JP4677651B2 - Optical wiring layer manufacturing method, optical / electrical wiring substrate, manufacturing method thereof, and mounting substrate - Google Patents

Optical wiring layer manufacturing method, optical / electrical wiring substrate, manufacturing method thereof, and mounting substrate Download PDF

Info

Publication number
JP4677651B2
JP4677651B2 JP35162899A JP35162899A JP4677651B2 JP 4677651 B2 JP4677651 B2 JP 4677651B2 JP 35162899 A JP35162899 A JP 35162899A JP 35162899 A JP35162899 A JP 35162899A JP 4677651 B2 JP4677651 B2 JP 4677651B2
Authority
JP
Japan
Prior art keywords
optical
core
wiring
electrical
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35162899A
Other languages
Japanese (ja)
Other versions
JP2001166167A (en
Inventor
浩二 市川
健人 塚本
淳 佐々木
守 石崎
健太 四井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP35162899A priority Critical patent/JP4677651B2/en
Publication of JP2001166167A publication Critical patent/JP2001166167A/en
Application granted granted Critical
Publication of JP4677651B2 publication Critical patent/JP4677651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structure Of Printed Boards (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光配線と電気配線とが混在する光・電気配線基板及びその製造方法並びにその基板に光部品と電気部品とを実装した実装基板に関する。
【0002】
【従来の技術】
より速く演算処理が行えるコンピュータを作るために、CPU のクロック数は年々増加する傾向にあり、現在ではGHz 程度のものが出現するに至っている。この結果、コンピュータ中のプリント基板上の銅による電気配線には高周波信号が流れる部分が存在することになるので、ノイズの発生により誤動作が生じたり、また、電磁波が発生して周囲に影響を与えることとなる。
また、プリント基板上の銅による電気配線の一部を光ファイバー又は光導波路による光配線に置き換え、電気信号の代わりに光信号を利用することが試みられているが、光源を導波路に光軸をずらすことなく効率よく挿入する技術は難しく、一般に熟練労働者に頼らなければ一致させられなかった。
【0003】
このような問題を解決するために、レンズを用いて光源から出た光を集光して導波路内に導通させることが行われている。しかしこの場合も、モジュールと光導波路との光軸あわせが難しく、光部品を光・電気配線基板に実装することは、非常に高価なものになるという欠点があった。
【0004】
【発明が解決しようとする課題】
本発明は係る従来技術の欠点に鑑みてなされたもので、モジュールと光導波路との光軸あわせが容易な光配線層及びその製造方法、並びに、高密度実装又は小型化が可能で、しかも光部品の実装が従来より簡便な方法で行える光・電気配線基板及びその製造方法並びに実装基板を提供することを課題とする。
【0005】
本発明において上記の課題を達成するために、まず請求項1の発明は、電気配線を有する基板に光配線層を接着層を介して接着させた光・電気配線基板であって、該光配線層は、層に対して平行に光を伝搬させるコアと、該コアが埋没しているクラッドと、該コアに対して90°の刃先を持つダイシングソーを用いて、90°に伝搬方向を変える傾きを有して交差するよう形成され、蒸着を用いて金属薄膜を付けたミラーと、該クラッド上に位置し該ミラーに集光させた光が該ミラーで反射して該コア内を通らせるレンズを有し、該レンズが該クラッドと同一部材であって、電気配線を有する基板の反対側にあるレンズの周囲に、発光素子もしくは受光素子のいずれかから選択される光部品をハンダ付けするために設けられた光部品用のパッドと、光部品用パッドと電気配線を有する基板の電気配線とを電気接続し、前記光配線層と前記接着層とを貫通するビアホールと、を具備することを特徴とする光・電気配線基板である。
請求項2に記載の発明は、電気配線を有する基板に光配線層を接着層を介して接着させた光・電気配線基板であって、該光配線層は、層に対して平行に光を伝搬させるコアと、
該コアが埋没しているクラッドと、該コアに対して90°の刃先を持つダイシングソーを用いて、90°に伝搬方向を変える傾きを有して交差するよう形成され、蒸着を用いて金属薄膜を付けたミラーと、該クラッド上に位置し該ミラーに集光させた光が該ミラーで反射して該コア内を通らせるレンズを有し、該レンズが該クラッドと同一部材であって、電気配線を有する基板の反対側にあるレンズの周囲に、発光素子もしくは受光素子のいずれかから選択される光部品をハンダ付けするために設けられた光部品用のパッドと、電気配線を有する基板の反対側にある光配線層の表面に、電気部品をハンダ付けするために設けられた電気部品用のパッドと、光部品又は電気部品用パッドと電気配線を有する基板の電気配線とを電気接続し、前記光配線層と前記接着層とを貫通するビアホールと、を具備することを特徴とする光・電気配線基板である。
請求項3に記載の発明は、電気配線を有する基板に光配線層を接着層を介して接着させた光・電気配線基板であって、該光配線層は、層に対して平行に光を伝搬させるコアと、該コアが埋没しているクラッドと、該コアに対して90°の刃先を持つダイシングソーを用いて、90°に伝搬方向を変える傾きを有して交差するよう形成され、蒸着を用いて金属薄膜を付けたミラーと、該クラッド上に位置し該ミラーに集光させた光が該ミラーで反射して該コア内を通らせるレンズを有し、該レンズが該クラッドと同一部材であって、電気配線を有する基板の反対側にあるレンズの周囲に、発光素子もしくは受光素子のいずれかから選択される光部品をハンダ付けするために設けられた光部品用のパッドと、電気配線を有する基板の反対側にある光配線層の表面に、電気部品をハンダ付けするために設けられた電気部品用のパッドと、光部品又は電気部品用パッドと電気配線を有する基板の電気配線とを電気接続し、前記光配線層と前記接着層とを貫通するビアホールと、電気配線を有する基板の反対側にある光配線層の表面に設けた電気配線と、を具備することを特徴とする光・電気配線基板である。
請求項4に記載の発明は、光配線層が、層に対して平行に光を伝搬させるコアと、該コアが埋没しているクラッドと、該コアに対して傾きを有して交差するよう形成されたミラーと、該クラッド上に位置し該ミラーに集光させた光が該ミラーで反射して該コア内を通らせるレンズを有し、該レンズが該クラッドと同一部材である光・電気配線基板の製造方法であって、レンズの型となる凹部の加工を施した支持体上に、前記凹部を埋め込みさらに支持体上に所定の厚さとなるようにクラッドを形成し、次いでコアを形成し、次いで前記コアを埋め込むようにクラッドを形成することにより、レンズを備えた光配線層を形成する工程と、前記光配線層に対して90°の刃先を持つダイシングソーを用いて、90°に伝搬方向を変える傾きを有して交差する切断面を形成し、当該切断面に金属薄膜を付けて、ミラー面を形成する工程と、前記光配線層を前記支持体から剥離する工程と、前記光配線層を、電気配線を有する基板の電気配線側に接着層を介して接着する工程と、前記光配線層側の前記レンズを備えた面側からレーザーにより、前記光配線層と前記接着層とを貫通するビアホール用の小径孔を形成する工程と、セミアディティブ法により、少なくとも、前記光配線層と前記接着層とを貫通するビアホール、光部品用パッド、及び前記ビアホールと光部品用パッドを電気的に接続する金属層を形成する工程と、を含むことを特徴とする光・電気配線基板の製造方法である。
【0006】
【発明の実施の形態】
1.光配線層
本発明の光・電気配線基板において、ミラー、レンズを具備する導波路層の横断面図を図1に示す。コア1は、クラッド2に埋没しており、レーザ光を伝搬させる光導波路である。また、レンズ3はミラー4で反射される部分が焦点に近い距離となっている。つまり、レーザなどのモジュールに水平方向の位置ずれが生じた場合でも光が必ず導波路内を通ることとなり、位置あわせが簡便になる。更に、レンズとクラッドまたはレンズとコアと同一部材、同時形成であるので、レンズとクラッドまたはコアとの位置合わせが実質上不要である。
【0007】
クラッドを形成する樹脂の特性としては、ガラス転移温度Tgが高く、絶縁抵抗が高く、熱膨張率が小さいものが良く、その膜形成方法としては、熱硬化、光硬化等があげられる。たとえば、ポリイミド系樹脂やエポキシ系樹脂などが適している。
【0008】
コアを形成する樹脂の特性としては、クラッド層の樹脂同様、ガラス転移温度Tgが高く、絶縁抵抗が高く、熱膨張率が小さいものが良く、加えて、光導波路のクラッド層の屈折率より大きいものを選ぶ必要がある。
【0009】
2.光配線層の製造方法
図1のレンズ3がクラッドと同一部材の場合は、図2(a) のようにあらかじめレンズ型に加工を施したSiなどの支持体5上に剥離膜6を製膜した後、図2(b) のようにクラッド7を製膜する。次にコア8を製膜した後、スパッタや、フォトリソグラフィーなどを用いてコアパターンに加工した後、クラッド9を製膜する(図2(c) )。続いて、これをダイシングソー10などの微細加工の出来る機械を用いて、ミラー面11を形成する(図2(d) )。最後に、 Si 等の支持体上から剥離させることによって光配線層を得る(図2(e) )。
【0010】
図1のレンズ3がコアと同一部材の場合は、図3(a) のようにあらかじめレンズ型に加工を施したSiなどの支持体12上に剥離膜13を製膜した後、クラッド14を製膜する(図3(b) )。次いで、レンズ形成部分のクラッドのみをRIE などのエッチング法により穴を開ける(図3(c) )。その後、コア15を図3(d) の様に製膜し、穴の内部もコア材料で満たす。その後、スパッタや、フォトリソグラフィーなどを用いてコアパターンに加工した後、クラッド16を製膜する(図3(e) )。続いて、これを90°の刃先を持つダイシングソーなどの微細加工の出来る機械を用いてミラー面17を形成する(図3(f) )。最後に、 Si などの支持体上から剥離させることによって光配線層を得る(図3(g) )。
【0011】
本発明の光・電気基板において、レンズの上にレーザやフォトダイオードなどの光学素子の発光、及び受光部を精度良くアライメントするには、フォトリソグラフィーなどを用いて電気配線を有する基板や導波路層にマーカを付けておき、一方の光学素子にもマーカを付けて双方のマーカを画像認識によって光チップを所定の位置に移動させて固定する方法でも良いし、またパッドの上にバンプを形成し固定するフリップチップ方式でも良い。
【0012】
ミラーは、切断した状態そのままでも良いが、光損失の原因となるミラー部分で直進してしまう光を減少させるために、蒸着などを用いて金属薄膜を付けても良い。また機械的強度を保つために、加工時に発生する空間部などを適当な樹脂を用いて埋めても良い。
【0013】
レンズの型となる支持体の凹型部分の作製方法としては、例えば、フォトリソグラフィーにより円形にパターニングを施した後に、等方性エッチングを用いて作製することができる。あるいは、金属支持体上を切削加工することで作製することもできる。支持体の凹部形状としては、図4に示した様に、製品におけるレンズを保護するためレンズの凸部が導波路の上部クラッドより低くなるように設計された図4(b) や図4(c) の形状でも良い。これらの場合は、まず、支持体上でレンズにするところのみマスクを施しそれ以外の部分をエッチングし、次に凹部となる部分以外にマスクを施し、レンズとなる部分が凹面部になるように等方性エッチングを行うと良い。
【0014】
3.光・電気配線基板
本発明の光・電気配線基板において、パッド27の中心を通り光導波路のコア部分を縦断する断面図を図5(a) に、光部品を実装する部分の平面図を図5(b) に示す。
【0015】
本発明の光・電気配線基板は図5に示した様に、電気配線23を有する基板18上に接着層19を介し、光配線層(コア22、クラッド20)が積層されている構造をとる。この基板18は単層の絶縁基板でも、電気配線と絶縁層が交互に積層された多層配線基板でも良い。また、構成材料として、ガラス布に樹脂を含浸させた絶縁基板でも、ポリイミドフィルムでも、セラミック基板でも良く、それらをベースにした多層配線基板でも良い。
【0016】
図5に示した光配線層には、光部品の位置ずれ許容範囲を大きくするためのレンズ25と光信号であるレーザ光を反射させ90°に伝搬方向を変えるミラー26が形成されている。
【0017】
レンズ25の周辺部には、レーザ発光素子や受光素子などの光部品を搭載するパッド27が配置されている。本パッドは光配線層の上部に形成される。また、本発明の光・電気配線基板に光部品をリフロー炉を通してハンダ接続を取ることができる。
【0018】
電気部品用のパッド27は光配線上の電気配線21及び、ビアホール24を介して電気配線23と接続される。
【0019】
図6は、パッド28の上に、半導体レーザなどのレーザ発光素子29のリード30をハンダ付けしたときの断面図である。レーザ発光素子29のレーザ発光面31から放出されたレーザ光32は、ミラー33で反射され、コア34を伝搬する。レーザの取り付け位置が水平方向にずれても、レンズによってコアに集光される。
【0020】
図7は、パッド35上に、フォトダイオードなどの受光素子36のリード37を、ハンダ付けしたときの断面図である。コア38を伝搬するレーザ光39は、ミラー40で反射され、受光素子36の受光面41に入射する。レーザ光の拡がりをレンズによって抑え、受表面に導く。
【0021】
光・電気配線基板の光配線層の上に、光部品をハンダ付けするためのパッドを設けても良いし、また、電気配線を設けても良い。電気部品用のパッドは、光部品用のパッドと同様にして、ビアホールによって電気配線を有する基板上の配線と電気接続しても良い。
【0022】
光配線層の上に電気配線を設けた場合、パッドが、光配線層上の電気配線とだけに電気接続して、電気配線を有する基板上の電気配線とは電気接続していないことがあっても良い。この場合は、もちろん、パッドと基板上の電気配線とを電気接続するビアホールは存在しない。
【0023】
4.光・電気配線基板の製造方法
本発明の光・電気配線基板の製造方法は、基本的には次の通りである。まず、電気配線を有する基板とは別に、支持体の上で光配線層を作る。次に、基板に接着する。さらに、パッドと電気配線を有する基板上の電気配線とを電気接続するビアホールを形成する。
【0024】
以下、一つの実施の形態を、ビアホールによって基板上の電気配線と電気接続する光部品用のパッドに焦点を当てて、図8(a) 〜(d) の流れに従って説明する。
【0025】
本発明の光配線層44を作製する(図8(a) )。次に、図8(b) のように、電気配線を有する基板42上に接着剤43を塗布し、光配線層44のミラーを有する側と接着させる。このときの光配線層はフィルム化した後に電気配線を有する基板と接着させても良いし、支持体付の状態で電気配線を有する基板と接着させた後に支持体から剥離しても良い(図示せず)。
【0026】
図8(c) のようにレーザによって、ビアホール用の小径孔45を開ける。この場合、電気配線46がレーザ加工時のストッパの役割を果たす。
【0027】
セミアディティブ法により、ビアホール47内部、並びに、パッド48とビアホールの間を結ぶ部分に金属層を形成し、図8(d) のように、本発明の光・電気配線基板が得られる。必要に応じて、同時に電気部品用のパッド(図示せず。)、それと電気配線を電気接続するビアホール(図示せず。)、或いは、電気配線(図示せず。)を形成することができる。
【0028】
5.実装基板
光・電気配線基板に、光部品(レーザ、フォトダイオード)及び電気部品を実装したものである。実装にはハンダ及びリフロー技術が好適に用いられる。高速信号部分に光配線を、それ以外の部分に電気配線を用いることにより、高速で動作し、かつ電磁波の発生を抑えた回路を構築できる。
【0029】
【発明の効果】
本発明は、次のような効果がある。
【0030】
第1に、レンズを有するので発光素子等と光配線層の光軸あわせは簡便である。また、レンズとコア、もしくはレンズとクラッドが同一部材であるので、それらの位置あわせは実質上不要である。
【0031】
第2に、支持体は加工の後に剥離させるので、一度作製したレンズの形を有するSi等の支持体は繰り返し使用することができ、従来よりも安価に製品を作製することが出来る。
【0032】
第3に、電気配線を有する基板の上に光配線層を設けるので、高密度実装又は小型化が可能であるという効果がある。
【0033】
第4に、電気配線を有する基板とは別に、支持体上に光配線層を作製し、その光配線層を電気配線を有する基板に接着するので、電気配線を有する基板上の電気配線の上に直接光配線層を設置する場合と比較して、電気配線を有する基板上の電気配線の凹凸の影響を少なくできる。よって、光配線層の光信号の伝搬損失を低減できるという効果がある。
【0034】
【図面の簡単な説明】
【図1】本発明の光配線層を示す断面図。
【図2】本発明の光配線の製造方法の一例を示す断面図。
【図3】本発明の光配線層の製造方法の別の例を示す断面図。
【図4】レンズを作製する為の母型となる支持体の形状を示す説明図。
【図5】本発明の光・電気配線基板における光部品を実装する部分において、光配線層を縦断する断面図(a) 及び平面図(b) 。
【図6】本発明の光・電気配線基板にレーザ発光素子を実装した光・電気実装基板のレーザ光の伝搬の断面図。
【図7】本発明の光・電気配線基板に受光素子を実装した光・電気実装基板のレーザ光の伝搬の断面図。
【図8】本発明の光・電気配線基板の製造方法の一例を示す断面図。
【符号の説明】
1…コア
2…クラッド
3…レンズ
4…ミラー
5…支持体
6…剥離膜
7…クラッド
8…コア
9…クラッド
10…ダイシングソー
11…ミラー面
12…支持体
13…剥離膜
14…クラッド
15…コア
16…クラッド
17…ミラー面
18…基板
19…接着層
20…クラッド
21…光配線上の電気配線
22…コア
23…電気配線
24…ビアホール
25…レンズ
26…ミラー
27…パッド
28…パッド
29…レーザ発光素子
30…リード
31…レーザ発光面
32…レーザ光
33…ミラー
34…コア
35…パッド
36…受光素子
37…リード
38…コア
39…レーザ光
40…ミラー
41…受光面
42…電気配線を有する基板
43…接着剤
44…光配線層
45…ビアホール用の小径孔
46…電気配線
47…ビアホール
48…パッド
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical / electrical wiring board in which optical wiring and electrical wiring are mixed, a method for manufacturing the same, and a mounting board in which optical components and electrical components are mounted on the substrate.
[0002]
[Prior art]
The number of CPU clocks has been increasing year by year in order to make computers that can perform computations faster, and now only about GHz is emerging. As a result, there is a part where high-frequency signals flow in the electrical wiring of copper on the printed circuit board in the computer, so that malfunctions occur due to the generation of noise, and electromagnetic waves are generated and the surroundings are affected. It will be.
In addition, it has been attempted to replace a part of the electrical wiring made of copper on the printed circuit board with an optical wiring made of an optical fiber or an optical waveguide, and to use an optical signal instead of an electrical signal. Techniques for efficient insertion without shifting were difficult and generally could not be matched without relying on skilled workers.
[0003]
In order to solve such a problem, light emitted from a light source is condensed using a lens and conducted in a waveguide. However, also in this case, it is difficult to align the optical axis between the module and the optical waveguide, and mounting the optical component on the optical / electrical wiring board has a drawback that it is very expensive.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the drawbacks of the related art, and an optical wiring layer in which the optical axis between the module and the optical waveguide can be easily aligned, a manufacturing method thereof, high-density mounting or downsizing, and optical It is an object of the present invention to provide an optical / electrical wiring board, a method for manufacturing the same, and a mounting board in which components can be mounted by a simpler method.
[0005]
In order to achieve the above object in the present invention, the invention of claim 1 is an optical / electrical wiring board in which an optical wiring layer is bonded to a substrate having electric wiring via an adhesive layer, and the optical wiring The layer changes its propagation direction to 90 ° by using a core that propagates light parallel to the layer, a cladding in which the core is buried, and a dicing saw having a cutting edge of 90 ° with respect to the core. A mirror that is formed to cross each other with an inclination and attached with a metal thin film by vapor deposition, and the light that is located on the clad and collected by the mirror is reflected by the mirror and passes through the core An optical component selected from either a light emitting element or a light receiving element is soldered around a lens that has a lens and the lens is the same member as the clad and is on the opposite side of the substrate having electrical wiring. Pads for optical components provided for And a via hole penetrating the optical wiring layer and the adhesive layer. The optical / electrical wiring board comprising: an optical component pad; and an electrical wiring of a substrate having an electrical wiring; is there.
The invention according to claim 2 is an optical / electrical wiring board in which an optical wiring layer is bonded to a substrate having electric wiring via an adhesive layer, and the optical wiring layer emits light parallel to the layer. The core to propagate,
The clad in which the core is buried and a dicing saw having a cutting edge of 90 ° with respect to the core are formed so as to intersect with an inclination that changes the propagation direction to 90 °. A mirror with a thin film, and a lens that is positioned on the cladding and that reflects the light collected by the mirror and reflects the light through the core, and the lens is the same member as the cladding. An optical component pad provided for soldering an optical component selected from either a light emitting element or a light receiving element around the lens on the opposite side of the substrate having the electric wiring; and an electric wiring An electrical component pad provided for soldering an electrical component on the surface of the optical wiring layer on the opposite side of the substrate, and the electrical wiring of the substrate having the optical component or the electrical component pad and the electrical wiring are electrically connected. Connect and light An optical / electrical wiring board comprising a wiring layer and a via hole penetrating the adhesive layer .
The invention according to claim 3 is an optical / electrical wiring board in which an optical wiring layer is bonded to a substrate having electric wiring via an adhesive layer, and the optical wiring layer emits light parallel to the layer. The core to be propagated, the clad in which the core is buried, and a dicing saw having a cutting edge of 90 ° with respect to the core are formed so as to intersect with an inclination that changes the propagation direction to 90 °, A mirror on which a metal thin film is attached by vapor deposition; and a lens that is positioned on the cladding and that reflects the light collected by the mirror to be reflected by the mirror and passes through the core. An optical component pad provided for soldering an optical component selected from either a light emitting element or a light receiving element around a lens on the opposite side of the substrate having the electrical wiring, which is the same member; Light on the other side of the substrate with electrical wiring An electrical component pad provided for soldering an electrical component on the surface of the wiring layer is electrically connected to an optical component or an electrical component pad and an electrical wiring of a substrate having electrical wiring, and the optical wiring layer And an electrical wiring provided on the surface of the optical wiring layer on the opposite side of the substrate having electrical wiring, and an optical / electrical wiring board.
According to a fourth aspect of the present invention, the optical wiring layer intersects the core that propagates light in parallel with the layer, the cladding in which the core is buried, and the core with an inclination. a mirror which is formed, said cladding positioned on the light is focused on the mirror is reflected by the mirror has a lens to pass through the said core, Ru said lens said cladding same members der light A method of manufacturing an electrical wiring board, in which a recess is embedded on a support body that has been processed with a recess serving as a lens mold, and then a clad is formed on the support to have a predetermined thickness, and then a core And then forming a clad so as to embed the core, thereby forming an optical wiring layer provided with a lens, and using a dicing saw having a cutting edge of 90 ° with respect to the optical wiring layer , With a slope that changes the propagation direction to 90 ° Forming a cutting plane intersecting with the metal thin film on the cut surface, and forming a mirror surface, a step of peeling the optical wiring layer from the support, the optical wiring layer, having an electrical wiring and adhering via an adhesive layer on the electrical wiring side of the substrate, by a laser from the side with the lens of the optical wiring layer side, small-diameter hole for via hole penetrating the said adhesive layer and the optical wiring layer And at least a via hole penetrating the optical wiring layer and the adhesive layer, an optical component pad, and a metal layer electrically connecting the via hole and the optical component pad are formed by a semi-additive method. A process for producing an optical / electrical wiring board.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
1. Optical Wiring Layer FIG. 1 shows a cross-sectional view of a waveguide layer having a mirror and a lens in the optical / electrical wiring board of the present invention. The core 1 is an optical waveguide that is buried in the clad 2 and propagates laser light. Further, in the lens 3, the portion reflected by the mirror 4 is a distance close to the focal point. In other words, even when a horizontal misalignment occurs in a module such as a laser, light always passes through the waveguide, and the alignment becomes simple. Further, since the lens and the clad or the lens and the core are the same member and formed simultaneously, the alignment between the lens and the clad or the core is substantially unnecessary.
[0007]
The resin forming the clad preferably has a high glass transition temperature Tg, a high insulation resistance, and a low coefficient of thermal expansion. Examples of the film forming method include thermosetting and photocuring. For example, a polyimide resin or an epoxy resin is suitable.
[0008]
As for the properties of the resin forming the core, the glass transition temperature Tg is high, the insulation resistance is high, and the coefficient of thermal expansion is low, as is the case with the resin of the cladding layer. In addition, the refractive index of the cladding layer of the optical waveguide is larger. You need to choose one.
[0009]
2. Manufacturing Method of Optical Wiring Layer When the lens 3 in FIG. 1 is the same member as the cladding, a release film 6 is formed on a support 5 such as Si that has been processed into a lens mold in advance as shown in FIG. After that, a clad 7 is formed as shown in FIG. Next, after the core 8 is formed, it is processed into a core pattern by sputtering, photolithography or the like, and then the clad 9 is formed (FIG. 2 (c)). Subsequently, a mirror surface 11 is formed using a machine capable of fine processing such as a dicing saw 10 (FIG. 2 (d)). Finally, an optical wiring layer is obtained by peeling from a support such as Si (FIG. 2 (e)).
[0010]
When the lens 3 of FIG. 1 is the same member as the core, a release film 13 is formed on a support 12 such as Si that has been processed into a lens mold in advance as shown in FIG. A film is formed (FIG. 3 (b)). Next, only the cladding of the lens forming portion is pierced by an etching method such as RIE (FIG. 3 (c)). Thereafter, the core 15 is formed as shown in FIG. 3D, and the inside of the hole is filled with the core material. Then, after processing into a core pattern using sputtering or photolithography, a clad 16 is formed (FIG. 3 (e)). Subsequently, the mirror surface 17 is formed using a machine capable of fine processing such as a dicing saw having a 90 ° blade edge (FIG. 3 (f)). Finally, an optical wiring layer is obtained by peeling off from a support such as Si (FIG. 3 (g)).
[0011]
In the optical / electrical substrate of the present invention, in order to accurately align the light emission and light receiving portion of an optical element such as a laser or a photodiode on a lens, a substrate or a waveguide layer having electrical wiring using photolithography or the like It is also possible to attach a marker to the optical element, attach a marker to one optical element, and move both optical markers to a predetermined position by image recognition to fix both markers, or form bumps on the pads. A flip chip method may be used.
[0012]
The mirror may be left in a cut state, but a metal thin film may be attached by vapor deposition or the like in order to reduce the light that goes straight on the mirror portion that causes light loss. In order to maintain the mechanical strength, a space generated during processing may be filled with an appropriate resin.
[0013]
As a method for producing the concave portion of the support serving as the lens mold, for example, after forming a circular pattern by photolithography, it can be produced by using isotropic etching. Or it can also produce by cutting on a metal support body. As shown in FIG. 4, the concave shape of the support is shown in FIG. 4B or FIG. 4 (FIG. 4B) designed so that the convex portion of the lens is lower than the upper clad of the waveguide in order to protect the lens in the product. The shape of c) may be used. In these cases, the mask is first applied only to the lens on the support and the other parts are etched, and then the mask is applied to the part other than the concave part so that the lens part becomes a concave surface part. Isotropic etching may be performed.
[0014]
3. Optical / Electrical Wiring Board FIG. 5 (a) shows a cross-sectional view of the optical / electrical wiring board of the present invention passing through the center of the pad 27 and longitudinally cutting the core portion of the optical waveguide, and FIG. Shown in 5 (b).
[0015]
As shown in FIG. 5, the optical / electrical wiring board of the present invention has a structure in which an optical wiring layer (core 22, clad 20) is laminated on a substrate 18 having an electrical wiring 23 via an adhesive layer 19. . The substrate 18 may be a single-layer insulating substrate or a multilayer wiring substrate in which electrical wiring and insulating layers are alternately stacked. The constituent material may be an insulating substrate in which a glass cloth is impregnated with a resin, a polyimide film, a ceramic substrate, or a multilayer wiring substrate based on them.
[0016]
The optical wiring layer shown in FIG. 5 is formed with a lens 25 for increasing the positional deviation allowable range of the optical component and a mirror 26 that reflects the laser light as the optical signal and changes the propagation direction to 90 °.
[0017]
A pad 27 on which optical components such as a laser light emitting element and a light receiving element are mounted is disposed around the lens 25. This pad is formed on the optical wiring layer. Further, the optical component can be soldered to the optical / electrical wiring board of the present invention through a reflow furnace.
[0018]
The electrical component pads 27 are connected to the electrical wiring 23 via the electrical wiring 21 and the via holes 24 on the optical wiring.
[0019]
FIG. 6 is a cross-sectional view when the lead 30 of the laser light emitting element 29 such as a semiconductor laser is soldered on the pad 28. The laser beam 32 emitted from the laser emitting surface 31 of the laser emitting element 29 is reflected by the mirror 33 and propagates through the core 34. Even if the mounting position of the laser is shifted in the horizontal direction, the laser beam is focused on the core.
[0020]
FIG. 7 is a cross-sectional view when the lead 37 of the light receiving element 36 such as a photodiode is soldered on the pad 35. The laser beam 39 propagating through the core 38 is reflected by the mirror 40 and enters the light receiving surface 41 of the light receiving element 36. The spread of the laser beam is suppressed by the lens and guided to the receiving surface.
[0021]
A pad for soldering optical components may be provided on the optical wiring layer of the optical / electrical wiring board, or an electrical wiring may be provided. The pad for the electrical component may be electrically connected to the wiring on the substrate having the electrical wiring through the via hole in the same manner as the pad for the optical component.
[0022]
When the electrical wiring is provided on the optical wiring layer, the pad may be electrically connected only to the electrical wiring on the optical wiring layer and not to the electrical wiring on the substrate having the electrical wiring. May be. In this case, of course, there is no via hole for electrically connecting the pad and the electric wiring on the substrate.
[0023]
4). Manufacturing Method of Optical / Electrical Wiring Substrate The manufacturing method of the optical / electrical wiring substrate of the present invention is basically as follows. First, apart from a substrate having electrical wiring, an optical wiring layer is formed on a support. Next, it adheres to the substrate. Further, a via hole for electrically connecting the pad and the electric wiring on the substrate having the electric wiring is formed.
[0024]
Hereinafter, one embodiment will be described according to the flow of FIGS. 8A to 8D, focusing on the pads for optical components that are electrically connected to the electrical wiring on the substrate by via holes.
[0025]
The optical wiring layer 44 of the present invention is produced (FIG. 8 (a)). Next, as shown in FIG. 8B, an adhesive 43 is applied on the substrate 42 having the electrical wiring, and is adhered to the side having the mirror of the optical wiring layer 44. The optical wiring layer at this time may be bonded to a substrate having electrical wiring after being formed into a film, or may be peeled off from the support after being bonded to a substrate having electrical wiring in a state with a support (see FIG. Not shown).
[0026]
As shown in FIG. 8C, a small-diameter hole 45 for a via hole is opened by a laser. In this case, the electrical wiring 46 serves as a stopper during laser processing.
[0027]
By the semi-additive method, a metal layer is formed in the via hole 47 and in a portion connecting the pad 48 and the via hole, and the optical / electrical wiring board of the present invention is obtained as shown in FIG. If necessary, pads for electrical components (not shown), via holes (not shown) for electrically connecting the electrical pads and electrical wiring (not shown), or electrical wiring (not shown) can be formed at the same time.
[0028]
5. An optical component (laser, photodiode) and an electrical component are mounted on a mounting substrate optical / electrical wiring substrate. Solder and reflow techniques are preferably used for mounting. By using optical wiring for the high-speed signal portion and electrical wiring for the other portions, it is possible to construct a circuit that operates at high speed and suppresses the generation of electromagnetic waves.
[0029]
【The invention's effect】
The present invention has the following effects.
[0030]
First, since the lens is provided, the optical axis alignment between the light emitting element and the optical wiring layer is simple. Further, since the lens and the core, or the lens and the clad are the same member, their alignment is substantially unnecessary.
[0031]
Secondly, since the support is peeled off after processing, a support made of Si or the like having a lens shape once manufactured can be used repeatedly, and a product can be manufactured at a lower cost than in the past.
[0032]
Third, since the optical wiring layer is provided on the substrate having the electric wiring, there is an effect that high-density mounting or miniaturization is possible.
[0033]
Fourth, an optical wiring layer is formed on a support separately from a substrate having electrical wiring, and the optical wiring layer is bonded to the substrate having electrical wiring. Compared with the case where the optical wiring layer is directly installed on the substrate, the influence of the unevenness of the electric wiring on the substrate having the electric wiring can be reduced. Accordingly, there is an effect that the propagation loss of the optical signal in the optical wiring layer can be reduced.
[0034]
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an optical wiring layer of the present invention.
FIG. 2 is a cross-sectional view showing an example of a method for manufacturing an optical wiring according to the present invention.
FIG. 3 is a cross-sectional view showing another example of the method for producing an optical wiring layer of the present invention.
FIG. 4 is an explanatory diagram showing the shape of a support that serves as a matrix for producing a lens.
FIGS. 5A and 5B are a cross-sectional view (a) and a plan view (b) in which an optical wiring layer is vertically cut in a portion where an optical component is mounted on an optical / electrical wiring board of the present invention.
FIG. 6 is a cross-sectional view of the propagation of laser light on an optical / electrical mounting board in which a laser light emitting element is mounted on the optical / electrical wiring board of the present invention.
FIG. 7 is a cross-sectional view of the propagation of laser light on an optical / electrical mounting board in which a light receiving element is mounted on the optical / electrical wiring board of the present invention.
FIG. 8 is a cross-sectional view showing an example of a method for manufacturing an optical / electrical wiring board according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Core 2 ... Cladding 3 ... Lens 4 ... Mirror 5 ... Support body 6 ... Release film 7 ... Cladding 8 ... Core 9 ... Cladding 10 ... Dicing saw 11 ... Mirror surface 12 ... Supporting body 13 ... Release film 14 ... Cladding 15 ... Core 16 ... Clad 17 ... Mirror surface 18 ... Substrate 19 ... Adhesive layer 20 ... Clad 21 ... Electric wiring 22 on optical wiring ... Core 23 ... Electric wiring 24 ... Via hole 25 ... Lens 26 ... Mirror 27 ... Pad 28 ... Pad 29 ... Laser light emitting element 30 ... Lead 31 ... Laser light emitting surface 32 ... Laser light 33 ... Mirror 34 ... Core 35 ... Pad 36 ... Light receiving element 37 ... Lead 38 ... Core 39 ... Laser light 40 ... Mirror 41 ... Light receiving surface 42 ... Electric wiring Substrate 43 having adhesive 44 Optical wiring layer 45 Small hole 46 for via hole Electric wiring 47 Via hole 48 Pad

Claims (5)

電気配線を有する基板に光配線層を接着層を介して接着させた光・電気配線基板であって、
該光配線層は、層に対して平行に光を伝搬させるコアと、
該コアが埋没しているクラッドと、
該コアに対して90°の刃先を持つダイシングソーを用いて、90°に伝搬方向を変える傾きを有して交差するよう形成され、蒸着を用いて金属薄膜を付けたミラーと、
該クラッド上に位置し該ミラーに集光させた光が該ミラーで反射して該コア内を通らせるレンズを有し、該レンズが該クラッドと同一部材であって、
電気配線を有する基板の反対側にあるレンズの周囲に、発光素子もしくは受光素子のいずれかから選択される光部品をハンダ付けするために設けられた光部品用のパッドと、
光部品用パッドと電気配線を有する基板の電気配線とを電気接続し、前記光配線層と前記接着層とを貫通するビアホールと、
を具備することを特徴とする光・電気配線基板。
An optical / electrical wiring board in which an optical wiring layer is bonded to a substrate having electric wiring via an adhesive layer ,
The optical wiring layer includes a core for propagating light parallel to the layer,
A cladding in which the core is buried;
Using a dicing saw having a cutting edge of 90 ° relative to the core, a mirror formed to intersect with an inclination that changes the propagation direction to 90 °, and attached with a metal thin film using vapor deposition,
A lens located on the cladding and reflected by the mirror and reflected by the mirror to pass through the core; and the lens is the same member as the cladding,
An optical component pad provided for soldering an optical component selected from either a light emitting element or a light receiving element around a lens on the opposite side of the substrate having electrical wiring;
Electrically connecting the optical component pads and the electrical wiring of the substrate having electrical wiring, and via holes penetrating the optical wiring layer and the adhesive layer ;
An optical / electrical wiring board comprising:
電気配線を有する基板に光配線層を接着層を介して接着させた光・電気配線基板であって、
該光配線層は、層に対して平行に光を伝搬させるコアと、
該コアが埋没しているクラッドと、
該コアに対して90°の刃先を持つダイシングソーを用いて、90°に伝搬方向を変える傾きを有して交差するよう形成され、蒸着を用いて金属薄膜を付けたミラーと、
該クラッド上に位置し該ミラーに集光させた光が該ミラーで反射して該コア内を通らせるレンズを有し、該レンズが該クラッドと同一部材であって、
電気配線を有する基板の反対側にあるレンズの周囲に、発光素子もしくは受光素子のいずれかから選択される光部品をハンダ付けするために設けられた光部品用のパッドと、
電気配線を有する基板の反対側にある光配線層の表面に、電気部品をハンダ付けするために設けられた電気部品用のパッドと、
光部品又は電気部品用パッドと電気配線を有する基板の電気配線とを電気接続し、前記光配線層と前記接着層とを貫通するビアホールと、
を具備することを特徴とする光・電気配線基板。
An optical / electrical wiring board in which an optical wiring layer is bonded to a substrate having electric wiring via an adhesive layer ,
The optical wiring layer includes a core for propagating light parallel to the layer,
A cladding in which the core is buried;
Using a dicing saw having a cutting edge of 90 ° relative to the core, a mirror formed to intersect with an inclination that changes the propagation direction to 90 °, and attached with a metal thin film using vapor deposition,
A lens located on the cladding and reflected by the mirror and reflected by the mirror to pass through the core; and the lens is the same member as the cladding,
An optical component pad provided for soldering an optical component selected from either a light emitting element or a light receiving element around a lens on the opposite side of the substrate having electrical wiring;
On the surface of the optical wiring layer on the opposite side of the substrate having electrical wiring, pads for electrical components provided for soldering electrical components;
A via hole penetrating the optical wiring layer and the adhesive layer, electrically connecting an optical component or electrical component pad and an electrical wiring of a substrate having an electrical wiring;
An optical / electrical wiring board comprising:
電気配線を有する基板に光配線層を接着層を介して接着させた光・電気配線基板であって、
該光配線層は、層に対して平行に光を伝搬させるコアと、
該コアが埋没しているクラッドと、
該コアに対して90°の刃先を持つダイシングソーを用いて、90°に伝搬方向を変える傾きを有して交差するよう形成され、蒸着を用いて金属薄膜を付けたミラーと、
該クラッド上に位置し該ミラーに集光させた光が該ミラーで反射して該コア内を通らせるレンズを有し、該レンズが該クラッドと同一部材であって、
電気配線を有する基板の反対側にあるレンズの周囲に、発光素子もしくは受光素子のいずれかから選択される光部品をハンダ付けするために設けられた光部品用のパッドと、
電気配線を有する基板の反対側にある光配線層の表面に、電気部品をハンダ付けするために設けられた電気部品用のパッドと、
光部品又は電気部品用パッドと電気配線を有する基板の電気配線とを電気接続し、前記光配線層と前記接着層とを貫通するビアホールと、
電気配線を有する基板の反対側にある光配線層の表面に設けた電気配線と、
を具備することを特徴とする光・電気配線基板。
An optical / electrical wiring board in which an optical wiring layer is bonded to a substrate having electric wiring via an adhesive layer ,
The optical wiring layer includes a core for propagating light parallel to the layer,
A cladding in which the core is buried;
Using a dicing saw having a cutting edge of 90 ° relative to the core, a mirror formed to intersect with an inclination that changes the propagation direction to 90 °, and attached with a metal thin film using vapor deposition,
A lens located on the cladding and reflected by the mirror and reflected by the mirror to pass through the core; and the lens is the same member as the cladding,
An optical component pad provided for soldering an optical component selected from either a light emitting element or a light receiving element around a lens on the opposite side of the substrate having electrical wiring;
On the surface of the optical wiring layer on the opposite side of the substrate having electrical wiring, pads for electrical components provided for soldering electrical components;
A via hole penetrating the optical wiring layer and the adhesive layer, electrically connecting an optical component or electrical component pad and an electrical wiring of a substrate having an electrical wiring;
Electrical wiring provided on the surface of the optical wiring layer on the opposite side of the substrate having electrical wiring;
An optical / electrical wiring board comprising:
光配線層が、層に対して平行に光を伝搬させるコアと、該コアが埋没しているクラッドと、該コアに対して傾きを有して交差するよう形成されたミラーと、該クラッド上に位置し該ミラーに集光させた光が該ミラーで反射して該コア内を通らせるレンズを有し、該レンズが該クラッドと同一部材である光・電気配線基板の製造方法であって
レンズの型となる凹部の加工を施した支持体上に、前記凹部を埋め込みさらに支持体上に所定の厚さとなるようにクラッドを形成し、次いでコアを形成し、次いで前記コアを埋め込むようにクラッドを形成することにより、レンズを備えた光配線層を形成する工程と、
前記光配線層に対して90°の刃先を持つダイシングソーを用いて、90°に伝搬方向を変える傾きを有して交差する切断面を形成し、当該切断面に金属薄膜を付けて、ミラー面を形成する工程と、
前記光配線層を前記支持体から剥離する工程と、
前記光配線層を、電気配線を有する基板の電気配線側に接着層を介して接着する工程と、
前記光配線層側の前記レンズを備えた面側からレーザーにより、前記光配線層と前記接着層とを貫通するビアホール用の小径孔を形成する工程と、
セミアディティブ法により、少なくとも、前記光配線層と前記接着層とを貫通するビアホール、光部品用パッド、及び前記ビアホールと光部品用パッドを電気的に接続する金属層を形成する工程と、を含むことを特徴とする光・電気配線基板の製造方法。
An optical wiring layer includes a core for propagating light parallel to the layer, a cladding in which the core is buried, a mirror formed so as to intersect with the core at an inclination, and on the cladding position and light is focused on the mirror is reflected by the mirror to have a lens that pass through within the core, there said lens in said cladding the same members der Ru optical-electrical wiring board manufacturing method of And
On a support subjected to mold and processing of the recesses consisting of a lens, the formed cladding to have a predetermined thickness on the embedding further support recess, then to form a core and then to fill the core Forming an optical wiring layer having a lens by forming a cladding; and
A dicing saw having a cutting edge of 90 ° with respect to the optical wiring layer is used to form an intersecting cut surface having an inclination that changes the propagation direction to 90 °, and a metal thin film is attached to the cut surface, and a mirror Forming a surface ;
A step of peeling the optical wiring layer from the support,
Bonding the optical wiring layer to the electric wiring side of the substrate having electric wiring via an adhesive layer ;
Forming a small-diameter hole for a via hole penetrating the optical wiring layer and the adhesive layer with a laser from a surface side including the lens on the optical wiring layer side ;
Forming at least a via hole penetrating the optical wiring layer and the adhesive layer, an optical component pad, and a metal layer electrically connecting the via hole and the optical component pad by a semi-additive method. A method of manufacturing an optical / electrical wiring board.
請求項1乃至3のいずれか1項に記載の光・電気配線基板に光部品又は/及び電気部品を実装したことを特徴とする実装基板。  A mounting board comprising an optical component and / or an electrical component mounted on the optical / electrical wiring board according to claim 1.
JP35162899A 1999-12-10 1999-12-10 Optical wiring layer manufacturing method, optical / electrical wiring substrate, manufacturing method thereof, and mounting substrate Expired - Fee Related JP4677651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35162899A JP4677651B2 (en) 1999-12-10 1999-12-10 Optical wiring layer manufacturing method, optical / electrical wiring substrate, manufacturing method thereof, and mounting substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35162899A JP4677651B2 (en) 1999-12-10 1999-12-10 Optical wiring layer manufacturing method, optical / electrical wiring substrate, manufacturing method thereof, and mounting substrate

Publications (2)

Publication Number Publication Date
JP2001166167A JP2001166167A (en) 2001-06-22
JP4677651B2 true JP4677651B2 (en) 2011-04-27

Family

ID=18418548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35162899A Expired - Fee Related JP4677651B2 (en) 1999-12-10 1999-12-10 Optical wiring layer manufacturing method, optical / electrical wiring substrate, manufacturing method thereof, and mounting substrate

Country Status (1)

Country Link
JP (1) JP4677651B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270462A (en) * 2002-03-15 2003-09-25 Nippon Telegr & Teleph Corp <Ntt> Optical coupling structure
JP4646618B2 (en) 2004-12-20 2011-03-09 イビデン株式会社 Optical path conversion member, multilayer printed wiring board, and optical communication device
JP2006258835A (en) * 2005-03-15 2006-09-28 Sony Corp Optical waveguide module, photoelectric converter and optical waveguide member
US7856164B2 (en) 2005-08-31 2010-12-21 Mitsumi Electric Co., Ltd. Waveguide device
US8045829B2 (en) 2005-12-02 2011-10-25 Kyocera Corporation Optical waveguide member, optical wiring board, optical wiring module and method for manufacturing optical waveguide member and optical wiring board
JP4684931B2 (en) * 2006-01-31 2011-05-18 京セラ株式会社 Optical waveguide member manufacturing method, optical wiring module manufacturing method, and electronic device manufacturing method
JP4884110B2 (en) * 2006-07-06 2012-02-29 モレックス インコーポレイテド Relay optical connector
JP4946218B2 (en) * 2006-07-07 2012-06-06 凸版印刷株式会社 Optical substrate manufacturing method
KR100818622B1 (en) * 2006-08-14 2008-04-01 삼성전기주식회사 Optical printed circuit board and fabricating method therefore
JP5322873B2 (en) * 2009-04-27 2013-10-23 京セラ株式会社 Optical module
CN103763855B (en) * 2014-01-28 2016-08-24 华进半导体封装先导技术研发中心有限公司 Photoelectricity printed board and preparation method thereof
JP7280031B2 (en) * 2018-11-14 2023-05-23 新光電気工業株式会社 Optical waveguide mounting substrate, optical communication device, and method for manufacturing optical waveguide mounting substrate
WO2021015379A1 (en) * 2019-07-19 2021-01-28 주식회사 휘라포토닉스 Awg device module for optical transceiver, and manufacturing method
KR20210010068A (en) * 2019-07-19 2021-01-27 주식회사 휘라포토닉스 AWG device module and their fabrication method for optical transceiver

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4163953A (en) * 1977-07-07 1979-08-07 Northern Telecom Limited Double heterostructure laser for direct coupling to an optical fiber
JPS6139736A (en) * 1984-07-31 1986-02-25 Nec Corp Transmitter
JPS6179290A (en) * 1984-09-26 1986-04-22 株式会社島津製作所 Light/electron printed substrate
JPS61117882A (en) * 1984-11-14 1986-06-05 松下電工株式会社 Printed circuit board
JPH02184801A (en) * 1989-01-11 1990-07-19 Ricoh Co Ltd Method for reproducing grating
JPH0588029A (en) * 1991-02-08 1993-04-09 Siemens Ag Optoelectronic device
JPH06132516A (en) * 1992-08-11 1994-05-13 Hitachi Ltd Semiconductor device and clock signal supplier
JPH07181349A (en) * 1993-11-05 1995-07-21 Motorola Inc Optical module having waveguide for reflected light
JPH0846292A (en) * 1994-07-29 1996-02-16 Furukawa Electric Co Ltd:The Semiconductor laser element and manufacture thereof
JPH0872064A (en) * 1994-09-09 1996-03-19 Sony Corp Production of microlens
JPH08220375A (en) * 1995-02-17 1996-08-30 Fujitsu Ltd Opto-electric hybrid circuit module and optical coupler and its production
JPH0996746A (en) * 1995-09-29 1997-04-08 Fujitsu Ltd Active optical circuit sheet or active optical circuit board
JPH09281352A (en) * 1996-04-10 1997-10-31 Fuji Xerox Co Ltd Formation of opto-electric transmission path and opto-electric wiring board
JPH1039112A (en) * 1996-07-22 1998-02-13 Nippon Sheet Glass Co Ltd Production of planer microlens
JPH10300961A (en) * 1996-07-31 1998-11-13 Nippon Telegr & Teleph Corp <Ntt> Optical path changing element, manufacture thereof and blade for manufacturing the optical path changing element
WO1999038035A1 (en) * 1996-07-22 1999-07-29 Maikurooputo Co., Ltd. Method of manufacturing flat plate microlens and flat plate microlens
JPH11211903A (en) * 1998-01-28 1999-08-06 Toppan Printing Co Ltd Renticular lens
JPH11248953A (en) * 1998-03-04 1999-09-17 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide provided with microlens and its manufacture
JPH11277543A (en) * 1998-03-27 1999-10-12 Sharp Corp Production of mold for molding micro-lens array
JPH11326603A (en) * 1998-05-19 1999-11-26 Seiko Epson Corp Microlens array and its production thereof, and display

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4163953A (en) * 1977-07-07 1979-08-07 Northern Telecom Limited Double heterostructure laser for direct coupling to an optical fiber
JPS6139736A (en) * 1984-07-31 1986-02-25 Nec Corp Transmitter
JPS6179290A (en) * 1984-09-26 1986-04-22 株式会社島津製作所 Light/electron printed substrate
JPS61117882A (en) * 1984-11-14 1986-06-05 松下電工株式会社 Printed circuit board
JPH02184801A (en) * 1989-01-11 1990-07-19 Ricoh Co Ltd Method for reproducing grating
JPH0588029A (en) * 1991-02-08 1993-04-09 Siemens Ag Optoelectronic device
JPH06132516A (en) * 1992-08-11 1994-05-13 Hitachi Ltd Semiconductor device and clock signal supplier
JPH07181349A (en) * 1993-11-05 1995-07-21 Motorola Inc Optical module having waveguide for reflected light
JPH0846292A (en) * 1994-07-29 1996-02-16 Furukawa Electric Co Ltd:The Semiconductor laser element and manufacture thereof
JPH0872064A (en) * 1994-09-09 1996-03-19 Sony Corp Production of microlens
JPH08220375A (en) * 1995-02-17 1996-08-30 Fujitsu Ltd Opto-electric hybrid circuit module and optical coupler and its production
JPH0996746A (en) * 1995-09-29 1997-04-08 Fujitsu Ltd Active optical circuit sheet or active optical circuit board
JPH09281352A (en) * 1996-04-10 1997-10-31 Fuji Xerox Co Ltd Formation of opto-electric transmission path and opto-electric wiring board
JPH1039112A (en) * 1996-07-22 1998-02-13 Nippon Sheet Glass Co Ltd Production of planer microlens
WO1999038035A1 (en) * 1996-07-22 1999-07-29 Maikurooputo Co., Ltd. Method of manufacturing flat plate microlens and flat plate microlens
JPH10300961A (en) * 1996-07-31 1998-11-13 Nippon Telegr & Teleph Corp <Ntt> Optical path changing element, manufacture thereof and blade for manufacturing the optical path changing element
JPH11211903A (en) * 1998-01-28 1999-08-06 Toppan Printing Co Ltd Renticular lens
JPH11248953A (en) * 1998-03-04 1999-09-17 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide provided with microlens and its manufacture
JPH11277543A (en) * 1998-03-27 1999-10-12 Sharp Corp Production of mold for molding micro-lens array
JPH11326603A (en) * 1998-05-19 1999-11-26 Seiko Epson Corp Microlens array and its production thereof, and display

Also Published As

Publication number Publication date
JP2001166167A (en) 2001-06-22

Similar Documents

Publication Publication Date Title
KR100720854B1 (en) Photoelectric wiring board, packaging board, and photoelectric wiring board producing method
EP1041418B1 (en) Optical wiring layer, optoelectric wiring substrate, mounted substrate, and methods for manufacturing the same
JP4677651B2 (en) Optical wiring layer manufacturing method, optical / electrical wiring substrate, manufacturing method thereof, and mounting substrate
US9201203B2 (en) Photoelectric composite substrate and method of manufacturing the same
JP5247880B2 (en) Photoelectric wiring board and optical module
JP2009175418A (en) Opto-electronic printed wiring board and manufacturing method of same
JP2011003774A (en) Method of manufacturing optical waveguide laminated wiring board
JP6084027B2 (en) Optical waveguide device and manufacturing method thereof
JP5842714B2 (en) Optical waveguide device and method for manufacturing optical waveguide device
JP2001196643A (en) Chip carrier for mounting light/electric element and mounting method thereof, light/electric wiring board and manufacturing method thereof, and mounting board
JP4366751B2 (en) Optical / electrical wiring board, manufacturing method, and mounting board
JP2000347051A (en) Optical/electrical wiring board, its manufacturing method and package board
JP4306011B2 (en) Optical wiring layer and manufacturing method thereof, optical / electrical wiring substrate, manufacturing method thereof, and mounting substrate
JP2004302188A (en) Electric wiring substrate with optical waveguide
TWI693437B (en) Optical waveguide and optical circuit substrate
JP2003050328A (en) Optic/electric wiring board, method for manufacturing the board and package board
JP4304764B2 (en) Optical / electrical wiring board, manufacturing method, and mounting board
JP5302177B2 (en) Optical waveguide substrate and opto-electric hybrid device
JP4320850B2 (en) Optical / electrical wiring board, mounting board, and manufacturing method thereof
JP2000340906A (en) Optical/electrical wiring board, manufacture thereof and mounting board
JP2001004854A (en) Optical and electrical wiring board and mounting substrate
JP2001196494A (en) Chip carrier for mounting opto-electric element, manufacturing and mounting method therefor, opto- electric wiring board, manufacturing method therefor and mounted substrate
JP2006310417A (en) Photoelectric converter, its manufacturing method and optical information processor
JP4253933B2 (en) Optical / electrical wiring board and mounting board
JP2001083346A (en) Electric/optic mixed loading wiring board, electricity- light mixed loading module and method for its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees