JPS60173448A - Method and device for analyzing surface of moving material - Google Patents

Method and device for analyzing surface of moving material

Info

Publication number
JPS60173448A
JPS60173448A JP2994984A JP2994984A JPS60173448A JP S60173448 A JPS60173448 A JP S60173448A JP 2994984 A JP2994984 A JP 2994984A JP 2994984 A JP2994984 A JP 2994984A JP S60173448 A JPS60173448 A JP S60173448A
Authority
JP
Japan
Prior art keywords
ray
chamber
helium
characteristic
gas exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2994984A
Other languages
Japanese (ja)
Inventor
Hidehiro Hashiguchi
橋口 栄弘
Takashi Otsubo
孝至 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2994984A priority Critical patent/JPS60173448A/en
Publication of JPS60173448A publication Critical patent/JPS60173448A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To enable measurement of a characteristic X-ray having >=0.25nm wavelength by providing a fluorescent X-ray analyzing device which contains an X-ray source and a detector for the characteristic X-ray and is evacuated internally to a vacuum or is substd. with He and substituting the air in the space of an X-ray passage with He. CONSTITUTION:The body part of a fluorescent X-ray analyzing device has an X-ray source 1, a detector 5 for a characteristic X-ray and a housing 7 which contains said source and detector, has an X-ray transmission window 6 and is evacuated to a vacuum or substd. with helium in the inside X-ray passage part. A gas substituting chamber 8 having an opened bottom and a preliminary chamber 9 for gas substitution which encloses the circumference of said chamber and has an open bottom are provided. The detector 5 detects the generated characteristic X-ray and the window 6 isolates the vacuum part or helium substd. part in the housing from the outside. The air in the X-ray passage part is substd. with helium and the characteristic X-ray having >=0.25nm wavelength is made measurable in the stage of performing fluorescent X-ray analysis on the surface of a flat plate-shaped material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は蛍光X線分析法による平板状物質の表面成分の
分析方法及び装置に関するものである0 (従来技術) メツ+、塗装、高温酸化などの処理を行なった物質の表
面の化学組成や皮膜厚みの分析は蛍光X線分析法により
行なわれることが多い。一般に蛍光X線分析は第1図に
示すように、X線源(X線管球又は放射性同位元素)1
から、1次X線2を試料3に照射して、試料の表面に存
在する元素から放射される特性X線4を検出器5で測定
して、表面の化学組成や皮膜厚みを定量するものである
。蛍光X線分析法による測定のやり方には、試料片を切
り出して蛍光X線分析装置に装入して分析する方法(い
わゆるオフライン分析法)と、帯状金属板などの生産工
程で行なわねているような製造ラインに蛍光X線分析装
置を据付けて、試料を切出すことなく移動中の物質を直
接分析する方法(いわゆるオンライン分析法)との二つ
の方法がある。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method and apparatus for analyzing the surface components of a flat material by fluorescent X-ray analysis. Analysis of the chemical composition and film thickness of the surface of a material subjected to such treatments is often performed by fluorescent X-ray analysis. In general, in fluorescent X-ray analysis, as shown in Figure 1, an X-ray source (X-ray tube or radioisotope) 1
, the sample 3 is irradiated with primary X-rays 2, and the characteristic X-rays 4 emitted from the elements present on the surface of the sample are measured by the detector 5 to quantify the chemical composition and film thickness of the surface. It is. There are two methods of measurement using fluorescent X-ray analysis: one is to cut out a sample piece and load it into a fluorescent X-ray analyzer for analysis (the so-called offline analysis method), and the other is to perform measurements during the production process of metal strips, etc. There are two methods: a method in which a fluorescent X-ray analyzer is installed on such a production line and the moving substance is directly analyzed without cutting out a sample (so-called online analysis method).

生産工程管理のためには、オフライン分析が分析値の迅
速なフィードバックができて望ましいのであるが、従来
原子番号23番以下の元素のオンライυ分析は実施され
ていない。これは原子番号23番以下の元素の特性X線
(Kd線又はにβ線)つtb波長0.25 nm以上の
長波長のX線は空気による吸収が大きく、大気中での測
定が不可能であるからである。そのため、これらの元素
の測定はオフライン分析しか行なわれていない。オフラ
イυ分析は製造途中の半製品から試料を切出すことがで
きる場合はまだしも、それができない場合は後工程−か
ら試料を切出して分析するため、分析値が出るまでに長
時間を要し、十分な工程管理ができない。従来の移動物
質を蛍光X線分析する方法は前述のような難点を有1〜
でいる。
For production process control, offline analysis is desirable because it allows for quick feedback of analysis values, but online υ analysis of elements with atomic number 23 or lower has not been carried out so far. This is due to the characteristic X-rays (Kd rays or β-rays) of elements with atomic number 23 or lower, and X-rays with longer wavelengths of tb wavelength 0.25 nm or more, which are largely absorbed by air and cannot be measured in the atmosphere. This is because. Therefore, measurements of these elements have only been performed through off-line analysis. Off-line υ analysis is possible if it is possible to cut out a sample from a semi-finished product that is in the process of being manufactured, but if that is not possible, the sample is cut out and analyzed from the post-process, so it takes a long time to obtain analytical values. Insufficient process control. Conventional methods for fluorescent X-ray analysis of moving substances have the drawbacks mentioned above.
I'm here.

(発明の目的) 本発明は従来オンラインでは分析が不可能であった波長
0.25 nm以上の特性X線を発生する軽元素の分析
j可能とするものである。ここで対象としている軽元素
とは、チタン、カルシウム、硫黄、燐、硅素、アルミニ
ウム、マグネシウム、ナトリウムなどである。
(Objective of the Invention) The present invention makes it possible to analyze light elements that generate characteristic X-rays with a wavelength of 0.25 nm or more, which has conventionally been impossible to analyze online. The light elements targeted here include titanium, calcium, sulfur, phosphorus, silicon, aluminum, magnesium, and sodium.

(発明の構成) 本発明は、■、移動中の平板状物質衣r7″:′の蛍光
X線分析を行なうに際して、X線通路空間の空気をヘリ
ウムで置換して波長0.251m以上の特性X線を測定
することを特徴とする移動物質の表面を分析する方法。
(Structure of the Invention) The present invention provides the following features: (1) When performing fluorescent X-ray analysis of a moving flat material r7'':', the air in the X-ray passage space is replaced with helium, and the characteristics of wavelengths of 0.251 m or more are obtained. A method for analyzing the surface of a moving substance, characterized by measuring X-rays.

2.X線源と特性X線の検出器を内蔵し、内部を真空も
しくはヘリウム置換された蛍光X線分析装置本体と、前
記蛍光X線分析装置本体の平板状物質と対面する面にX
線透過窓を設け、X線透過窓の外側にヘリウム配管を有
し底部を開口したガス置換室および底部を開口したガス
置換予備室を前記ガス置換室の周囲を囲繞するように設
け、前記ガス置換室およびJ1ス置換予備室の間口部が
移動中の平板状物質表面に近接して設置されている移動
物質の表面を分析する装置である。
2. The main body of the fluorescent X-ray analyzer has a built-in X-ray source and a detector for characteristic
A gas exchange chamber is provided with a radiation transmitting window, and a gas exchange chamber with a helium pipe outside the X-ray transmitting window and an open bottom, and a gas exchange preparatory chamber with an open bottom are provided so as to surround the gas exchange chamber, This is an apparatus for analyzing the surface of a moving material, in which the frontage of the replacement chamber and the J1 space replacement preliminary chamber is installed close to the surface of the moving flat material.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

先づ本発明による装置は、蛍光X線分析装置本体部とガ
ス置換部とから成っている。第2図に示す実施例装置の
ように、蛍光X線分析装置本体部はX線源1と、特性X
線を検出する検出器5と、これらを内蔵しX線透過窓6
を有し、内部のX線通路部を真空にするか又はヘリウム
置換した収納容器7とから成る。ガス置換部は前記X線
透過窓の外部に配置され底部を開口したガス置換室8と
、このガス置換室の周囲を囲繞するように設は底部を開
口したガス置換予備室9とから構成される装置 ウム配管10が導入されている。この装置は前記ガス置
換室8およびガス置換予備室9が移動中の平板状物質1
1の表面に近接して設置される。
First, the apparatus according to the present invention consists of a fluorescent X-ray analyzer main body and a gas replacement section. As in the embodiment shown in FIG. 2, the main body of the fluorescent X-ray analyzer includes an
A detector 5 for detecting rays and an X-ray transparent window 6 containing these
and a storage container 7 whose internal X-ray passage is evacuated or replaced with helium. The gas exchange section is composed of a gas exchange chamber 8 which is arranged outside the X-ray transmission window and has an open bottom, and a gas exchange preliminary chamber 9 which is arranged so as to surround this gas exchange chamber and has an open bottom. A device um piping 10 is introduced. In this device, the gas exchange chamber 8 and the gas exchange preparatory chamber 9 are connected to a flat material 1 which is being moved.
placed close to the surface of 1.

X線源および検出器およびX線透過窓および収納容器か
らなる蛍光X線分析装置本体部は、通常の軽元素用の蛍
光X線分析装置でよい。X線源は一般にX線管球が用い
られ、測定対象となる移動中の平板状物質表面にX線を
照射し、存在する原子を励起し特性Xmを発生させるた
めのものである。検出器は発生した特性X WSを選別
し検出するものである。X線透過窓は収納容器内部の真
空部.分又はヘリウム置換部分と外部とを隔離するもの
で、測定する特性X線の透過を妨げない材質、例えばポ
リづロヒ1ノン、マイラー等の薄膜が用いらねる。収納
容器の内部のX線通路部を真空又はヘリウム置換するの
は、空気中透過内IA#な特性X線を測定するだめのも
のである。
The main body of the X-ray fluorescence analyzer, which includes an X-ray source, a detector, an X-ray transmission window, and a storage container, may be an ordinary X-ray fluorescence analyzer for light elements. An X-ray tube is generally used as the X-ray source, and is used to irradiate the surface of a moving flat material to be measured with X-rays to excite existing atoms and generate a characteristic Xm. The detector is for selecting and detecting the generated characteristic XWS. The X-ray transmission window is a vacuum section inside the storage container. It is used to isolate the helium-substituted portion from the outside, and a thin film of a material such as polypropylene or mylar that does not impede the transmission of the characteristic X-rays to be measured is used. The reason why the X-ray passage inside the storage container is vacuumed or replaced with helium is to measure the characteristic X-rays transmitted through the air.

ガス置換部分は、これがなけ−I’lばI+1定すぺき
特性X線が大気により吸収されることを防止するだめに
設けられるもので、蛍光X線分析装置本体と平板状物質
との空間をヘリウムで置換するためのものである。置換
ガスとしては水素も考えられ、X線の透過性および価格
面から言えばヘリウムより水素の方が好ましいが、水素
は爆発の危険性があるために、十分な排ガス処理の必要
がある。排ガスの安全対策を施こし得る場合は水素をヘ
リウムの代替として使用することも可能である。カス置
換部のうち、ヘリウム配管は置換ガスとしてのヘリウム
を導入するものであり、ガス置換室はこの部分をヘリウ
ムで置換するだめの室であり、この部分を測定すべき特
性X線が通過する。ガス置換室を囲繞するように設置す
るガス置換予備室は、ヘリウムガスのガス置換室への流
入量を節約するだめのものである。ヘリウムガスはカス
置換室からガス置換予備室さらに外部へと流出していく
、この流れは必ずしも安定したものではなく、移動中の
平板状物質の上下動が起こると、気体の逆流が生じる。
The gas replacement part is provided to prevent the characteristic X-rays from being absorbed by the atmosphere. It is for replacing with helium. Hydrogen is also considered as a replacement gas, and from the viewpoint of X-ray transparency and cost, hydrogen is preferable to helium, but since hydrogen has the risk of explosion, sufficient exhaust gas treatment is required. Hydrogen can also be used as an alternative to helium if exhaust gas safety measures can be taken. In the waste replacement section, the helium pipe introduces helium as a replacement gas, and the gas replacement chamber is a chamber for replacing this part with helium, and the characteristic X-rays to be measured pass through this part. . The gas replacement preliminary chamber, which is installed to surround the gas replacement chamber, is intended to save the amount of helium gas flowing into the gas replacement chamber. Helium gas flows from the waste exchange chamber to the gas exchange preparatory chamber and to the outside. This flow is not necessarily stable, and if the moving flat material moves up and down, a backflow of gas occurs.

その場合でもカス置換予備室の殆んどヘリウムで置換さ
れている気体が、ガス置換室へ流入することにより、カ
ス置換室の空気濃度は無視できる程度に維持することが
できる。
Even in that case, the air concentration in the scum replacement chamber can be maintained to a negligible level by causing the gas in the dregs replacement preliminary chamber that has been mostly replaced with helium to flow into the gas replacement chamber.

ガス置換予備室がない場合は、移動中の平板状物質の上
下動に応じて外部の空気が直接ガス置換室へ流入し、空
気難透過性の特性X線が空気に吸収され、測定されるX
 11強度が減少し、結果として分析値に大きな誤差を
生じる。
If there is no preliminary gas exchange chamber, external air flows directly into the gas exchange chamber according to the vertical movement of the moving flat material, and characteristic X-rays that are difficult to penetrate are absorbed by the air and measured. X
11 intensity decreases, resulting in a large error in the analytical value.

また、測定対象を、平板状物質に限定するのは、測定対
象に凹凸があるとガス置換室の雰囲気を維持することが
内部なためである。
Furthermore, the reason why the object to be measured is limited to a flat material is that if the object to be measured has irregularities, it is necessary to maintain the atmosphere in the gas exchange chamber internally.

(実施例) 本発明の実施例を図面に基づいて詳細に説明する。本実
施例は、鋼板表面に生成させたマグネシウムを含む皮膜
の厚みを、マグネシウムの特性X線を測定して定量する
ものである。
(Example) An example of the present invention will be described in detail based on the drawings. In this example, the thickness of a film containing magnesium formed on the surface of a steel plate is determined by measuring characteristic X-rays of magnesium.

第3図は本発明を実施した製造工程の一例を示すもので
、これは硅素鋼板製造の一工程である。走行中の鋼板1
2に、塗布装置13と絞り0−ル14によって酸化マグ
ネシウムを含む液を塗布し、加熱炉15で焼成して酸化
マグネシウムを含む皮膜を生成させる。この皮膜は硅素
鋼板の性能を左右する重要なものであり、皮膜厚の管理
が必要である。従来は工程途中で測定する方法がなく、
後工程を通過後の最終製品から試料片を切出して、分析
室の真空型蛍光X線装置によって測定していた。この方
法では分析値が得られるのに処理後2〜3日を要し、分
析値を工程管理に有効に活用させることはできず、製品
の良否をチェ゛υりし、製品を選別しているに過ぎなか
った。
FIG. 3 shows an example of a manufacturing process in which the present invention is implemented, and this is one process of manufacturing a silicon steel plate. Steel plate in motion 1
2, a liquid containing magnesium oxide is applied using a coating device 13 and an orifice 14, and is fired in a heating furnace 15 to form a film containing magnesium oxide. This film is important in determining the performance of silicon steel sheets, and the film thickness must be controlled. Conventionally, there was no way to measure during the process,
Sample pieces were cut out from the final product after passing through the post-process and measured using a vacuum-type fluorescent X-ray device in the analysis room. With this method, it takes two to three days after processing to obtain analytical values, and the analytical values cannot be used effectively for process control. It was just that.

本実施例は本発明に基づく分析装置16を第3図の如く
設置し、鋼板上の皮膜を通板中に測定・するものである
。分析装置16は鋼板幅方向に移動可能な構造を有し、
鋼板上の任意の位置を分析できるようになっている。図
中17idfiイド0−ルであり、鋼板の上下方向のぶ
れを押さえる役目を持っている。分析装置16は第2図
に示したものと同じ構造を有しており、実施例装置につ
いて第2図により更に詳細に説明する。X線源1として
はRhターゲットのX線管球を用いている。X線管球の
出力は40に■、6or11Aである。検出器5はマグ
ネシウムの特性X線であるMgKa線(波長0.987
 nm )を測定するために、分光結晶ADPとガスフ
ロー型づロポーショナルカウシターから成っている。X
線透過窓6は1μm厚のポリづ0ごレン膜を用いている
。収納容器7のX線通路空間はロータリーポンプにより
真空引きしている。ガス置換室8の容積は60m1l。
In this embodiment, an analyzer 16 based on the present invention is installed as shown in FIG. 3, and the film on a steel plate is measured while the steel plate is being passed through. The analyzer 16 has a structure that is movable in the width direction of the steel plate,
It is now possible to analyze any position on the steel plate. In the figure, it is 17idfi and has the role of suppressing vertical vibration of the steel plate. The analyzer 16 has the same structure as shown in FIG. 2, and the embodiment will be explained in more detail with reference to FIG. As the X-ray source 1, an X-ray tube with a Rh target is used. The output of the X-ray tube is 40 mm, 6 or 11 A. The detector 5 detects the MgKa line (wavelength: 0.987), which is the characteristic X-ray of magnesium.
It consists of a spectroscopic crystal ADP and a gas flow type proportional detector to measure the wavelength (nm). X
The line-transmitting window 6 is made of a polyethylene film with a thickness of 1 μm. The X-ray passage space of the storage container 7 is evacuated by a rotary pump. The volume of the gas exchange chamber 8 is 60ml.

ガス置換予備室9の容積は180 mA とした。ヘリ
ウム配管10から流すヘリウム流量は毎分11とした。
The volume of the gas replacement preliminary chamber 9 was set to 180 mA. The flow rate of helium flowing from the helium pipe 10 was set to 11 per minute.

移動中平板物質11(この場合は通板中の鋼板)と、ガ
ス置換室8およびガス置換予備室9の各下端との間@は
4胡とした。この間隔は鋼板の上下動が±2調あるので
、鋼板表面を傷つけないよう余裕を持たせて4諭とした
ものである。
The space between the moving flat plate material 11 (in this case, the steel plate being passed) and the lower ends of each of the gas exchange chamber 8 and the gas exchange preparatory chamber 9 was 4 times. Since the vertical movement of the steel plate is ±2 steps, this interval is set to 4 to ensure that the steel plate surface is not damaged.

上記条件のもとで、ガス置換室のヘリウムガス置換率は
998チとしたが、これは以下のような理由で必要な置
換率である。ただし、測定対象によって若干の変動は許
されろ。
Under the above conditions, the helium gas replacement rate in the gas replacement chamber was set to 998 cm, which is a necessary replacement rate for the following reasons. However, slight variations depending on the measurement target should be allowed.

MgKα測定による皮膜厚定量の正確度は種々の要因の
ために、相対誤差5チなので、測定するX線強度の変動
も5%以内であれば良く、そのためにIiX線透過率が
95%以上に保証されれば良い。X線通路長さが10c
Inの場合の、ヘリウムガスと空気との置換率とMgK
α線の透過率(完全置換の場合に対する相対値)との関
係は第4図に示すとおりであり、透過率95チを得るだ
めには、ヘリウム置換率を99.8 %に保つ必要があ
る。
The accuracy of film thickness quantification by MgKα measurement is due to various factors and has a relative error of 5 cm. Therefore, the variation in the measured X-ray intensity only needs to be within 5%, so that the Ii X-ray transmittance is 95% or more. It would be good if it was guaranteed. X-ray path length is 10c
Replacement rate of helium gas and air and MgK in the case of In
The relationship with α-ray transmittance (relative value to the case of complete replacement) is as shown in Figure 4, and in order to obtain a transmittance of 95 cm, it is necessary to maintain the helium replacement rate at 99.8%. .

第5図はヘリウム流量とガス置換率との関係及びガス置
換予備室を備えることの効果を示している。ガス置換予
備室の効果は大きく、同じガス置換率を得るためにはヘ
リウム流量は約10分の1でよい。更にカス置換率を高
めるだめにはガス置換予備室を同心円状に多段に設ける
ことが効果がある。第5図から、ガス置換予備室を備え
た場合ヘリウム流量毎分11によってガス置換率998
%が得られる。この理由でヘリウム流量を決定した。
FIG. 5 shows the relationship between the helium flow rate and the gas replacement rate and the effect of providing a gas replacement preliminary chamber. The effect of the gas replacement preliminary chamber is large, and the helium flow rate may be reduced to about one-tenth in order to obtain the same gas replacement rate. Furthermore, in order to increase the dregs replacement rate, it is effective to provide gas replacement preliminary chambers in multiple stages concentrically. From Fig. 5, when equipped with a gas exchange preliminary chamber, the gas exchange rate is 998 with a helium flow rate of 11 per minute.
% is obtained. The helium flow rate was determined for this reason.

以上のような装置条件により、蛍光X線測定時間10秒
の殆んど連続的な分析を行ない請求められる通肚・中の
鋼板の皮膜厚をフィードバックして、皮膜厚の制御を行
なった。皮膜厚の制御は、酸化マづネシウム液の塗布量
の変更と、通板速度の変更つまり加熱時間の変更によっ
て行なった。
Under the above-mentioned equipment conditions, the film thickness was controlled by performing almost continuous analysis with a fluorescent X-ray measurement time of 10 seconds and feeding back the film thickness of the steel plate in the upper and lower sides. The film thickness was controlled by changing the amount of magnesium oxide solution applied and changing the sheet passing speed, that is, changing the heating time.

本実施例の結果を第1表に示す。従来は工程途中での分
析は行なわず、最終製品から試料を切出してチェック分
析していたにすぎなかったので、皮膜厚のバラタ+は非
常に大きい。本発明の方法を製造工程に採用することに
より、皮膜厚のバラツ+dv2以下に減少しまた。
The results of this example are shown in Table 1. Conventionally, analysis was not performed during the process, but only by cutting samples from the final product and performing check analysis, so the variation in film thickness was extremely large. By adopting the method of the present invention in the manufacturing process, the variation in film thickness can be reduced to less than +dv2.

第 1 表 *測定値の目標値からのバラタ+の相対変111但し 
工 :皮膜厚測定値のコイル代表値X :皮膜厚製造目
標値 n :測定コイル数 本実施例は鋼板のマグネシウムを測定しているが、本発
明は鋼以外の素材、マグネシウム以外の元素にも応用で
きることは明らかである。
Table 1 * Relative change of balata + from the target value of the measured value 111 However
Mechanism: Coil representative value of film thickness measurement value The applicability is clear.

(発明の効果) 本発明の方法をメツ+、塗装、高温酸化等の処理ライン
に適用することにより、処理途中の皮膜厚や表面組成の
工程管理が大幅に改善し、ひいては製品品質の高位安定
あるいは製品の歩留向」二が図らねる。
(Effects of the invention) By applying the method of the present invention to processing lines such as Metsu+, painting, and high-temperature oxidation, process control of film thickness and surface composition during processing can be greatly improved, and product quality can be maintained at a high level. Or, the yield rate of the product cannot be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は蛍光X線分析の概やを示す図、第2図は本発明
による分析装置を示す図、第3図は本発明を実施した製
造工程の一例を示す図、第4図C↓ヘリウムガス置換率
とMgKα線の透過率との関係を示す図、第5図はヘリ
ウム流量とカス置換率との関係及びガス置換予備室の効
果を示す図である。 1・・・X線源 2・・・1次X線 3・・・試料 4・・・特性X線 5・・・X線検出器 6・・・X線透過窓7・・・収納
容器 8・・・ガス置換室9・・・ガス置換予備室 10・・・ヘリウム配管 11・・・平板状物質 12・・・鋼板13・・・塗布
装置 14・・・絞りロール15・・・加熱炉 16・
・・分析装置17・・・ガイド口−ル
Figure 1 is a diagram showing an overview of fluorescent X-ray analysis, Figure 2 is a diagram showing an analysis device according to the present invention, Figure 3 is a diagram showing an example of a manufacturing process in which the present invention is implemented, Figure 4C↓ FIG. 5 is a diagram showing the relationship between the helium gas replacement rate and the transmittance of MgKα rays, and FIG. 5 is a diagram showing the relationship between the helium flow rate and the dregs replacement rate, and the effect of the gas replacement preliminary chamber. 1... X-ray source 2... Primary X-ray 3... Sample 4... Characteristic X-ray 5... X-ray detector 6... X-ray transmission window 7... Storage container 8 ... Gas replacement chamber 9 ... Gas replacement preliminary chamber 10 ... Helium piping 11 ... Flat material 12 ... Steel plate 13 ... Coating device 14 ... Squeezing roll 15 ... Heating furnace 16.
...Analyzer 17...Guide port

Claims (1)

【特許請求の範囲】 1 移動中の平板状物質表面の蛍光X線分析を行なうに
際1〜で、X線通路空間の空気をヘリウムで置換して波
長0.−25 nm以上の特性X線を測定することを特
徴とする移動物質の表面を分析する方法。 2 X線源と特性X線の検出器を内蔵し、内部を真空も
しくはヘリウム置換された蛍光X線分析装置本体と、前
記蛍光X線分析装置本体の平板状物質と対面する面にX
線透過窓を設け、X線透過窓の外側にヘリウム配管を有
し底部を開口したガス置換室および底部を開口したガス
置換予備室を前記ガス置換室の周囲を囲繞するように設
け、前記ガス置換室およびガス置換予備室の開口部が移
動中の平板状物質表面に近接して設置されている移動物
質の表面を分析する装置。
[Claims] 1. When performing fluorescent X-ray analysis on the surface of a moving flat material, in steps 1 to 1, the air in the X-ray passage space is replaced with helium to obtain a wavelength of 0. - A method for analyzing the surface of a moving substance, characterized by measuring characteristic X-rays of 25 nm or more. 2. A fluorescent X-ray analyzer main body that includes a built-in X-ray source and a characteristic X-ray detector, and whose interior is vacuumed or replaced with helium, and an
A gas exchange chamber is provided with a radiation transmitting window, and a gas exchange chamber with a helium pipe outside the X-ray transmitting window and an open bottom, and a gas exchange preparatory chamber with an open bottom are provided so as to surround the gas exchange chamber, An apparatus for analyzing the surface of a moving substance in which the openings of the displacement chamber and the gas exchange preliminary chamber are installed close to the surface of the moving flat substance.
JP2994984A 1984-02-20 1984-02-20 Method and device for analyzing surface of moving material Pending JPS60173448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2994984A JPS60173448A (en) 1984-02-20 1984-02-20 Method and device for analyzing surface of moving material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2994984A JPS60173448A (en) 1984-02-20 1984-02-20 Method and device for analyzing surface of moving material

Publications (1)

Publication Number Publication Date
JPS60173448A true JPS60173448A (en) 1985-09-06

Family

ID=12290234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2994984A Pending JPS60173448A (en) 1984-02-20 1984-02-20 Method and device for analyzing surface of moving material

Country Status (1)

Country Link
JP (1) JPS60173448A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105766A (en) * 2004-10-05 2006-04-20 Toyobo Co Ltd Device for measuring film thickness
JP2006208013A (en) * 2005-01-25 2006-08-10 Jfe Steel Kk Measuring instrument of adhesion amount of surface-treated film on metal strip and measuring method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360286A (en) * 1976-11-11 1978-05-30 Sumitomo Metal Ind Measuring method of residual oil on the surface of cold rolled steel and apparatus used in the method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360286A (en) * 1976-11-11 1978-05-30 Sumitomo Metal Ind Measuring method of residual oil on the surface of cold rolled steel and apparatus used in the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105766A (en) * 2004-10-05 2006-04-20 Toyobo Co Ltd Device for measuring film thickness
JP2006208013A (en) * 2005-01-25 2006-08-10 Jfe Steel Kk Measuring instrument of adhesion amount of surface-treated film on metal strip and measuring method

Similar Documents

Publication Publication Date Title
Johansson et al. Elemental trace analysis of small samples by proton induced X-ray emission
US2873377A (en) Method of analyzing compositions
US8050382B2 (en) Sample module with sample stream spaced from window, for x-ray analysis system
JPH08136480A (en) Sulfur-in-oil measuring apparatus
EP0422017B1 (en) Method for measuring the thickness of a coating on a substrate
WO2011100222A2 (en) Sample module with sample stream supported and spaced from window, for x-ray analysis system
EP4105649A1 (en) Quantitative analysis method, quantitative analysis program, and fluorescence x-ray analysis device
Billiet et al. Multielement thin film standards for XRF analysis
US3270200A (en) Method and apparatus for measuring the concentration of an element in a mixture by an X-ray absorption analysis technique
EP2998730A1 (en) X-ray fluorescence analyzer
US3582282A (en) Process and an apparatus for the accelerated weathering of pigmented vehicle systems
Glinsman The practical application of air-path X-ray fluorescence spectrometry in the analysis of museum objects
US11262320B2 (en) Monitor for measuring mercury emissions
JPS60173448A (en) Method and device for analyzing surface of moving material
Headridge et al. Determination of silver, lead and bismuth in glasses by atomic-absorption spectrometry with introduction of solid samples into furnaces
JPH0228819B2 (en) METSUKIEKIBUNSEKISOCHI
US11391715B2 (en) Rare metals as components of coatings in diagnostic test elements and methods of determining an amount/quality of dried compositions in such coatings
Doughman et al. X-Ray Determination of Sulfur in Oils. Comparison of X-Ray Emission and Absorption Methods
Denton et al. The analysis of titanium dioxide pigments by automatic simultaneous X-ray fluorescence spectrometry
Bouquillon et al. In situ dynamic analysis of solids or aqueous solutions undergoing chemical reactions by RBS or PIXE with external beams
JP2001281175A (en) Measuring method for metal surface oxide and x-ray diffraction device
Owens Quantitative Absorption Spectrophotometry: An Internal Control Method
JP2001281176A (en) High-accuracy analysis method for carbon in steel
Walden et al. X-ray spectrometric analysis of plutonium-zirconium alloys
Ebert et al. The effect of oxygen on the fast neutron yield of hydrogen peroxide in neutral water