JP2001108615A - Atomic-absorption-type rate monitor - Google Patents

Atomic-absorption-type rate monitor

Info

Publication number
JP2001108615A
JP2001108615A JP28724199A JP28724199A JP2001108615A JP 2001108615 A JP2001108615 A JP 2001108615A JP 28724199 A JP28724199 A JP 28724199A JP 28724199 A JP28724199 A JP 28724199A JP 2001108615 A JP2001108615 A JP 2001108615A
Authority
JP
Japan
Prior art keywords
light
metal particles
probe
pipe
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28724199A
Other languages
Japanese (ja)
Other versions
JP4167780B2 (en
Inventor
Kazuya Uchida
一也 内田
Munehito Hakomori
宗人 箱守
Toshiharu Kurauchi
倉内  利春
Kanenori Matsuzaki
松崎  封徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP28724199A priority Critical patent/JP4167780B2/en
Publication of JP2001108615A publication Critical patent/JP2001108615A/en
Application granted granted Critical
Publication of JP4167780B2 publication Critical patent/JP4167780B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an atomic-absorption-type rate monitor for accurately detecting the rate of an evaporation metal particle or the like for a long time regardless of the number, accurately controlling the rate, and individually and accurately detecting the rate at an arbitrary position. SOLUTION: In a device for monitoring the amount of metal particles by providing a light reception probe 10 on a light axis 13 from a light application probe 8 and absorbing light from the light application probe by the atom of the evaporation metal particle passing through a light absorption region 16 between the light application probe and the light reception probe, pipes 14 and 15 along the light axis are provided on each front surface of the light application probe and the light reception probe. A heating device 18 for preventing the adhesion of the metal particle is provided at an opening at the light absorption region side of a pipe, and the pipe is allowed to move freely in its axial direction and the distance of the light absorption region is controlled constantly. Further, another pipe is provided between the pipes, and a shutter 23 for controlling the passage of the metal particle at the light absorption region between the pipes is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スパッタや蒸着に
於いて基板に形成される金属薄膜の膜厚制御やそのプロ
セスの制御のために、基板へ飛来するスパッタ金属粒子
や蒸発金属粒子の原子に光を吸収させ、その吸収量によ
り該金属粒子のレートや量などを検出する原子吸光式レ
ートモニターに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling the thickness of a metal thin film formed on a substrate in sputtering or vapor deposition and controlling the process thereof by controlling the atom of sputtered metal particles or evaporated metal particles flying on the substrate. The present invention relates to an atomic absorption type rate monitor which absorbs light and detects the rate and amount of the metal particles based on the amount of absorption.

【0002】[0002]

【従来の技術】従来、この種のモニターは、例えば図1
に示すように、真空の成膜室aの蒸発源bから上方の基
板cへ向かう蒸発金属粒子dの蒸発経路を横断するよう
に光を照射する光照射プローブeと、これよりの光を受
光する受光プローブfを設けて構成され、該受光プロー
ブfにより蒸発レートなどをモニターし、受光された光
強度に基づいて電子銃などの蒸発熱源gを電源hの制御
部により制御することが行われている。該光照射プロー
ブeと受光プローブfの前方には、これらに金属粒子が
付着しないように石英等の窓iが夫々設けられている。
コントローラjには測定する金属粒子に固有の波長の光
を放射するホローカソードランプkが用いられ、この波
長の光は金属粒子と衝突したとき吸光されるため受光プ
ローブfには金属粒子の密度に依存した光強度で受光さ
れ、金属粒子の蒸発レートをモニターできる。
2. Description of the Related Art Conventionally, this type of monitor is, for example, shown in FIG.
As shown in FIG. 5, a light irradiation probe e for irradiating light so as to traverse the evaporation path of the evaporated metal particles d from the evaporation source b of the vacuum film forming chamber a toward the upper substrate c, and receives light from the light irradiation probe e. A light receiving probe f is provided, the evaporation rate is monitored by the light receiving probe f, and an evaporation heat source g such as an electron gun is controlled by a control unit of a power supply h based on the received light intensity. ing. Windows i made of quartz or the like are provided in front of the light irradiation probe e and the light receiving probe f so that metal particles do not adhere to them.
A hollow cathode lamp k that emits light having a wavelength specific to the metal particles to be measured is used for the controller j, and light of this wavelength is absorbed when it collides with the metal particles. The light is received at a dependent light intensity, and the evaporation rate of the metal particles can be monitored.

【0003】[0003]

【発明が解決しようとする課題】この原子吸光式レート
モニターは、金属粒子の量が多いと蒸発経路での光の吸
収量が大きくなり、ランバート・ベールの法則に従い吸
光度が飽和し、正確なレートをモニターできず、正確な
制御を行えないという欠点がある。また、金属粒子の量
が多いと、窓iの表面に金属粒子が回り込んで付着し、
窓iの汚れのために正確なモニターが行えない。
According to this atomic absorption type rate monitor, when the amount of metal particles is large, the amount of light absorbed in the evaporation path becomes large, the absorbance is saturated according to Lambert-Beer's law, and the accurate rate is measured. There is a disadvantage in that accurate control cannot be performed because of the inability to monitor the data. If the amount of the metal particles is large, the metal particles wrap around and adhere to the surface of the window i,
An accurate monitor cannot be performed due to the dirt on the window i.

【0004】本発明は、スパッタ金属粒子や蒸発金属粒
子のレートを多少に係わらず長時間に亘り正確に検出で
き、正確なレート制御を行える原子吸光式レートモニタ
ーを提供すること、及び任意の位置でそのレートを個別
に正確に検出できる原子吸光式レートモニターを提供す
ることを目的とするものである。
It is an object of the present invention to provide an atomic absorption type rate monitor capable of accurately detecting the rate of sputtered metal particles or evaporated metal particles for a long time regardless of the amount, and performing accurate rate control. It is an object of the present invention to provide an atomic absorption type rate monitor capable of individually and accurately detecting the rates.

【0005】[0005]

【課題を解決するための手段】本発明では、光照射プロ
ーブからの光軸上に受光プローブを設け、これら光照射
プローブと受光プローブの間の吸光領域を通過するスパ
ッタ金属粒子或いは蒸発金属粒子の原子に該光照射プロ
ーブからの光を吸収させて該金属粒子の量をモニターす
る装置に於いて、該光照射プローブと受光プローブの各
前面に該光軸に沿ったパイプを設けることにより、上記
の目的を達成するようにした。該パイプの長さは該スパ
ッタ金属粒子或いは蒸発金属粒子の量と光の吸収量の関
係に基づき決定することが好ましく、該パイプの内部
に、該スパッタ金属粒子或いは蒸発金属粒子の付着を防
止するパージガスを流し、或いは、該パイプの吸光領域
側の開口部に該スパッタ金属粒子或いは蒸発金属粒子の
付着を防止する加熱装置を設け、或いは該パイプをその
軸方向に移動自在として該吸光領域の距離を一定に制御
することで、上記の目的を一層的確に達成できる。該パ
イプ間に更にパイプを設け、該パイプ間の吸光領域を該
金属粒子が通過することを制御するシャッターを設けて
おくことで、任意の位置に於ける該レートを個別に正確
に検出することができる。
According to the present invention, a light receiving probe is provided on an optical axis from a light irradiation probe, and sputtered metal particles or evaporated metal particles passing through an absorption region between the light irradiation probe and the light receiving probe. In a device for monitoring the amount of the metal particles by absorbing light from the light irradiation probe to atoms, by providing a pipe along the optical axis on each front surface of the light irradiation probe and the light receiving probe, To achieve the goal. The length of the pipe is preferably determined based on the relationship between the amount of the sputtered metal particles or the evaporated metal particles and the amount of light absorbed, and prevents the sputtered metal particles or the evaporated metal particles from adhering inside the pipe. A heating device for flowing a purge gas or preventing the sputtered metal particles or evaporated metal particles from adhering to the opening on the light absorption region side of the pipe is provided. By controlling to a constant, the above object can be achieved more accurately. By providing further pipes between the pipes and providing a shutter for controlling the passage of the metal particles through the light absorption area between the pipes, the rate can be individually and accurately detected at any position. Can be.

【0006】[0006]

【発明の実施の形態】本発明の実施の形態を図2に示し
た蒸着装置に適用した場合につき説明すると、同図の符
号1は真空に排気された成膜室、2は該成膜室1の下方
に設けられた蒸発源、3は該蒸発源2の上方に設けられ
た基板、4は該蒸発源2に収めた金属材料の蒸発物5が
電子銃の加熱源6により加熱されて蒸発する蒸発金属粒
子を示し、その蒸発金属粒子の蒸発量(蒸発レート)を
検出するため、その蒸発経路7を横断する光9をコント
ローラ30から照射するための光照射プローブ8と、該
光照射プローブ8の光軸13上で該光9を受光する受光
プローブ10を設け、電力制御機能を備えたコントロー
ラ30に該光照射プローブ8と受光プローブ10を接続
した。該光照射プローブ8及び受光プローブ10の前面
には合成石英の窓12が設けられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A case in which an embodiment of the present invention is applied to a vapor deposition apparatus shown in FIG. 2 will be described. In FIG. Reference numeral 1 denotes an evaporation source provided below the substrate 3, reference numeral 3 denotes a substrate provided above the evaporation source 2, and reference numeral 4 denotes an evaporation source 5 of a metal material contained in the evaporation source 2 heated by a heating source 6 of an electron gun. A light irradiation probe 8 for irradiating light 9 traversing the evaporation path 7 from a controller 30 to detect the amount of evaporation (evaporation rate) of the evaporated metal particles; A light receiving probe 10 for receiving the light 9 was provided on the optical axis 13 of the probe 8, and the light irradiation probe 8 and the light receiving probe 10 were connected to a controller 30 having a power control function. A window 12 made of synthetic quartz is provided on the front surface of the light irradiation probe 8 and the light receiving probe 10.

【0007】該コントローラ30内のホローカソードラ
ンプ31には蒸発金属粒子の固有の波長の光を照射する
ものが使用され、その光の一部が蒸発経路7を横断する
際、蒸発金属粒子の原子に吸収されて該受光プローブ1
0に受光される。該受光プローブ10の受光強度は金属
蒸発粒子の密度に依存しており、その受光強度に応じた
信号がコントローラ30から電源11に入力することで
例えば蒸発量が一定になるように該加熱源6への投入電
力が制御されるが、蒸発金属粒子の量が多いと前記した
ように吸光度が飽和したり、該窓12にまで回り込んで
付着する不都合を生じるので、本発明では該光照射プロ
ーブ8及び該受光プローブ10の前面に該光軸13に沿
ったパイプ14、15を夫々設けることでこれらの不都
合を解消するようにした。該パイプ14、15の長さ
は、蒸発金属粒子の量とその吸光度の関係を予測して決
定され、例えば蒸発量が多く吸光度が大きい蒸発金属粒
子では該吸光領域16の距離が短くなるように決定す
る。
The hollow cathode lamp 31 in the controller 30 irradiates light having a specific wavelength of the evaporated metal particles. When a part of the light traverses the evaporation path 7, the atoms of the evaporated metal particles are removed. Absorbed by the light receiving probe 1
0 is received. The light receiving intensity of the light receiving probe 10 depends on the density of the evaporated metal particles. When a signal corresponding to the light receiving intensity is input from the controller 30 to the power supply 11, for example, the heating source 6 is controlled so that the evaporation amount becomes constant. However, if the amount of the evaporated metal particles is large, the absorbance will be saturated as described above, or the inconvenience of escaping into the window 12 will be caused. These inconveniences are eliminated by providing pipes 14 and 15 along the optical axis 13 on the front surface of the light receiving probe 8 and the light receiving probe 10, respectively. The lengths of the pipes 14 and 15 are determined by predicting the relationship between the amount of evaporated metal particles and the absorbance thereof. For example, in the case of evaporated metal particles having a large amount of evaporation and a large absorbance, the distance of the light absorption region 16 is shortened. decide.

【0008】図2のパイプ14、15を設けた原子吸光
式レートモニターに於いて、吸光領域16と蒸発レート
及び光の吸光度の関係は図8の如くになり、該吸光領域
16の距離αが500mmと広い場合には5mmの狭い
場合に比べて吸光度の飽和が低いレートで起こってお
り、本発明のように距離αをパイプ14、15を設ける
ことでその飽和を高い蒸発レートに引き上げることがで
きる。該蒸発源2からの蒸発量は該受光プローブ10で
受光される光強度により測定されるが、両パイプ14、
15により蒸発金属粒子が光9の照射を受ける吸光領域
16が狭められているため、蒸発源2から大量の蒸発金
属粒子が蒸発しても、吸光領域16を通過するのはその
一部であるから、吸光度が飽和しにくくなり、大量の蒸
発量でも正確な測定を行える。また、パイプ14、15
を設けることで、吸光領域16から窓12までの距離が
長くなり、蒸発金属粒子が窓12まで回り込むことが少
なくなってノイズが減少し、長時間の測定が行える。こ
の回り込みを十分に防ぐために、図3に示すように、各
パイプ14、15の根部に外部のガス源に連なるガス導
入管17を接続し、これにアルゴンガスなどのパージガ
スを流しておくことが好ましい。このガス流量は、パイ
プ14、15の太さにもよるが、蒸着に影響のない程度
の流量である。
In the atomic absorption type rate monitor provided with the pipes 14 and 15 in FIG. 2, the relationship between the light absorbing region 16 and the evaporation rate and the light absorbance is as shown in FIG. When the width is as large as 500 mm, the saturation of the absorbance occurs at a lower rate than when the width is as narrow as 5 mm. By providing the pipes 14 and 15 with the distance α as in the present invention, the saturation can be raised to a high evaporation rate. it can. The amount of evaporation from the evaporation source 2 is measured by the intensity of the light received by the light receiving probe 10.
Since the light absorption region 16 to which the evaporated metal particles are irradiated with the light 9 is narrowed by 15, even if a large amount of evaporated metal particles evaporate from the evaporation source 2, only a part of the light passes through the light absorption region 16. Therefore, the absorbance is less likely to be saturated, and accurate measurement can be performed even with a large amount of evaporation. Also, pipes 14, 15
Is provided, the distance from the light absorption region 16 to the window 12 is increased, the amount of evaporated metal particles sneaking into the window 12 is reduced, noise is reduced, and measurement can be performed for a long time. In order to sufficiently prevent this wraparound, as shown in FIG. 3, a gas introduction pipe 17 connected to an external gas source is connected to the root of each of the pipes 14 and 15, and a purge gas such as an argon gas is supplied to this. preferable. The gas flow rate depends on the thickness of the pipes 14 and 15, but is a flow rate that does not affect the vapor deposition.

【0009】該蒸発源2からの蒸発金属粒子は、図4に
示すように、両パイプ14、15の下面及び吸光領域1
6側の開口部の端面14a、15aに付着して堆積層1
7を形成し、そのため吸光領域16として当初に決定し
た距離αが距離βにまで狭まり、蒸発金属粒子の通過量
が減少して吸光度に多少の変化を与え、これが正確な測
定を妨げる原因になることが判明した。そのため、図5
のように各パイプ14、15の吸光領域側の開口部付近
に電熱ヒーターなどの加熱装置18を取付けて該パイプ
の開口部付近を加熱し、該端面14a、15aに付着す
る蒸発金属粒子を再蒸発させて堆積層17が厚く形成さ
れないようにすることで距離αを維持し、正確なモニタ
リングを行えるようにした。具体的には、距離αが10
mmでマグネシウムを蒸発させた場合、加熱装置18を
作動させないと40時間後に各パイプの端面に3mmの
厚さの堆積層17が形成されたが、加熱装置18で30
0℃に加熱すると堆積層17は厚さ1mmに留まり、そ
の加熱温度を500℃にすると堆積層17は殆ど発生し
なかった。
The evaporated metal particles from the evaporation source 2 are, as shown in FIG.
The deposited layer 1 adheres to the end surfaces 14a and 15a of the opening on the 6 side.
7, so that the distance α originally determined as the light absorption region 16 is reduced to the distance β, and the amount of the evaporated metal particles is reduced, giving a slight change in the absorbance, which prevents accurate measurement. It has been found. Therefore, FIG.
A heating device 18 such as an electric heater is attached near the opening on the light absorption region side of each of the pipes 14 and 15 to heat the vicinity of the opening of the pipe, and the evaporated metal particles adhering to the end faces 14a and 15a are re-used. By evaporating so that the deposited layer 17 is not formed thick, the distance α is maintained, and accurate monitoring can be performed. Specifically, when the distance α is 10
When the heating device 18 was not operated, a deposition layer 17 having a thickness of 3 mm was formed on the end face of each pipe when the heating device 18 was not operated.
When heated to 0 ° C., the deposited layer 17 remained at a thickness of 1 mm, and when the heating temperature was set to 500 ° C., almost no deposited layer 17 was generated.

【0010】また、図6に示したように、各パイプをス
ライド部27を持つ二重のパイプで構成し、成膜室1の
外部のアクチュエータから導入した往復直線移動する移
動部材19に該スライド部27を連結してこれを移動さ
せるようにしてもよく、この場合は該堆積層17が形成
されても距離αを維持して正確なモニターができる。
尚、該スライド部27は、予め測定しておいた単位時間
当たりの堆積層17の成長度合いに基づき、自動的にア
クチュエータを作動させることで常に一定の距離αを維
持できる。
Further, as shown in FIG. 6, each pipe is constituted by a double pipe having a slide portion 27, and the pipe is moved by a reciprocating linearly moving moving member 19 introduced from an actuator outside the film forming chamber 1. The portion 27 may be connected and moved, and in this case, even if the deposition layer 17 is formed, accurate monitoring can be performed while maintaining the distance α.
The slide section 27 can always maintain the constant distance α by automatically operating the actuator based on the degree of growth of the deposited layer 17 per unit time measured in advance.

【0011】該成膜室1内に、例えば図7に示すように
複数の蒸発源2を設けて各蒸発源からの蒸発レートをモ
ニターしたり、成膜室1内の複数箇所の蒸発レートをモ
ニターすることの要望がある場合、同図のように各パイ
プ14、15の間に該光軸13に沿って更に1本または
複数本のパイプ20、21、22を介在させ、各パイプ
間がそのモニター箇所に位置して吸光領域16a、16
b、16c、16dとなるようにし、各吸光領域に蒸発
金属粒子の通過を制御するシャッター23、24、2
5、26を設けた構成とする。この構成によれば、各シ
ャッターを交互に開くことで各吸光領域の蒸発レートを
個別にモニターすることができ、多くの光照射プローブ
や受光プローブを設備する必要がなくなるから、簡単な
構成の1台のモニターで複数箇所をモニタリングして成
膜プロセスを制御することができる。
For example, as shown in FIG. 7, a plurality of evaporation sources 2 are provided in the film formation chamber 1 to monitor the evaporation rate from each evaporation source, or to monitor the evaporation rates at a plurality of locations in the film formation chamber 1. When there is a demand for monitoring, one or more pipes 20, 21 and 22 are further interposed between the pipes 14 and 15 along the optical axis 13 as shown in FIG. The light-absorbing regions 16a, 16
b, 16c, and 16d, and shutters 23, 24, and 2 for controlling the passage of the evaporated metal particles to each light absorption region.
5 and 26 are provided. According to this configuration, the evaporation rate of each light absorption region can be individually monitored by alternately opening the shutters, and it is not necessary to provide many light irradiation probes and light reception probes. The film formation process can be controlled by monitoring a plurality of locations with a single monitor.

【0012】図示のモニターは、該蒸発源2の作動中に
光照射プローブ8から光を照射し、吸光領域16に於け
る金属蒸発粒子により吸収されなかった光を受光プロー
ブ10で受け、その光強度により蒸発レートをモニター
するもので、この作用は従来のモニターと変わりがない
が、本発明のものでは該光照射プローブ8と受光プロー
ブ10の前面にパイプ14、15を設けて吸光領域16
が狭められているので、蒸発源2から大量の蒸発金属粒
子が発生しても、その一部が狭められた吸光領域16を
通過するだけであるから、光照射プローブ8からの光の
吸光量を飽和させてしまう可能性が小さくなり、蒸発レ
ートが大きくても出力の小さい光源でモニターでき、光
照射プローブ8および受光プローブ10から吸光領域1
6が遠ざかるので、大量に蒸発しても光照射プローブ8
や受光プローブ10への蒸発金属粒子の回り込みが少な
く、長時間に亘り正確なモニターを続けることができ
る。このモニター中に、該吸光領域16の距離αを、各
パイプに設けた加熱装置18を作動させ或いはスライド
部27をスライドさせて一定に維持しておくことで、正
確に該吸光領域16の原子の密度をモニターできる。
The monitor shown in the drawing irradiates light from the light irradiation probe 8 during the operation of the evaporation source 2, receives light not absorbed by the metal evaporation particles in the light absorption region 16 by the light receiving probe 10, and receives the light. This function monitors the evaporation rate based on the intensity. This function is the same as that of the conventional monitor. However, in the case of the present invention, pipes 14 and 15 are provided in front of the light irradiation probe 8 and the light receiving probe 10 so that the light absorption region 16
Is reduced, even if a large amount of evaporated metal particles are generated from the evaporation source 2, only a part of the generated metal particles pass through the reduced absorption region 16, so that the amount of light absorbed from the light irradiation probe 8 is reduced. Is less likely to saturate, and can be monitored with a light source having a small output even if the evaporation rate is high.
6 moves away, so that even if a large amount evaporates, the light irradiation probe 8
In addition, the amount of evaporated metal particles flowing into the light receiving probe 10 is small, and accurate monitoring can be continued for a long time. During this monitoring, the distance α of the light absorbing region 16 is maintained at a constant value by operating the heating device 18 provided on each pipe or by sliding the slide portion 27 so that the distance α of the light absorbing region 16 can be accurately determined. Can monitor the density of

【0013】以上の説明では、蒸発金属粒子をモニター
する例について説明したが、スパッタリングターゲット
を設けてこれのスパッタ金属粒子のスパッタレートを検
出する場合にも本発明のモニターを適用することができ
る。
In the above description, the example in which the evaporated metal particles are monitored has been described. However, the monitor of the present invention can also be applied to a case where a sputtering target is provided and the sputter rate of the sputtered metal particles is detected.

【0014】[0014]

【発明の効果】以上のように本発明によるときは、スパ
ッタ金属粒子或いは蒸発金属粒子に光照射プローブの光
を吸収させてその量をモニターする装置に於いて、パイ
プを該光照射プローブと受光プローブの前面に設けて吸
光領域を狭めたので、光の吸光度が飽和しにくくなって
該金属粒子の量が大量であってもモニターすることがで
き、該金属粒子が光照射プローブや受光プローブの前面
に回り込んで付着する不都合も解消できる効果があり、
該パイプに加熱装置を設け或いはスライド部を設けるこ
とでモニター中は該吸光領域の距離を維持することがで
き、正確なモニターを行える効果が得られる。また、該
パイプ間に更にパイプを設けることにより各パイプ間に
複数の受光領域を形成させ、その間にシャッターを設け
て交互にこれを開閉することで、異なる位置のレートを
1台のモニターで測定できる効果がある。
As described above, according to the present invention, in a device for absorbing the light of a light irradiation probe to sputtered metal particles or vaporized metal particles and monitoring the amount thereof, a pipe is connected to the light irradiation probe. Since the light-absorbing region is narrowed by being provided on the front surface of the probe, the absorbance of light is less likely to be saturated and the amount of the metal particles can be monitored even when the amount is large. It has the effect of eliminating the inconvenience of wrapping around and adhering to the front,
By providing a heating device or a slide portion on the pipe, the distance of the light absorption region can be maintained during monitoring, and an effect of enabling accurate monitoring can be obtained. Also, by providing additional pipes between the pipes, a plurality of light receiving areas are formed between the pipes, and shutters are provided between them to alternately open and close them, so that the rates at different positions can be measured with one monitor. There is an effect that can be done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の原子吸光式レートモニターの截断側面図FIG. 1 is a cutaway side view of a conventional atomic absorption type rate monitor.

【図2】本発明の実施の形態を示す截断側面図FIG. 2 is a cutaway side view showing an embodiment of the present invention.

【図3】本発明の他の実施の形態を示す截断側面図FIG. 3 is a sectional side view showing another embodiment of the present invention.

【図4】パイプに付着する堆積層の説明図FIG. 4 is an explanatory view of a deposited layer attached to a pipe.

【図5】パイプに加熱装置を設けた状態の説明図FIG. 5 is an explanatory view of a state in which a heating device is provided on a pipe.

【図6】パイプにスライド部を設けた状態の説明図FIG. 6 is an explanatory view of a state in which a slide portion is provided on a pipe.

【図7】複数箇所をモニターする構成の説明図FIG. 7 is an explanatory diagram of a configuration for monitoring a plurality of locations.

【図8】吸光領域の間隔と吸光度の飽和状態の関係を示
す線図
FIG. 8 is a diagram showing a relationship between an interval between light absorption regions and a saturated state of light absorbance.

【符号の説明】[Explanation of symbols]

4 蒸発金属粒子、7 蒸発経路、8 光照射プロー
ブ、9 光、10 受光プローブ、13 光軸、14・
15・20・21・22 パイプ、16 吸光領域、1
8 加熱装置、23・24・25・26 シャッター、
27 スライド部、30 コントローラ、31 ホロー
カソードランプ、
4 evaporated metal particles, 7 evaporation path, 8 light irradiation probe, 9 light, 10 light receiving probe, 13 optical axis, 14.
15.20.21.22 pipe, 16 absorption area, 1
8 heating device, 23/24/25/26 shutter,
27 slide part, 30 controller, 31 hollow cathode lamp,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 倉内 利春 茨城県つくば市東光台5−9−7 日本真 空技術株式会社筑波超材料研究所内 (72)発明者 松崎 封徳 茨城県つくば市東光台5−9−7 日本真 空技術株式会社筑波超材料研究所内 Fターム(参考) 2G059 AA01 AA05 BB08 CC03 EE01 FF06 GG10 JJ23 KK01 LL02 4K029 CA01 CA05 EA00  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiharu Kurauchi 5-9-7 Tokodai, Tsukuba, Ibaraki Japan Inside Tsukuba Super Materials Research Laboratory, Japan Sky Technology Co., Ltd. 5-9-7 Nippon Masaki Technology Co., Ltd. Tsukuba Super Materials Laboratory F-term (reference) 2G059 AA01 AA05 BB08 CC03 EE01 FF06 GG10 JJ23 KK01 LL02 4K029 CA01 CA05 EA00

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】光照射プローブからの光軸上に受光プロー
ブを設け、これら光照射プローブと受光プローブの間の
吸光領域を通過するスパッタ金属粒子或いは蒸発金属粒
子の原子に該光照射プローブからの光を吸収させて該金
属粒子の量をモニターする装置に於いて、該光照射プロ
ーブと受光プローブの各前面に該光軸に沿ったパイプを
設けたことを特徴とする原子吸光式レートモニター。
1. A light receiving probe is provided on an optical axis from a light irradiation probe, and atoms of sputtered metal particles or vaporized metal particles passing through an absorption region between the light irradiation probe and the light receiving probe are irradiated with light from the light irradiation probe. An atomic absorption type rate monitor, wherein a pipe along the optical axis is provided on the front surface of each of the light irradiation probe and the light receiving probe in an apparatus for monitoring the amount of the metal particles by absorbing light.
【請求項2】上記パイプの長さを上記スパッタ金属粒子
或いは蒸発金属粒子の量と光の吸収量の関係に基づき決
定することを特徴とする請求項1に記載の原子吸光式レ
ートモニター。
2. The atomic absorption type rate monitor according to claim 1, wherein the length of said pipe is determined based on the relationship between the amount of said sputtered metal particles or evaporated metal particles and the amount of light absorbed.
【請求項3】上記パイプの内部に、上記スパッタ金属粒
子或いは蒸発金属粒子の付着を防止するパージガスを流
すことを特徴とする請求項1又は2に記載の原子吸光式
レートモニター。
3. An atomic absorption type rate monitor according to claim 1, wherein a purge gas for preventing the sputtered metal particles or the evaporated metal particles from adhering is flowed inside the pipe.
【請求項4】上記パイプの上記吸光領域側の開口部に上
記スパッタ金属粒子或いは蒸発金属粒子の付着を防止す
る加熱装置を設けたことを特徴とする請求項1乃至3の
いずれか1項に記載の原子吸光式レートモニター。
4. The apparatus according to claim 1, wherein a heating device for preventing the sputtered metal particles or the evaporated metal particles from adhering is provided at an opening of the pipe on the light absorption region side. Atomic absorption rate monitor as described.
【請求項5】上記パイプをその軸方向に移動自在として
上記吸光領域の距離を一定に制御することを特徴とする
請求項1又は2に記載の原子吸光式レートモニター。
5. The atomic absorption type rate monitor according to claim 1, wherein the pipe is movable in the axial direction so that the distance of the light absorption region is controlled to be constant.
【請求項6】上記パイプ間に上記光軸に沿ったパイプを
更に設け、上記スパッタ金属粒子或いは蒸発金属粒子が
パイプ間の吸光領域を通過することを制御するシャッタ
ーを設けたことを特徴とする請求項1乃至5のいずれか
1項に記載の原子吸光式レートモニター。
6. A pipe is further provided between said pipes along said optical axis, and a shutter is provided for controlling said sputtered metal particles or evaporated metal particles to pass through an absorption region between said pipes. An atomic absorption type rate monitor according to any one of claims 1 to 5.
JP28724199A 1999-10-07 1999-10-07 Atomic absorption rate monitor Expired - Fee Related JP4167780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28724199A JP4167780B2 (en) 1999-10-07 1999-10-07 Atomic absorption rate monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28724199A JP4167780B2 (en) 1999-10-07 1999-10-07 Atomic absorption rate monitor

Publications (2)

Publication Number Publication Date
JP2001108615A true JP2001108615A (en) 2001-04-20
JP4167780B2 JP4167780B2 (en) 2008-10-22

Family

ID=17714871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28724199A Expired - Fee Related JP4167780B2 (en) 1999-10-07 1999-10-07 Atomic absorption rate monitor

Country Status (1)

Country Link
JP (1) JP4167780B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060866A (en) * 2009-09-07 2011-03-24 Optorun Co Ltd System and method for simultaneous monitoring of multielement rate, and film deposition device and film deposition method
JP2012053037A (en) * 2010-08-04 2012-03-15 Horiba Ltd Air driven shutter device, and optical analyzer
JP2012053038A (en) * 2010-08-04 2012-03-15 Horiba Ltd Gas analysis probe
JP2012072420A (en) * 2010-09-28 2012-04-12 Fujifilm Corp Vapor-deposited flux measuring device
JP2021014617A (en) * 2019-07-12 2021-02-12 キヤノン株式会社 Reactive sputtering apparatus and film deposition method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060866A (en) * 2009-09-07 2011-03-24 Optorun Co Ltd System and method for simultaneous monitoring of multielement rate, and film deposition device and film deposition method
JP2012053037A (en) * 2010-08-04 2012-03-15 Horiba Ltd Air driven shutter device, and optical analyzer
JP2012053038A (en) * 2010-08-04 2012-03-15 Horiba Ltd Gas analysis probe
JP2012072420A (en) * 2010-09-28 2012-04-12 Fujifilm Corp Vapor-deposited flux measuring device
JP2021014617A (en) * 2019-07-12 2021-02-12 キヤノン株式会社 Reactive sputtering apparatus and film deposition method
JP7378991B2 (en) 2019-07-12 2023-11-14 キヤノン株式会社 Reactive sputtering equipment and film formation method

Also Published As

Publication number Publication date
JP4167780B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
US7483226B2 (en) ND filter, manufacturing method thereof, and aperture device
US5015492A (en) Method and apparatus for pulsed energy induced vapor deposition of thin films
Alvisi et al. HfO2 films with high laser damage threshold
EP1862788A1 (en) Evaporator for organic material, coating installation, and method for use thereof
US9334569B2 (en) Sample preparation device to form a matrix film for matrix assisted laser desorption/ionization method
JP2001108615A (en) Atomic-absorption-type rate monitor
Weaver et al. Polar distribution of ablated atomic material during the pulsed laser deposition of Cu in vacuum: Dependence on focused laser spot size and power density
US4424103A (en) Thin film deposition
JPH08134638A (en) Formation of titanium oxide film
Reitano et al. Excimer laser induced thermal evaporation and ablation of silicon carbide
JP4260229B2 (en) Method for coating a transparent metal oxide on a film
Jones et al. Magnetron sputter pulsed laser deposition: technique and process control developments
GB2146046A (en) Evaporation cell
WO2017191796A1 (en) Thin-film production device, and thin-film production method
WO2013056885A1 (en) Arrangement for coating a substrate
JP2013503969A (en) Method and apparatus for coating a substrate from the gas phase
JP6464448B2 (en) Vapor deposition apparatus and vapor deposition method
JP3230834B2 (en) Film forming method and apparatus
Dumen et al. A Case Study to Address:“Is Your Pulsed Laser Deposition Chamber Clean?”
JP2002031523A (en) Thin film measuring apparatus and method and thin film formation system
JP2004059981A (en) Vacuum vapor deposition method
JPH08165559A (en) Formation of functional film and device therefor
JP4677754B2 (en) Film thickness measuring device
Mayo et al. Comparative study of pulsed laser ablated plasma plumes from single crystal graphite and amorphous carbon targets. Part II. Electrostatic probe measurements
JP2650609B2 (en) Evaporation apparatus and evaporation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

R150 Certificate of patent or registration of utility model

Ref document number: 4167780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140808

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees