JP4674565B2 - 光学素子の製造方法 - Google Patents

光学素子の製造方法 Download PDF

Info

Publication number
JP4674565B2
JP4674565B2 JP2006111183A JP2006111183A JP4674565B2 JP 4674565 B2 JP4674565 B2 JP 4674565B2 JP 2006111183 A JP2006111183 A JP 2006111183A JP 2006111183 A JP2006111183 A JP 2006111183A JP 4674565 B2 JP4674565 B2 JP 4674565B2
Authority
JP
Japan
Prior art keywords
optical element
trench
manufacturing
silicon substrate
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006111183A
Other languages
English (en)
Other versions
JP2007286188A (ja
Inventor
淳士 大原
久弥 加藤
敏之 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006111183A priority Critical patent/JP4674565B2/ja
Priority to DE102007016555.4A priority patent/DE102007016555B4/de
Priority to US11/783,434 priority patent/US7799588B2/en
Publication of JP2007286188A publication Critical patent/JP2007286188A/ja
Application granted granted Critical
Publication of JP4674565B2 publication Critical patent/JP4674565B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Description

本発明は、光学素子およびその製造方法に関するものである。
Si基板上に、SiO2で構成されたマイクロレンズやマイクロプリズムといった光学素子を集積化して作りこむ技術として、特許文献1が知られている。
特許文献1の技術は、図19に示すような光学素子を生成するために、Si基板に対して、光学素子の輪郭を掘るためのマスクと、光学素子の内部をSiO2化するためのトレンチ8を複数掘るためのマスクの両方を設ける。そして、図20(a)から(c)に示すように、このマスクを設けたSi基板に対してエッチングを行い、光学素子の輪郭と略同一形状の輪郭を備えるとともに、その内部に複数のトレンチ8を設けたSi構造体(柱構造体)を生成する。なお、図20(a)は、エッチングを行った後のSi基板上方からの平面図、図20(b)は図20(a)のF−F面における断面図、図20(c)は図20(b)のG−G面における断面図である。
さらに、図20(a)から(c)の状態において、このSi構造体に対して熱酸化処理を行って、複数のトレンチ8を熱酸化によって膨張したSiO2により埋めて、図19の光学素子を生成する。なお、トレンチ8に挟設された柱状のSi構造体の幅とトレンチ8の幅との関係は、トレンチ8が、Si構造体が熱酸化によってSiO2化した際に塞がれるように規定されている。
特開2004−271756号公報
図21(a)は、図20(c)の枠H内の拡大図である。エッチングでは、角を正確に掘ることができないため、図21(a)のように、トレンチ8のコーナー部は滑らかな形状となる。ここで、二つのトレンチ8に挟まれた柱状のSi構造体において、両トレンチ8まで同じ距離のSi原子が位置する点を点aとし、輪郭を形成するSi構造体と柱状のSi構造体との交点を点bとする。そして、点aからトレンチ8までの最短距離をRa、点bからトレンチ8までの最短距離をRbとすると、Ra<Rbとなり、Si構造体の場所によってトレンチ8までの最短距離が異なる。トレンチ8までの距離が遠いSi原子ほど、酸化されるまでに時間を要するため、図21(b)に示すように点aのSi原子が酸化された時点では、点bのSi原子は酸化されていない。このため、点bのSi原子を酸化するためには、点aのSi原子が酸化された時点で、トレンチ8の一部が点bのSi原子を酸化する酸素分子が通過するための間隙として若干残っている必要がある。さらに、この間隙は、図21(c)に示すように点aのSi原子が酸化された後は埋まることはなく、逆に点bのSi原子の酸化によって柱状のSi構造体の連立方向に広がる(例えば、点aに位置したSi原子は点a’の位置に、点bに位置したSi原子は点b’の位置に移動する)なお、光学素子として使用する場合、内部に大きな間隙が存在すると、入力された透過光が予期せぬ方向に屈折させられ、十分な透過光が出射されない恐れがある。
本発明は、上記点に鑑み、少なくとも輪郭を形成するSi構造体と柱状のSi構造体との交点付近に位置するSi原子を酸化する際に、柱状のSi構造体の連立方向に間隙が広がることを抑制可能な光学素子の構造および製造方法を提供することを目的とする。
上記目的を達成するために請求項1に記載の発明は、パターニングしたマスク(7)を用いてシリコン基板(1)の基板面をエッチングし、光学素子(2,11,12,13,14,15,18)を形成するための基となる光学素子形成体であって、複数の構造体が各構造体間にトレンチ(8)を隔てて該基板面上に並設されてなる複数の柱構造体(3)と、該複数の柱構造体(3)に連結するとともに、該複数の柱構造体(3)を内包する輪郭構造体(9)とを該基板面上に形成する第1工程と、前記光学素子形成体を酸化する工程であって、該光学素子形成体が酸化され始めてから、前記柱構造体(3)が酸化されるまでの第2工程と、前記第2工程の後、該第2工程において酸化され残った前記輪郭構造体の一部(10)が酸化されるまでの第3工程とからなる光が透過可能なシリコン酸化物で構成される光学素子の製造方法であって、前記第2工程が終了した時点において、前記トレンチ(8)が残っており、前記第3工程において、前記輪郭構造体(9)は、少なくとも前記柱構造体(3)の並設方向に対する変形を、前記光学素子形成体における前記柱構造体(3)の並立方向側端面に一体形成されたシリコン基板(1)の一部であるストッパー(4)により抑制されることを特徴とする。
第1工程では、各々がトレンチを隔ててシリコン基板面上に並設された柱構造体と、これらの柱構造体を含む輪郭構造体とからなる光学素子形成体を、シリコン基板をエッチングすることで形成する。
第2工程では、光学素子形成体の酸化を開始し、少なくとも柱構造体を酸化する。この第2工程では、輪郭構造体を完全に酸化することはできず、輪郭構造体の柱構造体との連結点付近に酸化されていない箇所(酸化残り)が残る。本発明では、第2工程が終了した時点において、トレンチ(8)が残っているので、第3工程において、トレンチを通じ酸化残りを酸化することができる。
第3工程では、酸化残りが酸化される際に発生する、輪郭構造体のトレンチの並設方向への膨張を抑制しながら、酸化残りを酸化する。本発明では、ストッパーをシリコン基板の一部とすることで、ストッパー用の部材を別途準備することなく、トレンチがトレンチの並立方向へ広がることを抑制することができる。
これにより、第3工程で、トレンチが第2工程終了時点よりも広がることを抑制することができる。
請求項2に記載の発明は、前記ストッパー(4)により前記柱構造体(3)の並立方向側への膨張を抑制されたシリコン酸化物は、前記トレンチ(8)に流入することを特徴とする。これによれば、シリコン酸化物の一部がトレンチに流入することにより、第2工程終了時点でトレンチが残っていたとしても、これを埋めることができる。
請求項3に記載の発明は、前記第3工程が終了した時点で、前記トレンチ(8)が完全に埋まらず空隙として残っており、シリコン酸化膜の成膜処理により該空隙を埋めることを特徴とする。これによれば、空隙を埋めることにより、空隙の無い光学素子を生成することができる。
請求項4に記載の発明は、前記ストッパー(4)は、前記光学素子(2,11,12,13,14,15,18)への入射光の入射面および出射面以外の面に接することを特徴とする。
これにより、光学素子へ入射される光を妨げることなく、かつ、光学素子から出射される光を妨げることがない。
請求項5に記載の発明は、前記ストッパー(4)は、前記柱構造体(3)の並立方向に直交する方向に対して凸形状または凹形状を有することを特徴とする。
請求項6に記載の発明は、前記第3工程において、前記ストッパー(4)は、前記酸化され残った輪郭構造体の一部(10)が酸化されることによる前記柱構造体(3)の並設方向に対する前記輪郭構造体(9)の変形を抑制することを特徴とする。
これにより、酸化残りの酸化に伴って、輪郭構造体が、柱構造体の並設方向に変形したとしても、ストッパーで、この変形を抑制することができる。
請求項7に記載の発明は、前記光学素子(2,11,12,13,14,15,18)へ入射される光は、前記柱構造体(3)の並立方向に直交する側の端面に入射されることを特徴とする。
請求項8に記載の発明は、前記光学素子(2,11,12,13,14,15,18)の前記シリコン基板側端面は、前記シリコン基板(1)の延設方向に対して連続する凹凸形状を有する状態であることを特徴とする。
請求項9に記載の発明は、前記光学素子(2,11,12,13,14,15,18)の前記シリコン基板側端面は、光軸に対して垂直な方向に連続する凹凸形状を有する状態であることを特徴とする。
請求項10に記載の発明は、複数の前記柱構造体(3)は、前記シリコン基板(1)の上面において光軸に対し平行に延設されていることを特徴とする。
シリコン酸化物よりなる複数の柱構造体は、シリコン基板の上面において光軸に対し平行に延設されている光学素子においては、トレンチが完全に埋まらなかった場合であっても、光の散乱等による光の透過が低下するのを抑制することができる。
請求項11に記載の発明は、前記光学素子(2,11,12,13,14,15,18)の前記シリコン基板側端面は、該光学素子(2,11,12,13,14,15,18)と同形状のシリコン基板(1)からなる連結部(5)に連結していることを特徴とする。
シリコン基板と一体的に形成したシリコン酸化物ブロックは、その下に当該シリコン酸化物ブロックと同形状のシリコン基板からなる連結部を有していると、光の入射・出射の際に光の経路を妨げることを回避することができる。
請求項12に記載の発明は、前記光学素子(2,11,12,13,14,15,18)は、前記シリコン基板(1)に形成された凹部に存在するとともに、該光学素子(2,11,12,13,14,15,18)への入射光側および出射光側の端面と、該凹部の壁面(16)とは間隔を隔てていることを特徴とする。
シリコン基板に凹部が形成され、その凹部の内部においてシリコン基板と一体的に形成した光学素子の入射光側および出射光側の端面側に周囲溝が在る状態で配置されているならば、柱構造体の延設方向にシリコン基板が存在しないため、柱構造体の座屈を回避することができる。
請求項13に記載の発明は、前記光学素子(2,11,12,13,14,15,18)の該光学素子(2,11,12,13,14,15,18)への入射光側および出射光側の端面以外の端面が、該凹部の壁面(16)に接しており、前記輪郭構造体(9)の変形は該壁面(16)により抑制されることを特徴とする。
請求項14に記載の発明は、前記第3工程が終了した時点で、前記光学素子(2,11,12,13,14,15,18)は、上下方向の厚さが10μm以上であることを特徴とする。
このように、シリコン基板と一体的に形成したシリコン酸化物ブロックは、上下方向の厚さが10μm以上であるとよい。
請求項15に記載の発明は、前記光学素子(2,11,12,13,14,15,18)は、不純物が上下方向において濃度分布をもつようにして添加されていることを特徴とする。
シリコン酸化物ブロックは、不純物が上下方向において濃度分布をもつようにして添加されている光学素子においては、上下方向の集光機能を持たせることが可能となる。
請求項16に記載の発明は、前記不純物はゲルマニウム(Ge)、リン(P)、スズ(Sn)、ホウ素(B)の少なくともいずれか1つを含むことを特徴とする。
請求項17に記載の発明は、前記シリコン基板(1)に、レンズ(2,11,12,13,14,15)と光導波路(18)とスリットのうちの少なくとも一つを含む複数の光学部品を作り込んだことを特徴とする。
請求項18に記載の発明は、前記第1工程における前記トレンチ(8)の幅および前記柱構造体(3)の幅は、前記第3工程の熱酸化において該トレンチ(8)内がシリコン酸化物で充填されると同時に、前記輪郭構造体(9)がシリコン酸化物となる寸法としたことを特徴とする。
このように輪郭構造体が酸化された後にトレンチをシリコン酸化物で埋める工程、または、トレンチが埋まった後で輪郭構造体を酸化するための工程を省くことができる。
請求項19に記載の発明は、前記第1工程において多数並設されるトレンチ(8)は、光軸に対し平行に延設されていることを特徴とする。
第1工程において多数並設するトレンチを、光軸に対し平行に延設すると、光の散乱等による光の透過が低下するのを抑制することができる。
請求項20に記載の発明は、前記第1工程は、反応性イオンエッチングにて前記トレンチ(8)を形成し、該トレンチ内壁に保護用酸化膜を形成し、さらに、該トレンチ底部の保護用酸化膜をエッチングした後に該底部から反応性イオンエッチングにより該トレンチ(8)を更に深くすることにより、1以上のアスペクト比を有するトレンチ(8)を形成するようにしたことを特徴とする。
トレンチエッチングは、反応性イオンエッチングにてトレンチを形成し、このトレンチ内壁に保護用酸化膜を形成し、さらに、トレンチ底部の保護用酸化膜をエッチングした後にトレンチの底部から反応性イオンエッチングによりトレンチを更に深くすることにより、アスペクト比が1以上のトレンチを形成することができる。
請求項21に記載の発明は、上下方向において不純物濃度を変えたシリコン基板(1)に対し前記トレンチ(8)を形成することにより前記光学素子(2,11,12,13,14,15,18)に含まれる不純物を該光学素子(2,11,12,13,14,15,18)の上下方向において濃度分布をもたせたことを特徴とする。
上下方向において不純物濃度を変えたシリコン基板に対しトレンチを形成することにより光学素子での不純物を上下方向において濃度分布をもたせるようにすると、不純物濃度によってシリコン酸化物の屈折率が変わるため、上下方向の集光機能を持たせることが可能となる。
請求項22に記載の発明は、前記第3工程における酸化は、前記シリコン酸化物をアニール可能な温度で行われ、前記トレンチ(8)を挟んで対向する前記柱構造体(3)同士が融着することを特徴とする。
第3工程で酸化残りが酸化される際、トレンチの連立方向へのシリコン酸化物の膨張がストッパーにより抑制される。この時、アニール可能な温度で酸化が行われていると、シリコン酸化物が流体化し、トレンチを挟んで対向する柱構造体同士が融着し、トレンチ(間隙)が狭くなる、もしくは無くなる。
以下、実施例1から実施例6を用いて、本発明を実施するための最良の形態を述べる。
〔実施例1〕
本実施例は、本発明における光学素子をプリズムに適用させたものであり、図1から図9を用いて説明を行う。
図1は、本実施形態における光学素子の斜視図であり、図2(a)は図1のA−A面における断面図であり、図2(b)は、図1のB−B面における断面図である。
この図1に示すように、光学素子は、シリコン基板1上に立設したプリズム2である。このプリズム2は、シリコン基板1の上面にシリコン酸化物よりなる複数の柱構造体3が隣接することで一体的に構成されている。そして、プリズム2がシリコン酸化物で構成されているため、図1の上方向、すなわち柱構造体3の連立方向に直交しシリコン基板1に水平な方向から入射された光は、プリズム2により偏光される。そして、偏光された光は、プリズム2の図1の下方向の面、すなわち入射面に対向する出射面から出射される。
図2(a)に示すように、各柱構造体3はその下面が円弧面となっており、複数の柱構造体3が隣接した状態で立設されることにより構成されるシリコン酸化物ブロック(プリズム2)は、シリコン基板1と接着剤を介さずに、微小な凹凸形状の境界面で接続されている。即ち、シリコン基板1の上面からシリコン酸化物ブロック(プリズム2)がシリコン基板1との境界面である下面がシリコン基板1の表面と平行方向に沿って連続する凹凸形状を有する状態で立設され、このシリコン基板1と一体的に形成したシリコン酸化物ブロック(プリズム2)に光を透過させる構造となっている。
そして、このシリコン酸化物ブロック(プリズム2)の両端部には、酸化物ブロックおよびシリコン基板1の両方と一体のストッパー部4が存在する。このストッパー部4は、図6から図9を用いて後述する熱酸化工程において、非酸化部分として残されたシリコン基板1の一部であり、その形状は、シリコン基板1より突出した四角柱形状である。
また、シリコン酸化物よりなる複数の柱構造体3は、図2に示すように、シリコン基板1の上面において光軸に対し平行に延設されている。これにより、柱構造体3の延設方向が光の通過する方向と平行になり、光の通過する方向とのなす角がシリコン酸化物と空気層との間の全反射角以内にすることができ、光の散乱等による光の透過が低下するのを抑制することができる。シリコン基板1と一体的に形成したシリコン酸化物ブロック(プリズム2)は、その下に当該シリコン酸化物ブロックと同形状のシリコン基板1からなる連結部5(台座部)を有している。また、シリコン基板1と一体的に形成したプリズム2(シリコン酸化物ブロック)はその周囲に周囲溝6が在る状態で配置されている。なお、このプリズム2(シリコン酸化物ブロック)は、上下方向の厚さ(高さH)が10μm以上、具体的には100μm程度である。プリズム2の光軸に直交する方向の幅Wは200μm程度、光軸方向に平行なプリズム2の側面で、面積が狭い側の幅W2は50μm程度、広い側の幅W2は100μm程度である。
次に、図3から図9を用いて、本実施例1のプリズム2の製造方法を説明する。図3(a)はシリコン基板1の断面(製造前の図2(a)に相当)であり、図3(b)はシリコン基板1の平面図である。この図3(a)および図3(b)に示すように、シリコン基板1上に一様に酸化膜マスク7を設ける。
次に、図4(a)および図4(b)に示すように、酸化膜マスク7の一部を除去して、プリズム2の輪郭形状および複数のトレンチ8のパターニングを行う。この図4(a)はシリコン基板1の断面(図3(a)と同一視点)であり、図3(b)はシリコン基板1の平面図(図3(b)と同一視点)である。なお、パターニングは、正確に四角形を規定することが望ましいが、一般に除去される酸化膜マスク7のコーナー部は丸くなる。
さらに、この時の酸化膜厚は、(抜き幅+残し幅)と同じか、それ以上に設定する。通常、熱酸化膜はシリコン表面の内側と外側に0.45:0.55の割合で進行する。本実施例1では、この比率に合わせて抜き幅と残し幅を設定しており、トレンチ8の幅およびトレンチ間のシリコン層(後述する柱構造体3)の幅は、熱酸化においてトレンチ内がシリコン酸化物でおおよそ充填された時点で、トレンチ間のシリコン層(柱構造体3)が完全にシリコン酸化物になる寸法となっている。すなわち、柱構造体3が完全に酸化された時点で、若干の間隙が残っているように、トレンチ8の幅を決定する。
一方、パターニングする際には、図4(b)に示すように、トレンチ間のシリコン層(柱構造体3)以外に、プリズム2の輪郭形状(後述の輪郭構造体9)と、後述のストッパー部4も規定する。なお、前述のトレンチ8は、プリズム2の輪郭の環状内部に含まれている。ストッパー部4は、輪郭形状のトレンチ連立方向側の両端に規定される。ストッパー部4のプリズム2の光軸方向に沿う幅W4は、同方向へのプリズム2の幅Wの5%程度である。すなわち、プリズム2幅Wが200μm程度であるなら、ストッパー部4の幅W4は10μm程度となる。
そして、図5に示すように、図4(a)に対して酸化膜マスク7の開口部からエッチングを行い、プリズム2の輪郭形状およびプリズム2の輪郭形状内側に複数のトレンチ8を形成する。
つまり、第1工程として、パターニングしたマスクを用いてシリコン基板1をトレンチエッチングして一定の幅のトレンチ8を一定の間隔で多数並設するとともに、ストッパー部4を含むプリズム2の輪郭を規定する。以下では、プリズム2の輪郭形状を構成する枠の部材を輪郭構造体9、輪郭構造体9の内側において同一方向に、かつ、光軸に対し平行に延設された部材を柱構造体3と呼ぶ。トレンチ幅(以下、抜きと呼ぶ)とトレンチ間の壁となるシリコンの幅(以下、残しと呼ぶ)の比率は、0.55:0.45となるように酸化膜マスク7の開口部の幅および開口部の間隔を調整する。例えば、抜きが1.1μmならば、残しは0.9μm、抜きが2.2μmならば、残しは1.8μmとする。
さらに、シリコン基板全体を水素雰囲気中でアニール処理してトレンチ側壁での表面粗さを小さくする。このエッチング後のトレンチ側壁表面およびプリズム輪郭を規定する側壁表面の平坦性は、この面が光の入射あるいは出射する面となるため重要であり、この後、熱酸化を行うことで平滑な表面を持つレンズ面を得ることができる。この技術に関しては特開2002−231945号公報に開示されている。
図6(a)および図6(b)に示すように、酸化膜マスク7をフッ酸溶液への浸漬等により除去する。この図6(a)は図2(a)と同一視点によるシリコン基板1の断面図であり、図6(b)は図2(b)と同一視点によるシリコン基板1の断面図である。
以下、図7(a)、図7(b)、図8、図9(a)、図9(b)を用いて、熱酸化によりトレンチ内をシリコン酸化物で埋めるとともに、輪郭構造体9および柱構造体3(トレンチ8間のシリコン層)をシリコンからシリコン酸化物に置き換えてシリコン基板1と一体的なプリズム2(光透過用ブロック)を生成する熱酸化工程について説明する。なお、この熱酸化は、シリコン酸化物が流体となりアニール効果を得ることが可能な1100℃程度の温度で行われる。
図7(a)、図7(b)、図8は、熱酸化によって柱構造体3が完全に酸化した際の断面図である。図7(a)は図6(a)と同一視点によるシリコン基板1の断面図であり、図7(b)は図6(b)と同一視点によるシリコン基板1の断面図である。そして、図8は、図7(b)のC−C面における断面図である。
図7(a)のように柱構造体3が完全に酸化された時点では、図7(b)および図8のように輪郭構造体9の一部(柱構造体3との交点付近)が酸化されていない。以下、輪郭構造体9の柱構造体3との交点付近おける酸化されていないシリコンを、酸化残り10と呼ぶ。
なお、あらかじめトレンチ8の幅は、柱構造体3が完全に酸化された時点で完全には埋まらず、若干の間隙として残るように規定されているため、柱構造体3が完全に酸化された後も、トレンチ8を通じて酸素が酸化残り10に届く。
図9(a)および図9(b)は、図7(a)、図7(b)、図8の状態から、さらに熱酸化を行った状態の断面図である。図9(a)は図7(a)と同一視点によるシリコン基板1の断面図であり、図9(b)は図7(b)と同一視点によるシリコン基板1の断面図である。
図7から図9に掛けて、酸化残り10が酸化されることで、輪郭構造体9の内部にはシリコン基板1の平面方向(含、柱構造体3の連立方向)への膨張力が発生する。しかし、柱構造体3の連立方向における膨張は、酸化されずに残っているストッパー部4によって抑制される。
さらに、この熱酸化は1100℃程度の高温で行われているので、シリコン酸化物が流体化している。このため、ストッパー部4により膨張が抑制されたシリコン酸化物が、図7(a)、および図7(b)で若干の間隙として残っていたトレンチ8に流入する。そして、図7(a)および図7(b)にて示した柱構造体3との交点付近のシリコンが完全に酸化された時点で、トレンチ8が完全に埋まる。
以上のように、柱構造体3が酸化された時点で若干のトレンチ8を残すことで、酸化残り10のシリコンを酸化させることが可能である。
また、輪郭を形成する輪郭構造体9と柱構造体3との交点付近に位置する酸化残り10のシリコンがシリコン酸化物となり体積が膨張する際に、トレンチ8がトレンチ8の連立方向に広がってプリズム2の輪郭が同方向に広がることを、ストッパー部4により抑制できる。
さらに、ストッパー部4の設置に加えて、シリコンを1100℃程度で熱酸化して、酸化シリコンを流体化する。ストッパー部4は、トレンチ8の連立方向への膨張体積を抑制するため、流体化した酸化シリコンは、酸化残り10を酸化するために若干残っていたトレンチ8に流入する。これにより、酸化残り10のシリコンが酸化された後に、若干残っていたトレンチ8を埋める工程を無くす、もしくは埋める量を減らすことができる。なお、酸化残り10が完全に酸化された後に、トレンチ8が若干残っていた場合は、超臨界流体をこのトレンチ8に流し込むことで、トレンチ8を埋めることが可能である。
〔実施例2〕
図10および図11を用いて実施例2について説明する。この実施例2は、光学素子の形態がシリンドリカルレンズ11であるため、前述の実施例1と異なる。なお、前述の実施例1と同等の構成については、実施例1と同様の符号を付し、本実施例2における説明を省略する。
図10(a)から(c)は、平凸型のシリンドリカルレンズ11を示しており、図10(a)は平面図、図10(b)はD−D面における断面図、図10(c)はE−E面における断面図である。この図10(b)および(c)に示すように、このシリンドリカルレンズ11は、両端部にストッパー部4を備えている。このためストッパー部4により、実施例1と同様の作用効果を奏しながら、シリンドリカルレンズ11を生成することができる。
シリンドリカルレンズ11の他にも、生成したい光学素子の輪郭構造体9の両端部にストッパー部4を設けることで、図11(a)のごとく両凹レンズ12、図11(b)のごとく両凸レンズ13、図11(c)のごとくメニスカスレンズ14、図11(d)のごとく平凹レンズ15等の任意形状の光学素子を生成可能である。なお、図11(a)から図11(d)は、光学素子形成後の平面図であり、ストッパー部4は点線で囲んである領域に形成されている。
〔実施例3〕
図12を用いて実施例3について説明する。この実施例3は、光学素子の形態が、複数の光学素子からなる光学素子群である点で、前述の各実施例と異なる。なお、前述の各実施例と同等の構成については、各実施例と同様の符号を付し、本実施例3における説明を省略する。
図12は、複数のシリンドリカルレンズ11からなる光学素子群の平面図である。この光学素子群の両端にはストッパー部4が形成されている。すなわち、ストッパー部間に存在する複数の光学素子の酸化残り10が酸化された際に発生するの両端方向への膨張を、これら両端のストッパー部4でまとめて抑制する。
このように、複数の光学素子を隣接して生成する場合には、各光学素子の両端ではなく光学素子群の両端にストッパー部4を設けることが可能である。
また、さらに、複数の光学素子を一緒にパターニングし、トレンチエッチング、熱酸化工程を経ることで一括してこれら部品を基板に作り込むことができる。この場合、多数のレンズアレイであろうと、光が複数のレンズを通る複雑な光学系であろうと、1枚のマスクから一括して基板にパターニングして形成することができ、特に、後者の場合については、微小な光学系において非常に厄介な問題となる個々の光学部品の光軸合わせという問題を解消することができる。広義には、マスクとして、レンズと光導波路とスリットのうちの少なくとも一つを含む複数の光学部品を形成するためのものを用いて、トレンチエッチングと熱酸化工程を経ることにより一括してシリコン基板1に作り込むようにすると、光軸の位置合わせは不要となる。即ち、光学素子の構造として、シリコン基板1に、レンズと光導波路とスリットのうちの少なくとも一つを含む複数の光学部品を作り込むと、光軸の位置合わせは不要となる。
〔実施例4〕
図13および図14を用いて実施例4について説明する。この実施例4は、ストッパー部4を光学素子周辺の壁面16で代用している。なお、前述の各実施例と同等の構成については、前述の各実施例と同様の符号を付し、本実施例4における説明を省略する。
図13には本実施形態における光学素子の斜視図を示す。この光学素子は平凸型のシリンドリカルレンズ11であって、曲面(出射面)および曲面に対向する面(入射面)以外の端面が、壁面16に連結している。
そして、図13のシリコン酸化物ブロック(レンズ)は、不純物が上下方向において濃度分布をもつようにして添加されている。即ち、不純物添加層17(エピタキシャル層)が形成されている。不純物としては、ゲルマニウム(Ge)、リン(P)、スズ(Sn)、ホウ素(B)などの1種類以上を添加することができる。
以下、詳しく説明する。
シリコン基板1に、ゲルマニウム(Ge)もしくはリン(P)もしくはスズ(Sn)を不純物としてドープした後に熱酸化膜を形成すると、酸化膜の屈折率が上がることが知られている。また、ホウ素(B)を不純物としてドープした後に熱酸化すると酸化膜の屈折率が変化することが知られている。
そこで、シリコン基板上にCVD等により、Geの不純物濃度を連続的に変えたエピタキシャル膜を形成する。厚さ方向(深さ方向)における濃度分布は所定の深さでピークとなる山形にする。その後、図14に示すように、マスクを用いて実施例1と同様に、マスクを用いて光学素子の輪郭および複数のトレンチ8を規定し、DRIE、熱酸化工程を経ることでレンズ形状を形成する。なおトレンチ8の開口の長辺は、壁面16と平行(光の入射方向と同一)である。
このように、シリコン基板1上に、膜厚方向において不純物濃度を変えたエピタキシャル膜17を成長させた後において、トレンチ8を形成することにより光透過用ブロックでの不純物を上下方向において濃度分布をもたせる。広義には、上下方向において不純物濃度を変えたシリコン基板1に対しトレンチ8を形成することにより光透過用ブロックでの不純物を上下方向において濃度分布をもたせる。これにより、図13に示す構造を得る。この場合、基板の深さ方向(レンズの高さ方向)に屈折率分布を持つため、レンズの曲面形状による基板面内方向(水平方向)のみでなく、シリコン基板1の表面に垂直方向(上下方向)にも集光機能を付与することができる。
なお、エピタキシャル膜17の濃度分布(濃度変化)は不連続的であってもよい。このように、シリコン基板上に、シリコンより重い元素、具体的にはGeもしくはPもしくはSnを不純物として含み、なおかつ不純物濃度を連続的または非連続的に変えたエピタキシャル膜を形成することで、不純物濃度が深さ方向に連続的または非連続的に変化したエピタキシャル膜(シリコン層)を形成した後、実施例1で説明したように光学素子(レンズ)を形成する。あるいは、シリコン基板上に、シリコンより軽い元素、具体的にはBを不純物として含み、なおかつ不純物濃度を連続的または非連続的に変えたエピタキシャル膜を形成することで、不純物濃度が深さ方向に連続的または非連続的に変化したエピタキシャル膜(シリコン層)を形成した後、実施例1で説明したように光学素子を形成する。
そして、実施例1と同様に本実施例4においても、熱酸化工程で酸化残り領域が酸化された際に、輪郭が壁面方向に膨張しようとする。しかし、トレンチ8の連立方向の輪郭の一部が壁面16と接しているため、壁面16が実施例1のストッパー部4と同様にこの膨張を抑制する。
このように、本実施例4の光学素子は、壁面16をストッパー部4として代用しながら、実施例1と同様の作用効果を奏することができる。
〔実施例5〕
図15を用いて実施例5について説明する。この実施例5は、光学素子(シリンドリカルレンズ11)に加えて光導波路18を一体に形成する点で、前述の実施例4と異なる。なお、前述の各実施例と同等の構成については、前述の各実施例と同様の符号を付し、本実施例5における説明を省略する。
図15に本実施例5におけるシリンドリカルレンズ11および光導波路18の斜視図を示す。このシリンドリカルレンズ11は実施例4の図13において示した平凸型のシリンドリカルレンズ11と同一形状であり、曲面および曲面に対向する面以外の端面が、壁面16に連結している。光導波路18は、両壁面16と平行に延設され、レンズと同様にシリコン基板上に一体に立設されている。
以下、シリンドリカルレンズ11および光導波路18の生成工程について述べる。
この生成工程は、実施例4と同じく、連続的、あるいは不連続的に不純物濃度を変えてエピタキシャル層17を形成した後、DRIE、熱酸化工程を経て、シリンドリカルレンズ11を形成するが、本実施例においてはシリンドリカルレンズ11と共に光導波路18を形成している。光導波路18は、シリンドリカルレンズ11と同じ方法で形成できる。つまり、周期的なトレンチ構造において、トレンチ本数が少なく、かつ長手方向に極端に長いパターンを形成すれば、ライン状のシリコン酸化物(SiO2)ブロック、つまり光導波路18を形成できる。例えば抜き幅1.5μmのトレンチ8を挟んで残し幅1.5μmのシリコン層を2つ、長手方向に1mm並ぶパターンに対し、DRIE、熱酸化工程を実施することによって幅6μm、長さ1mmの光導波路18が形成できる。光導波路内では、上下方向には屈折率の差により、最も屈折率が高い中央付近に光は閉じ込められる。横方向には光導波路18の周囲はオープンスペースであるため、光導波路内に光は閉じ込められる。この光導波路18はパターン次第で任意形状に形成できる。また、シリンドリカルレンズ11と同時に形成できるためこのシリンドリカルレンズ11とのカップリングに際しての位置合わせは不要である。
〔実施例6〕
図16から図18を用いて実施例6について説明する。この実施例6は、ストッパー部4の形状が、複雑である点で前述の各実施例と異なる。なお、前述の各実施例と同等の構成については、前述の各実施例と同様の符号を付し、本実施例6における説明を省略する。
図16(a)から図16(d)は、前述の各実施例とは異なるストッパー部4の形状を平面図でそれぞれ示している。図16(a)のように、輪郭構造体9の端面を凹状にエッチングし、これを酸化することで凹状のストッパー部4を生成することができる。これに対して、図16(b)のように輪郭構造体9の端面を凸状にエッチングし、これを酸化することで凸状のストッパー部4を生成することができる。
一方、図16(c)では、輪郭構造体9の端面を斜めにエッチングしてある。これを酸化することで、三角柱形状のストッパー部4を生成することができる。
図16(d)では、輪郭構造体9の端面を台形状にエッチングしている。これを酸化することで、台形柱形状のストッパー部4を生成することができる。
このように、ストッパー部4の形状は、円柱以外の形状を用いることも可能である。図16(a)の凹状ストッパー部4の場合、酸化残り10が多く、トレンチ8の連立方向への体積膨張が激しい輪郭構造体9付近のストッパー部4を厚くしている。
また、図16(b)のストッパー部4と図16(a)のストッパー部4とを図17のように組み合わせることで、光学素子同士を隣立する際の剛性をあげながら、省スペース化を図ることができる。
図16(c)のようにストッパー部4を三角柱とする場合にも、図18のように互い違いに三角柱を組み合わせることで、光学素子同士を隣立する際の剛性をあげながら、省スペース化を図ることができる。
このように、ストッパー部4の形状は、光学素子の立設スペースや、酸化残り10が酸化された際の膨張の度合いなどを鑑みて、実施例1で示したような四角柱以外の形状としても良い。
〔その他の実施例〕
前述の実施例1から実施例6では、熱酸化を行う際の温度を1100℃程度とした。熱酸化の温度を1100℃とした理由は、一般的な酸化炉が1200℃程度の温度にまで耐えられるシリカガラスを用いているためである。しかしながら、1200℃以上の高温であっても耐えられる酸化炉を用いるならば、シリコン酸化物が融解しない程度の高温で熱酸化を行っても良い。
前述の実施例1から実施例6では、酸化を終了し、光学素子が完成した時点で、ストッパー部4が残っていた。しかし、酸化残り11が酸化される際に、輪郭構造体9がトレンチ8の連立方向に広がらないように抑制することが、ストッパー部4を設置する目的である。このため、酸化が終了した時点で、ストッパー部4を取り除いても、前述の各実施例と同様の作用効果を奏することができる。さらに、酸化残り11の酸化が終了した時点で、ストッパー部4が完全に酸化されるように、ストッパー部の幅W4を決定しても良い。もしくは、酸化残り11の酸化が終了した後も、ストッパー部が完全に酸化されるまで酸化を行っても良い。
前述の実施例1では、一例としてストッパー部4の幅W4を10μm程度とした。しかし、酸化対象である輪郭構造体9や柱構造体3の幅や、これらの構造物を構成するシリコン素材によって、この幅W4は異なる。このため、本発明のストッパー部4は、実施例1の幅W4に限定されたものではなく、酸化残り11が酸化された際に輪郭構造体9が広がることを抑制可能であれば良い。参考までに、出願人が行った実験の結果では、ストッパー部4の幅W4が、光学素子の幅Wの5%以上である場合に、輪郭構造体9の膨張を効果的に抑制することができた。
前述の各実施例では、エッチングを行う際に使用するマスクを、酸化膜マスクとしたが、使用するマスクはこれに限定されない。例えば、酸化膜マスクの代わりにレジストマスクを用いても実施可能である。
実施例1を示すシリコン基板1に一体に立設したプリズム2の斜視図である。 実施例1を示す断面図であり、図2(a)は図1および図2(b)のA−A面の断面図、図2(b)は図1および図2(a)のB−B面の断面図である。 実施例1のシリコン基板1に酸化膜マスク7が積層された状態を示す図であり、図3(a)は図3(b)のA−A面の断面図、図3(b)は平面図である。 実施例1において、図3の酸化膜マスク7の一部を除去した状態を示す図であり、図4(a)は図4(b)のA−A面の断面図、図4(b)は平面図である。 実施例1において、図4(a)をエッチングした状態を示す断面図である。 実施例1において、図5の酸化膜マスク7を除去した状態を示す図であり、図6(a)は図6(b)のA−A面の断面図、図6(b)は図6(a)のB−B面の断面図である。 実施例1において、図6の状態から酸化を行い柱構造体3の酸化が完了した状態を示す図であり、図7(a)は図7(b)のA−A面の断面図、図7(b)は図7(a)のB−B面の断面図である。 実施例1を示す図であり、図7のC−C面の断面図である。 実施例1において、図7の状態からさらに酸化を行い酸化残り10の酸化が完了した状態を示す図であり、図9(a)は図9(b)のA−A面の断面図、図9(b)は図9(a)のB−B面の断面図である。 実施例2を示す図であり、図10(a)はシリンドリカルレンズ11の平面図であり、図10(b)は図10(a)のD−D面の断面図、図10(c)は図10(b)のE−E面の断面図である。 実施例2を示す平面図であり、図11(a)は両凹レンズ12、図11(b)は両凸レンズ13、図11(c)はメニスカスレンズ14、図11(d)は平凹レンズ15である。 実施例3を示す複数のシリンドリカルレンズ11が連結した光学素子の平面図である。 実施例4を示す壁面16をストッパー部4として使用するシリンドリカルレンズ11の斜視図である。 実施例4を示す図13のシリンドリカルレンズ11を生成するために酸化膜マスクが積層された状態を表す斜視図である。 実施例5を示すシリンドリカルレンズ11と光導波路18を表す斜視図である。 実施例6の複数種類のストッパー部を表す平面図であり、図16(a)は凹状のストッパー部、図16(b)は凸状ストッパー部、図16(c)は三角柱形状のストッパー部、図16(d)は台形柱形状のストッパー部を示す。 実施例6の凹状のストッパー部と凸状ストッパー部とが連結された状態を表す平面図である。 実施例6の三角柱形状のストッパー部同士が連結された状態を表す平面図である。 一般的なシリンドリカルレンズ11の斜視図である。 図19のシリンドリカルレンズ11の生成段階においてエッチングされたシリコン基板1を示す図であり、図20(a)は平面図、図20(b)は面F−Fの断面図、図20(c)は面G−Gの断面図である。 図20(c)の枠H内が酸化される様子を示す拡大図であり、図21(a)は酸化が開始された時点の拡大図、図21(b)は柱構造体3の酸化が完了した時点の拡大図、図21(c)は酸化残り10の酸化が完了した時点の拡大図である。
符号の説明
1 シリコン基板
2 プリズム
3 柱構造体
4 ストッパー部
5 連結部(台座部)
6 周囲溝
7 酸化膜マスク
8 トレンチ
9 輪郭構造体
10 酸化残り
11 シリンドリカルレンズ
12 両凹レンズ
13 両凸レンズ
14 メニスカスレンズ
15 平凹レンズ
16 壁面
17 不純物添加層(エピタキシャル層)
18 光導波路

Claims (22)

  1. パターニングしたマスク(7)を用いてシリコン基板(1)の基板面をエッチングし、光学素子(2,11,12,13,14,15,18)を形成するための基となる光学素子形成体であって、複数の構造体が各構造体間にトレンチ(8)を隔てて該基板面上に並設されてなる複数の柱構造体(3)と、該複数の柱構造体(3)に連結するとともに、該複数の柱構造体(3)を内包する輪郭構造体(9)とを該基板面上に形成する第1工程と、
    前記光学素子形成体を酸化する工程であって、該光学素子形成体が酸化され始めてから、前記柱構造体(3)が酸化されるまでの第2工程と、
    前記第2工程の後、該第2工程において酸化され残った前記輪郭構造体の一部(10)が酸化されるまでの第3工程とからなる光が透過可能なシリコン酸化物で構成される光学素子の製造方法であって、
    前記第2工程が終了した時点において、前記トレンチ(8)が残っており、
    前記第3工程において、前記輪郭構造体(9)は、少なくとも前記柱構造体(3)の並設方向に対する変形を、前記光学素子形成体における前記柱構造体(3)の並立方向側端面に一体形成されたシリコン基板(1)の一部であるストッパー(4)により抑制されることを特徴とする光学素子の製造方法。
  2. 前記ストッパー(4)により前記柱構造体(3)の並立方向側への膨張を抑制されたシリコン酸化物は、前記トレンチ(8)に流入することを特徴とする請求項1に記載の光学素子の製造方法。
  3. 前記第3工程が終了した時点で、前記トレンチ(8)が完全に埋まらず空隙として残っており、シリコン酸化膜の成膜処理により該空隙を埋めることを特徴とする請求項1又は請求項2に記載の光学素子の製造方法。
  4. 前記ストッパー(4)は、前記光学素子(2,11,12,13,14,15,18)への入射光の入射面および出射面以外の面に接することを特徴とする請求項1〜3いずれか1項に記載の光学素子の製造方法。
  5. 前記ストッパー(4)は、前記柱構造体(3)の並立方向に直交する方向に対して凸形状または凹形状を有することを特徴とする請求項1〜4いずれか1項に記載の光学素子の製造方法。
  6. 前記第3工程において、前記ストッパー(4)は、前記酸化され残った輪郭構造体の一部(10)が酸化されることによる前記柱構造体(3)の並設方向に対する前記輪郭構造体(9)の変形を抑制することを特徴とする請求項1〜5いずれか1項に記載の光学素子の製造方法。
  7. 前記光学素子(2,11,12,13,14,15,18)へ入射される光は、前記柱構造体(3)の並立方向に直交する側の端面に入射されることを特徴とする請求項1〜6いずれか1項に記載の光学素子の製造方法。
  8. 前記光学素子(2,11,12,13,14,15,18)の前記シリコン基板側端面は、前記シリコン基板(1)の延設方向に対して連続する凹凸形状を有する状態であることを特徴とする請求項1〜7いずれか1項に記載の光学素子の製造方法。
  9. 前記光学素子(2,11,12,13,14,15,18)の前記シリコン基板側端面は、光軸に対して垂直な方向に連続する凹凸形状を有する状態であることを特徴とする請求項1〜7いずれか1項に記載の光学素子の製造方法。
  10. 複数の前記柱構造体(3)は、前記シリコン基板(1)の上面において光軸に対し平行に延設されていることを特徴とする請求項1〜9いずれか1項に記載の光学素子の製造方法。
  11. 前記光学素子(2,11,12,13,14,15,18)の前記シリコン基板側端面は、該光学素子(2,11,12,13,14,15,18)と同形状のシリコン基板(1)からなる連結部(5)に連結していることを特徴とする請求項1〜10いずれか1項に記載の光学素子の製造方法。
  12. 前記光学素子(2,11,12,13,14,15,18)は、前記シリコン基板(1)に形成された凹部に存在するとともに、該光学素子(2,11,12,13,14,15,18)への入射光側および出射光側の端面と、該凹部の壁面(16)とは間隔を隔てていることを特徴とする請求項1〜11いずれか1項に記載の光学素子の製造方法。
  13. 前記光学素子(2,11,12,13,14,15,18)の該光学素子(2,11,12,13,14,15,18)への入射光側および出射光側の端面以外の端面が、該凹部の壁面(16)に接しており、前記輪郭構造体(9)の変形は該壁面(16)により抑制されることを特徴とする請求項12に記載の光学素子の製造方法。
  14. 前記第3工程が終了した時点で、前記光学素子(2,11,12,13,14,15,18)は、上下方向の厚さが10μm以上であることを特徴とする請求項1〜13いずれか1項に記載の光学素子の製造方法。
  15. 前記光学素子(2,11,12,13,14,15,18)は、不純物が上下方向において濃度分布をもつようにして添加されていることを特徴とする請求項1〜14いずれか1項に記載の光学素子の製造方法。
  16. 前記不純物はゲルマニウム(Ge)、リン(P)、スズ(Sn)、ホウ素(B)の少なくともいずれか1つを含むことを特徴とする請求項15に記載の光学素子の製造方法。
  17. 前記シリコン基板(1)に、レンズ(2,11,12,13,14,15)と光導波路(18)とスリットのうちの少なくとも一つを含む複数の光学部品を作り込んだことを特徴とする請求項1〜16いずれか1項に記載の光学素子の製造方法。
  18. 前記第1工程における前記トレンチ(8)の幅および前記柱構造体(3)の幅は、前記第3工程の熱酸化において該トレンチ(8)内がシリコン酸化物で充填されると同時に、前記輪郭構造体(9)がシリコン酸化物となる寸法としたことを特徴とする請求項1〜17いずれか1項に記載の光学素子の製造方法。
  19. 前記第1工程において多数並設されるトレンチ(8)は、光軸に対し平行に延設されていることを特徴とする請求項1〜18いずれか1項に記載の光学素子の製造方法。
  20. 前記第1工程は、反応性イオンエッチングにて前記トレンチ(8)を形成し、該トレンチ内壁に保護用酸化膜を形成し、さらに、該トレンチ底部の保護用酸化膜をエッチングした後に該底部から反応性イオンエッチングにより該トレンチ(8)を更に深くすることにより、1以上のアスペクト比を有するトレンチ(8)を形成するようにしたことを特徴とする請求項1〜19いずれか1項に記載の光学素子の製造方法。
  21. 上下方向において不純物濃度を変えたシリコン基板(1)に対し前記トレンチ(8)を形成することにより前記光学素子(2,11,12,13,14,15,18)に含まれる不純物を該光学素子(2,11,12,13,14,15,18)の上下方向において濃度分布をもたせたことを特徴とする請求項1〜20いずれか1項に記載の光学素子の製造方法。
  22. 前記第3工程における酸化は、前記シリコン酸化物をアニール可能な温度で行われ、
    前記トレンチ(8)を挟んで対向する前記柱構造体(3)同士が融着することを特徴とする請求項1〜21いずれか1項に記載の光学素子の製造方法。
JP2006111183A 2006-04-13 2006-04-13 光学素子の製造方法 Expired - Fee Related JP4674565B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006111183A JP4674565B2 (ja) 2006-04-13 2006-04-13 光学素子の製造方法
DE102007016555.4A DE102007016555B4 (de) 2006-04-13 2007-04-05 Optische Vorrichtung und Verfahren zu deren Herstellung
US11/783,434 US7799588B2 (en) 2006-04-13 2007-04-10 Method of manufacturing the optical device by a stopper to form an oxide block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006111183A JP4674565B2 (ja) 2006-04-13 2006-04-13 光学素子の製造方法

Publications (2)

Publication Number Publication Date
JP2007286188A JP2007286188A (ja) 2007-11-01
JP4674565B2 true JP4674565B2 (ja) 2011-04-20

Family

ID=38758034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006111183A Expired - Fee Related JP4674565B2 (ja) 2006-04-13 2006-04-13 光学素子の製造方法

Country Status (1)

Country Link
JP (1) JP4674565B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967973B2 (ja) * 2007-10-04 2012-07-04 株式会社デンソー 光学素子
JP2009246189A (ja) * 2008-03-31 2009-10-22 Citizen Finetech Miyota Co Ltd 半導体基板の製造方法、半導体基板、及び半導体基板を用いた圧電デバイス

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004271756A (ja) * 2003-03-06 2004-09-30 Denso Corp 光学素子およびその製造方法
JP2005136385A (ja) * 2003-10-06 2005-05-26 Denso Corp 半導体光学装置およびその製造方法
JP2005345630A (ja) * 2004-06-01 2005-12-15 Denso Corp 光導波路およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004271756A (ja) * 2003-03-06 2004-09-30 Denso Corp 光学素子およびその製造方法
JP2005136385A (ja) * 2003-10-06 2005-05-26 Denso Corp 半導体光学装置およびその製造方法
JP2005345630A (ja) * 2004-06-01 2005-12-15 Denso Corp 光導波路およびその製造方法

Also Published As

Publication number Publication date
JP2007286188A (ja) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4161745B2 (ja) 光学素子およびその製造方法
US11119276B1 (en) Single-layer and multi-layer structures for integrated silicon photonics optical gyroscopes
US20130330042A1 (en) Optical branching element and optical branching circuit
KR20160147018A (ko) 저손실 모드 컨버터를 위한 역 테이퍼 도파관
JPWO2008111447A1 (ja) 光導波路及びその製造方法
JP6394285B2 (ja) 光導波路、スポットサイズ変換器及び光装置
US7174072B2 (en) Optical device having optical waveguide and method for manufacturing the same
US7799588B2 (en) Method of manufacturing the optical device by a stopper to form an oxide block
KR101462389B1 (ko) 웨이퍼를 제조하는 방법
JP4674565B2 (ja) 光学素子の製造方法
US20050135765A1 (en) Optical waveguide device, and method for fabricating the optical waveguide device
JP4735513B2 (ja) 光学素子
US10718661B2 (en) Integrated microfabricated vapor cell sensor with transparent body having two intersecting signal paths
JP2007102196A (ja) 光学素子の製造方法
JP3911271B2 (ja) 光導波路及びその製造方法
JP4195992B2 (ja) スポットサイズ変換器の製造方法
JP4967973B2 (ja) 光学素子
CN107247314A (zh) 与光波导集成的二氧化硅微透镜的制作方法
JP2008262003A (ja) 光導波路および光導波路製造方法
JP4697119B2 (ja) 光学素子の製造方法及び光学素子
JP6590012B2 (ja) 光導波路及び光導波路製造方法
JP5477789B2 (ja) Te−tmモード変換器
JP2004061711A (ja) デバイス製造方法および光導波路デバイス
US6921491B2 (en) Method for forming a groove and method for manufacturing an optical waveguide element
WO2004074890A1 (ja) 光導波路デバイスの製造方法および光導波路デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees