JPH08194137A - Electro-optical hybrid module and its production - Google Patents
Electro-optical hybrid module and its productionInfo
- Publication number
- JPH08194137A JPH08194137A JP523295A JP523295A JPH08194137A JP H08194137 A JPH08194137 A JP H08194137A JP 523295 A JP523295 A JP 523295A JP 523295 A JP523295 A JP 523295A JP H08194137 A JPH08194137 A JP H08194137A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- layer
- optical waveguide
- optical element
- electro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Optical Integrated Circuits (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光通信装置等に用いる
モジュールであって、光導波路と端面型光素子とを光結
合してなる電気光混載モジュールおよびその製造方法に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a module for use in an optical communication device and the like, and to an electro-optical hybrid module in which an optical waveguide and an end-face type optical element are optically coupled to each other, and a method of manufacturing the same.
【0002】[0002]
【従来の技術】端面型光素子として一般的な発光素子を
対象に、従来の電気光混載モジュールの光導波路−端面
型光素子間光結合構造について説明する。2. Description of the Related Art An optical coupling structure between an optical waveguide and an end-face type optical element of a conventional electro-optical hybrid module will be described for a general light-emitting element as an end-face type optical element.
【0003】図16および図17は、このような電気光
混載モジュールの一例を示すもので、図16は斜視図、
図17は図16中のx−x′に沿う断面図である。図
中、41はSi基板、42は端面型光素子、42′は端
面型光素子42の発光部中心、43は光素子設置領域、
43′は前記光素子設置領域43上に形成した導体層、
43′′は導体層43′上に形成した半田層、44は光
導波路、45は上部光導波路クラッド、46は光導波路
コア、47は下部光導波路クラッドである。16 and 17 show an example of such an electro-optical hybrid module, and FIG. 16 is a perspective view,
FIG. 17 is a sectional view taken along line xx 'in FIG. In the figure, 41 is a Si substrate, 42 is an end face type optical element, 42 'is the center of the light emitting portion of the end face type optical element 42, 43 is an optical element installation region,
43 'is a conductor layer formed on the optical element mounting region 43,
43 ″ is a solder layer formed on the conductor layer 43 ′, 44 is an optical waveguide, 45 is an upper optical waveguide clad, 46 is an optical waveguide core, and 47 is a lower optical waveguide clad.
【0004】従来の電気光混載モジュールの光導波路−
端面型光素子間光結合構造においては、光導波路コア4
6の光軸と半田層43′′の上面との距離が、半田層4
3′′に接触している端面型光素子42の底面と該光素
子の発光部中心42′との間の距離に等しくなるよう
に、製造されている。すなわち、Si基板41上に石英
系ガラスから成る下部光導波路クラッド層47、光導波
路コア層46、および上部光導波路クラッド層45を1
500℃もの高温処理により形成した後に、上部光導波
路クラッド層45上面に光導波路形成用のエッチングマ
スクを形成して反応性イオンエッチングを行い、光導波
路44と端面型光素子42の設置領域43とを形成す
る。この例では、この光素子設置領域43の表面はSi
基板41の上面と同一面である。なお、前記説明では、
パターニング前と後との光導波路44の各層の符号とし
ては、図示の都合から同一番号を付した。次に、前記光
素子設置領域43上に金属導体(例えばAu/Ni/C
r)を蒸着して導体層43′を形成し、その上に薄膜半
田層(例えばAu/Sn共晶半田)43′′を形成す
る。その後に、図示していない位置合わせ装置を用い
て、光素子設置領域43の前記半田層43′′上に端面
型光素子42を設置する。すなわち、光素子設置領域4
3の表面に平行な面内における端面型光素子42の光軸
と光導波路44の光軸とを一致させ、端面型光素子42
の底面を半田層43′′に接触させ、次に半田層4
3′′を加熱・溶融することにより、端面型光素子42
を導体層43′および半田層43′′を介して基板41
上に固定させる。これにより、光結合構造が完成され
る。Optical waveguide of a conventional electro-optical hybrid module-
In the end-face type optical coupling structure between optical elements, the optical waveguide core 4 is used.
The distance between the optical axis of 6 and the upper surface of the solder layer 43 '' is
It is manufactured so as to have a distance equal to the distance between the bottom surface of the end facet type optical element 42 in contact with 3 ″ and the center 42 ′ of the light emitting portion of the optical element. That is, the lower optical waveguide clad layer 47, the optical waveguide core layer 46, and the upper optical waveguide clad layer 45, which are made of silica glass, are formed on the Si substrate 41.
After being formed by a high temperature treatment of 500 ° C., an etching mask for forming an optical waveguide is formed on the upper surface of the upper optical waveguide clad layer 45 and reactive ion etching is performed to form an optical waveguide 44 and an installation region 43 of the end surface type optical element 42. To form. In this example, the surface of the optical element installation region 43 is made of Si.
It is flush with the upper surface of the substrate 41. In the above description,
The reference numerals of the respective layers of the optical waveguide 44 before and after patterning are the same for convenience of illustration. Next, a metal conductor (for example, Au / Ni / C) is formed on the optical element installation region 43.
r) is vapor-deposited to form a conductor layer 43 ', and a thin film solder layer (for example, Au / Sn eutectic solder) 43''is formed thereon. After that, the end face type optical element 42 is set on the solder layer 43 ″ in the optical element setting area 43 by using a positioning device (not shown). That is, the optical element installation area 4
3, the optical axis of the end facet type optical element 42 and the optical axis of the optical waveguide 44 in the plane parallel to the surface of the end facet type optical element 42 are aligned.
Contact the bottom surface of the solder layer 43 ″ with the solder layer 4 ″.
By heating and melting 3 ″, the end-face type optical element 42
Through the conductor layer 43 'and the solder layer 43''
Fix on top. Thereby, the optical coupling structure is completed.
【0005】この方法では、光導波路44を構成する石
英系ガラスに比べて基板41を構成するSiの方が反応
性イオンエッチングにおけるエッチング速度が小さいた
めに、Si基板41の上面がエッチングストップ層とな
り、光素子設置領域43を高精度に深掘加工できる。そ
のため、光導波路44に対する端面型光素子42の高さ
方向の光軸調整は、端面型光素子42を光素子設置領域
43の表面上に形成した半田層43′′の上面に接触さ
せるだけで行うことができ、位置合わせが容易になると
いった利点がある。In this method, since Si forming the substrate 41 has a smaller etching rate in the reactive ion etching than the silica glass forming the optical waveguide 44, the upper surface of the Si substrate 41 serves as an etching stop layer. The optical element installation region 43 can be deeply machined with high precision. Therefore, adjustment of the optical axis in the height direction of the end-faced optical element 42 with respect to the optical waveguide 44 is performed only by bringing the end-faced optical element 42 into contact with the upper surface of the solder layer 43 ″ formed on the surface of the optical element installation region 43. It has the advantage that it can be performed and the alignment becomes easy.
【0006】図18および図19は、他の従来の電気光
混載モジュールの光導波路−端面型光素子間光結合構造
を示すものであり、図18は斜視図であり、図19は図
18のx−x′に沿う断面図を示している。図中、50
は従来の電気光混載配線板、51は多層セラミック基
板、51′は銅ポリイミド多層配線層、52は端面型光
素子、52′は端面型光素子52の発光部中心、53は
光素子設置領域、53′前記光素子設置領域53上に形
成された導体層、53′′は導体層53′上に形成され
た半田層、54はポリマ光導波路、55はポリマ上部光
導波路クラッド、56はポリマ光導波路コア、57はポ
リマ下部光導波路クラッドである。18 and 19 show an optical coupling structure between an optical waveguide and an end face type optical element of another conventional electro-optical hybrid module, FIG. 18 is a perspective view, and FIG. A cross-sectional view along the line xx 'is shown. 50 in the figure
Is a conventional electro-optical mixed wiring board, 51 is a multilayer ceramic substrate, 51 'is a copper polyimide multilayer wiring layer, 52 is an end face type optical element, 52' is the center of the light emitting portion of the end face type optical element 52, and 53 is an optical element installation region , 53 ', a conductor layer formed on the optical element mounting region 53, 53 ", a solder layer formed on the conductor layer 53', 54, a polymer optical waveguide, 55, a polymer upper optical waveguide cladding, 56, a polymer. The optical waveguide core and 57 are polymer lower optical waveguide claddings.
【0007】上記従来の電気光混載モジュールの光導波
路−端面型光素子間光結合構造は、次のようにして実現
されている。すなわち、銅ポリイミド多層配線層51′
上に、400℃以下の熱処理により、ポリマ下部光導波
路クラッド層57、ポリマ光導波路コア層56、ポリマ
上部光導波路クラッド層55を形成した後に、ポリマ上
部光導波路クラッド層55の上面にポリマ光導波路形成
用のエッチングマスクを形成して、ポリマ上部光導波路
クラッド層55の上面に反応性イオンエッチングを行
い、ポリマ光導波路54と端面型光素子52の設置領域
53とを形成する。なお、前記説明では、パターニング
前と後との光導波路54の各層の符号としては、図示の
都合から同一番号を付した。前記銅ポリイミド多層配線
層51′内には予め金属導体(例えばAu/Ni/C
u)を形成しておく。したがって、前記反応性イオンエ
ッチングにより、前記金属導体からなる導体層53′が
表面に現われる。この導体層53′上に薄膜半田層(例
えばAu/Sn共晶半田)53′′を形成した後に、図
示していない位置合わせ装置を用いて、光素子設置領域
53上の前記半田層53′′上に端面型光素子52を設
置する。すなわち、光素子設置領域53と平行な面内に
おける端面型光素子52の光軸と光導波路54の光軸を
一致させ、端面型光素子52の底面を半田層53′′に
接触させ、半田層53′′を加熱・溶融することによ
り、端面型光素子52を固定させる。これによって光結
合構造が完成される。The optical coupling structure between the optical waveguide and the end face type optical element of the above conventional electro-optical hybrid module is realized as follows. That is, the copper polyimide multilayer wiring layer 51 '
After the polymer lower optical waveguide clad layer 57, the polymer optical waveguide core layer 56, and the polymer upper optical waveguide clad layer 55 are formed thereon by heat treatment at 400 ° C. or lower, the polymer optical waveguide is formed on the upper surface of the polymer upper optical waveguide clad layer 55. An etching mask for formation is formed, and reactive ion etching is performed on the upper surface of the polymer upper optical waveguide clad layer 55 to form the polymer optical waveguide 54 and the installation region 53 of the end surface type optical element 52. In the above description, the reference numerals of the layers of the optical waveguide 54 before and after patterning are the same for convenience of illustration. A metal conductor (for example, Au / Ni / C) is previously formed in the copper polyimide multilayer wiring layer 51 '.
u) is formed. Therefore, by the reactive ion etching, the conductor layer 53 'made of the metal conductor appears on the surface. After forming a thin film solder layer (for example, Au / Sn eutectic solder) 53 ″ on the conductor layer 53 ′, the solder layer 53 ′ on the optical element mounting region 53 is formed by using a positioning device (not shown). The end facet type optical element 52 is installed on the above. That is, the optical axis of the end surface type optical element 52 and the optical axis of the optical waveguide 54 are aligned in a plane parallel to the optical element installation region 53, the bottom surface of the end surface type optical element 52 is brought into contact with the solder layer 53 ″, and soldering is performed. The end facet type optical element 52 is fixed by heating and melting the layer 53 ″. This completes the optical coupling structure.
【0008】この方法では、高密度電気配線である銅ポ
リイミド多層配線層に光導波路を積層一体化するため、
電気光混載配線板上で多数のLSIや光素子と電気的あ
るいは光学的に接続することができるといった利点があ
る。In this method, since the optical waveguide is laminated and integrated with the copper-polyimide multilayer wiring layer which is a high-density electrical wiring,
There is an advantage that it can be electrically or optically connected to a large number of LSIs and optical elements on the electro-optical mixed wiring board.
【0009】[0009]
【発明が解決しようとする課題】しかしながら、図16
および図17を用いて説明した従来の電気光混載モジュ
ールでは、光導波路44の形成に1500℃もの高温処
理が必要なため、銅ポリイミド多層配線層上に光導波路
を積層一体化させることができず、多数のLSIや光素
子との電気的接続に必要な高密度電気配線の形成が困難
であるという問題がある。また、光素子設置領域43は
Si基板上に形成されるため、光素子設置領域内および
その下には高密度電気配線を形成できないといった問題
もある。However, as shown in FIG.
In the conventional electro-optical hybrid module described with reference to FIG. 17 and FIG. 17, since a high temperature treatment of 1500 ° C. is required to form the optical waveguide 44, the optical waveguide cannot be laminated and integrated on the copper polyimide multilayer wiring layer. However, there is a problem that it is difficult to form high-density electrical wiring necessary for electrical connection with a large number of LSIs and optical elements. Further, since the optical element installation area 43 is formed on the Si substrate, there is also a problem that high-density electrical wiring cannot be formed in and under the optical element installation area.
【0010】また、図18および図19を用いて説明し
た他の従来の電気光混載配線板を用いた電気光混載モジ
ュールでは、反応性イオンエッチング条件を基板面全体
に渡って高精度に制御することが困難なため、光素子設
置領域53上の金属導体上にポリマが残存しないように
エッチングを行うと、ポリマ光導波路54が積層されて
いない部分の銅ポリイミド多層配線層51′がオーバエ
ッチングされて、多層配線層51′上の電気配線や導体
パッド、あるいは多層配線層51′が侵食される可能性
がある。また、光素子設置領域53上に形成した金属導
体層53′がオーバエッチングされると、導体厚が減少
し、端面型光素子52の底面を導体層53′上に形成し
た半田層53′′に接触させるだけでは、端面型光素子
52のポリマ光導波路54との高さ方向の光軸調整が困
難になることに加え、光素子設置領域53上に順次形成
した金属導体層53′と半田層53′′との接着強度が
弱くなり、端面型光素子52の固定が難しくなる、とい
う問題がある。さらに、端面型光素子52は熱伝導性の
劣る銅ポリイミド多層配線層51′上に搭載されるた
め、放熱性が悪く光信号特性を劣化させるといった問題
がある。Further, in another electro-optical hybrid module using the other conventional electro-optical hybrid wiring board described with reference to FIGS. 18 and 19, the reactive ion etching conditions are controlled with high accuracy over the entire substrate surface. Therefore, if the etching is performed so that the polymer does not remain on the metal conductor on the optical element installation region 53, the copper polyimide multilayer wiring layer 51 ′ in the portion where the polymer optical waveguide 54 is not laminated is over-etched. As a result, there is a possibility that the electric wiring or the conductor pad on the multilayer wiring layer 51 'or the multilayer wiring layer 51' will be eroded. When the metal conductor layer 53 'formed on the optical element installation region 53 is over-etched, the conductor thickness is reduced, and the bottom surface of the end face type optical element 52 is formed on the conductor layer 53' by the solder layer 53 ". It becomes difficult to adjust the optical axis in the height direction of the end facet type optical element 52 with the polymer optical waveguide 54 by simply contacting the end surface type optical element 52 with a metal conductor layer 53 ′ and a solder which are sequentially formed on the optical element installation region 53. There is a problem in that the adhesive strength with the layer 53 ″ becomes weak and it becomes difficult to fix the end facet type optical element 52. Further, since the end-face type optical element 52 is mounted on the copper-polyimide multilayer wiring layer 51 'having poor thermal conductivity, there is a problem that the heat dissipation is poor and the optical signal characteristics are deteriorated.
【0011】[0011]
【課題を解決するための手段】前記課題を解決するため
に、本発明の請求項1の電気光混載モジュールは、基板
上に、絶縁体層と第1の導体層とが多層化されてなる多
層配線層が形成され、該多層配線層上に、光導波路コア
を該光導波路コアよりも屈折率の低い上部および下部光
導波路クラッドが挟んでなる光導波路が積層された電気
光混載配線板と、前記電気光混載配線板の前記光導波路
と光結合されている端面型光素子と、を有する電気光混
載モジュールであって、前記基板上の前記光導波路端部
前方に光伝搬方向に対して垂直な側壁を持つ光素子設置
領域が形成されるとともに、該光素子設置領域の表面に
は前記光導波路の平面に平行に第2の導体層が形成さ
れ、かつ該第2の導体層上には、該第2の導体層に平行
に半田層が形成され、さらに該半田層の表面から前記光
導波路コアの光軸までの距離が、前記端面型光素子の前
記半田層に接触する裏面から該端面型光素子の活性部中
心までの距離と等しく設定され、前記端面型光素子の活
性部中心を通る光軸が、前記光導波路コアの光軸と一致
する位置で、前記端面型光素子が前記電気光混載配線板
上の前記半田層に固定されている、ことを特徴とする。In order to solve the above-mentioned problems, the electro-optical hybrid module according to claim 1 of the present invention comprises an insulating layer and a first conductor layer which are multi-layered on a substrate. An electro-optical hybrid wiring board in which a multilayer wiring layer is formed, and an optical waveguide formed by sandwiching an optical waveguide core with an upper and a lower optical waveguide clad having a lower refractive index than the optical waveguide core is formed on the multilayer wiring layer. And an end-face type optical element optically coupled to the optical waveguide of the electric-optical hybrid wiring board, wherein the electrical-optical hybrid module is provided in front of an end portion of the optical waveguide on the substrate with respect to a light propagation direction. An optical element installation region having vertical sidewalls is formed, and a second conductor layer is formed on the surface of the optical element installation region parallel to the plane of the optical waveguide, and on the second conductor layer. Has a solder layer formed in parallel with the second conductor layer. Further, the distance from the surface of the solder layer to the optical axis of the optical waveguide core is set equal to the distance from the back surface of the end facet type optical element in contact with the solder layer to the center of the active portion of the end facet type optical element, The end facet type optical element is fixed to the solder layer on the electro-optical hybrid wiring board at a position where the optical axis passing through the center of the active portion of the end facet type optical element coincides with the optical axis of the optical waveguide core. , Is characterized.
【0012】本発明の請求項2の電気光混載モジュール
は、請求項1の電気光混載モジュールにおいて、前記電
気光混載配線板の前記第2の導体の裏面が前記基板と柱
状導体により接続されていることを特徴とする。An electro-optical hybrid module according to a second aspect of the present invention is the electro-optical hybrid module according to the first aspect, wherein the back surface of the second conductor of the electro-optical hybrid wiring board is connected to the substrate by a columnar conductor. It is characterized by being
【0013】また、本発明の請求項3に記載の電気光混
載モジュールの製造方法は、基板上に絶縁体層と第1の
導体層とが多層化されてなる電気配線層が形成され、該
多層電気配線層上に、光導波路コアを該光導波路コアよ
りも屈折率の低い上部および下部光導波路クラッドが挟
んでなる光導波路が積層された電気光混載配線板と、前
記電気光混載配線板の前記光導波路と光結合されている
端面型光素子と、を有する電気光混載モジュールの製造
方法であって、前記絶縁体層をポリマから構成し、該絶
縁体層からなる前記多層配線層の上面と平行に金属から
なる第2の導体層を形成し、該第2の導体層上に該第2
の導体層と同一寸法以上で平行に、該第2の導体と異な
る材料でかつ前記光導波路材料に比べて反応性イオンエ
ッチング速度の小さい第1の金属層を形成する工程と、
前記多層配線層の上面であって、前記第1の金属層を覆
わずに平行に、かつ前記下部光導波路クラッドを積層し
ない位置に、前記光導波路材料に比べて反応性イオンエ
ッチング速度の小さい第2の金属層を形成する工程と、
前記第2の金属層が形成された側の前記絶縁層の上面
に、前記下部光導波路クラッドとなるポリマからなる下
部光導波路クラッド層、前記光導波路コアとなるポリマ
からなる光導波路コア層、および前記上部光導波路クラ
ッドとなるポリマからなる上部光導波路クラッド層を、
各々前記多層配線層の上面に平行に、かつ前記光導波路
コアの光軸中心と前記第2の導体層に形成する前記半田
層の表面との間の距離が、該半田層に搭載する前記端面
型光素子の前記半田層接触面から該端面型光素子の活性
部中心までの距離と等しくなるように、積層する工程
と、前記上部光導波路クラッド層の上面に、前記第1,
第2の金属層を覆わず平行に、前記光導波路材料に比べ
て反応性イオンエッチング速度の小さい第3の金属層を
形成する工程と、前記上部光導波路クラッド層の上面に
対して垂直に反応性イオンエッチングを行い、前記第3
の金属層が形成されていない前記上部光導波路クラッド
層、前記光導波路コア層、前記下部光導波路クラッド
層、さらに前記第2,第3の金属層が形成されていない
前記多層配線層をエッチングして、前記光導波路と前記
光素子の設置領域とを同時に形成する工程と、前記第
1,第2,第3の金属層を除去する工程と、前記光素子
設置領域上の第2の導体の上に、該第2の導体と平行に
前記半田層を形成する工程と、を有することを特徴とす
る。According to a third aspect of the present invention, there is provided a method of manufacturing an electro-optical hybrid module, wherein an electric wiring layer is formed by laminating an insulating layer and a first conductor layer on a substrate. An electro-optical hybrid wiring board in which an optical waveguide having an optical waveguide core sandwiched by upper and lower optical waveguide clads sandwiching the optical waveguide core is laminated on a multilayer electric wiring layer, and the electro-optical hybrid wiring board A method of manufacturing an electro-optical hybrid module having an end facet type optical element optically coupled to the optical waveguide of, wherein the insulator layer is made of a polymer, and the multi-layer wiring layer is formed of the insulator layer. A second conductor layer made of metal is formed parallel to the upper surface, and the second conductor layer is formed on the second conductor layer.
Forming a first metal layer, which is made of a material different from that of the second conductor and has a smaller reactive ion etching rate than that of the optical waveguide material, in parallel with the conductor layer having the same dimension or more,
At a position on the upper surface of the multilayer wiring layer which is parallel to the first metal layer without covering the first metal layer and where the lower optical waveguide clad is not stacked, the reactive ion etching rate is smaller than that of the optical waveguide material. Forming a second metal layer,
A lower optical waveguide clad layer made of a polymer to be the lower optical waveguide clad, an optical waveguide core layer made of a polymer to be the optical waveguide core, and an upper surface of the insulating layer on the side where the second metal layer is formed, An upper optical waveguide clad layer made of a polymer to be the upper optical waveguide clad,
The distance between the optical axis center of the optical waveguide core and the surface of the solder layer formed on the second conductor layer is parallel to the upper surface of the multilayer wiring layer, and the end surface mounted on the solder layer. Of the first optical waveguide clad layer on the upper surface of the upper optical waveguide clad layer such that the distance from the contact surface of the solder layer of the optical device to the center of the active portion of the end face type optical device is the same.
Forming a third metal layer having a smaller reactive ion etching rate than the optical waveguide material in parallel without covering the second metal layer and reacting vertically to the upper surface of the upper optical waveguide clad layer. And the third ion
Of the upper optical waveguide clad layer where the metal layer is not formed, the optical waveguide core layer, the lower optical waveguide clad layer, and the multilayer wiring layer where the second and third metal layers are not formed. The step of simultaneously forming the optical waveguide and the installation area of the optical element, the step of removing the first, second and third metal layers, and the step of forming the second conductor on the installation area of the optical element. And a step of forming the solder layer in parallel with the second conductor.
【0014】本発明の請求項4の電気光混載モジュール
の製造方法は、前記請求項3の電気光混載モジュールの
製造方法において、前記端面型光素子の活性部側の側面
を前記光導波路端部側にある前記光素子設置領域の側壁
に平行に接触させ、しかも該光素子設置領域の表面に平
行な面に投影した前記光導波路の光軸と前記端面型光素
子の活性部中心を通る光軸とを一致させ、前記端面型光
素子の底面を前記半田層の表面に平行に接触させて該半
田層ならびに前記端面型光素子を加熱し、前記半田層を
溶融することにより、前記電気光混載配線板に前記端面
型光素子を固定することを特徴とする。A method for manufacturing an electro-optical hybrid module according to a fourth aspect of the present invention is the method for manufacturing the electro-optical hybrid module according to the third aspect, wherein the side surface on the active portion side of the end facet type optical element is the optical waveguide end portion. The light passing through the optical axis of the optical waveguide and the center of the active portion of the end face type optical element, which is in contact with the side wall of the optical element installation area on the side parallel to the side surface, and is projected on a plane parallel to the surface of the optical element installation area. Aligning the axes, the bottom surface of the end surface type optical element is brought into contact with the surface of the solder layer in parallel to heat the solder layer and the end surface type optical element, and the solder layer is melted to generate the electric light. The end face type optical element is fixed to a mixed wiring board.
【0015】[0015]
【作用】前記構成の本発明による電気光混載モジュール
によれば、銅ポリイミド多層配線層の適用により電気配
線を高密度化できる。しかも、端面型光素子を搭載する
光素子設置領域の表面上に形成した金属導体層および光
導波路を積層しない部分の銅ポリイミド多層配線層が、
ポリマ光導波路材料よりも反応性イオンエッチングに対
するエッチング速度の小さい金属マスクで覆われるた
め、反応性イオンエッチングを行っても侵食されない。
従って、光素子設置領域上に形成した金属導体層および
光導波路を積層しない部分の銅ポリイミド多層配線層を
傷めることがなく、しかも、端面型光素子の底面を光素
子設置領域上に形成した半田層に接触させるだけで、高
さ方向の光軸位置合わせが容易に行える光結合構造が実
現できる。さらに、光素子設置領域上に形成した金属導
体層の裏面と多層セラミック基板とが柱状導体により接
続されているので、光素子設置領域と多層セラミック基
板の間の層の熱抵抗が低減され、搭載した端面型光素子
の放熱特性を向上させることができる。According to the electro-optical hybrid module of the present invention having the above structure, the density of electric wiring can be increased by applying the copper-polyimide multilayer wiring layer. Moreover, the copper-polyimide multilayer wiring layer of the portion where the metal conductor layer and the optical waveguide formed on the surface of the optical element installation region for mounting the end face type optical element are not laminated,
Since it is covered with a metal mask whose etching rate for reactive ion etching is lower than that of the polymer optical waveguide material, it is not eroded even by reactive ion etching.
Therefore, it is possible to prevent damage to the copper-polyimide multilayer wiring layer in the portion where the metal conductor layer and the optical waveguide formed on the optical element installation area are not damaged, and moreover, the bottom surface of the end-face type optical element is soldered on the optical element installation area. It is possible to realize an optical coupling structure in which the optical axis alignment in the height direction can be easily performed only by bringing the layers into contact with each other. Furthermore, since the back surface of the metal conductor layer formed on the optical element installation area and the multilayer ceramic substrate are connected by the columnar conductor, the thermal resistance of the layer between the optical element installation area and the multilayer ceramic substrate is reduced, and mounting is performed. It is possible to improve the heat dissipation characteristics of the end face type optical element.
【0016】[0016]
【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。Embodiments of the present invention will be described below in detail with reference to the drawings.
【0017】(実施例1)図1および図2に、本発明の
電気光混載モジュールの第1の実施例の光導波路−端面
型光素子間光結合構造を示す。図1は斜視図であり、図
2は図1のx−x′線に沿う断面図である。図中、10
は電気光混載配線板、11は多層セラミック基板、1
1′は銅ポリイミド多層配線層、12は端面型光素子、
12′は光素子12の発光部中心、13は端面型光素子
12を搭載する溝状の光素子設置領域、13′は前記光
素子設置領域13の上に形成した(第2の)導体層、1
3′′は前記導体層13′上に形成した半田層、1
3′′′は前記光素子設置領域13の側壁、14はポリ
マ光導波路、15はポリマ上部光導波路クラッド、16
はポリマ光導波路コア、17はポリマ下部光導波路クラ
ッドである。(Embodiment 1) FIGS. 1 and 2 show an optical coupling structure between an optical waveguide and an end surface type optical element of a first embodiment of an electro-optical hybrid module of the present invention. 1 is a perspective view, and FIG. 2 is a sectional view taken along the line xx ′ of FIG. 10 in the figure
Is an electro-optical mixed wiring board, 11 is a multilayer ceramic substrate, 1
1'is a copper polyimide multilayer wiring layer, 12 is an end-face type optical element,
Reference numeral 12 'is the center of the light emitting portion of the optical element 12, 13 is a groove-shaped optical element installation region for mounting the end-face type optical element 12, and 13' is a (second) conductor layer formed on the optical element installation region 13. 1
3 ″ is a solder layer formed on the conductor layer 13 ′, 1
3 '''is a side wall of the optical element mounting region 13, 14 is a polymer optical waveguide, 15 is a polymer upper optical waveguide cladding, 16
Is a polymer optical waveguide core, and 17 is a polymer lower optical waveguide clad.
【0018】前記端面型光素子12においては、例え
ば、厚さ90μmで、その発光部中心12′が表面から
5μmの位置にある5チャネルのInGaAsP系FP
レーザアレイ(チャネル間ピッチは、例えば、400μ
m)を用いる。この光素子12と同じチャネル間ピッチ
で整列したポリマ光導波路14は、銅ポリイミド多層配
線層11′との親和性が高く光透過率の高いポリマ(例
えば、フッ素化ポリイミド)で構成する。そして、ポリ
マ光導波路コア16は、例えば、厚さ幅とも50μm、
上部および下部のポリマ光導波路クラッド15,17
は、例えば、厚さ40μmで幅50μmである。導体層
13′(例えば、Au/Ni/Cu)上に形成された例
えば厚さ5μmの半田層13′′(例えば、Au/Sn
共晶半田)の上面は、銅ポリイミド多層配線層11′の
上面から20μmのところに該上面に平行に設定する。
また、光素子設置領域13側にあるポリマ光導波路14
のチャネル間の端部を銅ポリイミド多層配線層11′の
上面と(図面に直交する方向に)平行に結ぶ線は、光素
子設置領域13の側壁13′′′に平行であり、かつ側
壁13′′′は、半田層13′′の上面に垂直に立ち上
がっている。ここで、端面型光素子12の発光部側の側
面は側壁13′′′に平行にしておく。なお、ポリマ光
導波路14のチャネル間の端部を銅ポリイミド多層配線
層11′の上面と平行(図面に直交する方向)に結ぶ線
は、前記光素子設置領域13の側壁13′′′と同一平
面内になくても良い。また、ポリマ光導波路14のチャ
ネル間の端部を結ぶ面は、光素子設置領域13の側壁1
3′′′と平行でなくても良く、特にポリマ光導波路1
4の端部と端面型光素子12の発光面側側面12′′と
の間で共振を発生させないためには、ポリマ光導波路1
4のチャネル間の端部を結ぶ面が、光素子設置領域13
の側壁13′′′に対してわずかに(例えば8〜9°)
傾いていると良い。In the end face type optical element 12, for example, a 5-channel InGaAsP-based FP having a thickness of 90 μm and a light emitting portion center 12 ′ of which is 5 μm from the surface.
Laser array (pitch between channels is, for example, 400μ
m) is used. The polymer optical waveguide 14 aligned with the same channel pitch as the optical element 12 is made of a polymer (for example, fluorinated polyimide) having a high affinity with the copper-polyimide multilayer wiring layer 11 'and a high light transmittance. The polymer optical waveguide core 16 has, for example, a thickness width of 50 μm,
Upper and lower polymer optical waveguide claddings 15, 17
Is, for example, 40 μm thick and 50 μm wide. A solder layer 13 ″ (for example, Au / Sn) having a thickness of, for example, 5 μm formed on the conductor layer 13 ′ (for example, Au / Ni / Cu).
The upper surface of the eutectic solder) is set 20 μm from the upper surface of the copper-polyimide multilayer wiring layer 11 ′ in parallel with the upper surface.
In addition, the polymer optical waveguide 14 on the optical element installation region 13 side
A line connecting the ends between the channels in parallel with the upper surface of the copper-polyimide multilayer wiring layer 11 ′ (in the direction orthogonal to the drawing) is parallel to the side wall 13 ′ ″ of the optical element installation region 13, and The ″ ″ stands upright on the upper surface of the solder layer 13 ″. Here, the side surface of the end facet type optical element 12 on the light emitting portion side is set parallel to the side wall 13 ″ ″. The line connecting the end portions between the channels of the polymer optical waveguide 14 in parallel with the upper surface of the copper-polyimide multilayer wiring layer 11 '(the direction orthogonal to the drawing) is the same as the side wall 13''' of the optical element installation region 13. It does not have to be in the plane. The surface connecting the ends of the polymer optical waveguides 14 between the channels is the side wall 1 of the optical element mounting region 13.
It does not have to be parallel to 3 ", especially the polymer optical waveguide 1
4 does not generate resonance between the end portion 4 and the side surface 12 ″ of the end facet type optical element 12 on the light emitting surface side, the polymer optical waveguide 1
The surface connecting the ends of the four channels is the optical element installation region 13
Slightly (eg 8-9 °) to the side wall 13 '' of
It is good to lean.
【0019】端面型光素子12の底面と該光素子の発光
部中心12′との間の距離(=85μm)が、半田層1
3′′の上面とポリマ光導波路コア16の中心までの距
離と等しいことから、端面型光素子12の底面を半田層
13′′の上面に接触させるだけで、高さ方向のポリマ
光導波路14の光軸と端面型光素子12の光軸とを一致
させることができる。The distance (= 85 μm) between the bottom surface of the end face type optical element 12 and the center 12 'of the light emitting portion of the optical element is the solder layer 1
Since the distance from the upper surface of 3 ″ to the center of the polymer optical waveguide core 16 is equal, the bottom surface of the end facet type optical element 12 is simply brought into contact with the upper surface of the solder layer 13 ″ so that the height of the polymer optical waveguide 14 is increased. And the optical axis of the end surface type optical element 12 can be matched.
【0020】なお、本実施例では、端面型光素子12と
して発光素子を用いた場合について述べたが、用いる光
素子としては、導波路型受光素子や光スイッチ等の光I
Cでも良い。In the present embodiment, the case where the light emitting element is used as the end face type optical element 12 has been described, but the optical element to be used is a light receiving element such as a waveguide type light receiving element or an optical switch.
C may also be used.
【0021】(実施例2)図3および図4に、本発明の
電気光混載モジュールの第2の実施例の光導波路−端面
型光素子間光結合構造を示す。図3は斜視図であり、図
4は図3のx−x′線に沿う断面図である。図におい
て、前記図1および図2と同一要素には同一符号を付し
て説明を簡略化する。前述の図1および図2に示した構
造と、この図3および図4との相違点は、導体層13′
の裏面(底面)が、例えば、熱伝導率の高い銅から成る
直径100μmの柱状導体18を介して、多層セラミッ
ク基板11と接続していることである。この柱状導体1
8を多層配線層11′に貫通するように設けることで、
導体層13′の裏面の銅ポリイミド多層配線層11′の
熱抵抗が減少し、半田層13′′に固定した端面型光素
子12の放熱性を向上できる。(Embodiment 2) FIGS. 3 and 4 show an optical coupling structure between an optical waveguide and an end face type optical element according to a second embodiment of the electro-optical hybrid module of the present invention. 3 is a perspective view, and FIG. 4 is a sectional view taken along the line xx ′ of FIG. In the figure, the same elements as those in FIGS. 1 and 2 are designated by the same reference numerals to simplify the description. The difference between the structure shown in FIG. 1 and FIG. 2 and the structure shown in FIG. 3 and FIG.
Is connected to the multilayer ceramic substrate 11 via a columnar conductor 18 having a diameter of 100 μm and made of copper having a high thermal conductivity. This columnar conductor 1
By providing 8 so as to penetrate through the multilayer wiring layer 11 ′,
The thermal resistance of the copper polyimide multilayer wiring layer 11 'on the back surface of the conductor layer 13' is reduced, and the heat dissipation of the end face type optical element 12 fixed to the solder layer 13 '' can be improved.
【0022】(実施例3)図5ないし図12は、本発明
の電気光混載モジュールの製造方法の一例を示したもの
である。図中、20は本発明の電気光混載配線板(図1
2)、21は多層セラミック基板、21′は銅ポリイミ
ド多層配線層、23は溝状の光素子設置領域、23′は
光素子設置領域23の上に形成した(第2の)導体層、
23′′は該導体層23′上に形成したと半田層、2
3′′′は光素子設置領域23の壁面、24はポリマ光
導波路、25′はポリマ上部光導波路クラッド層、2
6′はポリマ光導波路コア層、27′はポリマ下部光導
波路クラッド層、28は柱状導体、29は銅ポリイミド
多層配線層21′内の導体層23′上に形成した第1の
金属層、29′は銅ポリイミド多層配線層21′の表面
に形成した第2の金属層、29′′はポリマ上部光導波
路クラッド層25′上に形成した第3の金属層である。(Embodiment 3) FIGS. 5 to 12 show an example of a method for manufacturing an electro-optical hybrid module according to the present invention. In the figure, reference numeral 20 denotes an electric / optical hybrid wiring board of the present invention (see FIG.
2) and 21 are multilayer ceramic substrates, 21 'is a copper-polyimide multilayer wiring layer, 23 is a groove-shaped optical element installation area, and 23' is a (second) conductor layer formed on the optical element installation area 23,
23 ″ is a solder layer formed on the conductor layer 23 ′,
3 ″ ″ is a wall surface of the optical element installation region 23, 24 is a polymer optical waveguide, 25 ′ is a polymer upper optical waveguide clad layer, 2
6'is a polymer optical waveguide core layer, 27 'is a polymer lower optical waveguide clad layer, 28 is a columnar conductor, 29 is a first metal layer formed on the conductor layer 23' in the copper-polyimide multilayer wiring layer 21 ', 29 Reference numeral ′ is a second metal layer formed on the surface of the copper-polyimide multilayer wiring layer 21 ′, and reference numeral 29 ″ is a third metal layer formed on the polymer upper optical waveguide clad layer 25 ′.
【0023】まず、例えば、アルミナからなる多層セラ
ミック基板21上に、スピンコートとキュアにより感光
性ポリイミド層を形成し、その上に電解および無電解メ
ッキにより銅配線(第1の導体層)を形成し、これを繰
り返して銅ポリイミド多層配線層21′を形成する。な
お、層間の銅配線は、電解および無電解メッキにより形
成した銅から成るヴィアで接続してある。銅ポリイミド
多層配線層21′の上面から25μmの位置には、上面
と平行に例えばAu/Ni/Cuから成る第2の導体層
23′を、さらに導体層23′上には例えばTiから成
る第1の金属層29を、例えば4000Å程度電解およ
び無電解メッキ、あるいは蒸着により形成する。また、
第2の導体層23′の裏面と多層セラミック基板21と
の間に銅から成る柱状導体28を電解および無電解メッ
キにより形成する(図5、図6)。First, for example, a photosensitive polyimide layer is formed on a multilayer ceramic substrate 21 made of alumina by spin coating and curing, and a copper wiring (first conductor layer) is formed thereon by electrolytic and electroless plating. Then, this is repeated to form a copper polyimide multilayer wiring layer 21 '. The copper wirings between the layers are connected by vias made of copper formed by electrolytic and electroless plating. A second conductor layer 23 'made of, for example, Au / Ni / Cu is provided parallel to the upper surface at a position 25 μm from the upper surface of the copper-polyimide multilayer wiring layer 21', and a second conductor layer made of Ti, for example, is formed on the conductor layer 23 '. The first metal layer 29 is formed by electrolytic and electroless plating or vapor deposition, for example, about 4000 Å. Also,
A columnar conductor 28 made of copper is formed between the back surface of the second conductor layer 23 'and the multilayer ceramic substrate 21 by electrolytic and electroless plating (FIGS. 5 and 6).
【0024】次に、銅ポリイミド多層配線層21′の表
面において、ポリマ光導波路24を積層しない部分のう
ち第1の金属層29を覆わない部分に、例えばTiから
成る第2の金属層29′を例えば40000Å程度、蒸
着により形成する(図7、図8)。Next, on the surface of the copper-polyimide multilayer wiring layer 21 ', a second metal layer 29' made of, for example, Ti is formed on a portion of the portion where the polymer optical waveguide 24 is not laminated and which does not cover the first metal layer 29. Is formed by vapor deposition to, for example, about 40,000Å (FIGS. 7 and 8).
【0025】次に、銅ポリイミド多層配線層21′の表
面に、フッ素化ポリイミドより成る厚さ40μmのポリ
マ下部光導波路クラッド層27′、厚さ50μmのポリ
マ光導波路コア層26′、厚さ40μmのポリマ上部光
導波路クラッド層25′を、スピンコート・キュアして
順次積層した後、ポリマ上部光導波路クラッド層25′
の表面のうちポリマ光導波路24を形成する位置にの
み、例えばTiから成る第3の金属層29′′を例えば
4000Å程度、蒸着により形成する(図9、図1
0)。Next, on the surface of the copper-polyimide multilayer wiring layer 21 ', a polymer lower optical waveguide clad layer 27' made of fluorinated polyimide and having a thickness of 40 .mu.m, a polymer optical waveguide core layer 26 'having a thickness of 50 .mu.m, and a thickness of 40 .mu.m. The polymer upper optical waveguide clad layer 25 ′ is spin-coated, cured and sequentially laminated, and then the polymer upper optical waveguide clad layer 25 ′.
A third metal layer 29 ″ made of, for example, Ti is formed by vapor deposition, for example, on the order of 4000 Å, only on the surface of the surface where the polymer optical waveguide 24 is formed (FIGS. 9 and 1).
0).
【0026】次に、前記第3の金属層29′′をマスク
として、ポリマ上部光導波路クラッド層25′の表面か
ら第1の金属層29が現われるまで、反応性イオンエッ
チングを行い、ポリマ光導波路24と光素子設置領域2
3を同時に形成する。さらに、第1,第2および第3の
金属層29、29′、29′′をフッ酸等で除去した後
に、導体層23′上に例えばAu/Sn共晶半田から成
る薄膜半田層23′′を、蒸着により、例えば5μm形
成して、本発明の電気光混載配線板20が完成する(図
11、図12)。なお、ポリマ光導波路24のチャネル
間の端部を銅ポリイミド多層配線層21′の上面と(図
面に直交する方向に)平行に結ぶ線は、光素子設置領域
23の側壁23′′′と同一平面内でなくても良い。ま
た、ポリマ光導波路24のチャネル間の端部を結ぶ面
は、光素子設置領域23の側壁23′′′と平行でなく
ても良く、特に、ポリマ光導波路24の端部と端面型光
素子の発光面側の側面との間で共振を発生させないため
には、ポリマ光導波路24のチャネル間の端部を結ぶ面
が、光素子設置領域23の側壁23′′′に対してわず
かに(例えば8〜9°)傾いていても良い。また、第
1,第2および第3の金属層29,29′,29′′と
してTi以下の金属(Alなど)を用いても良い。Next, using the third metal layer 29 ″ as a mask, reactive ion etching is performed until the first metal layer 29 is exposed from the surface of the polymer upper optical waveguide cladding layer 25 ′, and the polymer optical waveguide is etched. 24 and optical element installation area 2
3 is formed at the same time. Further, after removing the first, second and third metal layers 29, 29 ', 29''with hydrofluoric acid or the like, a thin film solder layer 23' made of, for example, Au / Sn eutectic solder is formed on the conductor layer 23 '. Is formed to a thickness of, for example, 5 μm by vapor deposition to complete the electro-optical hybrid wiring board 20 of the present invention (FIGS. 11 and 12). A line connecting the end portions between the channels of the polymer optical waveguide 24 in parallel with the upper surface of the copper-polyimide multilayer wiring layer 21 '(in the direction orthogonal to the drawing) is the same as the side wall 23 "' of the optical element installation region 23. It does not have to be in the plane. Further, the surface connecting the end portions between the channels of the polymer optical waveguide 24 does not have to be parallel to the side wall 23 ″ ′ of the optical element installation region 23. In particular, the end portion of the polymer optical waveguide 24 and the end surface type optical element. In order not to generate resonance with the side surface on the light emitting surface side, the surface connecting the ends of the channels of the polymer optical waveguide 24 to the side wall 23 ″ ′ of the optical element installation region 23 is slightly ( It may be inclined, for example, 8 to 9 °. Further, as the first, second and third metal layers 29, 29 ′ and 29 ″, a metal of Ti or less (such as Al) may be used.
【0027】(実施例4)図13ないし図15は、本発
明の電気光混載モジュールにおける端面型光素子の搭載
方法の一例を示した実施例である。図中、30は本発明
の電気光混載配線板、31は多層セラミック基板、3
1′は銅ポリイミド多層配線層、32は端面型光素子、
32′は端面型光素子32のストライプ、32′′は端
面型光素子32の発光面側側面、33は光素子設置領
域、33′は光素子設置領域33の側壁、33′′は半
田層、34はポリマ光導波路、38は柱状導体である。(Embodiment 4) FIGS. 13 to 15 show an embodiment showing an example of a method of mounting an end face type optical element in an electro-optical hybrid module of the present invention. In the figure, 30 is an electro-optical mixed wiring board of the present invention, 31 is a multilayer ceramic substrate, 3
1'is a copper polyimide multilayer wiring layer, 32 is an end face type optical element,
32 'is a stripe of the end face type optical element 32, 32' is a side surface of the end face type optical element 32 on the light emitting surface side, 33 is an optical element mounting region, 33 'is a side wall of the optical element mounting region 33, and 33''is a solder layer. , 34 are polymer optical waveguides, and 38 is a columnar conductor.
【0028】図1および図2で説明したように、端面型
光素子32の底面と該光素子の発光部中心との間の距離
は、半田層33′′の上面からポリマ光導波路34の光
軸までの距離と等しい。また、光素子設置領域33側に
あるポリマ光導波路34のチャネル間の端部を銅ポリイ
ミド多層配線層31′の上面と平行に結ぶ線は、光素子
設置領域33の側壁33′と平行であり、かつ該側壁3
3′は、半田層33′′の上面に対して垂直である。な
お、ポリマ光導波路34のチャネル間の端部を銅ポリイ
ミド多層配線層31′の上面と平行に結ぶ線は、光素子
設置領域33の側壁33′と同一平面内になくても良
い。また、ポリマ光導波路34のチャネル間の端部を結
ぶ面は、光設置領域33の側壁33′と平行でなくても
良く、特にポリマ光導波路34の端部と端面型光素子3
2の発光面側側面32′′との間で共振を発生させない
ためには、ポリマ光導波路34のチャネル間の端部を結
ぶ面が、光素子設置領域33の側壁33′に対してわず
かに(例えば8〜9°)傾いていても良い。As described with reference to FIGS. 1 and 2, the distance between the bottom surface of the end surface type optical element 32 and the center of the light emitting portion of the optical element is determined by the distance from the upper surface of the solder layer 33 '' to the light of the polymer optical waveguide 34. Equal to the distance to the axis. Further, a line connecting the end portions between the channels of the polymer optical waveguide 34 on the optical element installation area 33 side in parallel with the upper surface of the copper-polyimide multilayer wiring layer 31 ′ is parallel to the side wall 33 ′ of the optical element installation area 33. And the side wall 3
3'is perpendicular to the upper surface of the solder layer 33 ''. The line connecting the ends of the polymer optical waveguide 34 between the channels in parallel with the upper surface of the copper-polyimide multilayer wiring layer 31 ′ may not be in the same plane as the side wall 33 ′ of the optical element installation region 33. The surface connecting the ends of the polymer optical waveguides 34 between the channels need not be parallel to the side wall 33 'of the optical installation region 33. In particular, the end of the polymer optical waveguides 34 and the end surface type optical element 3 may be formed.
In order not to generate resonance with the side surface 32 ″ of the second light emitting surface, the surface connecting the ends of the channels of the polymer optical waveguide 34 to the side wall 33 ′ of the optical element installation region 33 is slightly different. It may be inclined (for example, 8 to 9 °).
【0029】まず、端面型光素子32のストライプ3
2′の長手方向の中心を、ポリマ光導波路34の幅の中
心と一致するように、例えば、図示していない位置合わ
せ装置を用いて、調整しながら、光素子32の発光面側
側面32′′を光素子設置領域33の側壁33′に平行
に押し付ける(図13)。次に、端面型光素子32の底
面を半田層33′′′の上面に押し付ける(図14)。
最後に、加熱により半田層33′′を溶融させて、端面
型光素子32を固定されることにより、端面型光素子3
2が電気光混載配線板30に搭載される(図15)。こ
のようにして構成した電気光混載モジュールとして、ポ
リマ光導波路34のチャネル間の端部を結ぶ面が、光素
子設置領域33の側壁33’に対して平行な場合につい
て製造した結果、一例として高さ方向の光軸位置ずれが
1μm以下、それに垂直な面内方向の位置ずれは2μm
以下で、端面型光素子32を電気光混載配線板30に搭
載でき、光結合構造間の光結合損失として8〜9dB
(λ=1.3μm)が得られた。First, the stripe 3 of the end surface type optical element 32
The light emitting surface side surface 32 'of the optical element 32 is adjusted so that the center of the longitudinal direction of 2'is aligned with the center of the width of the polymer optical waveguide 34, for example, by using a positioning device (not shown). ′ Is pressed parallel to the side wall 33 ′ of the optical element installation region 33 (FIG. 13). Next, the bottom surface of the end-face type optical element 32 is pressed against the top surface of the solder layer 33 '''(FIG. 14).
Finally, the solder layer 33 ″ is melted by heating and the end face type optical element 32 is fixed, so that the end face type optical element 3 is fixed.
2 is mounted on the electro-optical hybrid wiring board 30 (FIG. 15). As the electro-optical hybrid module thus configured, the case where the surface connecting the ends of the channels of the polymer optical waveguide 34 is parallel to the side wall 33 ′ of the optical element installation region 33 is manufactured. The optical axis position deviation in the vertical direction is 1 μm or less, and the positional deviation in the in-plane direction perpendicular to it is 2 μm
In the following, the end face type optical element 32 can be mounted on the electro-optical hybrid wiring board 30, and the optical coupling loss between the optical coupling structures is 8 to 9 dB.
(Λ = 1.3 μm) was obtained.
【0030】なお、本実施例では、端面型光素子32と
して発光素子を用いた場合について述べたが、用いる光
素子としては、導波路型受光素子や光スイッチ等の光I
Cでも良い。In this embodiment, the case where the light emitting element is used as the end face type optical element 32 has been described, but the optical element to be used is the optical I such as the waveguide type light receiving element or the optical switch.
C may also be used.
【0031】[0031]
【発明の効果】以上説明したように、本発明は銅ポリイ
ミド多層配線層にポリマ光導波路を積層一体化した電気
光混載配線板を用いて高密度電気配線を実現するととも
に、光素子設置領域上に形成した半田層の表面と光導波
路の光軸との間の距離を端面型光素子の底面と活性部中
心までの距離に等しくし、しかも半田層を形成するため
の金属導体層上、およびポリマ光導波路を積層しない部
分の銅ポリイミド多層配線層上に、ポリマ光導波路材料
よりも反応性イオンエッチングに対するエッチング速度
が小さく、エッチングストップ層効果のある金属マスク
を設けて反応性イオンエッチングを行うことにより、光
素子設置領域上の金属導体層と銅ポリイミド多層配線層
の侵食を防いだ。この結果、光素子設置領域上に形成し
た半田層の表面と光導波路の光軸との間の距離が、反応
性イオンエッチングによって変化することがなくなるこ
とから、半田層表面に端面型光素子の底面を接触させる
だけで、高さ方向の光導波路の光軸と端面型光素子の光
軸を一致させることができる。さらに、光素子設置領域
上の金属導体層裏面と多層セラミック基板を柱状導体で
接続し、金属導体層裏面と多層セラミック基板の間の層
の熱抵抗を低減させたことから、光素子設置用いきに搭
載した端面型光素子の放熱特性を向上させることができ
る。As described above, the present invention realizes high-density electrical wiring by using an electro-optical hybrid wiring board in which a polymer optical waveguide is laminated and integrated in a copper-polyimide multilayer wiring layer, and at the same time, on the optical element installation area. The distance between the surface of the solder layer formed on the optical axis of the optical waveguide and the distance between the bottom surface of the end facet type optical element and the center of the active portion, and on the metal conductor layer for forming the solder layer, and On the copper polyimide multilayer wiring layer where the polymer optical waveguide is not laminated, the etching rate for reactive ion etching is smaller than that of the polymer optical waveguide material, and reactive ion etching is performed by providing a metal mask with an etching stop layer effect. As a result, corrosion of the metal conductor layer and the copper-polyimide multilayer wiring layer on the optical element installation area was prevented. As a result, the distance between the surface of the solder layer formed on the optical element installation region and the optical axis of the optical waveguide does not change due to reactive ion etching. The optical axis of the optical waveguide in the height direction and the optical axis of the end facet type optical element can be aligned simply by bringing the bottom surfaces into contact with each other. Furthermore, since the back surface of the metal conductor layer on the optical element installation area and the multilayer ceramic substrate were connected by columnar conductors, the thermal resistance of the layer between the back surface of the metal conductor layer and the multilayer ceramic substrate was reduced. It is possible to improve the heat dissipation characteristics of the end-face type optical element mounted on.
【図1】本発明の第1の実施例の電気光混載モジュール
の要部の斜視図である。FIG. 1 is a perspective view of a main part of an electro-optical hybrid module according to a first embodiment of the present invention.
【図2】図1のx−x′線に沿う断面図である。FIG. 2 is a sectional view taken along line xx ′ of FIG.
【図3】本発明の第2の実施例の電気光混載モジュール
の要部の斜視図である。FIG. 3 is a perspective view of a main part of an electro-optical hybrid module according to a second embodiment of the present invention.
【図4】図3のx−x′線に沿う断面図である。4 is a cross-sectional view taken along the line xx ′ of FIG.
【図5】本発明の第3の実施例を説明するためのもの
で、本発明の電気光混載モジュールの製造方法の工程を
示す斜視図である。FIG. 5 is a perspective view for explaining the third embodiment of the present invention, and is a perspective view showing a step of the method for manufacturing the electro-optical hybrid module of the present invention.
【図6】本発明の第3の実施例を説明するためのもの
で、本発明の電気光混載モジュールの製造方法の工程を
示す図5に示した構造の断面図である。FIG. 6 is a cross-sectional view of the structure shown in FIG. 5 for explaining the third embodiment of the present invention and showing steps of the method for manufacturing the electro-optical hybrid module of the present invention.
【図7】本発明の第3の実施例を説明するためのもの
で、本発明の電気光混載モジュールの製造方法の工程を
示す斜視図である。FIG. 7 is a perspective view for explaining the third embodiment of the present invention, and is a perspective view showing a step of the method for manufacturing the electro-optical hybrid module of the present invention.
【図8】本発明の第3の実施例を説明するためのもの
で、本発明の電気光混載モジュールの製造方法の工程を
示す図7に示した構造の断面図である。FIG. 8 is a cross-sectional view of the structure shown in FIG. 7, showing the steps of the method for manufacturing the electro-optical hybrid module of the present invention, for explaining the third embodiment of the present invention.
【図9】本発明の第3の実施例を説明するためのもの
で、本発明の電気光混載モジュールの製造方法の工程を
示す斜視図である。FIG. 9 is a perspective view for explaining the third embodiment of the present invention, and is a perspective view showing a step of the method for manufacturing the electro-optical hybrid module of the present invention.
【図10】本発明の第3の実施例を説明するためのもの
で、本発明の電気光混載モジュールの製造方法の工程を
示す図9に示した構造の断面図である。FIG. 10 is a cross-sectional view of the structure shown in FIG. 9 showing the steps of the method for manufacturing the electro-optical hybrid module of the present invention for explaining the third embodiment of the present invention.
【図11】本発明の第3の実施例を説明するためのもの
で、本発明の電気光混載モジュールの製造方法の工程を
示す斜視図である。FIG. 11 is a perspective view for explaining the third embodiment of the present invention and is a perspective view showing steps of the method for manufacturing the electro-optical hybrid module of the present invention.
【図12】本発明の第3の実施例を説明するためのもの
で、本発明の電気光混載モジュールの製造方法の工程を
示す図11に示した構造の断面図である。FIG. 12 is a cross-sectional view of the structure shown in FIG. 11, showing the steps of the method for manufacturing the electro-optical hybrid module of the present invention, for explaining the third embodiment of the present invention.
【図13】本発明の第4の実施例を説明するためのもの
で、本発明の電気光混載モジュールの製造方法における
端面光素子の搭載の工程を示す断面図である。FIG. 13 is a cross-sectional view for explaining the fourth embodiment of the present invention, which is a sectional view showing a step of mounting an end facet optical element in the method for manufacturing an electro-optical hybrid module of the present invention.
【図14】本発明の第4の実施例を説明するためのもの
で、本発明の電気光混載モジュールの製造方法における
端面光素子の搭載の工程を示す斜視図である。FIG. 14 is a perspective view for explaining the fourth embodiment of the present invention, and is a perspective view showing a step of mounting an end facet optical element in the method of manufacturing an electro-optical hybrid module of the present invention.
【図15】本発明の第4の実施例を説明するためのもの
で、本発明の電気光混載モジュールの製造方法における
端面光素子の搭載の工程を示す斜視図である。FIG. 15 is a perspective view for explaining the fourth embodiment of the present invention, and is a perspective view showing a step of mounting an end facet optical element in the method of manufacturing an electro-optical hybrid module of the present invention.
【図16】従来の電気光モジュールの要部斜視図であ
る。FIG. 16 is a perspective view of a main part of a conventional electro-optical module.
【図17】図16のx−x′線に沿う断面図である。FIG. 17 is a cross-sectional view taken along the line xx ′ of FIG.
【図18】他の従来の電気光モジュールの要部斜視図で
ある。FIG. 18 is a perspective view of a main part of another conventional electro-optical module.
【図19】図18のx−x′線に沿う断面図である。19 is a cross-sectional view taken along the line xx ′ of FIG.
10,20,30 本発明の電気光混載配線板 11,21,31,51 多層セラミック基板 11′,21′,31′,51′ 銅ポリイミド多層配
線層 12,32,42,52 端面型光素子 12′,42′,52′ 端面型光素子の発光部中心 13,23,33,43,53 光素子設置領域 13′,23′,33′,43′,53′ 光素子設置
領域上に形成した(第2の)導体層 13′′,23′′,33′′,43′′,53′′
半田層 13′′′,23′′′,33′ 光素子設置領域の側
壁 14,24,34,54 ポリマ光導波路 15,55 ポリマ上部光導波路クラッド 16,56 ポリマ光導波路コア 17,57 ポリマ下部光導波路クラッド 18,28,38 柱状導体 25′ ポリマ上部光導波路クラッド層 26′ ポリマ光導波路コア層 27′ ポリマ下部光導波路クラッド層 29 銅ポリイミド多層配線層内の導体層23′上に形
成した第1の金属層 29′ 銅ポリイミド多層配線層の表面に形成した第2
の金属層 29′′ ポリマ上部光導波路クラッド上に形成した第
3の金属層 32′ 端面型光素子のストライプ 32′′ 端面型光素子の発光面側側面 44 石英系ガラス光導波路 41 Si基板 45 石英系上部光導波路クラッド 46 石英系光導波路コア 47 石英系下部光導波路クラッド 50 従来の電気光混載配線板10, 20, 30 Electro-optical mixed wiring board 11 of the present invention 11, 21, 31, 51 Multilayer ceramic substrate 11 ', 21', 31 ', 51' Copper polyimide multilayer wiring layer 12, 32, 42, 52 End face type optical element 12 ', 42', 52 'Center of light emitting part of end face type optical element 13, 23, 33, 43, 53 Optical element installation area 13', 23 ', 33', 43 ', 53' Formed on optical element installation area (Second) conductor layers 13 ″, 23 ″, 33 ″, 43 ″, 53 ″
Solder layer 13 ″ ″, 23 ″ ″, 33 ′ Side wall of optical device mounting area 14, 24, 34, 54 Polymer optical waveguide 15, 55 Polymer upper optical waveguide cladding 16, 56 Polymer optical waveguide core 17, 57 Polymer lower portion Optical waveguide clad 18, 28, 38 Columnar conductor 25 'Polymer upper optical waveguide clad layer 26' Polymer optical waveguide core layer 27 'Polymer lower optical waveguide clad layer 29 Copper conductor formed on conductor layer 23' in multilayer wiring layer First metal layer 29 'Second layer formed on the surface of copper polyimide multilayer wiring layer
Metal layer 29 ″ of the third metal layer formed on the polymer upper optical waveguide clad 32 ′ Stripe of the end face type optical element 32 ″ Side surface of the end face type optical element on the light emitting surface 44 Quartz glass optical waveguide 41 Si substrate 45 Silica-based upper optical waveguide clad 46 Silica-based optical waveguide core 47 Silica-based lower optical waveguide clad 50 Conventional electro-optical hybrid wiring board
Claims (4)
多層化されてなる多層配線層が形成され、該多層配線層
上に、光導波路コアを該光導波路コアよりも屈折率の低
い上部および下部光導波路クラッドが挟んでなる光導波
路が積層された電気光混載配線板と、 前記電気光混載配線板の前記光導波路と光結合されてい
る端面型光素子と、を有する電気光混載モジュールであ
って、 前記基板上の前記光導波路端部前方に光伝搬方向に対し
て垂直な側壁を持つ光素子設置領域が形成されるととも
に、該光素子設置領域の表面には前記光導波路の平面に
平行に第2の導体層が形成され、 かつ該第2の導体層上には、該第2の導体層に平行に半
田層が形成され、 さらに該半田層の表面から前記光導波路コアの光軸まで
の距離が、前記端面型光素子の前記半田層に接触する裏
面から該端面型光素子の活性部中心までの距離と等しく
設定され、 前記端面型光素子の活性部中心を通る光軸が、前記光導
波路コアの光軸と一致する位置で、前記端面型光素子が
前記電気光混載配線板上の前記半田層に固定されてい
る、ことを特徴とする電気光混載モジュール。1. A multi-layer wiring layer formed by laminating an insulating layer and a first conductor layer is formed on a substrate, and an optical waveguide core is bent on the multi-layer wiring layer more than the optical waveguide core. An electro-optical hybrid wiring board in which optical waveguides sandwiching low-upper and lower optical waveguide clads are laminated; and an end face type optical element optically coupled to the optical waveguides of the electro-optical hybrid wiring board In the electro-optical hybrid module, an optical element installation area having a side wall perpendicular to the light propagation direction is formed in front of the optical waveguide end portion on the substrate, and the optical element installation area has a surface on which the optical element installation area is formed. A second conductor layer is formed in parallel with the plane of the optical waveguide, and a solder layer is formed on the second conductor layer in parallel with the second conductor layer. The distance to the optical axis of the optical waveguide core is The optical axis is set to be equal to the distance from the back surface in contact with the solder layer to the center of the active portion of the end facet type optical element, and the optical axis passing through the center of the active portion of the end facet type optical element matches the optical axis of the optical waveguide core. The electro-optical hybrid module, wherein the end-face type optical element is fixed to the solder layer on the electro-optical hybrid wiring board at a position.
の裏面が前記基板と柱状導体により接続されていること
を特徴とする請求項1に記載の電気光混載モジュール。2. The electro-optical hybrid module according to claim 1, wherein a rear surface of the second conductor of the electro-optical hybrid wiring board is connected to the substrate by a columnar conductor.
層化されてなる電気配線層が形成され、該多層電気配線
層上に、光導波路コアを該光導波路コアよりも屈折率の
低い上部および下部光導波路クラッドが挟んでなる光導
波路が積層された電気光混載配線板と、前記電気光混載
配線板の前記光導波路と光結合されている端面型光素子
と、を有する電気光混載モジュールの製造方法であっ
て、 前記絶縁体層をポリマから構成し、該絶縁体層からなる
前記多層配線層の上面と平行に金属からなる第2の導体
層を形成し、該第2の導体層上に該第2の導体層と同一
寸法以上で平行に、該第2の導体と異なる材料でかつ前
記光導波路材料に比べて反応性イオンエッチング速度の
小さい第1の金属層を形成する工程と、 前記多層配線層の上面であって、前記第1の金属層を覆
わずに平行に、かつ前記下部光導波路クラッドを積層し
ない位置に、前記光導波路材料に比べて反応性イオンエ
ッチング速度の小さい第2の金属層を形成する工程と、 前記第2の金属層が形成された側の前記絶縁層の上面
に、前記下部光導波路クラッドとなるポリマからなる下
部光導波路クラッド層、前記光導波路コアとなるポリマ
からなる光導波路コア層、および前記上部光導波路クラ
ッドとなるポリマからなる上部光導波路クラッド層を、
各々前記多層配線層の上面に平行に、かつ前記光導波路
コアの光軸中心と前記第2の導体層に形成する前記半田
層の表面との間の距離が、該半田層に搭載する前記端面
型光素子の前記半田層接触面から該端面型光素子の活性
部中心までの距離と等しくなるように、積層する工程
と、 前記上部光導波路クラッド層の上面に、前記第1,第2
の金属層を覆わず平行に、前記光導波路材料に比べて反
応性イオンエッチング速度の小さい第3の金属層を形成
する工程と、 前記上部光導波路クラッド層の上面に対して垂直に反応
性イオンエッチングを行い、前記第3の金属層が形成さ
れていない前記上部光導波路クラッド層、前記光導波路
コア層、前記下部光導波路クラッド層、さらに前記第
2,第3の金属層が形成されていない前記多層配線層を
エッチングして、前記光導波路と前記光素子の設置領域
とを同時に形成する工程と、 前記第1,第2,第3の金属層を除去する工程と、 前記光素子設置領域上の第2の導体の上に、該第2の導
体と平行に前記半田層を形成する工程と、を有すること
を特徴とする電気光混載モジュールの製造方法。3. An electric wiring layer formed by laminating an insulating layer and a first conductor layer is formed on a substrate, and an optical waveguide core is bent on the multilayer electric wiring layer more than the optical waveguide core. An electro-optical hybrid wiring board in which optical waveguides sandwiching low and high optical waveguide clads are stacked; and an end-face type optical element optically coupled to the optical waveguides of the electro-optical hybrid wiring board A method of manufacturing an electro-optical hybrid module, wherein the insulator layer is made of a polymer, and a second conductor layer made of metal is formed in parallel with an upper surface of the multilayer wiring layer made of the insulator layer. A first metal layer made of a material different from that of the second conductor and having a smaller reactive ion etching rate than that of the optical waveguide material is provided on the second conductor layer in parallel with the second conductor layer in the same dimension or more. The step of forming and the upper surface of the multilayer wiring layer Forming a second metal layer having a smaller reactive ion etching rate than the optical waveguide material at a position not covering the first metal layer and in parallel and not stacking the lower optical waveguide clad; A lower optical waveguide clad layer made of a polymer to be the lower optical waveguide clad, an optical waveguide core layer made of a polymer to be the optical waveguide core, and an upper surface of the insulating layer on the side where the second metal layer is formed, An upper optical waveguide clad layer made of a polymer to be the upper optical waveguide clad,
The distance between the optical axis center of the optical waveguide core and the surface of the solder layer formed on the second conductor layer is parallel to the upper surface of the multilayer wiring layer, and the end surface mounted on the solder layer. Of the first optical element, the second optical element, and the second optical element on the upper surface of the upper optical waveguide clad layer so that the distance from the solder layer contact surface of the optical element to the center of the active portion of the end surface optical element becomes equal.
Forming a third metal layer having a smaller reactive ion etching rate than that of the optical waveguide material in parallel without covering the metal layer of the above, and the reactive ion perpendicular to the upper surface of the upper optical waveguide clad layer. Etching is performed, and the upper optical waveguide clad layer, the optical waveguide core layer, the lower optical waveguide clad layer, and the second and third metal layers on which the third metal layer is not formed are not formed. Etching the multilayer wiring layer to simultaneously form the optical waveguide and the optical element installation region; removing the first, second, and third metal layers; and the optical device installation region. And a step of forming the solder layer in parallel with the second conductor on the upper second conductor, the manufacturing method of the electro-optical hybrid module.
記光導波路端部側にある前記光素子設置領域の側壁に平
行に接触させ、しかも該光素子設置領域の表面に平行な
面に投影した前記光導波路の光軸と前記端面型光素子の
活性部中心を通る光軸とを一致させ、前記端面型光素子
の底面を前記半田層の表面に平行に接触させて該半田層
ならびに前記端面型光素子を加熱し、前記半田層を溶融
することにより、前記電気光混載配線板に前記端面型光
素子を固定することを特徴とする請求項3に記載の電気
光混載モジュールの製造方法。4. A surface parallel to the side surface of the end face type optical element on the side of the active portion, which is in parallel contact with the side wall of the optical element installation area on the end side of the optical waveguide, and which is parallel to the surface of the optical element installation area. The optical axis of the optical waveguide projected onto the optical axis and the optical axis passing through the active portion center of the end face type optical element are aligned, and the bottom surface of the end face type optical element is brought into contact with the surface of the solder layer in parallel to the solder layer. 4. The electro-optical hybrid module according to claim 3, wherein the electro-optical hybrid module is fixed to the electro-optical hybrid wiring board by heating the edge optical device and melting the solder layer. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP523295A JP3343837B2 (en) | 1995-01-17 | 1995-01-17 | Manufacturing method of electro-optical hybrid module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP523295A JP3343837B2 (en) | 1995-01-17 | 1995-01-17 | Manufacturing method of electro-optical hybrid module |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08194137A true JPH08194137A (en) | 1996-07-30 |
JP3343837B2 JP3343837B2 (en) | 2002-11-11 |
Family
ID=11605450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP523295A Expired - Lifetime JP3343837B2 (en) | 1995-01-17 | 1995-01-17 | Manufacturing method of electro-optical hybrid module |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3343837B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001174657A (en) * | 1999-12-21 | 2001-06-29 | Toppan Printing Co Ltd | Optical wiring layer, opto-electric wiring board and mounted board |
WO2002014917A1 (en) * | 2000-08-17 | 2002-02-21 | Matsushita Electric Industrial Co., Ltd. | Optical mounting board, optical module, optical transmitter/receiver, optical transmitting/receiving system, and method for manufacturing optical mounting board |
EP1349243A2 (en) * | 2002-03-29 | 2003-10-01 | Matsushita Electric Industrial Co., Ltd. | Optical device, method of manufacturing the same, optical module, optical transmission system |
KR100894152B1 (en) * | 2007-03-16 | 2009-04-27 | (주)페타컴 | Optical device based planar light waveguide circuit and manufacturing method thereof |
JP2012227464A (en) * | 2011-04-22 | 2012-11-15 | Nec Corp | Method of manufacturing laser module, and laser module |
JP2013008887A (en) * | 2011-06-27 | 2013-01-10 | Hitachi Ltd | Optical module |
-
1995
- 1995-01-17 JP JP523295A patent/JP3343837B2/en not_active Expired - Lifetime
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001174657A (en) * | 1999-12-21 | 2001-06-29 | Toppan Printing Co Ltd | Optical wiring layer, opto-electric wiring board and mounted board |
EP1312946A4 (en) * | 2000-08-17 | 2006-05-03 | Matsushita Electric Ind Co Ltd | Optical mounting board, optical module, optical transmitter/receiver, optical transmitting/receiving system, and method for manufacturing optical mounting board |
WO2002014917A1 (en) * | 2000-08-17 | 2002-02-21 | Matsushita Electric Industrial Co., Ltd. | Optical mounting board, optical module, optical transmitter/receiver, optical transmitting/receiving system, and method for manufacturing optical mounting board |
EP1312946A1 (en) * | 2000-08-17 | 2003-05-21 | Matsushita Electric Industrial Co., Ltd. | Optical mounting board, optical module, optical transmitter/receiver, optical transmitting/receiving system, and method for manufacturing optical mounting board |
KR100803417B1 (en) * | 2000-08-17 | 2008-02-13 | 마츠시타 덴끼 산교 가부시키가이샤 | Method for manufacturing optical mounting board |
US6964528B2 (en) | 2000-08-17 | 2005-11-15 | Matsushita Electric Industrial Co., Ltd. | Optical mount substrate, optical module, optical transmitter-receiver, optical transmitter-receiver system, and manufacturing method of optical mount substrate |
EP1349243A2 (en) * | 2002-03-29 | 2003-10-01 | Matsushita Electric Industrial Co., Ltd. | Optical device, method of manufacturing the same, optical module, optical transmission system |
US7106766B2 (en) | 2002-03-29 | 2006-09-12 | Matsushita Electric Industrial Co., Ltd. | Optical device, method of manufacturing the same, optical module, optical transmission system |
EP1349243A3 (en) * | 2002-03-29 | 2005-01-12 | Matsushita Electric Industrial Co., Ltd. | Optical device, method of manufacturing the same, optical module, optical transmission system |
US7723137B2 (en) | 2002-03-29 | 2010-05-25 | Panasonic Corporation | Optical device, method of manufacturing the same, optical module, optical transmission system |
KR100894152B1 (en) * | 2007-03-16 | 2009-04-27 | (주)페타컴 | Optical device based planar light waveguide circuit and manufacturing method thereof |
JP2012227464A (en) * | 2011-04-22 | 2012-11-15 | Nec Corp | Method of manufacturing laser module, and laser module |
JP2013008887A (en) * | 2011-06-27 | 2013-01-10 | Hitachi Ltd | Optical module |
Also Published As
Publication number | Publication date |
---|---|
JP3343837B2 (en) | 2002-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100720854B1 (en) | Photoelectric wiring board, packaging board, and photoelectric wiring board producing method | |
US5125054A (en) | Laminated polymer optical waveguide interface and method of making same | |
US6343164B1 (en) | Optoelectric multichip module | |
EP1041418B1 (en) | Optical wiring layer, optoelectric wiring substrate, mounted substrate, and methods for manufacturing the same | |
CA2375166C (en) | Optical-electric printed wiring board, printed circuit board, and method of fabricating optical-electric printed wiring board | |
US5659648A (en) | Polyimide optical waveguide having electrical conductivity | |
US9075206B2 (en) | Optical waveguide device | |
US10935737B2 (en) | Optical waveguide and optical circuit substrate | |
JP4677651B2 (en) | Optical wiring layer manufacturing method, optical / electrical wiring substrate, manufacturing method thereof, and mounting substrate | |
JPH07159658A (en) | Structure for coupling optical waveguide with optical element and its production | |
KR20080026656A (en) | Optical waveguide device and method for fabricating optical waveguide device | |
JP3343837B2 (en) | Manufacturing method of electro-optical hybrid module | |
JP3652080B2 (en) | Optical connection structure | |
JPH1152198A (en) | Optical connecting structure | |
US20240168226A1 (en) | Optical circuit board and optical component mounting structure using same | |
JP2001004854A (en) | Optical and electrical wiring board and mounting substrate | |
JP4320850B2 (en) | Optical / electrical wiring board, mounting board, and manufacturing method thereof | |
JP4304764B2 (en) | Optical / electrical wiring board, manufacturing method, and mounting board | |
JP2000340906A (en) | Optical/electrical wiring board, manufacture thereof and mounting board | |
JP2001083346A (en) | Electric/optic mixed loading wiring board, electricity- light mixed loading module and method for its production | |
KR20040106674A (en) | Structures of optical waveguide laminated printed circuit board and optical connection blocks and method for constructing waveguide layer | |
JP4419216B2 (en) | Optical / electrical wiring board, mounting board manufacturing method, and mounting board | |
JP2001004856A (en) | Optical module mounting substrate and its manufacture | |
JP4240659B2 (en) | Optical / electrical wiring board, manufacturing method, and mounting board | |
JP2009098432A (en) | Device for converting laminated multi-channel optical path and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070830 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080830 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080830 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090830 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090830 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100830 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100830 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110830 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120830 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130830 Year of fee payment: 11 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |