device

Country Status (1)

Country Link
JP (1) JP2004143346A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188622A (en) * 2005-01-07 2006-07-20 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006225464A (en) * 2005-02-16 2006-08-31 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188622A (en) * 2005-01-07 2006-07-20 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP4736432B2 (en) * 2005-01-07 2011-07-27 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
JP2006225464A (en) * 2005-02-16 2006-08-31 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Similar Documents

Publication Publication Date Title
WO2006059542A1 (en) Epoxy resin composition and semiconductor devices
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP4622221B2 (en) Epoxy resin composition and semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JP3365725B2 (en) Epoxy resin composition and semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP2000273280A (en) Epoxy resin composition and semiconductor device
JP2004285316A (en) Epoxy resin composition and semiconductor device
JP2004143346A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP2014141573A (en) Resin composition for semiconductor encapsulation and semiconductor encapsulation device
JP2006104393A (en) Epoxy resin composition and semiconductor device
JP4686935B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2005281584A (en) Epoxy resin composition and semiconductor device
JP2004143345A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP2005314566A (en) Epoxy resin composition and semiconductor device
JP5055778B2 (en) Epoxy resin composition, epoxy resin molding material and semiconductor device
JP2003192877A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2005263883A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2005263872A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP4765159B2 (en) Epoxy resin composition and semiconductor device
JP4743932B2 (en) Epoxy resin composition and semiconductor device
JP2003192766A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2003096270A (en) Semiconductor sealing epoxy resin composition and semiconductor device
JP2005041928A (en) Epoxy resin composition and semiconductor device
JP2003096269A (en) Semiconductor-sealing epoxy resin composition and semiconductor device