WO2021015379A1 - Awg device module for optical transceiver, and manufacturing method - Google Patents
Awg device module for optical transceiver, and manufacturing method Download PDFInfo
- Publication number
- WO2021015379A1 WO2021015379A1 PCT/KR2020/001765 KR2020001765W WO2021015379A1 WO 2021015379 A1 WO2021015379 A1 WO 2021015379A1 KR 2020001765 W KR2020001765 W KR 2020001765W WO 2021015379 A1 WO2021015379 A1 WO 2021015379A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- device module
- awg device
- shaped
- concave groove
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/80—Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
Definitions
- the present invention relates to an AWG device module and a manufacturing method for an optical transceiver, and more particularly, to an AWG device module and a manufacturing method for an optical transceiver that enables packaging with a photodiode and control of an optical focusing distance.
- 10G ⁇ 4 channel CWDM method is adopted as a standard for single mode fiber 10km transmission, and for 100G Ethernet, single mode fiber 10km, 25G ⁇ 4 channel LAN-WDM for 40km transmission. Adopted the standard method.
- the optical transceiver is a module that performs photoelectric conversion, and the receiver of the optical transceiver converts an incident optical signal into an electrical signal and outputs it.
- a photodiode is an element that receives an optical signal and converts it into a current signal
- a transimpedance amplifier is an element that amplifies the signal.
- Ultra-high-speed optical transceivers having a transmission rate of 10 Gbps or higher use optical waveguides to perform the MUX/DeMUX (multiplexing/separating) function of optical wavelengths in the receiver.
- the optical signal transmitted through the optical waveguide is incident on the photodiode and amplified by a transimpedance amplifier (TIA).
- TIA transimpedance amplifier
- the diameter of the optical waveguide core is about 3 to 10 microns, and the diameter of the light receiving part of the photodiode is in the range of 20 to 40 microns. Therefore, in order to inject the optical signal output from the optical waveguide into the photodiode light-receiving unit, a precisely calculated and controlled structure must be designed. In this case, a structure that focuses light using an optical lens or the like is used. Usually, a structure that effectively arranges components such as an optical waveguide, lens, photodiode, and TIA is designed.
- the size of the photodiode's light-receiving unit has become smaller, so it is necessary to focus and minimize the optical signal on the exit surface of the AWG device module. It was necessary to minimize the distance between the surface of the device and the photodiode of about 30 ⁇ 100 ⁇ m. If it becomes larger than a certain interval, all optical signals are not incident on the light receiving part of the photodiode, resulting in optical loss and an increase in coupling loss, resulting in deterioration of the performance of the optical transceiver. .
- Patent Document 1 Korean Patent Publication No. 1711691 (2017.02.23)
- an object of the present invention is to focus and output an optical signal from the optical transmission means to the photodiode of the optical receiving means, thereby increasing the transmission capacity of the optical transceiver.
- the purpose is to induce the reduction of the active area of the diode, thereby promoting the high performance of the photodiode.
- the present invention provides an optical transmission means comprising a core through which an optical signal is transmitted, and a plate-type optical waveguide including a cladding surrounding the core; And an optical receiving means for receiving the optical signal output from the optical transmitting means and converting the optical signal into an electrical signal, wherein the optical signal is collected and focused on a surface of the clad corresponding to the optical receiving means and is an emission surface of the optical signal.
- an AWG device module for an optical transceiver with an optical path part installed.
- the optical path portion is in the form of a concave lens, and a concave groove is formed on the surface of the clad through wet wet etching by photolithography.
- a UV curing material having a high refractive index is filled in the concave groove of the optical path part.
- the concave groove is made of any one of hemispherical, U-shaped, V-shaped, and wedge-shaped grooves.
- the hemispherical, U-shaped concave groove is formed through a wet etching process.
- the V-shaped, wedge-shaped concave groove is formed through a dicing blade process.
- a material capable of UV curing having a high refractive index is thermally reflowed on a corresponding surface of the optical path portion to form a spherical lens portion.
- the present invention comprises the steps of forming a core layer on a lower clad layer on a substrate; Forming a photoresist pattern on the core layer, and etching and patterning the core layer using the same; Forming an upper cladding layer on the patterned core layer to complete an optical waveguide; Forming a concave groove having a photoresist pattern on the upper cladding layer and on the upper cladding layer on which the photoresist pattern is not formed; And forming a concave lens-shaped optical path part by filling the concave groove with a UV curing material having a high refractive index.
- the concave groove is made of any one of a hemispherical, U-shaped, V-shaped, and wedge-shaped groove.
- the hemispherical, U-shaped concave groove is formed through a wet etching process.
- the V-shaped, wedge-shaped concave groove is formed through a dicing blade process.
- the method further includes forming a spherical lens unit by thermally reflowing the UV curable material having a high refractive index on the corresponding surface of the optical path unit.
- the AWG device module and manufacturing method for an optical transceiver according to the present invention having the configuration as described above, by focusing an optical signal from the optical transmission means and outputting it to the optical receiving means, the photo of the optical receiving means according to the expansion of the transmission capacity of the optical transceiver. There is an effect of inducing the reduction of the active area of the diode to promote high performance of the photodiode and minimizing the coupling loss caused by the light spreading phenomenon.
- the optical alignment procedure can be minimized, as well as the refractive index of the UV-cured material with a high refractive index filling the recesses.
- the focal length can be controlled according to the photodiode and packaging clearance tolerance, the concave groove is formed at the same height as the surface of the AWG device, minimizing damage to the lens and photodiode that occurs when using a convex lens. Productivity can be improved by reducing the reduction and defect rate.
- the optical signal is focused from the optical waveguide of the optical transmission means and output to the optical receiving means, but the optical signal reflected on the reflective surface is prevented from entering the optical transmission means again, thereby reducing return loss.
- FIG. 1 is a block diagram showing an AWG device module according to the present invention.
- FIG. 2 is a cross-sectional view showing an optical path portion between the optical transmission means and the optical reception means of the AWG device module according to the first embodiment of the present invention.
- FIG 3 is a cross-sectional view showing an optical path portion between an optical transmission means and a light reception means of an AWG device module according to a second embodiment of the present invention.
- FIG. 4 is an optical distribution diagram showing the size of an optical signal on a light exit surface of an AWG device module according to the present invention.
- FIG. 5 is a flowchart showing a method of manufacturing an AWG device module for an optical transceiver according to the present invention.
- FIG. 6 is a view of FIG. 5.
- FIG. 7 is a cross-sectional view illustrating an optical path part of an AWG device module according to a third embodiment of the present invention.
- FIG. 8 is a cross-sectional view illustrating an optical path part of an AWG device module according to a fourth embodiment of the present invention.
- FIG. 9 is a cross-sectional view showing a molding process for manufacturing the output-end waveguide of FIG. 8 and a molding process of the optical path part by the molding mold part.
- 10 to 12 are light distribution diagrams showing reflection loss for each angle of inclined surface of reflective layers formed in the waveguide of the output terminal of the AWG device module according to the present invention and the optical size of the output terminal.
- FIG. 13 is a light distribution diagram showing reflection loss for each angle of an inclined surface of a reflective layer and a light intensity at an output end according to an embodiment of the present invention.
- FIG. 1 is a block diagram showing an AWG device module according to the present invention
- FIG. 2 is an optical path part between the optical transmission unit 100 and the optical receiving unit 300 of the AWG device module according to the first embodiment of the present invention.
- 20) is a cross-sectional view
- FIG. 3 is a cross-sectional view showing an optical path portion 20 between the optical transmission means 100 and the optical reception means 300 of the AWG device module according to the second embodiment of the present invention.
- the AWG device module for an optical transceiver includes an input waveguide 11, a first shaping coupler 12, an arrayed waveguide grating 13, and a second shaping coupler. (14), including an output waveguide (15).
- a first molding coupler 12 is installed at the output end of the input waveguide 11 to diffract an optical signal incident through the input waveguide 11.
- the diffracted optical signal in this way is incident on the array waveguide diffraction grating 13 and waveguide.
- the path difference between the adjacent waveguides in the array waveguide diffraction grating 13 is ⁇ L, and each waveguide is a phase shifter. Will play a role.
- the light waves waved through the diffraction grating 13 with the array waveguide are incident on the second shaping coupler 14 while having different phases.
- the second shaping coupler 14 causes constructive interference to the light wave, and thus the focus is focused on the output waveguide 15.
- the position at which the output waveguide 15 is focused varies depending on the wavelength, because the phase shifted according to the wavelength is different. Therefore, since each of the output waveguides 15 can obtain light waves of different wavelengths, this element can function as a de-multiplexer. Likewise, when a plurality of optical signals having different wavelengths are incident on the output waveguide 15, the focus is focused on one input waveguide 11, and this device functions as a multiplexer for obtaining multiplexed light waves. do.
- a plurality of optical signals input to the input waveguide 11 proceeds toward each output waveguide 15, and the optical signals reflected from the first reflective layer 111 are incident on the optical path unit 20 and are output. do.
- the optical path unit 20 focuses and outputs the incident optical signal.
- the AWG device module for an optical transceiver will be described, as shown in Figs. 2 and 3, the optical transmission unit 100 for transmitting an optical signal and the optical signal of the optical transmission unit 100 And a light receiving means 300 for receiving and receiving the focused optical signal and converting it into an electric signal.
- a sub-mount (not shown) may be provided for stacking and supporting the optical transmission means 100 and the optical reception means 300.
- the optical transmission means 100 uses a planar optical waveguide 110 including a core 120 through which an optical signal is transmitted and a cladding 130 surrounding the core 120.
- the optical waveguide 110 has an inclined surface formed at one end thereof, and a first reflective layer 111 vertically reflecting an optical signal is formed on the inclined surface.
- the planar optical waveguide 110 is a waveguide through which an optical signal is transmitted, and is composed of a core 120 having a relatively large refractive index and a cladding 130 having a relatively small refractive index, and the optical signal incident to the core 120 has a refractive index. It proceeds along the large core 120.
- the inclined surface is formed at a 45 degree angle at one end of the optical waveguide 110 and may be formed through a process of polishing or etching. Reflective coating may be performed on an inclined surface formed through such a process to form a first reflective layer 111 on which an optical signal is reflected.
- the angle of the inclined surface is ideally 45 degrees, but it is difficult to accurately polish in actual implementation, so it can be limited to an angle of 40 to 50 degrees.
- the first reflective layer 111 serves to reflect the optical signal that has progressed through the core 120 to proceed to the light receiving means 300.
- Metal materials such as gold, silver, or chromium or other highly reflective coating materials may be formed on the first reflective layer 111 to improve reflectance.
- the optical signal traveling along the core 120 is reflected by the first reflective layer 111, the optical signal spreads according to the principle of light propagation in the free space and proceeds in the direction in which the light receiving means 300 is located.
- the optical power of the edge of the spreading optical signal increases.
- the photodiode 310 cannot be reached, and is transmitted out of the photodiode 310 to cause optical loss.
- the existing lens array is deleted so that the distance between the optical waveguide 110 and the light receiving means 300 is as close as possible, and optical alignment is performed so that all optical signals are converted to optical power without loss of optical power. It was made to be able to enter the reception means 300.
- the optical receiving means 300 includes a photodiode (PD) and a transimpedance amplifier (TIA) electrically connected to the photodiode 310 (hereinafter referred to as'TIA', 320).
- PD photodiode
- TIA transimpedance amplifier
- the submount can support both the optical transmission means 100 and the optical reception means 300, or can support any one of the optical transmission means 100 or the optical reception means 300, and various materials such as silicon wafers, glass and metal materials You can use
- a substrate (not shown) may be mounted on the submount, and the photodiode 310 and the TIA 320 are mounted on the top of the substrate and wire bonded. If the number of channels is large, the substrate may be separated into a plurality of substrates and manufactured, and the TIA 320 may be wire-bonded with a pattern formed on the upper portion of the substrate for high-speed electrical signal transmission.
- the optical receiving means 300 may use a module in which the photodiode 310 is directed upward based on the position of the optical transmission means 100 or a module in which the photodiode 310 is located below may be used. In the embodiment according to the present invention, as described above, a module in which the photodiode 310 is located is used.
- a concave groove 21 is formed on the surface of the clad 130 through which the optical signal propagated through the core 120 of the optical transmission means 100 is reflected by the first reflective layer 111.
- a hemispherical concave groove 21 is formed on the surface of the clad 130 through a wet etching method using a photolithography (PR) method to provide an optical path part 20 in the form of a concave lens.
- PR photolithography
- the hemispherical concave groove 21 can be manufactured by removing the coating of the optical fiber and then finely etching the light exit surface of the clad 130 to form a pattern.
- the hemispherical concave groove 21 may be filled with a material capable of UV curing having a high refractive index, such as resin, epoxy, and the like, to provide an optical path part 20 capable of inducing optical focusing.
- a material capable of UV curing having a high refractive index such as resin, epoxy, and the like
- the optical path part 20 may be formed of any one of a U-shaped, V-shaped, and wedge-shaped groove.
- the V-shaped and wedge-shaped grooves of FIG. 3 can be manufactured by forming a pattern using a dicing blade.
- FIG. 4 is an optical distribution diagram showing the size of an optical signal on the light exit surface of the AWG device module according to the present invention, and the light reflected by the first reflective layer 111 of the flat optical waveguide 110 passes through the optical path part 20 After passing through, it can be seen from the light distribution that the size has been reduced to approximately 1/2 at the point of 100 ⁇ m.
- the size of the light that passes through the light exit surface of the clad 130 and is output to the outside is approximately 50 ⁇ m ⁇ 65 ⁇ m when there is no lens, but the size of the light passing through the optical path unit 20 is reduced to 20 ⁇ m ⁇ 35 ⁇ m. I can see that it was done.
- the transmission capacity of the optical transceiver is focusing, while the size of the evolved over 200G 100G in the photodiode 310, even if small in 80 ⁇ m 2 to 36 ⁇ m 2 passes through the section 20 the optical path emitted optical signal photodiode ( 310), so no optical loss occurs.
- FIG. 5 is a flowchart showing a method of manufacturing an AWG device module for an optical transceiver according to the present invention
- FIG. 6 is a view of the optical transmission means 100 of FIG. 2 as viewed from the side.
- a lower clad layer is formed on a substrate, and then a core layer is formed on the lower clad layer (S10). ). Subsequently, a photoresist layer is formed on the core layer, and then exposed and developed to form a photoresist pattern. The core layer is etched and patterned using the obtained photoresist pattern (S20). The optical waveguide 110 is completed by forming an upper cladding layer on the patterned core layer (S30).
- a method of manufacturing the optical path part 20 in the form of a concave lens in the general optical waveguide 110 completed as described above is as follows.
- a photoresist pattern having a certain pattern is formed in the upper clad layer, and a concave groove 21 having a concave shape is formed on the upper clad layer on which the photoresist pattern is not formed through a wet etching process (S40).
- a concave groove 21 having a hemispherical or rectangular cross section is formed on the upper clad layer on which the photoresist pattern is not formed through a wet etching process. can do.
- the concave groove 21 formed in the upper cladding layer is filled with a material capable of UV curing having a high refractive index, such as resin, epoxy, etc., to form the optical path part 20 in the form of a concave lens. (S50).
- a UV curable material having a high refractive index is thermally reflowed on the corresponding upper part of the optical path part 20 (S60). It is also possible to form a spherical lens unit having the same focusing characteristics as the furnace unit 20 (S70). The spherical lens unit is to compensate for the surface where it is difficult to change the refractive index of the conventional convex lens, and UV curing with a high refractive index is possible after making a concave groove 21 on the surface of the cladding layer without separately manufacturing a micro lens array block and bonding. By filling the material, the same function as the convex lens can be added, and the focal length can be easily adjusted by adjusting the refractive index of a material capable of UV curing with a high refractive index.
- the material capable of UV curing having a high refractive index thermally reflowed on the upper portion of the light path part 20 may be resin or epoxy, and other materials not limited thereto may be used.
- the optical signal traveling along the core 120 of the optical waveguide 110 is reflected by the first reflective layer 111 and then proceeds in the direction in which the photodiode 310 is located.
- the optical path part 20 is formed on the light exit surface of the clad 130 so that the optical signal can be focused according to the principle of optical propagation in a free space, and the photodiode 310 is placed in the part where the optical signal is focused. It can be arranged to form a light receiving means 300.
- the AWG device module for an optical transceiver can form an optical transceiver, a strong sensor, and various optical communication modules with a simple manufacturing process and low cost.
- FIG. 7 is a cross-sectional view showing an optical path part of an AWG device module according to a third embodiment of the present invention
- FIG. 8 is a cross-sectional view illustrating an optical path part of an AWG device module according to a fourth embodiment of the present invention
- FIG. 9 Is a cross-sectional view showing a molding process of a molding mold part and an optical path part by the molding mold part for manufacturing the output waveguide of FIG. 8.
- a plurality of optical signals input to the input waveguide 11 proceed toward each output waveguide 15, and are reflected by the second reflective layer 21 formed on the optical path part 20.
- the optical signal is converted into an optical path by the optical path conversion unit 23 and is output through the convex lens unit 24.
- the convex lens unit 24 of the linear optical path unit 20 focuses the incident optical signal and outputs it to the outside.
- an optical transmission means 100 for transmitting an optical signal, and an optical signal of the optical transmission means 100 is received.
- a light receiving means 300 for receiving the focused optical signal and converting it into an electric signal.
- a sub-mount (not shown) may be provided for stacking and supporting the optical transmission means 100 and the optical reception means 300.
- the optical transmission means 100 uses a planar optical waveguide 110 including a core 120 through which an optical signal is transmitted and a cladding 130 surrounding the core 120.
- the planar optical waveguide 110 is a waveguide through which an optical signal is transmitted, and is composed of a core 120 having a relatively large refractive index and a cladding 130 having a relatively small refractive index, and the optical signal incident to the core 120 has a refractive index. It proceeds along the large core 120 toward the output waveguide 15 shown in FIG. 1.
- a V-shaped concave groove is formed on one side of the optical waveguide 110.
- an inclined surface is formed on the outer groove surface of the optical waveguide 110, and a second reflective layer 21 for vertically reflecting the optical signal is formed on the inclined surface.
- the second reflective layer 21 formed in the concave groove of the optical waveguide 110 is formed at an angle of 40 to 45 degrees and may be formed through a dicing blade process, but may also be formed through a polishing or etching process. have.
- the second reflective layer 21 reflects the optical signal by applying a reflective coating on the inclined surface of the outer groove surface of the optical waveguide 110.
- the angle of the second reflective layer 21 is ideally formed at 45 degrees because the light spreading phenomenon is small, but it is difficult to accurately polish in actual implementation, and thus the angle may be limited to an angle of 40 to 45 degrees.
- the second reflective layer 21 serves to reflect the optical signal that has progressed through the core 120 to proceed to the light receiving means 300.
- Metal materials such as gold, silver, or chromium, or other highly reflective coating materials may be formed on the second reflective layer 21 to improve reflectivity.
- the optical signal traveling along the core 120 is reflected by the second reflective layer 21, the optical signal spreads according to the principle of light propagation in the free space and proceeds in the direction in which the light receiving means 300 is located.
- the optical power at the edge of the spreading optical signal is increased by the photodiode (not shown). It cannot reach the light-receiving part, is transmitted out of the light-receiving part of the photodiode, and the optical signal reflected by the second reflective layer 21 is again incident on the optical transmission means 100 to cause optical loss.
- an inclined surface is formed on the inner groove surface of the optical waveguide 110 facing the second reflective layer 21 of the concave groove, and the optical signal is prevented from entering the optical transmission means 100 on the inclined surface. That is, when the optical signal from the optical waveguide 110 of the optical transmission means 100 is collected and focused on the inclined surface formed on the inner groove surface of the optical waveguide 110 and output to the photodiode of the optical receiving means 300, the second reflective layer 21 A reflection limiting layer 22 is formed so that the optical signal reflected in) is not incident on the optical transmission means 100 again.
- the reflection limiting layer 22 may be formed at an angle of 5 to 10 degrees, may be formed through a dicing blade process, similar to an inclined surface, and may also be formed through a polishing or etching process.
- the angle of the reflection limiting layer 22 formed through such a process is 8 degrees, which is ideal because the optical signal reflected from the second reflective layer 21 does not enter the optical transmission means 100, but in actual implementation, it should be accurately polished. Because it is difficult, it can be limited to an angle of 5 to 10 degrees.
- the concave groove including the second reflective layer 21 and the reflective limiting layer 22 is filled with a UV-curable material having a high refractive index, such as resin, epoxy, etc., to induce optical focusing. It is possible to provide the optical path conversion unit 23.
- a material capable of UV curing having a high refractive index is thermally reflowed on the corresponding upper portion of the optical path conversion unit 23 ( Thermal reflow) may be performed to form the convex lens unit 24 having a focusing characteristic.
- the convex lens unit 24 effectively collects and focuses light, which is generally a characteristic of the convex lens.
- the convex lens unit 24 is for minimizing the coupling loss due to light spreading of the optical signal output from the core 120 of the conventional optical transmission means 100, and the second After forming a concave groove including the reflective layer 21 and the reflection limiting layer 22, a UV-curable material having a high refractive index is filled to prepare the optical path conversion unit 23, and the optical path conversion unit 23 It can be manufactured by thermally reflowing a material capable of UV curing with a high refractive index on the top.
- the material capable of UV curing having a high refractive index thermally reflowed on the top of the light path conversion unit 23 may be resin or epoxy, and other materials not limited thereto may be used. have.
- the light receiving unit of the photodiode of the optical receiving means 300 After the optical signal traveling along the core 120 of the optical waveguide 110 is reflected from the second reflective layer 21 of the optical path conversion unit 23, the light receiving unit of the photodiode of the optical receiving means 300 It proceeds in the direction where is located. At this time, by forming a convex lens unit 20 on the light exit surface of the clad 130, the optical signal can be focused according to the principle of light propagation in a free space, and a photodiode is disposed at the portion where the optical signal is focused to A receiving means 300 may be formed.
- the optical receiving means 300 may use a module in which the photodiode faces upward based on the position of the optical transmission means 100, or a module in which the photodiode is located below may be used. In an embodiment according to the present invention, as described above, a module in which a photodiode is located is used.
- the AWG device module according to the present invention can form an optical transmitter/receiver, an optical sensor, and various optical communication modules at low cost while the manufacturing process is simple.
- the same configuration code is used for the configuration having the same configuration and the same function as the third embodiment of the present invention, and in order to avoid repetitive configuration, these configurations are Detailed description of this will be omitted.
- FIG. 8 is a cross-sectional view showing an optical path part 20 ′ of an AWG device module according to a fourth embodiment of the present invention
- FIG. 9 is a molding mold part 200 for manufacturing the output waveguide 15 of FIG. , Is a cross-sectional view showing a molding process of the optical path part 20' by the molding mold part 200.
- the optical path part 20 ′ has an inclined surface formed on one side of the optical waveguide 110, and includes a third reflective layer 21 ′ vertically reflecting an optical signal on the inclined surface.
- the optical path part 20 ′ is disposed at one end of the optical waveguide 110 facing the third reflecting layer 21 ′ so that the optical signal reflected by the third reflecting layer 21 ′ is not incident again to the optical transmission means 100. It includes a reflection limiting layer 22 ′ having an inclined surface.
- the light path part 20 ′ includes a light path conversion part 23 ′ filled with a material capable of UV curing with a high refractive index between the inclined surfaces, and a UV light having a high refractive index on the corresponding upper part of the light path conversion part 23. It includes a convex lens unit 24' having a focusing characteristic in which a curable material is thermally reflowed and integrated with the optical path conversion unit 23'.
- Such an optical path part 20' is manufactured by excluding a method of processing an inclined surface having a high risk of damage in the mass production process of the AWG device module. As shown in FIG. 9, it is combined with the optical waveguide 110. Through the lower mold 210 provided with a cavity 230 capable of forming the optical path conversion unit 23 ′, and the lower mold 210 can be combined and form a convex lens unit 24 ′.
- a molding mold part 200 including an upper mold 220 provided with a cavity 231 is provided.
- the molding mold part 200 is the cavity 230,231, which is a molding space including the optical path conversion part 23 ′ and the convex lens part 24 ′ on the inner side of the lower mold 210 and the upper mold 220 Is formed.
- One side of the upper mold 220 is formed with an injection hole 240 used to inject a UV-curable material having a high refractive index into the cavities 230 and 231.
- the molding mold part 200 may be made of steel, fiber-reinforced plastic, resin, etc., and the lower mold 210 and the upper mold 220 can be easily coupled through fixing means such as bolts.
- the cavity 230 of the optical path conversion part 23 ′ is sealed, and is formed in the injection hole 240
- the optical path part 20 ′ including the optical path conversion part 23 ′ and the convex lens part 24 ′ Is completed.
- a reflection limiting layer 22 ′ formed at an angle of 5 to 10 degrees may be provided at one end of the optical waveguide 110 before molding through the molding mold part 200.
- the optical path part 20' is formed in the cavities 230 and 231 through the molding mold part 200 shown in FIG. 9, the risk of damage due to polishing of the reflective surface can be prevented, and thus the optical waveguide 110 In addition to reducing the cost of manufacturing, it is possible to improve productivity by lowering the defect rate.
- FIG. 10 to 12 are light distribution diagrams showing reflection loss by angle of inclined surface of reflective layers formed in the waveguide of the output terminal of the AWG device module according to the present invention and the light size of the output terminal
- FIG. 13 is It is a light distribution diagram showing the return loss and the light size at the output stage.
- the return loss is greater than 40 dB when the inclination angle of the inclined surface is 40 degrees, and less than 30 dB when the inclination angle is 45 degrees. Able to know.
- the size of the optical signal decreases sequentially as the inclination angle of the inclined surface increases from 40 degrees to 45 degrees. That is, the reflection loss is determined according to the inclination angle of the inclined surface. When the inclination angle of the inclined surface is 45 degrees, the reflection loss is very low, which may interfere with use in the communication area. Accordingly, in the third and fourth embodiments of the present invention, a V-shaped concave groove is formed in the optical waveguide 110 of the AWG device module, and a high refractive index UV curing material is filled thereon, and a high refractive index UV curing material is thermally rippled thereon. An optical waveguide including an optical path part 20 ′ cured by thermal reflow to form the optical path part 20 or by injecting a high refractive index UV curing material into the cavities 230 and 231 of the molding mold part 200. 110).
- the size of the optical signal transmitted from the optical transmission unit 100 is relatively reduced and output to the light receiving unit of the photodiode. , It is possible to minimize the coupling loss caused by the light spreading phenomenon, and prevent the optical signal reflected on the second reflective layer 21 from entering the optical transmission unit 100 again, thereby reducing return loss. Can be reduced.
- a high-refractive-index UV curing material to provide a molding part 200 capable of manufacturing the optical path part 20' of the optical waveguide 110, it not only brings about cost reduction in manufacturing the optical waveguide 110. In addition, it is possible to improve productivity by lowering the defect rate.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Couplings Of Light Guides (AREA)
- Optical Integrated Circuits (AREA)
- Light Receiving Elements (AREA)
Abstract
The present invention relates to an AWG device module for an optical transceiver, and a manufacturing method, and to an AWG device module for an optical transceiver, and a manufacturing method, the present invention providing a function of focusing an optical signal of a light-emitting surface of the AWG device module so that, by focusing the optical signal from an optical transmission means so as to output same on an optical reception means, the reduction of an active area of a photodiode is induced according to an increase in transmission capacity of the optical transceiver, and thus high performance of the photodiode can be promoted, and a return loss can be reduced so as to prevent the optical signal, reflected from a reflective layer, from being incident again on the optical transmission means.
Description
본 발명은 광트랜시버용 AWG 디바이스 모듈 및 제조방법에 관한 것으로서, 더욱 상세하게는 포토다이오드와의 패키징 및 광집속 거리의 제어를 가능하도록 한 광트랜시버용 AWG 디바이스 모듈 및 제조방법에 관한 것이다.The present invention relates to an AWG device module and a manufacturing method for an optical transceiver, and more particularly, to an AWG device module and a manufacturing method for an optical transceiver that enables packaging with a photodiode and control of an optical focusing distance.
스마트폰과 스마트 패드 등을 비롯한 모바일 기기 들이 보편화됨에 따라 인터넷 트래픽은 지속적으로 증가하고 있으며, 인터넷 트래픽을 효율적으로 전달하기 위하여 라우터, 스위치, 전송장치 등이 고속화 대용량화 되고 있다. 단위 시간 당 전송용량을 높이기 위해서 기간전송 망에서는 하나의 광섬유에 서로 다른 파장의 광신호를 파장분할(WDM) 다중화하여 보내는 방식이 2000년 이후로 주로 사용되고 있고, 가입자 망의 경우도 하나의 광섬유에 서로 다른 파장으로 양방향 전송하는 기술이 상용화되어 있다. 이더넷 분야에 있어서도 파장분할 다중화 방식이나 리본 광섬유(Ribbon fiber)를 통해 병렬 (parallel) 전송하는 방식이 표준화 되고 있다. 40G 이더넷의 경우에는 단일모드 광섬유(Single mode fiber) 10km 전송을 위해서 10G × 4 채널 CWDM 방식을 표준으로 채택했으며, 100G 이더넷의 경우에는 단일모드 광섬유 10km, 40km 전송을 위해서 25G × 4채널 LAN-WDM 방식을 표준으로 채택했다.As mobile devices such as smart phones and smart pads become more common, Internet traffic continues to increase, and routers, switches, and transmission devices are increasing in high-speed and large-capacity to efficiently deliver Internet traffic. In order to increase the transmission capacity per unit time, the method of transmitting optical signals of different wavelengths to one optical fiber by multiplexing wavelength division (WDM) on one optical fiber has been mainly used since 2000, and subscriber networks are also used in one optical fiber. A technology for bidirectional transmission with different wavelengths is commercially available. In the Ethernet field, a wavelength division multiplexing method or a parallel transmission method through a ribbon fiber is being standardized. In the case of 40G Ethernet, 10G × 4 channel CWDM method is adopted as a standard for single mode fiber 10km transmission, and for 100G Ethernet, single mode fiber 10km, 25G × 4 channel LAN-WDM for 40km transmission. Adopted the standard method.
광 트랜시버는 광전변환을 수행하는 모듈이며, 상기 광 트랜시버의 수신부에서는 입사된 광신호를 전기 신호로 변환하여 출력하는 역할을 수행한다. 이때, 광신호를 입력 받아 전류 신호로 변환하는 소자가 포토다이오드(Photo Diode)이며, 신호를 증폭하는 역할을 하는 소자가 트랜스임피던스증폭기(TIA: Transimpedance Amflifier)이다.The optical transceiver is a module that performs photoelectric conversion, and the receiver of the optical transceiver converts an incident optical signal into an electrical signal and outputs it. In this case, a photodiode is an element that receives an optical signal and converts it into a current signal, and a transimpedance amplifier (TIA) is an element that amplifies the signal.
10Gbps급 이상의 전송 속도를 가진 초고속 광 트랜시버는 그 수신부에서 광 파장의 MUX/DeMUX(다중화/분리) 기능을 수행하기 위해 광도파로가 이용되기도 한다. 이 경우 광도파로를 통해 전달된 광신호를 포토다이오드에 입사시키고 트랜스임피던스증폭기(TIA)로 증폭하게 된다.Ultra-high-speed optical transceivers having a transmission rate of 10 Gbps or higher use optical waveguides to perform the MUX/DeMUX (multiplexing/separating) function of optical wavelengths in the receiver. In this case, the optical signal transmitted through the optical waveguide is incident on the photodiode and amplified by a transimpedance amplifier (TIA).
일반적으로 광도파로 코어의 직경이 3 내지 10미크론 정도이며, 포토다이오드의 수광부 직경은 20 내지 40미크론 범위이다. 따라서 광도파로에서 출력된 광신호를 포토다이오드 수광부에 입사시키기 위해서는 정밀하게 계산되고 제어된 구조를 설계해야 한다. 이 경우 광학렌즈 등을 이용해서 광을 집속시키는 구조를 사용하게 되는데, 보통 광도파로, 렌즈, 포토다이오드, TIA 등의 부품들을 효과적으로 배치하는 구조를 설계하게 된다.In general, the diameter of the optical waveguide core is about 3 to 10 microns, and the diameter of the light receiving part of the photodiode is in the range of 20 to 40 microns. Therefore, in order to inject the optical signal output from the optical waveguide into the photodiode light-receiving unit, a precisely calculated and controlled structure must be designed. In this case, a structure that focuses light using an optical lens or the like is used. Usually, a structure that effectively arranges components such as an optical waveguide, lens, photodiode, and TIA is designed.
그런데 종래에는 클래드 가공을 통한 볼록렌즈 형상을 가공하여 사용하는 예시가 있었으나, 구면 가공 및 상부 클래드의 낮은 굴절률로 인하여 퍼짐 광을 효과적으로 집속하는 데 한계가 있었다.However, conventionally, there has been an example of using a convex lens shape through cladding processing, but there is a limitation in effectively focusing the spreading light due to spherical processing and a low refractive index of the upper clad.
또한, 광트랜시버의 전송 용량이 100G 에서 200G 이상으로 진화하면서 포토다이오드의 수광부 크기가 작아지게 됨에 따라 AWG 디바이스 모듈의 출사면의 광신호를 집속하여 최소화할 필요가 있었고, 광트랜시버 패키징시 AWG 디바이스 모듈의 소자 표면과 포토다이오드와의 간격을 30 ~ 100 ㎛ 정도로 최소화할 필요가 있었다. 만약에 일정 간격 이상 커지게 될 경우 포토다이오드의 수광부에 모든 광신호가 입사되지 아니하여 광손실이 발생하게 되고 커플링 손실이 증가하는 원인이 되며, 이는 광트랜시버의 성능을 저하시키는 결과를 가져오게 된다. In addition, as the transmission capacity of optical transceivers has evolved from 100G to 200G or more, the size of the photodiode's light-receiving unit has become smaller, so it is necessary to focus and minimize the optical signal on the exit surface of the AWG device module. It was necessary to minimize the distance between the surface of the device and the photodiode of about 30 ~ 100 ㎛. If it becomes larger than a certain interval, all optical signals are not incident on the light receiving part of the photodiode, resulting in optical loss and an increase in coupling loss, resulting in deterioration of the performance of the optical transceiver. .
[선행기술문헌][Prior technical literature]
[특허문헌][Patent Literature]
(특허문헌 1) 대한민국 등록특허공보 제1711691호(2017.02.23)(Patent Document 1) Korean Patent Publication No. 1711691 (2017.02.23)
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 광전송수단으로부터 광수신수단의 포토다이오드에 광신호를 집속하여 출력함으로써, 광트랜시버의 전송용량 확대에 따른 포토다이오드의 능동 영역(active area)의 축소를 유도하여 포토다이오드의 고성능화를 촉진할 수 있도록 하는 데 있다. Accordingly, the present invention was conceived to solve the above problems, and an object of the present invention is to focus and output an optical signal from the optical transmission means to the photodiode of the optical receiving means, thereby increasing the transmission capacity of the optical transceiver. The purpose is to induce the reduction of the active area of the diode, thereby promoting the high performance of the photodiode.
상기와 같은 목적을 달성하기 위하여 본 발명은, 광신호가 전송되는 코어와, 상기 코어를 둘러싸는 클래드를 포함하는 평판형 광도파로 이루어진 광전송수단; 및, 상기 광전송수단으로부터 출력되는 상기 광신호를 수신하여 전기신호로 변환하는 광수신수단을 포함하되, 상기 광수신수단에 대응하며 광신호의 출사면인 클래드의 표면에는 상기 광신호를 모아서 집속하기 위한 광경로부가 설치된 광트랜시버용 AWG 디바이스 모듈을 제공한다.In order to achieve the above object, the present invention provides an optical transmission means comprising a core through which an optical signal is transmitted, and a plate-type optical waveguide including a cladding surrounding the core; And an optical receiving means for receiving the optical signal output from the optical transmitting means and converting the optical signal into an electrical signal, wherein the optical signal is collected and focused on a surface of the clad corresponding to the optical receiving means and is an emission surface of the optical signal. Provides an AWG device module for an optical transceiver with an optical path part installed.
본 발명의 실시예에 의하면, 상기 광경로부는 오목렌즈 형태로서, 상기 클래드의 표면에 포토리소그래피에 의한 습식 습각을 통해 오목한 형태의 오목홈이 형성된다. According to an embodiment of the present invention, the optical path portion is in the form of a concave lens, and a concave groove is formed on the surface of the clad through wet wet etching by photolithography.
본 발명의 실시예에 의하면, 상기 광경로부의 상기 오목홈에는 굴절률이 높은 UV 경화 물질이 충전된다. According to an embodiment of the present invention, a UV curing material having a high refractive index is filled in the concave groove of the optical path part.
본 발명의 실시예에 의하면, 상기 오목홈은, 반구형, U자형, V자형, 쐐기형 형상의 홈 중 어느 하나로 이루어진다.According to an embodiment of the present invention, the concave groove is made of any one of hemispherical, U-shaped, V-shaped, and wedge-shaped grooves.
본 발명의 실시예에 의하면, 상기 반구형, U자형 형상의 오목홈은 습식 식각 공정을 통해 형성된다. According to an embodiment of the present invention, the hemispherical, U-shaped concave groove is formed through a wet etching process.
본 발명의 실시예에 의하면, 상기 V자형, 쐐기형 형상의 오목홈은 다이싱 블레이드(Dicing Blade) 공정을 통해 형성된다.According to an embodiment of the present invention, the V-shaped, wedge-shaped concave groove is formed through a dicing blade process.
본 발명의 실시예에 의하면, 상기 광경로부의 대응하는 면에는 상기 굴절률이 높은 UV 경화가 가능한 물질이 열 리플로우(thermal reflow)되어 구형렌즈부가 형성된다.According to an embodiment of the present invention, a material capable of UV curing having a high refractive index is thermally reflowed on a corresponding surface of the optical path portion to form a spherical lens portion.
본 발명은, 기판 위의 하부 클래드층에 코어층을 형성하는 단계; 상기 코어층 상부에 포토레지스트 패턴을 형성하고, 이를 이용하여 상기 코어층을 식각하여 패터닝하는 단계; 패터닝된 상기 코어층 상부에 상부 클래드층을 형성하여 광도파로를 완성하는 단계; 상기 상부 클래드층에 포토레지스트 패턴이 형성되며, 상기 포토레지스트 패턴이 형성되지 않은 상기 상부 클래드층 상에 오목한 형상의 오목홈을 형성하는 단계; 및 상기 오목홈에 굴절률이 높은 UV 경화 물질을 충전하여 오목렌즈 형태의 광경로부를 형성하는 단계;를 포함하는 광트랜시버용 AWG 디바이스 모듈의 제조방법을 제공한다. The present invention comprises the steps of forming a core layer on a lower clad layer on a substrate; Forming a photoresist pattern on the core layer, and etching and patterning the core layer using the same; Forming an upper cladding layer on the patterned core layer to complete an optical waveguide; Forming a concave groove having a photoresist pattern on the upper cladding layer and on the upper cladding layer on which the photoresist pattern is not formed; And forming a concave lens-shaped optical path part by filling the concave groove with a UV curing material having a high refractive index.
본 발명의 실시예에 의하면, 상기 오목홈은 반구형, U자형, V자형, 쐐기형 형상의 홈 중 어느 하나로 이루어진다. According to an embodiment of the present invention, the concave groove is made of any one of a hemispherical, U-shaped, V-shaped, and wedge-shaped groove.
본 발명의 실시예에 의하면, 상기 반구형, U자형 형상의 오목홈은 습식 식각 공정을 통해 형성된다. According to an embodiment of the present invention, the hemispherical, U-shaped concave groove is formed through a wet etching process.
본 발명의 실시예에 의하면, 상기 V자형, 쐐기형 형상의 오목홈은 다이싱 블레이드(Dicing Blade) 공정을 통해 형성된다.According to an embodiment of the present invention, the V-shaped, wedge-shaped concave groove is formed through a dicing blade process.
본 발명의 실시예에 의하면, 상기 광경로부의 대응하는 면에는 상기 굴절률이 높은 UV 경화가 가능한 물질을 열 리플로우(thermal reflow)하여 구형렌즈부를 형성하는 단계를 더 포함한다. According to an exemplary embodiment of the present invention, the method further includes forming a spherical lens unit by thermally reflowing the UV curable material having a high refractive index on the corresponding surface of the optical path unit.
전술한 바와 같은 구성의 본 발명에 따른 광트랜시버용 AWG 디바이스 모듈 및 제조방법에 의하면, 광전송수단으로부터 광신호를 집속하여 광수신수단으로 출력함으로써, 광트랜시버의 전송용량 확대에 따른 광수신수단의 포토다이오드의 능동 영역(active area)의 축소를 유도하여 포토다이오드의 고성능화를 촉진하고, 광 퍼짐 현상으로 인해 발생하는 커플링 손실(coupling loss)을 최소화할 수 있는 효과가 있다.According to the AWG device module and manufacturing method for an optical transceiver according to the present invention having the configuration as described above, by focusing an optical signal from the optical transmission means and outputting it to the optical receiving means, the photo of the optical receiving means according to the expansion of the transmission capacity of the optical transceiver. There is an effect of inducing the reduction of the active area of the diode to promote high performance of the photodiode and minimizing the coupling loss caused by the light spreading phenomenon.
AWG 디바이스 모듈의 소자 표면과 포토다이오드와의 간격을 최소화할 수 있도록 디바이스 표면으로부터 돌출된 렌즈 어레이를 삭제함으로써, 광학 정렬 절차를 최소화할 수 있을 뿐만 아니라 오목홈을 채운 굴절률이 높은 UV 경화 물질의 굴절률에 따라 초점거리 제어가 가능하므로 포토다이오드와 패키징 유격 공차를 원활하게 제어할 수 있으며, AWG 디바이스 표면과 동일한 높이에 오목홈이 형성되어 볼록 렌즈를 사용할 때 발생되는 렌즈 및 포토다이오드 손상을 최소화하여 원가 절감 및 불량률을 낮춰 생산성 향상을 도모할 수 있다. By eliminating the lens array protruding from the device surface to minimize the gap between the device surface of the AWG device module and the photodiode, the optical alignment procedure can be minimized, as well as the refractive index of the UV-cured material with a high refractive index filling the recesses. As the focal length can be controlled according to the photodiode and packaging clearance tolerance, the concave groove is formed at the same height as the surface of the AWG device, minimizing damage to the lens and photodiode that occurs when using a convex lens. Productivity can be improved by reducing the reduction and defect rate.
광전송수단의 광도파로로부터 광신호를 집속하여 광수신수단으로 출력하되, 반사면에 반사된 광신호가 다시 광전송수단으로 입사되지 않도록 하여 반사 손실(return loss)을 줄일 수 있는 효과가 있다. The optical signal is focused from the optical waveguide of the optical transmission means and output to the optical receiving means, but the optical signal reflected on the reflective surface is prevented from entering the optical transmission means again, thereby reducing return loss.
고굴절률 UV 경화물질을 주입하여 광도파로의 광경로부를 제작할 수 있는 성형금형부를 구비함으로써, 광도파로를 제작하는 데 비용절감을 가져올 뿐만 아니라 불량률을 낮춰 생산성 향상을 도모할 수 있다.By including a molding mold that can manufacture the optical path part of the optical waveguide by injecting a high refractive index UV curing material, it is possible to not only reduce the cost of manufacturing the optical waveguide, but also reduce the defect rate, thereby improving productivity.
도 1은 본 발명에 따른 AWG 디바이스 모듈을 나타내는 구성도이다.1 is a block diagram showing an AWG device module according to the present invention.
도 2는 본 발명의 제1실시예에 따른 AWG 디바이스 모듈의 광전송수단 및 광수신수단 사이의 광경로부를 나타내는 단면도이다.2 is a cross-sectional view showing an optical path portion between the optical transmission means and the optical reception means of the AWG device module according to the first embodiment of the present invention.
도 3은 본 발명의 제2실시예에 따른 AWG 디바이스 모듈의 광전송수단 및 광수신수단 사이의 광경로부를 나타내는 단면도이다.3 is a cross-sectional view showing an optical path portion between an optical transmission means and a light reception means of an AWG device module according to a second embodiment of the present invention.
도 4는 본 발명에 따른 AWG 디바이스 모듈의 광 출사면의 광신호 크기를 나타내는 광분포도이다.4 is an optical distribution diagram showing the size of an optical signal on a light exit surface of an AWG device module according to the present invention.
도 5는 본 발명에 따른 광트랜시버용 AWG 디바이스 모듈의 제조방법을 나타내는 플로우차트이다.5 is a flowchart showing a method of manufacturing an AWG device module for an optical transceiver according to the present invention.
도 6은 도 5의 도면이다. 6 is a view of FIG. 5.
도 7은 본 발명의 제3실시예에 따른 AWG 디바이스 모듈의 광경로부를 나타내는 단면도이다.7 is a cross-sectional view illustrating an optical path part of an AWG device module according to a third embodiment of the present invention.
도 8은 본 발명의 제4실시예에 따른 AWG 디바이스 모듈의 광경로부를 나타내는 단면도이다.8 is a cross-sectional view illustrating an optical path part of an AWG device module according to a fourth embodiment of the present invention.
도 9는 도 8의 출력단 도파로를 제작하기 위한 성형금형부와 성형금형부에 의한 광경로부의 성형 공정을 도시한 단면도이다.9 is a cross-sectional view showing a molding process for manufacturing the output-end waveguide of FIG. 8 and a molding process of the optical path part by the molding mold part.
도 10 내지 도 12는 본 발명에 따른 AWG 디바이스 모듈의 출력단 도파로에 형성된 반사층들의 경사면 각도별 반사 손실 및 출력단의 광 크기를 나타내는 광분포도이다.10 to 12 are light distribution diagrams showing reflection loss for each angle of inclined surface of reflective layers formed in the waveguide of the output terminal of the AWG device module according to the present invention and the optical size of the output terminal.
도 13은 본 발명의 실시예에 따른 반사층의 경사면 각도별 반사 손실 및 출력단의 광 크기를 나타내는 광분포도이다.13 is a light distribution diagram showing reflection loss for each angle of an inclined surface of a reflective layer and a light intensity at an output end according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 실시예들을 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. The present invention will be described in detail in the text, since various modifications can be made and various forms can be obtained. However, this is not intended to limit the present invention to a specific disclosed form, and it should be understood to include all changes, equivalents, and substitutes included in the spirit and scope of the present invention. In describing each drawing, similar reference numerals have been used for similar elements.
상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.These terms are used only for the purpose of distinguishing one component from another component. The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise.
이하, 첨부도면을 참조하여 본 발명의 실시예에 대해 상세하게 설명하면 다음과 같다. Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 AWG 디바이스 모듈을 나타내는 구성도이고, 도 2는 본 발명의 제1실시예에 따른 AWG 디바이스 모듈의 광전송수단(100) 및 광수신수단(300) 사이의 광경로부(20)를 나타내는 단면도이며, 도 3은 본 발명의 제2실시예에 따른 AWG 디바이스 모듈의 광전송수단(100) 및 광수신수단(300) 사이의 광경로부(20)를 나타내는 단면도이다.1 is a block diagram showing an AWG device module according to the present invention, and FIG. 2 is an optical path part between the optical transmission unit 100 and the optical receiving unit 300 of the AWG device module according to the first embodiment of the present invention. 20) is a cross-sectional view, and FIG. 3 is a cross-sectional view showing an optical path portion 20 between the optical transmission means 100 and the optical reception means 300 of the AWG device module according to the second embodiment of the present invention.
첨부도면을 참조하면, 본 발명에 따른 광트랜시버용 AWG 디바이스 모듈은, 입력 도파로(11), 제1성형결합기(12), 배열 도파로 회절격자(AWG: Arrayed Waveguide Grating, 13), 제2성형결합기(14), 출력 도파로(15)를 포함한다.Referring to the accompanying drawings, the AWG device module for an optical transceiver according to the present invention includes an input waveguide 11, a first shaping coupler 12, an arrayed waveguide grating 13, and a second shaping coupler. (14), including an output waveguide (15).
입력 도파로(11)의 출력단에는 제1성형결합기(12)가 설치되어 입력 도파로(11)를 통해 입사되는 광신호를 회절시킨다. 이와 같이 회절된 광신호는 배열 도파로 회절격자(13)로 입사되어 도파되는데, 이때 배열 도파로 회절격자(13)에서 이웃한 도파로의 경로차는 △L이며, 각 도파로는 위상편이기(phase shifter)의 역할을 하게 된다.A first molding coupler 12 is installed at the output end of the input waveguide 11 to diffract an optical signal incident through the input waveguide 11. The diffracted optical signal in this way is incident on the array waveguide diffraction grating 13 and waveguide. At this time, the path difference between the adjacent waveguides in the array waveguide diffraction grating 13 is ΔL, and each waveguide is a phase shifter. Will play a role.
배열 도파로 회절격자(13)를 도파한 광파는 서로 다른 위상을 가진 상태에서 제2성형결합기(14)에 입사된다. 제2성형결합기(14)는 광파에 보강 간섭을 일으키며, 그로 인해 출력 도파로(15)에 초점이 맺히게 된다.The light waves waved through the diffraction grating 13 with the array waveguide are incident on the second shaping coupler 14 while having different phases. The second shaping coupler 14 causes constructive interference to the light wave, and thus the focus is focused on the output waveguide 15.
출력 도파로(15)의 초점이 맺히는 위치는 파장에 따라서 달라지는데, 이는 파장에 따라서 편이된 위상이 다르기 때문이다. 그러므로, 각 출력 도파로(15)에서는 각각 다른 파장의 광파를 얻을 수 있으므로, 이 소자는 역다중화기(de-multiplexer)로서 기능을 할 수 있다. 마찬가지로, 출력 도파로(15)에 서로 다른 파장을 갖는 다수의 광 신호를 입사시키면 하나의 입력 도파로(11)에 초점이 맺히게 되는데, 이때 이 소자는 다중화된 광파를 얻는 다중화기(multiplexer)로서 기능하게 된다.The position at which the output waveguide 15 is focused varies depending on the wavelength, because the phase shifted according to the wavelength is different. Therefore, since each of the output waveguides 15 can obtain light waves of different wavelengths, this element can function as a de-multiplexer. Likewise, when a plurality of optical signals having different wavelengths are incident on the output waveguide 15, the focus is focused on one input waveguide 11, and this device functions as a multiplexer for obtaining multiplexed light waves. do.
한편, 입력 도파로(11)에 입력된 복수의 광신호는 각각의 출력 도파로(15)를 향해 진행하게 되며, 제1반사층(111)에서 반사된 광신호는 광경로부(20)에 입사되어 출력된다. 광경로부(20)는 입사된 광신호를 집속하여 출력하게 된다. Meanwhile, a plurality of optical signals input to the input waveguide 11 proceeds toward each output waveguide 15, and the optical signals reflected from the first reflective layer 111 are incident on the optical path unit 20 and are output. do. The optical path unit 20 focuses and outputs the incident optical signal.
더욱 구체적으로 본 발명에 따른 광트랜시버용 AWG 디바이스 모듈에 대해 설명하면, 도 2 및 도 3에 도시한 바와 같이, 광신호를 전송하는 광전송수단(100)과, 광전송수단(100)의 광신호를 수신하며 집속된 광신호를 입력받아 전기신호로 변환하는 광수신수단(300)을 포함한다. 또한, 광전송수단(100)과 광수신수단(300)을 적층하여 지지하는 서브마운트(미도시)를 구비할 수 있다. More specifically, the AWG device module for an optical transceiver according to the present invention will be described, as shown in Figs. 2 and 3, the optical transmission unit 100 for transmitting an optical signal and the optical signal of the optical transmission unit 100 And a light receiving means 300 for receiving and receiving the focused optical signal and converting it into an electric signal. In addition, a sub-mount (not shown) may be provided for stacking and supporting the optical transmission means 100 and the optical reception means 300.
광전송수단(100)은 광신호가 전송되는 코어(120)와, 코어(120)를 둘러싸는 클래드(130)를 포함하는 평판형 광도파로(110)를 사용한다. 광도파로(110)는 일측 단부에 경사면이 형성되고, 경사면에는 광신호를 수직으로 반사시키는 제1반사층(111)이 형성된다.The optical transmission means 100 uses a planar optical waveguide 110 including a core 120 through which an optical signal is transmitted and a cladding 130 surrounding the core 120. The optical waveguide 110 has an inclined surface formed at one end thereof, and a first reflective layer 111 vertically reflecting an optical signal is formed on the inclined surface.
평판형 광도파로(110)는 광신호가 전달되는 도파로로서, 굴절률이 상대적으로 큰 코어(120)와 굴절률이 상대적으로 작은 클래드(130)로 구성되며, 코어(120)로 입사된 광신호는 굴절률이 큰 코어(120)를 따라 진행한다. The planar optical waveguide 110 is a waveguide through which an optical signal is transmitted, and is composed of a core 120 having a relatively large refractive index and a cladding 130 having a relatively small refractive index, and the optical signal incident to the core 120 has a refractive index. It proceeds along the large core 120.
경사면은 광도파로(110)의 일측 단부에 45도 각도로 형성되고, 연마 또는 식각의 공정을 통해 형성될 수 있다. 이와 같은 공정을 통해 형성된 경사면에는 반사 코팅을 진행하여 광신호가 반사되는 제1반사층(111)을 형성할 수 있다. 경사면의 각도는 45도가 가장 이상적이나 실제 구현에서는 정확하게 연마하기가 어렵기 때문에 40 ~ 50도 각도로 한정할 수 있다.The inclined surface is formed at a 45 degree angle at one end of the optical waveguide 110 and may be formed through a process of polishing or etching. Reflective coating may be performed on an inclined surface formed through such a process to form a first reflective layer 111 on which an optical signal is reflected. The angle of the inclined surface is ideally 45 degrees, but it is difficult to accurately polish in actual implementation, so it can be limited to an angle of 40 to 50 degrees.
제1반사층(111)은 코어(120)를 통해 진행된 광신호를 반사시켜 광수신수단(300)으로 진행하도록 하는 역할을 한다. 제1반사층(111)에는 반사율을 향상시키기 위해 금이나 은, 크롬 등의 금속 물질이나 기타 고반사 코팅물질을 형성할 수 있다. The first reflective layer 111 serves to reflect the optical signal that has progressed through the core 120 to proceed to the light receiving means 300. Metal materials such as gold, silver, or chromium or other highly reflective coating materials may be formed on the first reflective layer 111 to improve reflectance.
코어(120)를 따라 진행한 광신호가 상기 제1반사층(111)에서 반사된 후에는 자유 공간에서의 광 전파 원리에 따라 광신호가 퍼지면서 광수신수단(300)이 위치한 방향으로 진행하게 된다. 이때, 코어(120)와 제1반사층(111)이 만나 반사가 이루어지는 지점과 광수신수단(300)과의 간격이 커질수록 퍼져 나가는 광신호의 가장자리 부분의 광 파워가 광수신수단(300)의 포토다이오드(310) 내에 도달하지 못하게 되고, 포토다이오드(310)를 벗어나서 전달되어 광손실을 유발할 수 있게 된다.After the optical signal traveling along the core 120 is reflected by the first reflective layer 111, the optical signal spreads according to the principle of light propagation in the free space and proceeds in the direction in which the light receiving means 300 is located. At this time, as the distance between the core 120 and the first reflective layer 111 meets and reflects the light receiving means 300 increases, the optical power of the edge of the spreading optical signal increases. The photodiode 310 cannot be reached, and is transmitted out of the photodiode 310 to cause optical loss.
따라서, 이러한 문제점이 발생하지 않도록 기존의 렌즈 어레이를 삭제하여 광도파로(110)와 광수신수단(300)과의 간격을 최대한 근접하게 하고, 광학 정렬을 수행하여 광 파워의 손실 없이 모든 광신호가 광수신수단(300)으로 입사할 수 있도록 하였다.Therefore, to prevent such a problem from occurring, the existing lens array is deleted so that the distance between the optical waveguide 110 and the light receiving means 300 is as close as possible, and optical alignment is performed so that all optical signals are converted to optical power without loss of optical power. It was made to be able to enter the reception means 300.
한편, 광수신수단(300)은 포토다이오드(PD:PhotoDiode, 310) 및, 포토다이오드(310)와 전기적으로 연결된 트랜스임피던스증폭기(TIA:Trans Impedance Amplifier, 이하, 'TIA'라 함, 320)를 포함할 수 있다.Meanwhile, the optical receiving means 300 includes a photodiode (PD) and a transimpedance amplifier (TIA) electrically connected to the photodiode 310 (hereinafter referred to as'TIA', 320). Can include.
서브마운트는 광전송수단(100)과 광수신수단(300) 둘 다를 지지하거나 광전송수단(100) 또는 광수신수단(300) 중 어느 하나를 지지할 수 있으며, 실리콘 웨이퍼, 유리 및 금속소재 등 다양한 소재를 사용할 수 있다. 서브마운트에는 기판(미도시)이 장착될 수 있으며, 포토다이오드(310) 및 TIA(320)가 기판의 상단에 실장되고 와이어 본딩된다. 만일 채널수가 많을 경우 기판을 다수의 기판으로 분리하여 제조할 수 있으며, TIA(320)는 고속 전기 신호 전송을 위해 기판의 상단에 형성된 패턴과 와이어 본딩 처리될 수 있다.The submount can support both the optical transmission means 100 and the optical reception means 300, or can support any one of the optical transmission means 100 or the optical reception means 300, and various materials such as silicon wafers, glass and metal materials You can use A substrate (not shown) may be mounted on the submount, and the photodiode 310 and the TIA 320 are mounted on the top of the substrate and wire bonded. If the number of channels is large, the substrate may be separated into a plurality of substrates and manufactured, and the TIA 320 may be wire-bonded with a pattern formed on the upper portion of the substrate for high-speed electrical signal transmission.
광수신수단(300)은 광전송수단(100)의 위치를 기준으로 포토다이오드(310)가 상부로 향하는 방식의 모듈을 사용할 수 있거나 포토다이오드(310)가 하부에 위치한 모듈을 사용할 수도 있다. 본 발명에 따른 실시예에서는 전술한 바와 같이, 포토다이오드(310)가 상부에 위치한 모듈을 사용하고 있다. The optical receiving means 300 may use a module in which the photodiode 310 is directed upward based on the position of the optical transmission means 100 or a module in which the photodiode 310 is located below may be used. In the embodiment according to the present invention, as described above, a module in which the photodiode 310 is located is used.
광전송수단(100)의 코어(120)를 통해 진행된 광신호가 제1반사층(111)에 의해 반사되는 클래드(130)의 표면에 오목한 형태의 오목홈(21)이 형성된다. 본 발명에서는 포토리소그래피(PR)방법에 의한 습식 식각 방법을 통해 클래드(130)의 표면에 반구형 오목홈(21)을 형성하여 오목렌즈 형태로 이루어진 광경로부(20)가 구비되며 일반적인 오목렌즈의 특성인 광을 효과적으로 모아서 집속할 수 있게 된다. A concave groove 21 is formed on the surface of the clad 130 through which the optical signal propagated through the core 120 of the optical transmission means 100 is reflected by the first reflective layer 111. In the present invention, a hemispherical concave groove 21 is formed on the surface of the clad 130 through a wet etching method using a photolithography (PR) method to provide an optical path part 20 in the form of a concave lens. The characteristic light can be effectively collected and focused.
반구형 오목홈(21)은 광섬유의 피복을 벗겨낸 후 클래드(130)의 광 출사면을 미세 식각하여 패턴을 형성함으로써 제조할 수 있다. The hemispherical concave groove 21 can be manufactured by removing the coating of the optical fiber and then finely etching the light exit surface of the clad 130 to form a pattern.
반구형 오목홈(21)에 굴절률이 높은 UV 경화가 가능한 물질, 예컨대 레진(resin), 에폭시(epoxy) 등이 충전되어 광 포커싱을 유도할 수 있는 광경로부(20)를 제공할 수 있게 된다. The hemispherical concave groove 21 may be filled with a material capable of UV curing having a high refractive index, such as resin, epoxy, and the like, to provide an optical path part 20 capable of inducing optical focusing.
광경로부(20)는 예컨대, 반구형 오목홈(21) 이외에도 U자형, V자형, 쐐기형 형상의 홈 중 어느 하나로 이루어질 수 있다. 도 3의 V자형, 쐐기형 형상의 홈은 다이싱 블레이드(Dicing Blade)를 이용하여 패턴을 형성함으로써 제조할 수 있다.In addition to the hemispherical concave groove 21, the optical path part 20 may be formed of any one of a U-shaped, V-shaped, and wedge-shaped groove. The V-shaped and wedge-shaped grooves of FIG. 3 can be manufactured by forming a pattern using a dicing blade.
도 4는 본 발명에 따른 AWG 디바이스 모듈의 광 출사면의 광신호 크기를 나타내는 광분포도로서, 평판형 광도파로(110)의 제1반사층(111)에 반사된 광은 광경로부(20)를 통과한 후 100㎛ 지점에서 크기가 대략 1/2 정도로 축소된 것을 광분포도를 통해 알 수 있다. 클래드(130)의 광 출사면을 통과하여 외부로 출력되는 광의 크기는 렌즈가 없는 경우에 대략 50㎛×65㎛이지만, 광경로부(20)를 통과한 광의 크기는 20㎛×35㎛로 축소된 것을 알 수 있다. 4 is an optical distribution diagram showing the size of an optical signal on the light exit surface of the AWG device module according to the present invention, and the light reflected by the first reflective layer 111 of the flat optical waveguide 110 passes through the optical path part 20 After passing through, it can be seen from the light distribution that the size has been reduced to approximately 1/2 at the point of 100㎛. The size of the light that passes through the light exit surface of the clad 130 and is output to the outside is approximately 50 µm × 65 µm when there is no lens, but the size of the light passing through the optical path unit 20 is reduced to 20 µm × 35 µm. I can see that it was done.
광트랜시버의 전송 용량이 100G 에서 200G 이상으로 진화하면서 포토다이오드(310)의 크기가 80㎛
2 에서 36㎛
2으로 작아지더라도 광경로부(20)를 통과하면서 집속되어 출사된 광신호가 포토다이오드(310) 내에 전달 가능함에 따라 광손실이 발생하지 않게 된다.The transmission capacity of the optical transceiver is focusing, while the size of the evolved over 200G 100G in the photodiode 310, even if small in 80㎛ 2 to 36㎛ 2 passes through the section 20 the optical path emitted optical signal photodiode ( 310), so no optical loss occurs.
이하, 본 발명에 따른 광트랜시버용 AWG 디바이스 모듈의 제조방법에 대해 첨부도면을 참조하여 설명하기로 한다. Hereinafter, a method of manufacturing an AWG device module for an optical transceiver according to the present invention will be described with reference to the accompanying drawings.
도 5는 본 발명에 따른 광트랜시버용 AWG 디바이스 모듈의 제조방법을 나타내는 플로우차트이고, 도 6은 도 5의 도면으로서, 도 2의 광전송수단(100)을 측면에서 바라 본 도면이다. FIG. 5 is a flowchart showing a method of manufacturing an AWG device module for an optical transceiver according to the present invention, and FIG. 6 is a view of the optical transmission means 100 of FIG. 2 as viewed from the side.
먼저, 도 5 및 도 6에 도시한 바와 같이, 일반적인 광도파로(110)의 제조방법을 살펴보면, 우선, 기판 위에 하부 클래드층을 형성한 다음, 이 하부 클래드층 상부에 코어층을 형성한다(S10). 이어서, 코어층 상부에 포토레지스트층을 형성한 다음, 이를 노광 및 현상하여 포토레지스트 패턴을 형성한다. 얻어진 포토레지스트 패턴을 이용하여 코어층을 식각하여 패터닝한다(S20). 패터닝된 코어층 상부에 상부 클래드층을 형성함으로써 광도파로(110)가 완성된다(S30).First, as shown in FIGS. 5 and 6, looking at a method of manufacturing a general optical waveguide 110, first, a lower clad layer is formed on a substrate, and then a core layer is formed on the lower clad layer (S10). ). Subsequently, a photoresist layer is formed on the core layer, and then exposed and developed to form a photoresist pattern. The core layer is etched and patterned using the obtained photoresist pattern (S20). The optical waveguide 110 is completed by forming an upper cladding layer on the patterned core layer (S30).
이와 같이 완성된 일반적인 광도파로(110)에 오목렌즈 형태의 광경로부(20)의 제조방법을 살펴보면 다음과 같다. A method of manufacturing the optical path part 20 in the form of a concave lens in the general optical waveguide 110 completed as described above is as follows.
상부 클래드층에 일정한 패턴을 가지는 포토레지스트 패턴을 형성하게 되며, 포토레지스트 패턴이 형성되지 않은 상부 클래드층 상에 습식 식각 공정을 통해 오목한 형상의 오목홈(21)을 형성하게 된다(S40). 예컨대, 상부 클래드층에 원형 또는 사각형 포토레지스트 패턴을 형성하게 될 경우 포토레지스트 패턴이 형성되지 않은 상부 클래드층 상에 습식 식각 공정을 통해 반구형 또는 사각 단면을 가지는 오목한 형상의 오목홈(21)을 형성할 수 있다. A photoresist pattern having a certain pattern is formed in the upper clad layer, and a concave groove 21 having a concave shape is formed on the upper clad layer on which the photoresist pattern is not formed through a wet etching process (S40). For example, when a circular or square photoresist pattern is formed on the upper cladding layer, a concave groove 21 having a hemispherical or rectangular cross section is formed on the upper clad layer on which the photoresist pattern is not formed through a wet etching process. can do.
이어서, 상부 클래드층에 형성된 오목홈(21)에 굴절률이 높은 UV 경화가 가능한 물질, 예컨대 레진(resin), 에폭시(epoxy) 등을 충전하여 오목렌즈 형태의 광경로부(20)를 형성하게 된다(S50). Subsequently, the concave groove 21 formed in the upper cladding layer is filled with a material capable of UV curing having a high refractive index, such as resin, epoxy, etc., to form the optical path part 20 in the form of a concave lens. (S50).
한편, 이와 같이 상부 클래드층에 광경로부(20)를 형성한 후 광경로부(20)의 대응하는 상부에 굴절률이 높은 UV 경화가 가능한 물질을 열 리플로우(thermal reflow)하여(S60) 광경로부(20)와 동일한 집속 특성을 가지는 구형렌즈부를 형성할 수도 있다(S70). 구형렌즈부는 종래의 볼록렌즈의 굴절률 변경이 힘든 면을 보완하기 위한 것으로서, 마이크로 렌즈어레이 블록을 별도로 제작하여 본딩하지 않고 클래드층 표면에 오목홈(21)을 제작한 후 굴절률이 높은 UV 경화가 가능한 물질을 충전함으로써 볼록렌즈와 동일한 기능을 부가할 수 있으며, 굴절률이 높은 UV 경화가 가능한 물질의 굴절률 조정을 통하여 초점 거리를 쉽게 조절할 수 있게 된다. On the other hand, after forming the optical path part 20 on the upper cladding layer as described above, a UV curable material having a high refractive index is thermally reflowed on the corresponding upper part of the optical path part 20 (S60). It is also possible to form a spherical lens unit having the same focusing characteristics as the furnace unit 20 (S70). The spherical lens unit is to compensate for the surface where it is difficult to change the refractive index of the conventional convex lens, and UV curing with a high refractive index is possible after making a concave groove 21 on the surface of the cladding layer without separately manufacturing a micro lens array block and bonding. By filling the material, the same function as the convex lens can be added, and the focal length can be easily adjusted by adjusting the refractive index of a material capable of UV curing with a high refractive index.
광경로부(20)의 상부에 열 리플로우되는 굴절률이 높은 UV 경화가 가능한 물질은 레진 또는 에폭시일 수 있으며, 이에 한정되지 않는 다른 물질을 채택하여 사용할 수도 있다. The material capable of UV curing having a high refractive index thermally reflowed on the upper portion of the light path part 20 may be resin or epoxy, and other materials not limited thereto may be used.
본 발명에 따르면, 광도파로(110)의 코어(120)를 따라 진행하는 광신호가 제1반사층(111)에서 반사된 후 포토다이오드(310)가 위치하는 방향으로 진행하게 된다. 이때, 클래드(130)의 광 출사면에 광경로부(20)를 형성하여 자유 공간에서의 광전파 원리에 따라 광신호를 집속시킬 수 있게 되며, 광신호가 집속되는 부분에 포토다이오드(310)를 배치하여 광수신수단(300)을 형성할 수 있다. According to the present invention, the optical signal traveling along the core 120 of the optical waveguide 110 is reflected by the first reflective layer 111 and then proceeds in the direction in which the photodiode 310 is located. At this time, the optical path part 20 is formed on the light exit surface of the clad 130 so that the optical signal can be focused according to the principle of optical propagation in a free space, and the photodiode 310 is placed in the part where the optical signal is focused. It can be arranged to form a light receiving means 300.
따라서, 본 발명에 따른 광트랜시버용 AWG 디바이스 모듈은, 제작 공정이 간편하면서도 저비용으로 광송수신기, 강센서 및 다양한 광통신 모듈을 형성할 수 있다. Accordingly, the AWG device module for an optical transceiver according to the present invention can form an optical transceiver, a strong sensor, and various optical communication modules with a simple manufacturing process and low cost.
한편, 도 7은 본 발명의 제3실시예에 따른 AWG 디바이스 모듈의 광경로부를 나타내는 단면도이고, 도 8은 본 발명의 제4실시예에 따른 AWG 디바이스 모듈의 광경로부를 나타내는 단면도이며, 도 9는 도 8의 출력단 도파로를 제작하기 위한 성형금형부와 성형금형부에 의한 광경로부의 성형 공정을 도시한 단면도이다.Meanwhile, FIG. 7 is a cross-sectional view showing an optical path part of an AWG device module according to a third embodiment of the present invention, and FIG. 8 is a cross-sectional view illustrating an optical path part of an AWG device module according to a fourth embodiment of the present invention, and FIG. 9 Is a cross-sectional view showing a molding process of a molding mold part and an optical path part by the molding mold part for manufacturing the output waveguide of FIG. 8.
도 7에 도시한 바와 같이, 입력 도파로(11)에 입력된 복수의 광신호는 각각의 출력 도파로(15)를 향해 진행하게 되며, 광경로부(20)에 형성된 제2반사층(21)에서 반사된 광신호는 광경로변환부(23)에서 광 경로가 변환되고 볼록렌즈부(24)를 통해 출력된다. 도 1에 도시한 바와 같이, 직선 형태의 광경로부(20)의 볼록렌즈부(24)는 입사된 광신호를 집속하여 외부로 출력하게 된다. As shown in FIG. 7, a plurality of optical signals input to the input waveguide 11 proceed toward each output waveguide 15, and are reflected by the second reflective layer 21 formed on the optical path part 20. The optical signal is converted into an optical path by the optical path conversion unit 23 and is output through the convex lens unit 24. As shown in FIG. 1, the convex lens unit 24 of the linear optical path unit 20 focuses the incident optical signal and outputs it to the outside.
구체적으로 본 발명의 제3실시예에 따른 AWG 디바이스 모듈에 대해 설명하면, 도 7에 도시한 바와 같이, 광신호를 전송하는 광전송수단(100)과, 광전송수단(100)의 광신호를 수신하며 집속된 광신호를 입력받아 전기신호로 변환하는 광수신수단(300)을 포함한다. 또한, 광전송수단(100)과 광수신수단(300)을 적층하여 지지하는 서브마운트(미도시)를 구비할 수 있다. Specifically, the AWG device module according to the third embodiment of the present invention will be described, as shown in FIG. 7, an optical transmission means 100 for transmitting an optical signal, and an optical signal of the optical transmission means 100 is received. And a light receiving means 300 for receiving the focused optical signal and converting it into an electric signal. In addition, a sub-mount (not shown) may be provided for stacking and supporting the optical transmission means 100 and the optical reception means 300.
광전송수단(100)은 광신호가 전송되는 코어(120)와, 코어(120)를 둘러싸는 클래드(130)를 포함하는 평판형 광도파로(110)를 사용한다. The optical transmission means 100 uses a planar optical waveguide 110 including a core 120 through which an optical signal is transmitted and a cladding 130 surrounding the core 120.
평판형 광도파로(110)는 광신호가 전달되는 도파로로서, 굴절률이 상대적으로 큰 코어(120)와 굴절률이 상대적으로 작은 클래드(130)로 구성되며, 코어(120)로 입사된 광신호는 굴절률이 큰 코어(120)를 따라 도 1에 도시된 출력단 도파로(15) 측으로 진행한다. The planar optical waveguide 110 is a waveguide through which an optical signal is transmitted, and is composed of a core 120 having a relatively large refractive index and a cladding 130 having a relatively small refractive index, and the optical signal incident to the core 120 has a refractive index. It proceeds along the large core 120 toward the output waveguide 15 shown in FIG. 1.
광도파로(110)에는 일측에 V 형상의 오목홈을 형성하게 된다. 오목홈은 광도파로(110)의 외측 홈면에 경사면이 형성되고 경사면에는 광신호를 수직으로 반사시키는 제2반사층(21)이 형성된다. A V-shaped concave groove is formed on one side of the optical waveguide 110. In the concave groove, an inclined surface is formed on the outer groove surface of the optical waveguide 110, and a second reflective layer 21 for vertically reflecting the optical signal is formed on the inclined surface.
광도파로(110)의 오목홈에 형성된 제2반사층(21)은 40 ~ 45도의 각도로 형성되고, 다이싱 블레이드(Dicing Blade) 공정을 통해 형성될 수 있으나, 연마 또는 식각 공정을 통해서도 형성될 수 있다. The second reflective layer 21 formed in the concave groove of the optical waveguide 110 is formed at an angle of 40 to 45 degrees and may be formed through a dicing blade process, but may also be formed through a polishing or etching process. have.
제2반사층(21)은 광도파로(110)의 외측 홈면의 경사면에 반사 코팅을 진행하여 광신호를 반사시키게 된다. 제2반사층(21)의 각도는 45도로 형성되는 것이 광 퍼짐 현상이 적어 가장 이상적이나, 실제 구현하는 데는 정확하게 연마하기가 어렵기 때문에 40 ~ 45도의 각도로 한정할 수 있다.The second reflective layer 21 reflects the optical signal by applying a reflective coating on the inclined surface of the outer groove surface of the optical waveguide 110. The angle of the second reflective layer 21 is ideally formed at 45 degrees because the light spreading phenomenon is small, but it is difficult to accurately polish in actual implementation, and thus the angle may be limited to an angle of 40 to 45 degrees.
제2반사층(21)은 코어(120)를 통해 진행된 광신호를 반사시켜 광수신수단(300)으로 진행하도록 하는 역할을 한다. 제2반사층(21)에는 반사율을 향상시키기 위해 금이나 은, 크롬 등의 금속 물질이나 기타 고반사 코팅물질을 형성할 수 있다. The second reflective layer 21 serves to reflect the optical signal that has progressed through the core 120 to proceed to the light receiving means 300. Metal materials such as gold, silver, or chromium, or other highly reflective coating materials may be formed on the second reflective layer 21 to improve reflectivity.
코어(120)를 따라 진행한 광신호가 상기 제2반사층(21)에서 반사된 후에는 자유 공간에서의 광 전파 원리에 따라 광신호가 퍼지면서 광수신수단(300)이 위치한 방향으로 진행하게 된다. 이때, 코어(120)와 제2반사층(21)이 만나 반사가 이루어지는 지점과 광수신수단(300)과의 간격이 커질수록 퍼져 나가는 광신호의 가장자리 부분의 광 파워가 포토다이오드(미도시)의 수광부 내에 도달하지 못하게 되고, 포토다이오드의 수광부를 벗어나서 전달되며, 제2반사층(21)에 반사된 광신호가 다시 광전송수단(100)으로 입사되어 광손실을 유발할 수 있게 된다.After the optical signal traveling along the core 120 is reflected by the second reflective layer 21, the optical signal spreads according to the principle of light propagation in the free space and proceeds in the direction in which the light receiving means 300 is located. At this time, as the distance between the core 120 and the second reflective layer 21 meets and reflects and the distance between the light receiving means 300 increases, the optical power at the edge of the spreading optical signal is increased by the photodiode (not shown). It cannot reach the light-receiving part, is transmitted out of the light-receiving part of the photodiode, and the optical signal reflected by the second reflective layer 21 is again incident on the optical transmission means 100 to cause optical loss.
따라서, 이러한 문제점이 발생하지 않도록 오목홈의 제2반사층(21)과 마주하는 광도파로(110)의 내측 홈면에 경사면이 형성되고 경사면에는 광신호가 광전송수단(100)으로 입사되지 않도록 한다. 즉, 광도파로(110)의 내측 홈면에 형성된 경사면에는 광전송수단(100)의 광도파로(110)로부터 광신호를 모아 집속하여 광수신수단(300)의 포토다이오드로 출력 시, 제2반사층(21)에 반사된 광신호가 다시 광전송수단(100)으로 입사되지 않도록 하는 반사제한층(22)이 형성된다.Therefore, to prevent such a problem from occurring, an inclined surface is formed on the inner groove surface of the optical waveguide 110 facing the second reflective layer 21 of the concave groove, and the optical signal is prevented from entering the optical transmission means 100 on the inclined surface. That is, when the optical signal from the optical waveguide 110 of the optical transmission means 100 is collected and focused on the inclined surface formed on the inner groove surface of the optical waveguide 110 and output to the photodiode of the optical receiving means 300, the second reflective layer 21 A reflection limiting layer 22 is formed so that the optical signal reflected in) is not incident on the optical transmission means 100 again.
반사제한층(22)은 5 ~ 10도의 각도로 형성되고, 경사면과 마찬가지로 다이싱 블레이드(Dicing Blade) 공정을 통해 형성될 수 있으며, 연마 또는 식각 공정을 통해서도 형성될 수 있다. 이와 같은 공정을 통해 형성된 반사제한층(22)의 각도는 8도로 형성되는 것이 제2반사층(21)에서 반사된 광신호가 광전송수단(100)으로 입사되지 않아 가장 이상적이나, 실제 구현에서는 정확하게 연마하기가 어렵기 때문에 5 ~ 10도의 각도로 한정할 수 있다.The reflection limiting layer 22 may be formed at an angle of 5 to 10 degrees, may be formed through a dicing blade process, similar to an inclined surface, and may also be formed through a polishing or etching process. The angle of the reflection limiting layer 22 formed through such a process is 8 degrees, which is ideal because the optical signal reflected from the second reflective layer 21 does not enter the optical transmission means 100, but in actual implementation, it should be accurately polished. Because it is difficult, it can be limited to an angle of 5 to 10 degrees.
이때, 제2반사층(21)과 반사제한층(22)을 포함하는 오목홈에는 굴절률이 높은 UV 경화가 가능한 물질, 예컨대 레진(resin), 에폭시(epoxy) 등이 충전되어 광 포커싱을 유도할 수 있는 광경로변환부(23)를 제공할 수 있게 된다.At this time, the concave groove including the second reflective layer 21 and the reflective limiting layer 22 is filled with a UV-curable material having a high refractive index, such as resin, epoxy, etc., to induce optical focusing. It is possible to provide the optical path conversion unit 23.
한편, 관전송수단(100)의 클래드(130)에 광경로변환부(23)를 형성한 후 광경로변환부(23)의 대응하는 상부에는 굴절률이 높은 UV 경화가 가능한 물질을 열 리플로우(thermal reflow)하여 집속 특성을 가지는 볼록렌즈부(24)를 형성할 수 있다. 볼록렌즈부(24)는 일반적으로 볼록렌즈의 특성인 광을 효과적으로 모아서 집속할 수 있도록 한다. On the other hand, after forming the optical path conversion unit 23 on the clad 130 of the tube transmission means 100, a material capable of UV curing having a high refractive index is thermally reflowed on the corresponding upper portion of the optical path conversion unit 23 ( Thermal reflow) may be performed to form the convex lens unit 24 having a focusing characteristic. The convex lens unit 24 effectively collects and focuses light, which is generally a characteristic of the convex lens.
볼록렌즈부(24)는 전술한 바와 같이, 종래의 광전송수단(100)의 코어(120)에서 출력되는 광신호의 광 퍼짐에 의한 커플링 손실을 최소화하기 위한 것으로서, 클래드(130)에 제2반사층(21)과 반사제한층(22)을 포함하는 오목홈을 형성한 후 굴절률이 높은 UV 경화가 가능한 물질을 충전하여 광경로변환부(23)를 제작하고, 광경로변환부(23)의 상부에 굴절률이 높은 UV 경화가 가능한 물질을 열 리플로우하여 제작할 수 있게 된다. As described above, the convex lens unit 24 is for minimizing the coupling loss due to light spreading of the optical signal output from the core 120 of the conventional optical transmission means 100, and the second After forming a concave groove including the reflective layer 21 and the reflection limiting layer 22, a UV-curable material having a high refractive index is filled to prepare the optical path conversion unit 23, and the optical path conversion unit 23 It can be manufactured by thermally reflowing a material capable of UV curing with a high refractive index on the top.
본 발명의 제3실시예에서, 광경로변환부(23)의 상부에 열 리플로우되는 굴절률이 높은 UV 경화가 가능한 물질은 레진 또는 에폭시일 수 있으며, 이에 한정되지 않는 다른 물질을 채택하여 사용할 수도 있다. In the third embodiment of the present invention, the material capable of UV curing having a high refractive index thermally reflowed on the top of the light path conversion unit 23 may be resin or epoxy, and other materials not limited thereto may be used. have.
본 발명에 따르면, 광도파로(110)의 코어(120)를 따라 진행하는 광신호가 광경로변환부(23)의 제2반사층(21)에서 반사된 후 광수신수단(300)의 포토다이오드의 수광부가 위치하는 방향으로 진행하게 된다. 이때, 클래드(130)의 광 출사면에 볼록렌즈부(20)를 형성하여 자유 공간에서의 광전파 원리에 따라 광신호를 집속시킬 수 있게 되며, 광신호가 집속되는 부분에 포토다이오드를 배치하여 광수신수단(300)을 형성할 수 있다. According to the present invention, after the optical signal traveling along the core 120 of the optical waveguide 110 is reflected from the second reflective layer 21 of the optical path conversion unit 23, the light receiving unit of the photodiode of the optical receiving means 300 It proceeds in the direction where is located. At this time, by forming a convex lens unit 20 on the light exit surface of the clad 130, the optical signal can be focused according to the principle of light propagation in a free space, and a photodiode is disposed at the portion where the optical signal is focused to A receiving means 300 may be formed.
전술한 바와 같이, 광수신수단(300)은 광전송수단(100)의 위치를 기준으로 포토다이오드가 상부로 향하는 방식의 모듈을 사용할 수 있거나 포토다이오드가 하부에 위치한 모듈을 사용할 수도 있다. 본 발명에 따른 실시예에서는 전술한 바와 같이, 포토다이오드가 상부에 위치한 모듈을 사용하고 있다. As described above, the optical receiving means 300 may use a module in which the photodiode faces upward based on the position of the optical transmission means 100, or a module in which the photodiode is located below may be used. In an embodiment according to the present invention, as described above, a module in which a photodiode is located is used.
따라서, 본 발명에 따른 AWG 디바이스 모듈은, 제작 공정이 간편하면서도 저비용으로 광송수신기, 광센서 및 다양한 광통신 모듈을 형성할 수 있다. Accordingly, the AWG device module according to the present invention can form an optical transmitter/receiver, an optical sensor, and various optical communication modules at low cost while the manufacturing process is simple.
이하 본 발명에 따른 AWG 디바이스 모듈의 제4실시예를 설명함에 있어 본 발명의 제3실시예와 동일한 구성과 동일한 기능을 갖는 구성에 대해서는 동일한 구성부호를 사용하며 반복적인 구성을 피하기 위하여 이들 구성에 대한 자세한 설명은 생략한다.Hereinafter, in describing the fourth embodiment of the AWG device module according to the present invention, the same configuration code is used for the configuration having the same configuration and the same function as the third embodiment of the present invention, and in order to avoid repetitive configuration, these configurations are Detailed description of this will be omitted.
도 8은 본 발명의 제4실시예에 따른 AWG 디바이스 모듈의 광경로부(20')를 나타내는 단면도이고, 도 9는 도 8의 출력단 도파로(15)를 제작하기 위한 성형금형부(200)와, 성형금형부(200)에 의한 광경로부(20')의 성형 공정을 도시한 단면도이다.8 is a cross-sectional view showing an optical path part 20 ′ of an AWG device module according to a fourth embodiment of the present invention, and FIG. 9 is a molding mold part 200 for manufacturing the output waveguide 15 of FIG. , Is a cross-sectional view showing a molding process of the optical path part 20' by the molding mold part 200.
도 8에 도시한 바와 같이, 광경로부(20')는 광도파로(110)의 일측에 경사면이 형성되고, 경사면에는 광신호를 수직으로 반사하는 제3반사층(21')을 포함한다. As shown in FIG. 8, the optical path part 20 ′ has an inclined surface formed on one side of the optical waveguide 110, and includes a third reflective layer 21 ′ vertically reflecting an optical signal on the inclined surface.
광경로부(20')는 제3반사층(21')에 반사된 광신호가 다시 광전송수단(100)으로 입사되지 않도록 제3반사층(21')에 대향하는 광도파로(110)의 일측 단부에 다른 경사면을 가지는 반사제한층(22')을 포함한다.The optical path part 20 ′ is disposed at one end of the optical waveguide 110 facing the third reflecting layer 21 ′ so that the optical signal reflected by the third reflecting layer 21 ′ is not incident again to the optical transmission means 100. It includes a reflection limiting layer 22 ′ having an inclined surface.
그리고 광경로부(20')는 굴절률이 높은 UV 경화가 가능한 물질이 경사면들 사이에 충전된 광경로변환부(23')와, 광경로변환부(23)의 대응하는 상부에 굴절률이 높은 UV 경화가 가능한 물질이 열 리플로우(thermal reflow)되어 광경로변환부(23')에 일체화된, 집속 특성을 가지는 볼록렌즈부(24')를 포함한다.In addition, the light path part 20 ′ includes a light path conversion part 23 ′ filled with a material capable of UV curing with a high refractive index between the inclined surfaces, and a UV light having a high refractive index on the corresponding upper part of the light path conversion part 23. It includes a convex lens unit 24' having a focusing characteristic in which a curable material is thermally reflowed and integrated with the optical path conversion unit 23'.
이와 같은 광경로부(20')는 AWG 디바이스 모듈의 양산 과정에서 파손의 위험성이 높은 경사면을 가공하는 방식을 배제하여 제작하게 되는바, 도 9에 도시한 바와 같이, 광도파로(110)와의 결합을 통해 광경로변환부(23')를 형성할 수 있는 캐비티(230)가 구비된 하부금형(210)과, 하부금형(210)과 결합 가능하고 볼록렌즈부(24')를 형성할 수 있는 캐비티(231)가 구비된 상부금형(220)을 포함하는 성형금형부(200)가 구비된다. Such an optical path part 20' is manufactured by excluding a method of processing an inclined surface having a high risk of damage in the mass production process of the AWG device module. As shown in FIG. 9, it is combined with the optical waveguide 110. Through the lower mold 210 provided with a cavity 230 capable of forming the optical path conversion unit 23 ′, and the lower mold 210 can be combined and form a convex lens unit 24 ′. A molding mold part 200 including an upper mold 220 provided with a cavity 231 is provided.
이와 같이 성형금형부(200)는 하부금형(210)과 상부금형(220)으로 이루어진 내측에 광경로변환부(23')와 볼록렌즈부(24')를 포함하는 성형 공간인 캐비티(230,231)가 형성된다. In this way, the molding mold part 200 is the cavity 230,231, which is a molding space including the optical path conversion part 23 ′ and the convex lens part 24 ′ on the inner side of the lower mold 210 and the upper mold 220 Is formed.
상부금형(220)의 일측에는 캐비티(230,231) 내로 굴절률이 높은 UV 경화가 가능한 물질을 주입하는데 사용하는 주입구(240)가 형성된다. One side of the upper mold 220 is formed with an injection hole 240 used to inject a UV-curable material having a high refractive index into the cavities 230 and 231.
성형금형부(200)는 일반적으로 스틸, 섬유강화 플라스틱, 수지 등이 사용될 수 있으며, 볼트 등의 고정수단을 통해 하부금형(210) 및 상부금형(220)의 결합이 용이하게 된다.In general, the molding mold part 200 may be made of steel, fiber-reinforced plastic, resin, etc., and the lower mold 210 and the upper mold 220 can be easily coupled through fixing means such as bolts.
이와 같이 구성된 성형금형부(200)의 일측에 형성된 개구를 통해 광도파로(110)가 진입하여 결합되면서 광경로변환부(23')의 캐비티(230)가 밀폐된 상에서, 주입구(240)에 성형 물질인 굴절률이 높은 UV 경화가 가능한 물질을 주입하고 소정 시간이 흘러 성형 물질의 경화가 완료되면 광경로변환부(23')와 볼록렌즈부(24')를 포함하는 광경로부(20')가 완성된다. 이때, 상기 광도파로(110)의 일측 단부에는 5 ~ 10도의 각도로 형성된 반사제한층(22')이 성형금형부(200)를 통한 성형 전에 구비될 수 있다. As the optical waveguide 110 enters and is coupled through the opening formed at one side of the molding mold part 200 configured as described above, the cavity 230 of the optical path conversion part 23 ′ is sealed, and is formed in the injection hole 240 When a material capable of UV curing having a high refractive index is injected and curing of the molding material is completed after a predetermined period of time, the optical path part 20 ′ including the optical path conversion part 23 ′ and the convex lens part 24 ′ Is completed. At this time, a reflection limiting layer 22 ′ formed at an angle of 5 to 10 degrees may be provided at one end of the optical waveguide 110 before molding through the molding mold part 200.
도 9에 도시된 성형금형부(200)를 통해 캐비티(230,231) 내에서 광경로부(20')가 성형되므로 반사면의 연마 가공에 의한 파손의 위험성을 방지할 수 있어 광도파로(110)를 제작하는 데 비용절감을 가져올 뿐만 아니라 불량률을 낮춰 생산성 향상을 도모할 수 있게 된다. Since the optical path part 20' is formed in the cavities 230 and 231 through the molding mold part 200 shown in FIG. 9, the risk of damage due to polishing of the reflective surface can be prevented, and thus the optical waveguide 110 In addition to reducing the cost of manufacturing, it is possible to improve productivity by lowering the defect rate.
도 10 내지 12는 본 발명에 따른 AWG 디바이스 모듈의 출력단 도파로에 형성된 반사층들의 경사면 각도별 반사 손실 및 출력단의 광 크기를 나타내는 광분포도이고, 도 13은 본 발명의 실시예에 따른 반사층의 경사면 각도별 반사 손실 및 출력단의 광 크기를 나타내는 광분포도이다.10 to 12 are light distribution diagrams showing reflection loss by angle of inclined surface of reflective layers formed in the waveguide of the output terminal of the AWG device module according to the present invention and the light size of the output terminal, and FIG. 13 is It is a light distribution diagram showing the return loss and the light size at the output stage.
도 10의 광분포도를 살펴 보면, 경사면의 경사 각도가 40도에서 45도로 증가 시, 반사 손실은 경사면의 경사 각도가 40도일 때, 40dB보다 크고, 경사 각도가 45도 일 때, 30dB보다 작은 것을 알 수 있다. Looking at the light distribution diagram of FIG. 10, when the inclination angle of the inclined surface increases from 40 degrees to 45 degrees, the return loss is greater than 40 dB when the inclination angle of the inclined surface is 40 degrees, and less than 30 dB when the inclination angle is 45 degrees. Able to know.
또한, 도 10 내지 도 12의 광분포도를 살펴 보면, 광신호의 크기는 경사면의 경사 각도가 40도에서 45도로 갈수록 순차적으로 줄어드는 것을 알 수 있다. 즉, 경사면의 경사 각도에 따라 반사 손실이 결정되는데, 경사면의 경사 각도가 45도일 때, 반사 손실이 매우 낮아 통신 영역에 사용하는데 지장을 줄 수 있다. 따라서, 본 발명의 제3 및 제4실시예는, AWG 디바이스 모듈의 광도파로(110)에 V 형상의 오목홈을 형성하고 고굴절률 UV 경화물질을 충전하고 그 위에 고굴절률 UV 경화물질을 열 리플로우(thermal reflow)하여 광경로부(20)를 형성하거나 성형금형부(200)의 캐비티(230,231)에 고굴절률 UV 경화물질을 주입하여 경화된 광경로부(20')를 포함하는 광도파로(110)를 제작하고자 하는 것이다. In addition, looking at the light distribution diagrams of FIGS. 10 to 12, it can be seen that the size of the optical signal decreases sequentially as the inclination angle of the inclined surface increases from 40 degrees to 45 degrees. That is, the reflection loss is determined according to the inclination angle of the inclined surface. When the inclination angle of the inclined surface is 45 degrees, the reflection loss is very low, which may interfere with use in the communication area. Accordingly, in the third and fourth embodiments of the present invention, a V-shaped concave groove is formed in the optical waveguide 110 of the AWG device module, and a high refractive index UV curing material is filled thereon, and a high refractive index UV curing material is thermally rippled thereon. An optical waveguide including an optical path part 20 ′ cured by thermal reflow to form the optical path part 20 or by injecting a high refractive index UV curing material into the cavities 230 and 231 of the molding mold part 200. 110).
이에 따라, 본 발명은 도 13에 도시한 바와 같이, 본 발명의 제1 및 제2실시예 대비, 광전송수단(100)으로부터 전송되는 광신호의 크기가 상대적으로 줄어들면서 포토다이오드의 수광부로 출력됨으로써, 광 퍼짐 현상으로 인해 발생하는 커플링 손실(coupling loss)을 최소화할 수 있고, 제2반사층(21)에 반사된 광신호가 다시 광전송수단(100)으로 입사되지 않도록 하여 반사 손실(return loss)을 줄일 수 있다. 특히 고굴절률 UV 경화물질을 주입하여 광도파로(110)의 광경로부(20')를 제작할 수 있는 성형금형부(200)를 구비함으로써, 광도파로(110)를 제작하는 데 비용절감을 가져올 뿐만 아니라 불량률을 낮춰 생산성 향상을 도모할 수 있게 된다. Accordingly, as shown in FIG. 13, compared to the first and second embodiments of the present invention, the size of the optical signal transmitted from the optical transmission unit 100 is relatively reduced and output to the light receiving unit of the photodiode. , It is possible to minimize the coupling loss caused by the light spreading phenomenon, and prevent the optical signal reflected on the second reflective layer 21 from entering the optical transmission unit 100 again, thereby reducing return loss. Can be reduced. In particular, by injecting a high-refractive-index UV curing material to provide a molding part 200 capable of manufacturing the optical path part 20' of the optical waveguide 110, it not only brings about cost reduction in manufacturing the optical waveguide 110. In addition, it is possible to improve productivity by lowering the defect rate.
상술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The above description of the present invention is for illustrative purposes only, and those of ordinary skill in the art to which the present invention pertains can understand that it is possible to easily transform it into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not limiting. The scope of the present invention is indicated by the claims to be described later, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts should be interpreted as being included in the scope of the present invention.
[부호의 설명][Explanation of code]
100 : 광전송수단 100: optical transmission means
110 : 광도파로110: optical waveguide
111 : 제1반사층 111: first reflective layer
120 : 코어 120: core
130 : 클래드 130: clad
200 : 성형금형부200: forming mold part
300 : 광수신수단 300: light receiving means
20,20' : 광경로부20,20': Optical path part
21 : 제2반사층 21: second reflective layer
21' : 제3반사층21': 3rd reflective layer
Claims (12)
- 광신호가 전송되는 코어와, 상기 코어를 둘러싸는 클래드를 포함하는 평판형 광도파로 이루어진 광전송수단; 및,An optical transmission means comprising a core through which an optical signal is transmitted and a plate type optical waveguide including a clad surrounding the core; And,상기 광전송수단으로부터 출력되는 상기 광신호를 수신하여 전기신호로 변환하는 광수신수단을 포함하되,And an optical receiving means for receiving the optical signal output from the optical transmitting means and converting it into an electric signal,상기 광수신수단에 대응하며 상기 광신호의 광 출사면인 상기 클래드의 표면에는 상기 광신호를 모아서 집속하기 위한 광경로부가 설치된 광트랜시버용 AWG 디바이스 모듈.An AWG device module for an optical transceiver provided with an optical path part for collecting and focusing the optical signal on a surface of the clad corresponding to the optical receiving means and which is a light exit surface of the optical signal.
- 제1항에 있어서,The method of claim 1,상기 광경로부는 오목렌즈 형태로서, 상기 클래드의 표면에 포토리소그래피에 의한 습식 습각을 통해 오목한 형태의 오목홈이 형성되는 것을 특징으로 하는 광트랜시버용 AWG 디바이스 모듈.The optical path portion has a concave lens shape, wherein a concave groove is formed on the surface of the clad through a wet wetting method by photolithography.
- 제2항에 있어서,The method of claim 2,상기 광경로부의 상기 오목홈에는 굴절률이 높은 UV 경화 물질이 충전되는 것을 특징으로 하는 광트랜시버용 AWG 디바이스 모듈.An AWG device module for an optical transceiver, characterized in that the concave groove of the optical path part is filled with a UV curing material having a high refractive index.
- 제2항 또는 제3항에 있어서,The method according to claim 2 or 3,상기 오목홈은, 반구형, U자형, V자형, 쐐기형 형상의 홈 중 어느 하나로 이루어진 것을 특징으로 하는 광트랜시버용 AWG 디바이스 모듈.The concave groove is an AWG device module for an optical transceiver, characterized in that it is made of any one of a hemispherical, U-shaped, V-shaped, and wedge-shaped groove.
- 제4항에 있어서,The method of claim 4,상기 반구형, U자형 형상의 오목홈은 습식 식각 공정을 통해 형성되는 것을 특징으로 하는 광트랜시버용 AWG 디바이스 모듈.The AWG device module for an optical transceiver, characterized in that the hemispherical, U-shaped concave groove is formed through a wet etching process.
- 제4항에 있어서,The method of claim 4,상기 V자형, 쐐기형 형상의 오목홈은 다이싱 블레이드(Dicing Blade) 공정을 통해 형성되는 것을 특징으로 하는 광트랜시버용 AWG 디바이스 모듈.The AWG device module for an optical transceiver, characterized in that the V-shaped, wedge-shaped concave groove is formed through a dicing blade process.
- 제3항에 있어서,The method of claim 3,상기 광경로부의 대응하는 면에는 상기 굴절률이 높은 UV 경화가 가능한 물질이 열 리플로우(thermal reflow)되어 구형렌즈부가 형성되는 것을 특징으로 하는 광트랜시버용 AWG 디바이스 모듈.An AWG device module for an optical transceiver, characterized in that a spherical lens unit is formed by thermal reflow of the UV curable material having a high refractive index on a corresponding surface of the optical path unit.
- 기판 위의 하부 클래드층에 코어층을 형성하는 단계;Forming a core layer on the lower clad layer on the substrate;상기 코어층 상부에 포토레지스트 패턴을 형성하고, 이를 이용하여 상기 코어층을 식각하여 패터닝하는 단계;Forming a photoresist pattern on the core layer, and etching and patterning the core layer using the same;패터닝된 상기 코어층 상부에 상부 클래드층을 형성하여 광도파로를 완성하는 단계;Forming an upper cladding layer on the patterned core layer to complete an optical waveguide;상기 상부 클래드층에 포토레지스트 패턴이 형성되며, 상기 포토레지스트 패턴이 형성되지 않은 상기 상부 클래드층 상에 오목한 형상의 오목홈을 형성하는 단계; 및Forming a concave groove having a photoresist pattern on the upper cladding layer and on the upper cladding layer on which the photoresist pattern is not formed; And상기 오목홈에 굴절률이 높은 UV 경화 물질을 충전하여 오목렌즈 형태의 광경로부를 형성하는 단계;를 포함하는 광트랜시버용 AWG 디바이스 모듈의 제조방법.The method of manufacturing an AWG device module for an optical transceiver comprising a step of forming an optical path part in the form of a concave lens by filling the concave groove with a UV curing material having a high refractive index.
- 제8항에 있어서,The method of claim 8,상기 오목홈은 반구형, U자형, V자형, 쐐기형 형상의 홈 중 어느 하나로 이루어진 것을 특징으로 하는 광트랜시버용 AWG 디바이스 모듈의 제조방법.The concave groove is a method of manufacturing an AWG device module for an optical transceiver, characterized in that it is made of any one of a hemispherical, U-shaped, V-shaped, wedge-shaped groove.
- 제9항에 있어서,The method of claim 9,상기 반구형, U자형 형상의 오목홈은 습식 식각 공정을 통해 형성되는 것을 특징으로 하는 광트랜시버용 AWG 디바이스 모듈의 제조방법.The hemispherical, U-shaped concave groove is a method of manufacturing an AWG device module for an optical transceiver, characterized in that formed through a wet etching process.
- 제9항에 있어서,The method of claim 9,상기 V자형, 쐐기형 형상의 오목홈은 다이싱 블레이드(Dicing Blade) 공정을 통해 형성되는 것을 특징으로 하는 광트랜시버용 AWG 디바이스 모듈의 제조방법.The method of manufacturing an AWG device module for an optical transceiver, wherein the V-shaped and wedge-shaped concave grooves are formed through a dicing blade process.
- 제8항에 있어서,The method of claim 8,상기 광경로부의 대응하는 면에는 상기 굴절률이 높은 UV 경화가 가능한 물질을 열 리플로우(thermal reflow)하여 구형렌즈부를 형성하는 단계를 더 포함하는 것을 특징으로 하는 광트랜시버용 AWG 디바이스 모듈의 제조방법.The method of manufacturing an AWG device module for an optical transceiver, further comprising forming a spherical lens unit by thermally reflowing a material capable of UV curing having a high refractive index on a corresponding surface of the optical path unit.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190087465A KR20210010068A (en) | 2019-07-19 | 2019-07-19 | AWG device module and their fabrication method for optical transceiver |
KR10-2019-0087465 | 2019-07-19 | ||
KR1020190093876A KR102229065B1 (en) | 2019-08-01 | 2019-08-01 | AWG device module with the reflection block assembled focusing lens and mold device for manufacturing the same |
KR10-2019-0093876 | 2019-08-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021015379A1 true WO2021015379A1 (en) | 2021-01-28 |
Family
ID=74193507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/001765 WO2021015379A1 (en) | 2019-07-19 | 2020-02-07 | Awg device module for optical transceiver, and manufacturing method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021015379A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023226233A1 (en) * | 2022-05-23 | 2023-11-30 | 深南电路股份有限公司 | Photoelectric composite circuit board and manufacturing method therefor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990030653A (en) * | 1997-10-02 | 1999-05-06 | 윤종용 | Optical waveguide manufacturing method |
JP2001166167A (en) * | 1999-12-10 | 2001-06-22 | Toppan Printing Co Ltd | Optical wiring layer and method for manufacturing the same as well as opto-electric wiring board and method for manufacturing the same as well as packaging substrate |
JP2006106543A (en) * | 2004-10-08 | 2006-04-20 | Hitachi Maxell Ltd | Optical component or microlens array and manufacturing method for them |
JP2010122614A (en) * | 2008-11-21 | 2010-06-03 | Fuji Xerox Co Ltd | Optical transmission apparatus and optical waveguide |
KR20190042803A (en) * | 2017-10-17 | 2019-04-25 | (주)웨이옵틱스 | Multi-channel optical receiver module and methods of manufacturing |
-
2020
- 2020-02-07 WO PCT/KR2020/001765 patent/WO2021015379A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990030653A (en) * | 1997-10-02 | 1999-05-06 | 윤종용 | Optical waveguide manufacturing method |
JP2001166167A (en) * | 1999-12-10 | 2001-06-22 | Toppan Printing Co Ltd | Optical wiring layer and method for manufacturing the same as well as opto-electric wiring board and method for manufacturing the same as well as packaging substrate |
JP2006106543A (en) * | 2004-10-08 | 2006-04-20 | Hitachi Maxell Ltd | Optical component or microlens array and manufacturing method for them |
JP2010122614A (en) * | 2008-11-21 | 2010-06-03 | Fuji Xerox Co Ltd | Optical transmission apparatus and optical waveguide |
KR20190042803A (en) * | 2017-10-17 | 2019-04-25 | (주)웨이옵틱스 | Multi-channel optical receiver module and methods of manufacturing |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023226233A1 (en) * | 2022-05-23 | 2023-11-30 | 深南电路股份有限公司 | Photoelectric composite circuit board and manufacturing method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10466433B2 (en) | Optical module including silicon photonics chip and coupler chip | |
KR101711691B1 (en) | hybrid optical coupling module and manufacturing method thereof | |
KR101866495B1 (en) | Two-stage Adiabatically Coupled Photonic Systems | |
JP5714229B2 (en) | Double lens single optical receiver assembly | |
US8540437B2 (en) | Multi-wavelength optical transmitting and receiving modules | |
US7218806B2 (en) | Multi-wavelength optical transceiver module, and multiplexer/demultiplexer using thin film filter | |
WO2012039542A2 (en) | Apparatus for wavelength-division multiplexing and demultiplexing | |
WO2011007909A1 (en) | Optical module and manufacturing method thereof | |
WO2012067366A1 (en) | Optical communication module | |
JPH04212110A (en) | Electronic and optical module of optical fiber | |
EP3262448A1 (en) | Optically coupling waveguides | |
WO2021015379A1 (en) | Awg device module for optical transceiver, and manufacturing method | |
WO2021054803A1 (en) | Subminiature optical transmission module and method for manufacturing same by using semiconductor packaging scheme | |
US6842572B2 (en) | Techniques to guide optical signals | |
WO2010036081A2 (en) | Optical module and method for manufacturing same | |
JP2009093131A (en) | Array type tap photodiode module and its manufacturing method | |
Han et al. | A PLC‐Based Optical Sub‐assembly of Triplexer Using TFF‐Attached WDM and PD Carriers | |
KR102394442B1 (en) | AWG device module and their fabrication method for optical transceiver | |
KR102229065B1 (en) | AWG device module with the reflection block assembled focusing lens and mold device for manufacturing the same | |
WO2016200031A1 (en) | Light-receiving module using optical waveguide chip and manufacturing method therefor | |
WO2010008205A2 (en) | Optical module package for bidirectional communication having a wedge-type sub-mount | |
Hashimoto et al. | Hybrid integration of active devices on PLC | |
Nakanishi et al. | PLC-based WDM transceiver with modular structure using chip-scale-packaged OE-devices | |
CN116679388A (en) | Optical fiber array structure coupled with silicon optical integrated chip | |
KR101114573B1 (en) | Hybrid optical integration circuit assembly for optical receiving module and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20843565 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/05/2022) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20843565 Country of ref document: EP Kind code of ref document: A1 |