JP4253933B2 - Optical / electrical wiring board and mounting board - Google Patents

Optical / electrical wiring board and mounting board Download PDF

Info

Publication number
JP4253933B2
JP4253933B2 JP18587499A JP18587499A JP4253933B2 JP 4253933 B2 JP4253933 B2 JP 4253933B2 JP 18587499 A JP18587499 A JP 18587499A JP 18587499 A JP18587499 A JP 18587499A JP 4253933 B2 JP4253933 B2 JP 4253933B2
Authority
JP
Japan
Prior art keywords
optical
substrate
electrical wiring
wiring board
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18587499A
Other languages
Japanese (ja)
Other versions
JP2001015871A (en
Inventor
孝夫 湊
健人 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP18587499A priority Critical patent/JP4253933B2/en
Publication of JP2001015871A publication Critical patent/JP2001015871A/en
Application granted granted Critical
Publication of JP4253933B2 publication Critical patent/JP4253933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Optical Integrated Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光配線と電気配線とが混在する光・電気配線基板、並びにその基板上に光部品と電気部品を実装する実装基板に関する。
【0002】
【従来の技術】
より速く演算処理が行えるコンピュータを作るために、CPUのクロック周波数は益々増大する傾向にあり、現在では1GHz程度のものが出現するに至っている。この結果、コンピュータの中のプリント基板上の銅による電気配線には高周波信号が流れる部分が存在することになるので、ノイズの発生により誤動作が生じたり、また、電磁波が発生して周囲の電子機器に影響を与えることにもなる。
【0003】
このような問題を解決するために、プリント基板上の銅による電気配線の一部を光ファイバ又は光導波路による光配線に置き換え、電気信号の代わりに光信号を利用することが行われている。というのは、光信号の場合は、ノイズ及び電磁波の発生を抑えられるからである。
【0004】
高密度実装又は小型化の観点からは、電気配線と光配線とが同一の基板上で積層されている光・電気配線基板を作製することが望ましい。特に光基板と電気基板を多層に積層しそれぞれの基板間で電気信号及び光信号を自由に伝送することが重要である。
【0005】
電気基板では積層された電気配線間を上下方向にスルーホールを形成し、内壁面を金属で被覆することで導通をとることが行われている。光配線基板では同一基板内では伝送損失が抑えられる範囲で導波路を交差させたり、曲げることで光信号を伝送することができるが、この手段では光配線の高密度化には困難が伴う。
【0006】
別の問題は、光導波路を光基板の厚み方向に曲げることが難しいために、積層された光基板間の光信号の伝送が困難になることである。一般には光導波路上に光の方向を90度回転させるミラーを形成して光信号を基板面に垂直方向にとり出し、この取り出された光信号を別の光基板のミラーで受けることが例えば特開平5−313027号公報に記載されている。
【0007】
この方法では、個別の光基板内に複数のミラーを形成して、光軸のアライメントを正確にとる必要がある。またスルーホールも複数の光基板を貫通して形成することが必要となる場合もある。これは多層化した高密度光・電気基板の性能の信頼性を低下させ高コスト化を招くことになる。
【0008】
【発明が解決しようとする課題】
本発明は係る従来技術の欠点に鑑みてなされたもので、高密度実装又は小型化が可能で、光信号を複数の光基板に容易に確実に伝送する光・電気配線基板の構造を提供することである。
【0009】
【課題を解決するための手段】
本発明において上記の課題を達成するために、まず請求項1の発明は、電気配線が埋設された電気配線基板に、光信号伝送用の光導波路が埋設された光基板を積層する光・電気配線基板において、前記光基板の側面に光路変更用光学部材が設けてあり、前記光基板がダミー基板を介して複数積層されてあり、柱状導電性ガイドが前記光基板とダミー基板の前記複数積層の際のガイドになり、該柱状導電性ガイドの一端が前記電気配線基板の上の電気配線と電気的に接続され、該柱状導電性ガイドの他端が光部品を搭載するために凹部になっており、前記光基板と前記光路変更用光学部材との間にレンズが設けてあること、を特徴とする光・電気配線基板である。
【0012】
請求項2の発明は、請求項1に記載の光・電気基板に光部品又は/及び電気部品を実装したことを特徴とする実装基板である。
【0013】
【発明の実施の形態】
1.光・電気配線基板
一般的な光・電気配線基板において、光部品を実装する部分の平面図を図1に、これを光配線である光導波路2に沿って切断する断面図を図2に示す。図2では光配線基板9、9’をダミー基板15を介して2層積層した場合を示してある。
【0014】
光・電気配線基板は電気配線10、11、12、13を備えた基板8上に、光基板9、9’が複数(図面では2枚)積層されている構造をとる。光基板は3層以上に積層することもできるし、基板8は単層の絶縁基板でも、電気配線と絶縁層が交互に積層された多層配線基板でも良い。また、構成材料として、ガラス布に樹脂を含浸させた絶縁基板でも、ポリイミドフィルムでも、セラミック基板等でも良い。
【0015】
光基板9、9’には、光信号が伝送する光導波路(光配線ともいう)としてコア層2、2’が、コア材料より低い屈折率を有するクラッド層1、1’に埋設されている。このコア層のパターニングはフォトリソグラフィ技術で形成されるため、その位置は支持基板上に形成したアライメントマーク(図示せず)によって決めることができる。
【0016】
光基板9’には光信号であるレーザ光を反射させ90°に伝送方向を変えるミラー3が形成される。このミラーは、光・電気配線板上に搭載したレーザ発光素子から基板に向かって垂直方向に発した光信号を、基板面と並行に配置した光配線へ挿入したり、逆に、光配線を伝送してきた光信号を、光・電気配線基板上に設置した受光素子へ向かって、垂直に光信号の伝送方向を変える役割を果たし、光配線の一部に、基板に対し45°をなす面を形成する。
【0017】
なお、ミラーは光基板上にフォトリソグラフィ技術により形成したメタルマスクをもとにエッチング法を用いた穿孔による加工、またはレーザによる穿孔による加工により形成できるので、その位置は基板8上に形成したアライメントマーク(図示せず)によって決めることができる。
【0018】
また、柱状導電性ガイド5、7は、後記する光基板9及びダミー基板15の積層の際のガイドとなるとともに、その一端が基板8上の電気配線11、13と電気的に接続され、他端が光部品(レーザ発光素子のリード)を搭載するために凹部となっている。なお、光基板9と基板8は接着剤14で接着している。
【0019】
そして、本発明に係る光・電気配線基板では他の光基板に光信号を伝送するために光基板の側面に光路変更用光学部材を設置する。以下、図3及び図4を用いて設置方法を説明する(なお、ミラー等の記載は省略する)。
【0020】
図3に示すようにクラッド層1とコア層2が形成された光基板の側面(クラッド層側面を1a、コア層側面を2aとする)を光学研磨する。この光基板の側面から一旦光信号であるレーザ光21を引き出して、別の光基板に光信号を伝送するために、光路変更用光学部材を用いる。光路変更用光学部材を具体的に言えば、プリズム17や光ファイバー等が挙げられる。プリズム等は、光基板の側面に光学接着剤で接着することができる。なお、光基板の側面の厚みが薄く、プリズム17などを接着する面積的な余裕がない場合には、好適な厚さでクラッド層と同じ材質のダミー基板15を光基板間に挿入することができる。更に、図3右側のように一つのプリズムで複数の光信号を同時に処理することができる。
【0021】
本発明では光配線層は同一光基板内にあってもよいし、別の離れた光基板の光配線層でもよい。同一基板内に伝送する場合を図4に示した。なお、図4では、光ファイバー18とコア層2、2’に入出力する光信号であるレーザ光21の光軸と光配線層との光軸を揃えやすくするために微少なレンズ19を挿入した。また、複数のプリズムを組み合わせたり、光ファイバーの側面の形状を変えることで任意の光配線層に光信号を伝送することができる。
【0022】
2.光・電気配線基板の製造方法
本発明に係る光・電気配線基板の製造方法を図面を用いて詳しく説明する。
(1) 光基板の製造方法
フィルム状の光基板を以下の手順で形成する(図5参照)。シリコンウエハー30上に樹脂31(光を導波する光基板の支持媒体でクラッド層の役割を果たすもので、フッ素化ポリイミド系樹脂の前駆体であるフッ素化ポリアミック酸またはフッ素化エポキシ系樹脂等から選択する)を厚さ20〜50ミクロン程度塗布する(工程(a) )。ポリアッミク酸溶液の場合であればイミド化するために350度で1〜2時間加熱する。エポキシ系樹脂であればUV硬化もしくは100〜200度で硬化する。
【0023】
次いで光導波路となる樹脂32、例えばフッ素系ポリアミック酸溶液あるいはポリメチルメタクリレート樹脂溶液など導波すべき波長に好適な屈折率を有する樹脂を選択して適切な方法で均一に8ミクロン塗布する(工程(b) )。感光性があれば定法のフォトリソ法でパタニングして光導波路33を形成し、その後材料に応じた硬化反応を行う。感光性がなければ硬化させた後に所定パタンの金属マスクを形成してRIEドライエッチングにより導波路パターンを形成する(工程(c) )。さらに、先に形成したクラッド層と同じ材料を同様に厚さ20〜50ミクロン程度塗布し、光基板34が完成する(工程(d) )。
【0024】
同じ手順で作成した光基板を2枚接着剤を用いて積層(工程(e) )して多層の光基板34、34‘を得た。光信号の入出力を行う箇所を直線的に点線36に沿って切断したのち、側面37を光学的に研磨し、コア層38を露出させた(工程(f) )。
【0025】
次いで多層光基板の所望の位置に貫通孔35を形成した(工程(g) )。所定のパターンを有するマスクを介し、エキシマレーザを照射して孔を形成する。次に、シリコンウエハーからフィルムを剥離すると貫通孔を含むフィルム状の多層光基板39を形成することができる(工程(h) )。
【0026】
(2) 電気配線基板の製造方法
次いで電気配線基板の製造方法について述べる(図6参照)。ガラスエポキシ基板等適切な絶縁基板上40にメッキ法あるいはスパッタあるいは蒸着法等により20ミクロン程度の銅薄膜を形成する。定法のフォトリソ法により所望の金属配線41を形成する。柱状導電性ガイドを形成するため、金属薄膜42をスパッタにて形成し(工程(i) )、その上からレジスト43を塗布し現像して開口部44を形成する(工程(j) )。
【0027】
次に金属薄膜42を陰極として銅メッキを行い開口部内部を出来るだけ銅で埋設する(工程(k) )。レジストを剥離し(工程(l) )、金属薄膜をエッチング除去すると柱状導電性ガイド45が金属配線上に形成できる(工程(m) )。ビアの形状は円柱型、4角柱型等光部品の端子に見合った形状のマスクを用いのが望ましい。高さはレジストの膜厚あるいはメッキにかける時間で制御する。概ね径は30〜100ミクロン、高さも20〜100ミクロン程度が望ましい。
【0028】
(3) 光・電気配線基板の製造方法
光基板と電気配線基板を導電性ガイド45を使って積層する(図7参照)。即ちフィルムの貫通孔を導電性の金属等からなる柱がフィルムの中程まで貫通するようにして積層する(工程(n) )。光基板の電気基板と接触する側に接着剤14を塗布して、光基板と電気基板を完全に接着固定するのが望ましい形態である。
【0029】
光基板のフィルム厚と金属ガイドの高さはフィルム表面からの凹みが、光部品の端子を収容するのに必要な深さ、望ましくは20〜100ミクロンになるように一方もしくは双方を調整する。
【0030】
さらに、積層した基板の表面に金属薄膜46をスパッタにて形成し(工程(o) )、フォトレジスト47を塗布する。露光・現像処理を行い、ミラー形成のためのフォトレジスト開口部48を形成する(工程(p) )。
【0031】
エッチングにより金属薄膜46に開口部49を形成し、ミラー形成のためのメタルマスクを形成する。さらに、基板を45°に傾斜させ、RIEドライエッチングによりミラー50を形成し(工程(q) )、メタルマスクを溶解除去することにより光・電気配線基板の最上部だけにミラーを完成させた(工程(r) )。
【0032】
3.実装基板の製造方法
次いで実装基板の製造方法について述べる(図8参照)。光・電気配線基板の凹部15に、ハンダボールを装着して光部品22(レーザ発光素子、フォトダイオード)の端子24を軽く差し込んだ。凹部の形状は半径80ミクロンの円形で深さは50ミクロンとした。光部品の導通用端子24の数は4ヶで形状は半径75ミクロンの円形であった。電気部品(CPU、メモリ)用の端子は薄くハンダ付けされた金属パッド上に置いた。
【0033】
温度250度のリフロー炉に10秒静置した後冷却すると、光部品の端子は凹部の形状と溶融ハンダの表面張力で決まる平衡位置に固定され、レーザーの光軸はミラーの中心位置±3ミクロンに収まっていることが確認された。柱状導電性ガイド頂部が直接パッドとしてハンダにより光部品と導通しているので接続の信頼性も向上した。
【0034】
最後に光基板の側面9,9’の光配線層の必要な箇所を光接続するためのプリズム17を光軸が合うように光学接着剤を用いて装着して、図8に記載のような実装基板が完成した。
【0035】
以下、実装基板の動作について説明する。光部品22のレーザ照射部23から照射されたレーザ光21は、光基板9’のクラッド層1’を通過し、コア層2’に形成されたミラー3で反射され、コア層2’内を伝送する。そして、光基板9’の側面からプリズム17内へ伝送し、プリズムの2辺で反射され、光基板9の側面からコア層へ伝送する。その後、図示しないミラーで反射され、図示しないフォトダイオードの受光部へ到達する。
【0036】
本発明に係る実装基板は、1GHz程度の信号を伝送してもノイズが発生することもなく、良好であった。
【0037】
【発明の効果】
本発明は、次のような効果がある。
第1に、電気配線を有する基板の上に複数の光配線層を設けるので、高密度実装又は小型化が可能であるという効果がある。
【0038】
第2に、同一の光学部材により複数の異なる光基板の導波路に光信号の伝送が可能である。
【0039】
第3に、同一の光部材により同一光基板内の異なる光導波路に光信号の伝送が可能である。
【0040】
第4に、薄い光基板でもダミー基板を挟んで厚くできるので大きな光学部材を使え光軸の合わせが容易となる。
【0041】
第5に、スルーホールを形成する必要が減り、光学部材を外付けするので、信頼性が向上し低コスト化が可能である。
【0042】
【図面の簡単な説明】
【図1】光・電気配線基板における光部品を実装する部分の平面図。
【図2】光・電気配線基板の断面図。
【図3】本発明に係る光路変更用光学部材(プリズム)を用いて光信号を異なる光配線に伝送する一例を示す説明図。
【図4】本発明に係る光路変更用光学部材(プリズム)を用いて光信号を同一面内に存在する光配線に伝送する一例を示す説明図。
【図5】光基板の製造方法の一例を示す説明図。
【図6】電気配線基板の製造方法の一例を示す説明図。
【図7】光基板と電気配線基板を導電性ガイドを使って積層する一例を示す説明図。
【図8】本発明に係る実装基板の説明図。
【符号の説明】
1、1’ クラッド層
1a クラッド層側面
2 光導波路(コア層)
2a 光導波路(コア層)側面
3 ミラー
4a パッド
5 柱状導電性ガイド
5a パッド
6a パッド
7 柱状導電性ガイド
7a パッド
8 基板
9、9’ 光基板
10 電気配線
11 電気配線
12 電気配線
13 電気配線
14 接着剤
15 ダミー基板
16 凹部
17 プリズム
18 光ファイバー
19 レンズ
21 レーザ光
22 光部品
23 レーザ発光面
24 リード
25 ハンダ
30 シリコン基板
31 クラッド層
32 コア層
33 導波路
34、34’光配線層
35 貫通孔
36 研磨部
37 光学研磨された光配線層側面
38 光学研磨されたコア側面
39 光基板
40 絶縁基板
41 電気配線
42 金属薄膜
43 フォトレジスト
44 フォトレジスト開口部
45 柱状金属ガイド
46 金属薄膜
47 フォトレジスト
48 フォトレジスト開口部
49 金属薄膜開口部
50 ミラー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical / electrical wiring board in which optical wiring and electrical wiring are mixed, and a mounting board on which optical components and electrical parts are mounted on the board.
[0002]
[Prior art]
In order to make a computer that can perform arithmetic processing faster, the clock frequency of the CPU tends to increase more and more, and about 1 GHz now appears. As a result, there are parts where high-frequency signals flow in the copper electrical wiring on the printed circuit board in the computer, so that malfunctions may occur due to the generation of noise, and electromagnetic waves may be generated and the surrounding electronic equipment. It will also affect.
[0003]
In order to solve such a problem, a part of the copper electrical wiring on the printed circuit board is replaced with an optical fiber or optical waveguide optical wiring, and an optical signal is used instead of the electrical signal. This is because the generation of noise and electromagnetic waves can be suppressed in the case of optical signals.
[0004]
From the viewpoint of high-density mounting or downsizing, it is desirable to produce an optical / electrical wiring board in which electrical wiring and optical wiring are stacked on the same substrate. In particular, it is important to laminate optical substrates and electrical substrates in multiple layers and freely transmit electrical signals and optical signals between the substrates.
[0005]
In an electric board, through holes are formed between stacked electric wirings in the vertical direction, and conduction is achieved by covering an inner wall surface with metal. In an optical wiring board, an optical signal can be transmitted by crossing or bending the waveguide within a range in which transmission loss can be suppressed within the same board. However, it is difficult to increase the density of the optical wiring by this means.
[0006]
Another problem is that since it is difficult to bend the optical waveguide in the thickness direction of the optical substrate, it becomes difficult to transmit an optical signal between the stacked optical substrates. In general, a mirror that rotates the direction of light by 90 degrees is formed on an optical waveguide, an optical signal is taken out in a direction perpendicular to the substrate surface, and the extracted optical signal is received by a mirror on another optical substrate. No. 5-313027.
[0007]
In this method, it is necessary to form a plurality of mirrors in individual optical substrates and accurately align the optical axes. Also, it may be necessary to form through holes through a plurality of optical substrates. This lowers the reliability of the performance of the multi-layered high-density optical / electrical substrate and leads to an increase in cost.
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of the drawbacks of the related art, and provides a structure of an optical / electrical wiring board that can be mounted with high density or miniaturized and that easily and reliably transmits an optical signal to a plurality of optical boards. That is.
[0009]
[Means for Solving the Problems]
In order to achieve the above object in the present invention, first, the invention of claim 1 is an optical / electrical device in which an optical substrate in which an optical waveguide for optical signal transmission is embedded is laminated on an electrical wiring substrate in which electrical wiring is embedded. In the wiring board, an optical member for changing an optical path is provided on a side surface of the optical substrate, the optical substrate is stacked in plural via a dummy substrate, and a plurality of columnar conductive guides are stacked in the optical substrate and the dummy substrate. One end of the columnar conductive guide is electrically connected to the electrical wiring on the electrical wiring board, and the other end of the columnar conductive guide becomes a recess for mounting an optical component. The optical / electrical wiring board is characterized in that a lens is provided between the optical board and the optical member for changing an optical path.
[0012]
According to a second aspect of the present invention, there is provided a mounting substrate in which an optical component and / or an electric component is mounted on the optical / electrical substrate according to the first aspect.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
1. Optical / Electrical Wiring Board FIG. 1 is a plan view of a portion where an optical component is mounted in a general optical / electrical wiring board, and FIG. 2 is a cross-sectional view taken along an optical waveguide 2 which is an optical wiring. . FIG. 2 shows a case where two layers of the optical wiring substrates 9 and 9 ′ are stacked via the dummy substrate 15.
[0014]
The optical / electrical wiring board has a structure in which a plurality (two in the drawing) of optical substrates 9 and 9 ′ are stacked on a substrate 8 having electrical wirings 10, 11, 12, and 13. The optical substrate may be laminated in three or more layers, and the substrate 8 may be a single-layer insulating substrate or a multilayer wiring substrate in which electrical wiring and insulating layers are alternately laminated. The constituent material may be an insulating substrate in which a glass cloth is impregnated with a resin, a polyimide film, a ceramic substrate, or the like.
[0015]
In the optical substrates 9 and 9 ′, core layers 2 and 2 ′ are embedded in cladding layers 1 and 1 ′ having a lower refractive index than the core material as optical waveguides (also referred to as optical wirings) for transmitting optical signals. . Since the patterning of the core layer is formed by a photolithography technique, the position can be determined by an alignment mark (not shown) formed on the support substrate.
[0016]
On the optical substrate 9 ′, a mirror 3 is formed which reflects a laser beam as an optical signal and changes the transmission direction to 90 °. This mirror inserts an optical signal emitted from a laser light emitting element mounted on an optical / electrical wiring board in a vertical direction toward the substrate into an optical wiring arranged in parallel with the substrate surface, or conversely It plays the role of changing the optical signal transmission direction vertically toward the light receiving element installed on the optical / electrical wiring board for the transmitted optical signal. Form.
[0017]
Since the mirror can be formed by drilling using an etching method based on a metal mask formed on the optical substrate by photolithography technology or by drilling by laser, the position of the mirror is the alignment formed on the substrate 8. It can be determined by a mark (not shown).
[0018]
The columnar conductive guides 5 and 7 serve as guides when laminating the optical substrate 9 and the dummy substrate 15 to be described later, and one end thereof is electrically connected to the electrical wirings 11 and 13 on the substrate 8. The end is a recess for mounting an optical component (a laser light emitting device lead). The optical substrate 9 and the substrate 8 are bonded with an adhesive 14.
[0019]
In the optical / electrical wiring board according to the present invention, an optical member for changing an optical path is provided on the side surface of the optical board in order to transmit an optical signal to another optical board. Hereinafter, the installation method will be described with reference to FIGS. 3 and 4 (note that description of mirrors and the like is omitted).
[0020]
As shown in FIG. 3, the side surface of the optical substrate on which the cladding layer 1 and the core layer 2 are formed (the side surface of the cladding layer is 1a and the side surface of the core layer is 2a) is optically polished. An optical member for changing the optical path is used to once extract the laser beam 21 as an optical signal from the side surface of the optical substrate and transmit the optical signal to another optical substrate. Specific examples of the optical member for changing an optical path include a prism 17 and an optical fiber. The prism or the like can be bonded to the side surface of the optical substrate with an optical adhesive. If the side surface of the optical substrate is thin and there is no room for bonding the prism 17 or the like, a dummy substrate 15 of the same material as the cladding layer can be inserted between the optical substrates with a suitable thickness. it can. Further, as shown in the right side of FIG. 3, a plurality of optical signals can be simultaneously processed by one prism.
[0021]
In the present invention, the optical wiring layer may be in the same optical substrate, or may be an optical wiring layer of a separate optical substrate. FIG. 4 shows a case where transmission is performed within the same substrate. In FIG. 4, a minute lens 19 is inserted to facilitate alignment of the optical axis of the laser light 21 that is an optical signal input and output to and from the optical fiber 18 and the core layers 2 and 2 ′. . Further, an optical signal can be transmitted to an arbitrary optical wiring layer by combining a plurality of prisms or changing the shape of the side surface of the optical fiber.
[0022]
2. Method for Manufacturing Optical / Electrical Wiring Board A method for manufacturing an optical / electrical wiring board according to the present invention will be described in detail with reference to the drawings.
(1) Manufacturing method of optical substrate A film-shaped optical substrate is formed by the following procedure (see FIG. 5). Resin 31 (which plays the role of a cladding layer in a support medium for an optical substrate that guides light and is a precursor of a fluorinated polyimide resin, a fluorinated polyamic acid, a fluorinated epoxy resin, etc.) on a silicon wafer 30 (Selection) is applied to a thickness of about 20 to 50 microns (step (a)). In the case of a polyamic acid solution, heating is performed at 350 degrees for 1 to 2 hours in order to imidize. If it is an epoxy resin, it is cured by UV curing or 100 to 200 degrees.
[0023]
Next, a resin 32 serving as an optical waveguide, for example, a resin having a refractive index suitable for the wavelength to be guided, such as a fluorine-based polyamic acid solution or a polymethylmethacrylate resin solution, is selected, and uniformly coated with 8 microns by an appropriate method (process) (b)). If there is photosensitivity, it is patterned by a conventional photolithography method to form the optical waveguide 33, and then a curing reaction according to the material is performed. If there is no photosensitivity, a metal mask having a predetermined pattern is formed after curing, and a waveguide pattern is formed by RIE dry etching (step (c)). Further, the same material as that of the previously formed clad layer is similarly applied to a thickness of about 20 to 50 microns to complete the optical substrate 34 (step (d)).
[0024]
Two optical substrates prepared in the same procedure were laminated using an adhesive (step (e)) to obtain multilayer optical substrates 34 and 34 '. The portion where the optical signal is input / output was cut linearly along the dotted line 36, and then the side surface 37 was optically polished to expose the core layer 38 (step (f)).
[0025]
Next, a through hole 35 was formed at a desired position of the multilayer optical substrate (step (g)). A hole is formed by irradiating an excimer laser through a mask having a predetermined pattern. Next, when the film is peeled off from the silicon wafer, a film-like multilayer optical substrate 39 including through holes can be formed (step (h)).
[0026]
(2) Manufacturing method of electric wiring board Next, a manufacturing method of the electric wiring board will be described (see FIG. 6). A copper thin film of about 20 microns is formed on a suitable insulating substrate 40 such as a glass epoxy substrate by plating, sputtering or vapor deposition. A desired metal wiring 41 is formed by a regular photolithography method. In order to form a columnar conductive guide, a metal thin film 42 is formed by sputtering (step (i)), and a resist 43 is applied and developed thereon to form an opening 44 (step (j)).
[0027]
Next, copper plating is performed using the metal thin film 42 as a cathode, and the inside of the opening is buried with copper as much as possible (step (k)). When the resist is removed (step (l)) and the metal thin film is removed by etching, the columnar conductive guide 45 can be formed on the metal wiring (step (m)). As for the shape of the via, it is desirable to use a mask having a shape corresponding to the terminal of an optical component such as a cylindrical shape or a quadrangular prism shape. The height is controlled by the resist film thickness or plating time. In general, the diameter is preferably 30 to 100 microns and the height is preferably about 20 to 100 microns.
[0028]
(3) Manufacturing Method of Optical / Electric Wiring Board The optical board and the electric wiring board are laminated using the conductive guide 45 (see FIG. 7). That is, the film is laminated so that a pillar made of a conductive metal or the like penetrates through the through-hole of the film to the middle of the film (step (n)). It is desirable that the adhesive 14 is applied to the side of the optical substrate that contacts the electric substrate to completely bond and fix the optical substrate and the electric substrate.
[0029]
One or both of the film thickness of the optical substrate and the height of the metal guide are adjusted so that the recess from the film surface is a depth necessary to accommodate the terminal of the optical component, preferably 20 to 100 microns.
[0030]
Further, a metal thin film 46 is formed on the surface of the laminated substrate by sputtering (step (o)), and a photoresist 47 is applied. An exposure / development process is performed to form a photoresist opening 48 for forming a mirror (step (p)).
[0031]
An opening 49 is formed in the metal thin film 46 by etching, and a metal mask for forming a mirror is formed. Further, the substrate is inclined at 45 °, the mirror 50 is formed by RIE dry etching (step (q)), and the metal mask is dissolved and removed to complete the mirror only on the uppermost portion of the optical / electrical wiring substrate ( Step (r)).
[0032]
3. Next, a method for manufacturing a mounting substrate will be described (see FIG. 8). Solder balls were mounted in the recesses 15 of the optical / electrical wiring board, and the terminals 24 of the optical component 22 (laser light emitting element, photodiode) were lightly inserted. The shape of the recess was a circle with a radius of 80 microns and the depth was 50 microns. The number of conducting terminals 24 of the optical component was four and the shape was a circle with a radius of 75 microns. Terminals for electrical components (CPU, memory) were placed on thin soldered metal pads.
[0033]
After cooling for 10 seconds in a reflow oven at a temperature of 250 degrees, the terminals of the optical components are fixed at an equilibrium position determined by the shape of the recess and the surface tension of the molten solder, and the optical axis of the laser is the center position of the mirror ± 3 microns. It was confirmed that it was within the range. Since the top of the columnar conductive guide is directly connected to the optical component by solder as a pad, the connection reliability is also improved.
[0034]
Finally, a prism 17 for optically connecting the necessary portions of the optical wiring layers on the side surfaces 9 and 9 'of the optical substrate is mounted using an optical adhesive so that the optical axis is aligned, and as shown in FIG. The mounting board was completed.
[0035]
Hereinafter, the operation of the mounting substrate will be described. The laser beam 21 irradiated from the laser irradiation unit 23 of the optical component 22 passes through the cladding layer 1 ′ of the optical substrate 9 ′, is reflected by the mirror 3 formed on the core layer 2 ′, and passes through the core layer 2 ′. To transmit. Then, the light is transmitted from the side surface of the optical substrate 9 ′ into the prism 17, reflected by the two sides of the prism, and transmitted from the side surface of the optical substrate 9 to the core layer. Thereafter, the light is reflected by a mirror (not shown) and reaches a light receiving portion of a photodiode (not shown).
[0036]
The mounting substrate according to the present invention was good because no noise was generated even when a signal of about 1 GHz was transmitted.
[0037]
【The invention's effect】
The present invention has the following effects.
First, since a plurality of optical wiring layers are provided on a substrate having electrical wiring, there is an effect that high-density mounting or miniaturization is possible.
[0038]
Second, an optical signal can be transmitted to a plurality of waveguides on different optical substrates by the same optical member.
[0039]
Third, it is possible to transmit an optical signal to different optical waveguides in the same optical substrate by the same optical member.
[0040]
Fourthly, even a thin optical substrate can be thickened with a dummy substrate interposed therebetween, so that a large optical member can be used to facilitate alignment of the optical axis.
[0041]
Fifth, the need for forming a through hole is reduced, and an optical member is externally attached. Therefore, reliability is improved and cost can be reduced.
[0042]
[Brief description of the drawings]
FIG. 1 is a plan view of a portion where an optical component is mounted on an optical / electrical wiring board.
FIG. 2 is a cross-sectional view of an optical / electrical wiring board.
FIG. 3 is an explanatory diagram showing an example of transmitting an optical signal to different optical wirings using the optical member for changing an optical path (prism) according to the present invention.
FIG. 4 is an explanatory diagram showing an example in which an optical signal is transmitted to an optical wiring existing in the same plane by using the optical member for changing an optical path (prism) according to the present invention.
FIG. 5 is an explanatory view showing an example of a method for manufacturing an optical substrate.
FIG. 6 is an explanatory view showing an example of a method for manufacturing an electrical wiring board.
FIG. 7 is an explanatory diagram showing an example in which an optical substrate and an electrical wiring substrate are stacked using a conductive guide.
FIG. 8 is an explanatory diagram of a mounting board according to the present invention.
[Explanation of symbols]
1, 1 'Clad layer 1a Clad layer side surface 2 Optical waveguide (core layer)
2a Optical waveguide (core layer) side surface 3 Mirror 4a Pad 5 Columnar conductive guide 5a Pad 6a Pad 7 Columnar conductive guide 7a Pad 8 Substrate 9, 9 'Optical substrate 10 Electrical wiring 11 Electrical wiring 12 Electrical wiring 13 Electrical wiring 14 Adhesion Agent 15 Dummy substrate 16 Recess 17 Prism 18 Optical fiber 19 Lens 21 Laser light 22 Optical component 23 Laser emission surface 24 Lead 25 Solder 30 Silicon substrate 31 Clad layer 32 Core layer 33 Waveguide 34, 34 'Optical wiring layer 35 Through hole 36 Polishing Part 37 Optically polished optical wiring layer side surface 38 Optically polished core side surface 39 Optical substrate 40 Insulating substrate 41 Electrical wiring 42 Metal thin film 43 Photoresist 44 Photoresist opening 45 Columnar metal guide 46 Metal thin film 47 Photoresist 48 Photoresist Opening 49 Metal thin film opening 50 Mira

Claims (2)

電気配線が埋設された電気配線基板に、光信号伝送用の光導波路が埋設された光基板を積層する光・電気配線基板において、
前記光基板の側面に光路変更用光学部材が設けてあり、
前記光基板がダミー基板を介して複数積層されてあり、
柱状導電性ガイドが前記光基板とダミー基板の前記複数積層の際のガイドになり、該柱状導電性ガイドの一端が前記電気配線基板の上の電気配線と電気的に接続され、該柱状導電性ガイドの他端が光部品を搭載するために凹部になっており、
前記光基板と前記光路変更用光学部材との間にレンズが設けてあること、
を特徴とする光・電気配線基板。
In an optical / electrical wiring board in which an optical board with an optical waveguide for optical signal transmission embedded in an electrical wiring board with an embedded electrical wiring,
An optical member for changing the optical path is provided on the side surface of the optical substrate ,
A plurality of the optical substrates are stacked via a dummy substrate,
A columnar conductive guide serves as a guide when the optical substrate and the dummy substrate are stacked, and one end of the columnar conductive guide is electrically connected to the electrical wiring on the electrical wiring substrate. The other end of the guide is a recess for mounting optical components,
A lens is provided between the optical substrate and the optical member for changing an optical path;
Optical and electrical wiring board characterized by
請求項1に記載の光・電気基板に光部品又は/及び電気部品を実装したことを特徴とする実装基板。A mounting substrate comprising an optical component and / or an electrical component mounted on the optical / electrical substrate according to claim 1 .
JP18587499A 1999-06-30 1999-06-30 Optical / electrical wiring board and mounting board Expired - Fee Related JP4253933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18587499A JP4253933B2 (en) 1999-06-30 1999-06-30 Optical / electrical wiring board and mounting board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18587499A JP4253933B2 (en) 1999-06-30 1999-06-30 Optical / electrical wiring board and mounting board

Publications (2)

Publication Number Publication Date
JP2001015871A JP2001015871A (en) 2001-01-19
JP4253933B2 true JP4253933B2 (en) 2009-04-15

Family

ID=16178400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18587499A Expired - Fee Related JP4253933B2 (en) 1999-06-30 1999-06-30 Optical / electrical wiring board and mounting board

Country Status (1)

Country Link
JP (1) JP4253933B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102135649B (en) * 2010-08-04 2012-04-18 华为技术有限公司 Manufacturing method of optical module and optical module

Also Published As

Publication number Publication date
JP2001015871A (en) 2001-01-19

Similar Documents

Publication Publication Date Title
KR100751274B1 (en) Optoelectronic substrate, circuit board, and method of manufacturing optoelectronic substrate
US6804423B2 (en) Optical-electrical wiring board, mounted board and method of manufacturing optical-electrical wiring board
JP4153007B2 (en) Optical wiring board and opto-electric hybrid board
JP2001196643A (en) Chip carrier for mounting light/electric element and mounting method thereof, light/electric wiring board and manufacturing method thereof, and mounting board
JP4677651B2 (en) Optical wiring layer manufacturing method, optical / electrical wiring substrate, manufacturing method thereof, and mounting substrate
CN110780393B (en) Optical waveguide and optical circuit board
JP2000347051A (en) Optical/electrical wiring board, its manufacturing method and package board
JP2000298217A (en) Optical-electric wiring substrate and manufacture therefor, and mounting substrate
JP2001004854A (en) Optical and electrical wiring board and mounting substrate
JP4538949B2 (en) Substrate manufacturing method for mounting optical components
JP2000340906A (en) Optical/electrical wiring board, manufacture thereof and mounting board
JP4320850B2 (en) Optical / electrical wiring board, mounting board, and manufacturing method thereof
JP4253933B2 (en) Optical / electrical wiring board and mounting board
JP4304764B2 (en) Optical / electrical wiring board, manufacturing method, and mounting board
JP4339198B2 (en) Manufacturing method of optical module
JP4590722B2 (en) Substrate manufacturing method for mounting optical components
JP2001196494A (en) Chip carrier for mounting opto-electric element, manufacturing and mounting method therefor, opto- electric wiring board, manufacturing method therefor and mounted substrate
JP4419216B2 (en) Optical / electrical wiring board, mounting board manufacturing method, and mounting board
JPH08194137A (en) Electro-optical hybrid module and its production
JP2001083346A (en) Electric/optic mixed loading wiring board, electricity- light mixed loading module and method for its production
JP4240659B2 (en) Optical / electrical wiring board, manufacturing method, and mounting board
JP2000347052A (en) Optical/electrical wiring board, its manufacturing method and package board
JP2000340905A (en) Optical/electric wiring board, manufacture thereof and mounting board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees