JP4677754B2 - Film thickness measuring device - Google Patents

Film thickness measuring device Download PDF

Info

Publication number
JP4677754B2
JP4677754B2 JP2004292348A JP2004292348A JP4677754B2 JP 4677754 B2 JP4677754 B2 JP 4677754B2 JP 2004292348 A JP2004292348 A JP 2004292348A JP 2004292348 A JP2004292348 A JP 2004292348A JP 4677754 B2 JP4677754 B2 JP 4677754B2
Authority
JP
Japan
Prior art keywords
fluorescent
film thickness
rays
ray
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004292348A
Other languages
Japanese (ja)
Other versions
JP2006105766A (en
Inventor
清司 伊関
浩 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2004292348A priority Critical patent/JP4677754B2/en
Publication of JP2006105766A publication Critical patent/JP2006105766A/en
Application granted granted Critical
Publication of JP4677754B2 publication Critical patent/JP4677754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は蒸着、スパッタ等でフィルム上に連続的に無機薄膜を形成する装置等で連続的に該無機物層の膜厚組成を測定する膜厚測定装置に関する。   The present invention relates to a film thickness measuring apparatus for continuously measuring the film thickness composition of an inorganic layer using an apparatus for continuously forming an inorganic thin film on a film by vapor deposition, sputtering, or the like.

真空槽中を走行するフィルムに蒸着された無機薄膜の厚みをオンラインで測定するために発明された装置としては例えば、水晶振動子を利用した方法がある(例えば、特許文献1等)。
この方法は、水晶振動子に蒸着膜が付着すると、膜厚に依存して振動周波数が変動する原理を利用している。
特開2003−139505号公報
As an apparatus invented for measuring the thickness of an inorganic thin film deposited on a film traveling in a vacuum chamber online, for example, there is a method using a crystal resonator (for example, Patent Document 1).
This method uses the principle that when a deposited film adheres to a crystal resonator, the vibration frequency varies depending on the film thickness.
JP 2003-139505 A

しかしながら この方法はフィルム上に堆積した無機薄膜を直接に測定するのではなく発振子上に堆積した膜厚とフィルム上に堆積した膜厚との相関関係を利用して測定するものであるので相関関係が変わると精度が落ちる。更に、上記検出器は検出器への総蒸着量の制限から、長時間の連続計測を行う場合に、計測途中で検出器を切り替える等の対策が必要となり、計測の信頼性にも問題があった。また、基本的に重量を測定するものであるので複合物などの組成は測定できない。   However, this method does not directly measure the inorganic thin film deposited on the film, but uses the correlation between the film thickness deposited on the oscillator and the film thickness deposited on the film. If the relationship changes, the accuracy will drop. In addition, due to the limitation of the total deposition amount on the detector, measures such as switching the detector during the measurement are required when performing continuous measurement for a long time, and there is a problem in measurement reliability. It was. In addition, since the weight is basically measured, the composition of the composite cannot be measured.

透明なフィルム上に形成した薄膜の膜厚を測定する方法としては光線透過量を利用した方法がある。これはフィルムの片面より光を照射し反対面から透過してくる透過量を測定し膜厚の測定する方法であり、薄膜内で一定の光吸収率を持っていることを利用するものである(例えば、特許文献2等)。
特開2000−241127号公報
As a method for measuring the film thickness of a thin film formed on a transparent film, there is a method using a light transmission amount. This is a method to measure the film thickness by irradiating light from one side of the film and measuring the amount of light transmitted from the opposite side, and uses the fact that it has a certain light absorption rate in the thin film. (For example, patent document 2 etc.).
JP 2000-241127 A

しかしながら、薄膜の光吸収率が低い場合 膜厚変化量に対し光透過量の変化が小さく精度が出ない。また、反対に光吸収率、反射率が高い場合急激に光透過量が少なくなり精度が出ない。さらに、SiOXや反応性蒸着でAl23等を膜形成する場合、酸化物の酸化度によって無機物層の光線透過率が変化してしまう。このため、膜厚精度に大きく影響してしまう。もちろん、複合酸化物の組成は光線透過量では測定できない。 However, when the light absorptance of the thin film is low, the change in the amount of transmitted light is small relative to the amount of change in film thickness, and accuracy is not achieved. On the other hand, when the light absorptance and reflectivity are high, the amount of light transmission decreases rapidly and accuracy is not achieved. Furthermore, when forming a film of Al 2 O 3 or the like by SiO x or reactive vapor deposition, the light transmittance of the inorganic layer changes depending on the oxidation degree of the oxide. This greatly affects the film thickness accuracy. Of course, the composition of the complex oxide cannot be measured by the amount of transmitted light.

更に蛍光X線を利用した方法もある(例えば、特許文献3等)。
この方法は原子にX線をあてるとその原子特有の蛍光X線を放射する現象を利用した技術で放射される蛍光X線強度を測定することにより原子の存在数を知ることが出来る。この情報より膜厚を測定する方法である。
特開平4−354872号公報
Further, there is a method using fluorescent X-rays (for example, Patent Document 3).
In this method, when an X-ray is applied to an atom, the number of atoms present can be determined by measuring the intensity of the fluorescent X-ray emitted by a technique using the phenomenon of emitting fluorescent X-rays peculiar to the atom. This is a method of measuring the film thickness from this information.
JP-A-4-3544872

しかし無機物層は一般には100nm以下で非常に薄いため蛍光X線強度も低い。そのため膜厚測定対象に強いX線をあて、測定対象から発生する蛍光X線を減少させないでX線検出器まで到達させる必要がある。測定対象からX線検出器までの経路を真空に保持したり、ヘリウムで満たしたりすることで経路での減衰を抑えている。蛍光X線分析装置では、測定室を常に真空に保持している。測定対象の試料はロードロック装置をもった試料導入室で大気圧より減圧して測定室に移動する様になっている。   However, since the inorganic layer is generally very thin at 100 nm or less, the fluorescent X-ray intensity is also low. Therefore, it is necessary to apply strong X-rays to the film thickness measurement target and reach the X-ray detector without reducing the fluorescent X-rays generated from the measurement target. The path from the measurement object to the X-ray detector is kept in a vacuum or filled with helium to suppress attenuation in the path. In the X-ray fluorescence analyzer, the measurement chamber is always kept in a vacuum. A sample to be measured is depressurized from the atmospheric pressure in a sample introduction chamber having a load lock device and moved to the measurement chamber.

無機薄膜を製造する真空装置では、通常1バッチごとに大気圧に戻し材料の入れ替え等を行なう。このとき膜厚測定装置のX線検出器への経路にも空気が流入してくる。流入してくる空気にはホコリ、チリの類混入しており経路内に侵入する。このホコリ、チリによりX線検出器への経路が汚染したり、あるときはX線検出器の窓に付着したりする。蛍光X線を分光する結晶上に付着すると散乱等により検出されるX線強度が減衰してしまう。
また、測定対象となるホコリ等に元素が含まれていた場合、そのホコリからも蛍光X線が発生し正しく測定できない。
In a vacuum apparatus for producing an inorganic thin film, the pressure is usually returned to atmospheric pressure every batch, and the material is replaced. At this time, air also flows into the path to the X-ray detector of the film thickness measuring device. The inflowing air contains dust and dust, and enters the route. The dust and dust may contaminate the path to the X-ray detector or may adhere to the X-ray detector window. If the fluorescent X-ray is attached to the crystal that separates the X-rays, the X-ray intensity detected by scattering or the like is attenuated.
In addition, when an element is contained in dust or the like to be measured, fluorescent X-rays are also generated from the dust, and measurement cannot be performed correctly.

本発明は少なくとも片面に無機物層を持つプラスチックフィルムの該無機物層の膜厚組成を真空中で蛍光X線により連続的に測定する装置にかんし、測定対象が存在する部分を真空状態から大気圧に戻す際に蛍光X線測定経路を測定対象が有る部分より圧力を高く保持しながら大気圧に戻す機構を持つ事を特徴とする膜厚測定装置である。   The present invention relates to an apparatus for continuously measuring the film thickness composition of a plastic film having an inorganic layer on at least one side by means of fluorescent X-rays in a vacuum, and the portion where the measurement object exists is changed from a vacuum state to an atmospheric pressure. The film thickness measuring apparatus is characterized by having a mechanism for returning the X-ray fluorescence measurement path to atmospheric pressure while maintaining the pressure higher than the portion where the measurement target is present.

さらに該機構が外部よりガスを導入する機構であり、該ガスの湿度が10%以下であることを特徴とする請求項1の膜厚測定装置が好ましい。   Furthermore, the mechanism is a mechanism for introducing a gas from the outside, and the humidity of the gas is 10% or less.

この場合において、前記機構が蛍光X線測定経路にガスを流入するポートを設け測定対象がある場所がリークされたとき、それに先立ちあるいは同時にガスを流入させることが好適である。   In this case, it is preferable that the mechanism is provided with a port for allowing gas to flow into the fluorescent X-ray measurement path, and when the place where the measurement target is leaked, gas is allowed to flow before or simultaneously with the leak.

またこの場合において、前記装置が測定対象であるプラスチックフィルムにX線を照射するための開口部を有し、この開口部および蛍光X線測定経路と膜厚測定装置の内部の他の部分の気体の移動を防止する仕切壁を有しており、かつ蛍光X線測定経路にガスを流入するポートを備えることが好適である。   Further, in this case, the apparatus has an opening for irradiating the plastic film to be measured with X-rays, and the gas in the opening, the fluorescent X-ray measurement path, and other parts in the film thickness measuring apparatus. It is preferable to have a partition wall that prevents the movement of the gas and to have a port through which gas flows into the fluorescent X-ray measurement path.

さらにまた、この場合において、前記蛍光X線測定経路に流入させるガスの湿度が10%以下であることが好適である。   Furthermore, in this case, it is preferable that the humidity of the gas flowing into the fluorescent X-ray measurement path is 10% or less.

さらにまた、この場合において、測定対象が存在する部分を真空を大気圧に戻すときに蛍光X線測定経路を真空に保持できる機構を持つことが好適である。   Furthermore, in this case, it is preferable to have a mechanism capable of holding the fluorescent X-ray measurement path in a vacuum when the part where the measurement object exists is returned to the atmospheric pressure.

本発明によれば蛍光X線を利用した膜厚測定装置においてゴミ、ホコリ等の汚染が防げる事により長期の使用にも安定した精度が保てる。   According to the present invention, in a film thickness measuring apparatus using fluorescent X-rays, contamination such as dust and dust can be prevented, so that stable accuracy can be maintained even for long-term use.

以下に図を示して本発明を説明する。
図1は、本発明に係る膜厚測定装置を使用した蒸着装置の実施形態を示している。この蒸着装置は、4に示す電子ビーム加熱方式等の蒸着装置を使用し、長尺プラスチックフィルムにアルミナ−シリカ等の無機薄膜層を蒸着する装置である。銅などの金属製水冷坩堝4に粒状の蒸着原料をいれる。
巻き出しロール8より出たフィルムは、プラズマによる前処理器7を通り蒸着ロール5に移動する。電子銃3により坩堝4に入った材料を加熱、蒸発させ蒸着ロール5上でフィルムに無機薄膜層を形成する。
その後除電気2、6を通過して膜厚測定装置1に行く、膜厚測定装置により膜厚組成を測定し目標膜厚組成になるよう制御を電子銃にかける。
Hereinafter, the present invention will be described with reference to the drawings.
FIG. 1 shows an embodiment of a vapor deposition apparatus using a film thickness measuring apparatus according to the present invention. This vapor deposition apparatus is an apparatus for depositing an inorganic thin film layer such as alumina-silica on a long plastic film by using a vapor deposition apparatus such as an electron beam heating method shown in 4. A granular deposition raw material is put into a metal water-cooled crucible 4 such as copper.
The film discharged from the unwinding roll 8 moves to the vapor deposition roll 5 through the pretreatment device 7 by plasma. The material contained in the crucible 4 is heated and evaporated by the electron gun 3 to form an inorganic thin film layer on the film on the vapor deposition roll 5.
The film thickness is then measured by the film thickness measuring device after passing through the static elimination units 2 and 6, and the control is applied to the electron gun so as to obtain the target film thickness composition.

図2は本発明に係る膜厚測定の1つの実施形態を示している。
X線発生管10より励起用X線を測定経路を通して開口部12より測定対象14が有るロール13に照射する。開口部とは、膜厚測定装置内部から測定対象であるプラスチックフィルムにX線を照射するために設けられたものであり、この開口部および蛍光X線測定経路と膜厚測定装置の内部の他の部分の気体の移動を防止するための仕切壁を有している。これは、開口部および蛍光X線測定経路の気圧を制御するために必要なものである。この仕切壁に蛍光X線測定経路にガスを流入するガス導入口15を設ける。
測定対象フィルム14から発生する蛍光X線を開口部12より取込み測定経路を通して分光結晶11により分光する。このX線をX線検出器10で強度測定する。X線強度は検量線を使い膜厚組成に変換する。
蒸着終了後 装置を大気圧に戻す時、ガス導入口15をまず開放し蒸着装置を次に開放する。ガスの導入量は測定対象がある部分より圧力を高く保持しながら大気圧に戻す用に設定している。ガスの導入量は、マスフローコントローラー等の自動のものを用い、バルブの開閉等で行うことができる。導入口流入するガスはアルゴンガスを使った。大気解放後も10SCCM程度流し続けるのが好ましく、次の蒸着がための蒸着機の準備が完了し、真空引きするときにこのガスを停止するのが好ましい。
FIG. 2 shows one embodiment of film thickness measurement according to the present invention.
Excitation X-rays are radiated from the X-ray generation tube 10 to the roll 13 having the measurement object 14 from the opening 12 through the measurement path. The opening is provided to irradiate the plastic film to be measured from the inside of the film thickness measuring device with X-rays. The partition wall for preventing the movement of the gas in this part. This is necessary to control the pressure in the opening and the fluorescent X-ray measurement path. The partition wall is provided with a gas inlet 15 through which gas flows into the fluorescent X-ray measurement path.
Fluorescent X-rays generated from the measurement target film 14 are taken in through the opening 12 and dispersed by the spectral crystal 11 through the measurement path. The intensity of this X-ray is measured by the X-ray detector 10. X-ray intensity is converted into a film thickness composition using a calibration curve.
When the apparatus is returned to atmospheric pressure after vapor deposition, the gas inlet 15 is first opened and the vapor deposition apparatus is then opened. The amount of gas introduced is set so as to return to atmospheric pressure while maintaining the pressure higher than the portion where the object is to be measured. The gas can be introduced automatically by using a mass flow controller or the like by opening or closing a valve. Argon gas was used as the gas flowing into the inlet. It is preferable to continue the flow of about 10 SCCM even after the atmosphere is released, and it is preferable to stop this gas when vacuuming is completed after the preparation of the vapor deposition apparatus for the next vapor deposition is completed.

図3は本発明に係る膜厚測定装置のもう一つの実施形態を示している。
この膜厚測定装置は真空を大気圧に戻すときに蛍光X線測定経路を真空に保持できる機構を持つことを特徴とする膜厚測定装置の一例である。この場合、膜厚測定装置の開口部に仕切り板17を設置しているのが好適である。
仕切り板17を用いることによって、動作し蛍光X線測定経路を真空に保つことができる。仕切り板は真空時には横に退避しX線の妨げにならないようにする必要がある。
FIG. 3 shows another embodiment of the film thickness measuring apparatus according to the present invention.
This film thickness measuring apparatus is an example of a film thickness measuring apparatus having a mechanism capable of holding the fluorescent X-ray measurement path in vacuum when the vacuum is returned to atmospheric pressure. In this case, it is preferable to install the partition plate 17 in the opening of the film thickness measuring device.
By using the partition plate 17, the fluorescent X-ray measurement path can be kept in a vacuum by operating. The partition plate needs to be retracted to the side during vacuum so as not to interfere with X-rays.

本発明で言う無機物とは主として金属、金属酸化物、金属窒化物これらの複合物をさす。金属酸化物としては、酸化アルミニウム、酸化マグネシウム等の金属酸化物と酸化ケイ素等の半金属酸化物、またこれらの複合物をいう。酸化が完全でなく酸素を若干欠損したもの、例えばSiOx(x=1.5〜1.9)といった表現をする無機酸化物を含む。さらに、サイアロン等の窒化酸化物も含んでいる。   The inorganic substance referred to in the present invention mainly refers to a composite of metal, metal oxide, and metal nitride. As metal oxides, metal oxides such as aluminum oxide and magnesium oxide, metalloid oxides such as silicon oxide, and composites thereof are used. Inorganic oxides that are not completely oxidized but lack oxygen slightly, such as SiOx (x = 1.5 to 1.9) are included. Furthermore, nitride oxides such as sialon are also included.

本発明で言う連続的に測定するとは例えばロール状に巻き取られている長尺プラスチックフィルムを順次巻だしプラスッチクフィルム上に無機物層を連続的の測定するような状態を指す。
特にスパッタ、蒸着法等により連続的に無機物層をプラスチックフィルム上に形成する装置において、プラスチックフィルムの原反を巻だし無機物層を形成した後、無機物層の膜厚を測定し巻きとる工程において連続に測定する方法に該当する。
The continuous measurement in the present invention refers to a state in which, for example, a long plastic film wound up in a roll shape is sequentially wound and the inorganic layer is continuously measured on the plastic film.
In particular, in an apparatus for continuously forming an inorganic layer on a plastic film by sputtering, vapor deposition, etc., after the raw film of the plastic film is wound to form the inorganic layer, the film thickness of the inorganic layer is measured and wound continuously. It corresponds to the method of measuring.

本発明でいうプラスチックフィルムとは、有機高分子を溶融押し出しをして、必要に応じ、長手方向、及び、又は、幅方向に延伸、冷却、熱固定を施したフィルムであり、有機高分子としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタート、ポリエチレン−2、6−ナフタレート、ナイロン6、ナイロン4、ナイロン66、ナイロン12、ポリ塩化ビニール、ポリ塩化ビニリデン、ポリビニールアルコール、全芳香族ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリスルフォン、ポリッフェニレンスルフィド、ポリフェニレンオキサイドなどがあげられる。また、これらの(有機重合体)有機高分子は他の有機重合体を少量共重合をしたり、ブレンドしたりしてもよい。フィルム幅は1000〜2000mmが用いられ、フィルム長は8000〜20000mが用いられる。   The plastic film referred to in the present invention is a film obtained by melt-extrusion of an organic polymer and stretching, cooling, and heat setting in the longitudinal direction and / or the width direction as necessary. Are polyethylene, polypropylene, polyethylene terephthalate, polyethylene-2, 6-naphthalate, nylon 6, nylon 4, nylon 66, nylon 12, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, wholly aromatic polyamide, polyamideimide, Examples thereof include polyimide, polyetherimide, polysulfone, polyphenylene sulfide, and polyphenylene oxide. These (organic polymers) organic polymers may be copolymerized or blended with other organic polymers in small amounts. The film width is 1000 to 2000 mm, and the film length is 8000 to 20000 m.

更にこの有機高分子には、公知の添加剤、例えば、紫外線吸収剤、帯電防止剤、可塑剤、滑剤、着色剤などが添加されていてもよい。特に限定はされないが、プラスチックフィルムは、その厚さとして5〜1000μmの範囲である。   Furthermore, known additives such as ultraviolet absorbers, antistatic agents, plasticizers, lubricants, colorants and the like may be added to the organic polymer. Although not particularly limited, the plastic film has a thickness in the range of 5 to 1000 μm.

本発明で言う蛍光X線を使った膜厚組成を測定する膜厚測定装置とは被測定物にX線を照射して被測定物が含む原子から発生する特性X線の強度を測定して膜厚組成に換算し値を出力するものである。換算は既知の膜厚組成の被測定物を測定し、得られた蛍光X線強度との関係により作成した検量線による。従って少なくともこの膜厚測定装置は励起用のX線を発生する装置と蛍光X線を検出する装置と得られた信号を処理する装置からなる。   The film thickness measuring apparatus for measuring the film thickness composition using fluorescent X-rays referred to in the present invention measures the intensity of characteristic X-rays generated from atoms contained in the object to be measured by irradiating the object to be measured with X-rays. A value is output in terms of film thickness composition. The conversion is based on a calibration curve prepared by measuring a measured object having a known film thickness composition and the relationship with the obtained fluorescent X-ray intensity. Therefore, at least this film thickness measuring apparatus comprises an apparatus that generates X-rays for excitation, an apparatus that detects fluorescent X-rays, and an apparatus that processes the obtained signals.

特定原子が出す蛍光X線強度を測定する方法としては、既知の方法が使用できる。たとえば波長分散方式がある。一例として測定対象が発生した蛍光X線を分光結晶をつかい分解し特定の波長が反射する角度に比例計数管等の検出器を置いて強度を測定する方法である。また、エネルギー分散方式がある。これは半導体検出器をつかい特定のエネルギーをもつ信号をカウントする方法である。   A known method can be used as a method of measuring the intensity of the fluorescent X-ray emitted from the specific atom. For example, there is a wavelength dispersion method. One example is a method of measuring the intensity by decomposing fluorescent X-rays generated by a measuring object using a spectroscopic crystal and placing a detector such as a proportional counter at an angle at which a specific wavelength is reflected. There is also an energy distribution method. This is a method of counting a signal having a specific energy using a semiconductor detector.

蛍光X線測定経路とは、測定対象を励起するためのX線発生管窓から膜厚測定装置の開口部、及び開口部より検出器窓までをさし、膜厚測定装置の開口部が開いている場合に空気が出入りする部分をさす。   The fluorescent X-ray measurement path refers to the X-ray generator tube window for exciting the measurement object, the opening of the film thickness measuring device, and the opening to the detector window. The opening of the film thickness measuring device opens. The part where air enters and exits.

装置を大気開放する場合に蛍光X線測定経路を測定対象がある部分より圧力を高く保つ方法としては、蛍光X線測定経路にガスを流入するポートを設け測定対象がある場所がリークされたとき、それに先立ちあるいは同時にガスを流入する方法がある。この時ガスの流量を適度に保つことが必要である。つまり測定対象が有る分部の容量に対する流入するガス量の割合が蛍光X線測定経路の容量に対するガス量の割合より小さくなる様に設定する。この設定に保てば高い圧力 つまり、蛍光X線側より測定対象側にガスの流れを保持しながら大気圧に戻せる。   As a method of keeping the pressure of the fluorescent X-ray measurement path higher than the part where the measurement target is located when the apparatus is opened to the atmosphere, a port where gas flows into the fluorescent X-ray measurement path is provided and the place where the measurement target is leaked There is a method of introducing gas prior to or simultaneously with it. At this time, it is necessary to keep the gas flow rate moderate. That is, the ratio of the inflowing gas amount to the volume of the portion where the measurement target is present is set to be smaller than the ratio of the gas amount to the capacity of the fluorescent X-ray measurement path. If this setting is maintained, a high pressure, that is, the pressure can be returned to the atmospheric pressure while maintaining the gas flow from the fluorescent X-ray side to the measurement target side.

蛍光X線測定経路に導入するガスとしてはフィルターを通した大気でもよいが、相対湿度が10%以下のものが適している。10%以下にしたガスとしてはドライヤーを通した空気、あるいは市販のボンベに詰められた窒素ガス、アルゴンガスなどがある。低湿度が好ましい理由としては膜厚測定装置内のさび等を防ぐ以上に波長分散方式を使用する場合 X線分散用の分光結晶が水分により潮解するものが多くあるためである。   The gas introduced into the fluorescent X-ray measurement path may be air through a filter, but those having a relative humidity of 10% or less are suitable. Examples of the gas reduced to 10% or less include air passed through a dryer, or nitrogen gas and argon gas packed in a commercially available cylinder. The reason why the low humidity is preferable is that, when a wavelength dispersion method is used in addition to preventing rust and the like in the film thickness measuring device, many X-ray dispersion spectral crystals are deliquescent by moisture.

本発明で言う蛍光X線測定経路を真空に保持できる機構とは、膜厚測定装置と測定対象の間をX線を透過する素材たとえばベリリウム、あるいはポリプロピレンなどの薄いフィルムにより恒常的に仕切るものを指すのではなく、大気圧に戻す際に開口部を仕切り板等で蓋をする機構をさす。   The mechanism capable of maintaining the X-ray fluorescence measurement path in the present invention in a vacuum means that the film thickness measuring device and the measurement object are constantly partitioned by a thin film such as beryllium or polypropylene, which transmits X-rays. Instead of pointing, it refers to a mechanism that covers the opening with a partition plate or the like when returning to atmospheric pressure.

ベリリウム、ポリプロピレンで恒常的に仕切りる場合は、蛍光X線の減衰が大きいため20μmなど非常に薄くしなくては使用できないので問題である。   When partitioning with beryllium or polypropylene constantly, there is a problem because the fluorescent X-rays are greatly attenuated and cannot be used unless they are very thin, such as 20 μm.

測定対象がある部分にガスを導入する前に金属等で製作した仕切り板により膜厚測定装置の蛍光X線測定経路と測定対象が有る部分とを切り離し経路部分を真空に保つものである。これによりチリ、ホコリの進入を防ぎ分光結晶の劣化も防ぐことが出来る。   Before the gas is introduced into the portion where the measurement target is present, the fluorescent X-ray measurement path of the film thickness measurement device is separated from the portion where the measurement target is present by a partition plate made of metal or the like, and the path portion is kept in a vacuum. As a result, entry of dust and dust can be prevented, and deterioration of the spectral crystal can also be prevented.

膜厚測定精度を上げるためには、なるべく蛍光X線強度を得ることが必要である。したがって測定対象と膜厚測定装置との距離を縮めた方が有利である。この意味で測定対象と膜厚測定装置の間に機構をもたない蛍光X線測定経路を測定対象が有る部分より圧力を高く保持しながら大気圧に戻す機構を持つ事を特徴とする膜厚測定装置の方が好ましい。   In order to increase the film thickness measurement accuracy, it is necessary to obtain the fluorescent X-ray intensity as much as possible. Therefore, it is advantageous to reduce the distance between the measurement object and the film thickness measuring device. In this sense, the film thickness is characterized by having a mechanism for returning the X-ray fluorescence measurement path having no mechanism between the measurement object and the film thickness measurement apparatus to atmospheric pressure while maintaining the pressure higher than the part where the measurement object is present. A measuring device is preferred.

以下に具体例をあげて本発明を説明する。   Hereinafter, the present invention will be described with specific examples.

(実施例1)
図1に示す電子ビーム加熱方式蒸着装置を使用し、フィルムにアルミナ−シリカ層を蒸着した。フィルム幅1800mmフィルム長15000mの12μm厚みPETフィルムを基板として巻き出しロール(8)にセットした。PETフィルムはポリエチレンテレフタレートフィルム (東洋紡績株式会社製 エステルフィルム E5100)である。
約5mm粒状の二酸化ケイ素と酸化アルミニウムとを蒸着原料として銅製水冷坩堝(4)にいれた。
巻き出しロール(8)より出たフィルムは、プラズマによる前処理器(7)を通り蒸着ロール(5)に移動する。電子銃(3)により坩堝(4)に入った材料を加熱、蒸発させ蒸着ロール(5)上でフィルムにアルミナ−シリカ層を形成する。その後除電器(2)(6)を通過して膜厚測定装置(1)に行く、膜厚測定装置により膜厚組成を測定し目標膜厚組成になるよう制御を電子銃にかける。
膜厚測定装置は図2に示すようになっている。X線発生管(10)より励起用X線を測定経路を通して開口部(12)より測定対象(14)が有るロール(13)に照射する。測定対象フィルム(14)から発生する蛍光X線を開口部(12)より取込み測定経路を通して分光結晶(11)により分光する。このX線をX線検出器(10)で強度測定する。X線強度は検量線を使い膜厚組成に変換する。
蒸着終了後 装置を大気圧に戻す時、ガス導入口(15)をまず開放し蒸着装置を次に開放する。ガスの導入量は測定対象がある部分より圧力を高く保持しながら大気圧に戻す用に設定している。導入口流入するガスはアルゴンガスを使った。大気解放後も10SCCM程度流し続けた。蒸着機の準備が出来次に真空引きするときにこのガスを停止した。
この蒸着を5バッチ行い、膜厚測定装置内部の状況を確認した。
内部にはホコリ、チリによる汚染が無かった。
Example 1
The alumina-silica layer was vapor-deposited on the film using the electron beam heating system vapor deposition apparatus shown in FIG. A 12 μm-thick PET film having a film width of 1800 mm and a film length of 15000 m was set as a substrate on an unwinding roll (8). The PET film is a polyethylene terephthalate film (Ester film E5100 manufactured by Toyobo Co., Ltd.).
About 5 mm granular silicon dioxide and aluminum oxide were used as deposition raw materials and placed in a copper water-cooled crucible (4).
The film discharged from the unwinding roll (8) passes through the pretreatment device (7) by plasma and moves to the vapor deposition roll (5). The material contained in the crucible (4) is heated and evaporated by the electron gun (3) to form an alumina-silica layer on the film on the vapor deposition roll (5). Thereafter, the film thickness is measured by the film thickness measuring device through the static eliminators (2) and (6), and the control is applied to the electron gun so as to obtain the target film thickness composition.
The film thickness measuring apparatus is as shown in FIG. Excitation X-rays are irradiated from the X-ray generation tube (10) through the measurement path to the roll (13) having the measurement target (14) from the opening (12). Fluorescent X-rays generated from the film to be measured (14) are taken from the opening (12) and dispersed by the spectral crystal (11) through the measurement path. The intensity of the X-ray is measured with an X-ray detector (10). X-ray intensity is converted into a film thickness composition using a calibration curve.
When the apparatus is returned to atmospheric pressure after the vapor deposition is completed, the gas inlet (15) is first opened and then the vapor deposition apparatus is opened. The amount of gas introduced is set so as to return to atmospheric pressure while maintaining the pressure higher than the portion where the object is to be measured. Argon gas was used as the gas flowing into the inlet. It continued to flow about 10 SCCM even after the atmosphere was released. The gas was turned off when the vaporizer was ready and the next vacuum was applied.
Five batches of this vapor deposition were performed, and the situation inside the film thickness measuring apparatus was confirmed.
There was no contamination with dust and dust inside.

(比較例1)
実施例1でガスの導入を行わずに開放する以外同様に実施した。
5バッチ実施後内部を見ると細かなホコリが見られた。
(Comparative Example 1)
The same operation as in Example 1 was carried out except that the gas was not introduced and opened.
Fine dust was seen when looking inside after 5 batches.

(実施例2)
実施例1の膜厚測定装置を図2に示すものより図3に示す物に変更して実施例1と同様に内部を確認した。この膜厚測定装置は真空を大気圧に戻すときに蛍光X線測定経路を真空に保持できる機構を持つことを特徴とする膜厚測定装置の一例である。大気開放時に先立ち仕切り板17を動作し蛍光X線測定経路を真空に保った。仕切り板は
真空時には横に退避しX線の妨げにならないようになっている。実施例1と同様に蒸着を行った。
5バッチ後内部を確認するとホコリの進入は見られなかった。
(Example 2)
The film thickness measuring apparatus of Example 1 was changed from that shown in FIG. 2 to the one shown in FIG. This film thickness measuring apparatus is an example of a film thickness measuring apparatus having a mechanism capable of holding the fluorescent X-ray measurement path in vacuum when the vacuum is returned to atmospheric pressure. Prior to opening the atmosphere, the partition plate 17 was operated to keep the fluorescent X-ray measurement path in a vacuum. The partition plate is retracted to the side during vacuum so as not to interfere with X-rays. Vapor deposition was performed in the same manner as in Example 1.
When the inside was confirmed after 5 batches, no dust was seen.

実施例、比較例で使用した装置の概略図Schematic diagram of devices used in Examples and Comparative Examples ガス導入機構をもった膜厚測定装置の概略図Schematic of film thickness measuring device with gas introduction mechanism 仕切り版機構をもった膜厚測定装置の概略図Schematic diagram of film thickness measuring device with partition plate mechanism

Claims (3)

無機薄膜を製造する真空装置に備えられ、少なくとも片面に無機物層を持つプラスチックフィルムの該無機物層の膜厚及び組成を真空中で蛍光X線により連続的に測定する膜厚測定装置であって
該膜厚測定装置は、励起用のX線を発生する装置、蛍光X線を検出する装置、測定対象が存在する空間と前記X線を発生する装置及び前記蛍光X線を検出する装置が存在する空間との境界に配され前記X線と前記蛍光X線を通す開口部を有する仕切り壁、及び、前記X線を発生する装置と前記蛍光X線を検出する装置が存在する空間にガスを流入するポートを備えており
前記測定対象が存在する空間の気圧を真空状態から大気圧に戻す際に、前記X線を発生する装置と前記蛍光X線を検出する装置が存在する空間気圧が、前記測定対象が存在する空間気圧よりも高く保持されていることを特徴とする膜厚測定装置。
A film thickness measuring device that is provided in a vacuum device for manufacturing an inorganic thin film and that continuously measures the film thickness and composition of a plastic film having an inorganic layer on at least one surface thereof by fluorescent X-ray in vacuum,
The film thickness measurement apparatus includes an apparatus that generates X-rays for excitation, an apparatus that detects fluorescent X-rays, a space in which a measurement target exists, an apparatus that generates the X-rays, and an apparatus that detects the fluorescent X-rays partition wall perforated openings disposed on the boundary between the space through the fluorescent X-ray and the X-rays, and the gas in the space apparatus is present to detect the device and the fluorescent X-ray generated the X-ray Has a port to flow in ,
When returning the pressure of the space in which the measurement object is present from the vacuum state to the atmospheric pressure, pressure of the space in which a device for detecting the device and the fluorescent X-ray generated the X-ray is present, the measurement target is present thickness measuring apparatus characterized by being held higher than the air pressure in the space.
前記ポートは、測定対象が存在する空間の気圧を真空状態から大気圧に戻すのに先立ちあるいは同時に、前記X線を発生する装置と前記蛍光X線を検出する装置が存在する空間にガスを流入させることを特徴とする請求項1の膜厚測定装置。The port allows the gas to flow into the space where the device for generating X-rays and the device for detecting fluorescent X-rays exist prior to or simultaneously with returning the atmospheric pressure of the space where the measurement object exists from the vacuum state to the atmospheric pressure. The film thickness measuring apparatus according to claim 1, wherein: 前記X線を発生する装置と前記蛍光X線を検出する装置が存在する空間に流入させるガスの湿度が10%以下であることを特徴とする請求項2の膜厚測定装置。 The film thickness measuring apparatus according to claim 2, wherein the humidity of the gas flowing into the space where the apparatus for generating X-rays and the apparatus for detecting fluorescent X-rays are present is 10% or less.
JP2004292348A 2004-10-05 2004-10-05 Film thickness measuring device Active JP4677754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004292348A JP4677754B2 (en) 2004-10-05 2004-10-05 Film thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004292348A JP4677754B2 (en) 2004-10-05 2004-10-05 Film thickness measuring device

Publications (2)

Publication Number Publication Date
JP2006105766A JP2006105766A (en) 2006-04-20
JP4677754B2 true JP4677754B2 (en) 2011-04-27

Family

ID=36375686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292348A Active JP4677754B2 (en) 2004-10-05 2004-10-05 Film thickness measuring device

Country Status (1)

Country Link
JP (1) JP4677754B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112831767A (en) * 2021-01-04 2021-05-25 中国航空制造技术研究院 Composite processing method for metallized film on surface of composite material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105636A (en) * 2000-09-29 2002-04-10 Canon Inc Sputtering method controlled by plasma emmision monitor
JP2002328105A (en) * 2001-02-28 2002-11-15 Rigaku Industrial Co X-ray analyzer improved in sealability for spare vacuum chamber

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360286A (en) * 1976-11-11 1978-05-30 Sumitomo Metal Ind Measuring method of residual oil on the surface of cold rolled steel and apparatus used in the method
JPS60173448A (en) * 1984-02-20 1985-09-06 Nippon Steel Corp Method and device for analyzing surface of moving material
JPH04354872A (en) * 1991-05-31 1992-12-09 Toppan Printing Co Ltd Method for forming film in vacuum and device therefor
JPH0631154A (en) * 1992-07-21 1994-02-08 Hitachi Ltd Vacuum device
JPH0815187A (en) * 1994-07-02 1996-01-19 Horiba Ltd Fluorescent x-ray analyzer
JP3656337B2 (en) * 1996-09-06 2005-06-08 東京エレクトロン株式会社 Film thickness measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105636A (en) * 2000-09-29 2002-04-10 Canon Inc Sputtering method controlled by plasma emmision monitor
JP2002328105A (en) * 2001-02-28 2002-11-15 Rigaku Industrial Co X-ray analyzer improved in sealability for spare vacuum chamber

Also Published As

Publication number Publication date
JP2006105766A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
US20090304906A1 (en) Evaporating apparatus, apparatus for controlling evaporating apparatus, method for controlling evaporating apparatus, method for using evaporating apparatus and method for manufacturing blowing port
US20060185588A1 (en) Vapor deposition apparatus measuring film thickness by irradiating light
US20100092665A1 (en) Evaporating apparatus, apparatus for controlling evaporating apparatus, method for controlling evaporating apparatus and method for using evaporating apparatus
WO2011071064A1 (en) Film forming device for organic thin films, and method for forming film using organic materials
JP7472905B2 (en) Transparent gas barrier film and its manufacturing method
JP4677754B2 (en) Film thickness measuring device
EP1028174B1 (en) Functional roll film and production thereof
CA3072406A1 (en) Gas barrier laminated body
US20090169923A1 (en) Substrate processing using the vapor supplying apparatus
JP4260229B2 (en) Method for coating a transparent metal oxide on a film
JP3346309B2 (en) Manufacturing method of gas barrier film
JPH06330318A (en) Method for producing gas barrier film and device therefor
JP2010242202A (en) Vapor deposition apparatus
JP6150070B2 (en) Vapor deposition apparatus and vapor deposition method
JP3750368B2 (en) Vacuum deposition equipment
JP2001108615A (en) Atomic-absorption-type rate monitor
JP6464448B2 (en) Vapor deposition apparatus and vapor deposition method
JPH04285093A (en) Vapor deposition device
JPH11335836A (en) Production of transparent gas barrier film and apparatus for its production
JP3633815B2 (en) Vacuum deposition equipment
Bird et al. Production and measurement of large-area moisture barriers for electronic applications
JP2014210960A (en) Vapor deposition device and vapor deposition method
JP2001192827A (en) Vacuum evaporation system
JP6132053B2 (en) Method for continuously producing an inorganic layer laminated plastic film
JP4539789B2 (en) Vacuum deposition equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110117

R151 Written notification of patent or utility model registration

Ref document number: 4677754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350